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Abstract This paper is concerned with the investigation of
UC and BUC plane partitions based upon the fermion calcu-
lus approach. We construct generalized the vertex operators
in terms of free charged fermions and neutral fermions and
present the interlacing (strict) 2-partitions. Furthermore, it is
showed that the generating functions of UC and BUC plane
partitions can be written as product forms.
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1 Introduction

Free charged fermions and neutral fermions proposed by
Kyoto school [1-5] play a crucial role in construction of

#e-mail: yanzw @imu.edu.cn (corresponding author)

t-functions of integrable systems such as KP and BKP hier-
archies. Tsuda [6] introduced the universal character (UC)
hierarchy which is the generalization of KP hierarchy. Then
Ogawa [7] constructed UC hierarchy of B-type (BUC hier-
archy) which can be regarded as the extension of BKP hier-
archy. The algebraic structures of UC and BUC hierarchies
have been well discussed based upon the free fermions and
neutral fermions [6—8]. By means of fermion calculus [5], the
relations between vertex operators and KP plane partitions
have been developed [9]. Fermionic approach is a extremely
useful tool in exploring the structure and properties of inte-
grable systems. Unal [10,11] presented the r-functions of
the KP and BKP hierarchies as determinants and Pfaffians
with charged free fermions and neutral free fermions.

Plane partitions are generated in crystal melting model
[12,13] which have widely applications in various fields of
mathematics and physics, such as statistical models, number
theory and representation theory. The generating function of
plane partitions describes the characteristics of plane parti-
tions which has widely application in combinatorics [14,15],
statistical mechanics [16,17] and integrable systems [18].
Okounkov et al. [19] analyzed generating function for plane
partitions in terms of vertex operators expressed as expo-
nentials of bilinear in fermions. Then the partition func-
tions of the topological string theory have been developed
by the fermion calculus approach [20]. Recently, Wang et al.
[21,22] investigated 3-dimensional (3D) Boson representa-
tion of Wit algebra and studied Littlewood-Richardson
rule for 3-Jack polynomials by acting 3D Bosons on 3D
Young diagrams (plane partitions). By using the fermion cal-
culus approach, Foda et al. [9,23] established the product
forms for the generating function of KP and BKP plane par-
titions based on the KP free charge fermions and BKP neutral
fermions, respectively. It is also proved the generating func-
tion is a special t-function of the 2D Toda lattice. The aim of
this paper is to investigate the generating function of plane
partitions for UC and BUC hierarchies.
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The paper is organized as follows. Section 2 provides
a review of the fundamental facts of free fermions, plane
partitions and generating functions. Section 3 is devoted to
investigation of the UC plane partitions by fermion calcu-
lus approach. We introduce the interlacing partitions are
presented with half-integers and construct interlacing 2-
partitions, from which a product form of the generating func-
tion for UC plane partitions are derived. In Sect. 4, By intro-
ducing generating interlacing strict 2-partitions, we study the
generating function for BUC plane partitions. The last sec-
tion is conclusions and discussions.

2 Preliminaries

In this section, we mainly retrospect basic facts about free
fermions, plane partitions and generating functions [5,6,23—
26].

2.1 Charged fermions and UC hierarchy

Y, Vo, ¢ and @) (m € Z + %) are charged fermions, the
charge of the fermions is given by

Fermion Y /M On o

Charge (1,0) (—1,0) 0,1 0,-1

Algebra A over C is generated by the commutation rela-
tions

[Wims Ynlt = W ¥l = 0, W, ¥ 14 = Smtn0s
[¢m» ¢n]+ = [‘P;,’ ¢;,k]+ = 07 [¢ma ¢:]+ = 8m+n,0a

[V @n] = W, b1 = [V, $n] = [¥y. 1 =0, 2.1)
and 7 = 9,2 = ¢ = ¢;7 = 0.

A Maya diagram is made up of black and white stones
lined up along the real line, indexed by half-integers. It is
required that far away to the right (when n > 0) all the
stones are black, whereas far away to the left (when n < 0),
they are all white. By writing o; € Z + % for the position
of the black stone, we can describe a Maya diagram as an
increasing sequence of half-integers

a={a;}j>1=(a1,@2,a3,...) witha; <oy <az <---,

2.2)
that satisfies the following conditions
(D oaj <ajyy forall j>1,
(ii) a¢jy1 = aj + 1 for all sufficiently large j. 2.3)
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The right state corresponding to the Maya diagram « is
defined as
l) = |op, 2, 3+ - ). (2.4)

A left action of the fermions is given by the following rules

D i),
Yy la) = if @; = —n for some i,
0, otherwise,
2.5)
(=D o, n, g, ..,
Yrla) = ifa; <n < ajy for some i,
0, otherwise.
(2.6)
In particular,
K[’nm) = |a23 as, .. > for o] = —n, (27)
Yrla) = |n, a1, a2,...) forn <a. (2.8)
Similarly, a Maya diagram can also be represented as
o = {06}}]'31 =(..,d5a),a)) with -+ <o <o)
<d, 2.9)

where a} €7+ % denotes the position of the white stone
and oe;. = a} — 1 for all sufficiently large j. The left state
corresponding to the Maya diagram « is denoted as

(] = (..., a5 05, afl. (2.10)
A right action of the fermions is given by
(=D onal, ., ifa), <n<adf
(| = for some i,
0, otherwise,
(2.11)
(DN, it =
(aly, = for some i,
0, otherwise,
(2.12)

while ¢ and ¢* have respectively the same action as ¥ and
¥*, exceptreplacing ¥ with ¢. Particularly, the vacuum state
|vac) and the dual vacuum state (vac| are defined as

1
27

(vac| = { ) |
vac| = (..., ——, ——|,
2 2

NSRS

|vac) = | ,...) and

(2.13)
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which satisfy

Ynlvac) = ¥, |vac)

= ¢p|vac) = ¢)|vac) =0 forn > 0,

(vac|yr, = (vac|y,

= (vac|¢, = (vac|¢, =0 forn <O0. (2.14)

The charged fermionic Fock space F and the dual Fock
space F* are generated by

def

F = A-|vac) = {a|vac) | a € A},
F* ¥ vacl - A = {(vacla | a € A}, (2.15)
where
=Y ViV G B O
(2.16)

The vector subspace of F with charge (/1, [>) is written as
Fi, 1, Consider a pairing { ) : F* x F — C denoted by

({vacla, b|vac)) —> (vac|a - b|vac) = (ab), (2.17)

where ( ) is called the vacuum expectation value. The fol-
lowing properties hold
(Um¥y) = (Pmdy)

Sm+n0 (m>0),
0 (otherwise).
(2.18)

(vaclvac) =1,

The UC hierarchy is a system satisfying the following
bilinear identity

Yo v @yiluy= Y ¢ jlu) ®¢jlu) =0,
jez+1)2 JEZ+1/2
(2.19)

where |u) € Fo o has charge (0, 0).
Define the colon operator : : as

: wmw;: = I/Iml//:_<1//ml//:>a : ¢m¢;lk : =¢m¢z_<¢m¢z>

(2.20)

Consider the operators H,, and H, (n € 7),

Hy= Y vy ¥t Hi= Y ¢, :.
JEZA+1/2 jeZ+1)2
(2.21)

Then the following properties hold

[Hy, Y] = Ipm+n’ [Hy, W;] = _1//:1+n,

[Hy, Hy] = m8m+n,09 [I:Im Ol = dmin,

(Hu, 63 = =bpins [Hu, Hl = m8pino. (222)
Noting
H,|vac) = Hy|vac) =0 ifn > 0. (2.23)
The operators called Hamiltonian are defined as
. 19
Ha(x,y; 85,8 = D 1o =~ 5, )
nexN
19 ~
+ Yn - Hn 5 (224)
n oxy

along with the generating functions of charged fermions

Y (k)= Z Yk V2 R (k) = Z Y2,

neZ+1/2 neZ+1/2
gl =" k" = Y gk
nezZ+1/2 neZ+1/2

(2.25)

For convenience, H+ (X, y; dx, dy) isrepresented as H (X, y).

Proposition 2.1 The commutative relations between the
Hamiltonian Hy(X,Yy) and generating functions of charged
fermions are as follows

[Hi(x,y), ¥ (k)] = £x(x — dy, K)p(k),
[H(x,y), ¥ (k)*] = —&x(x — dy, )Y (k),
[Hi(X,y), p(k)] = Ex(y — dx, K)p (),

[He(x,y), (k)] = —E£(y — Iy, D)p* (k), (2.26)
where
Ex(x, k)= ) k",

nexN
50 = (i li li ) (2.27)
Yo \oy 20y 30y ) '

Proof By means of Egs. (2.22) and (2.24), we obtain
[Hi(x,y), ¥ (k)]

= Z (xin - ﬁ ayi,,) : [Hin, 1/fm] 'k_m_%

neN
meZ+1/2
19 n —m'—1/2
=D (o= )K" DY Yk
n dy,
nexN " m'eZ+1/2
= £1(x — By, DY (k). (2.28)
The other formulas can be proved in the same way. O
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Lemma 2.2 The following equations hold

MEEY) ()= HEY) — o =0y, (1
eHi(X’y)lﬂ*(k)e_Hi(x’Y) — e_éi(x_éy’k)l//*(k),
eHi(X,Y)(p(k)e*Hi(X,Y) — eEi(yféx»k)(ﬁ(k)’

PLE (X’y)d)* (k)e—Hi xy) — =6+ (yféx,k)d)* (k). (2.29)

Proof From the Eq. (2.26) , it follows that
eHi(X,Y)w(k)e*Hi(&)’)
=Y (k) + [He(x,y), ¥ (k)]

1
+ E[H:I:(X, Y, [He X, y), v +------

- 1 -
= Y (k)+8+(x—dy, k)w(k)+5§i(x—3y, kyyr (k)+ - -

— U0y (). (2.30)
Using the similar procedure, we can prove other equations.
O

Remark 2.3 Under the reduction ¢,, = ¢;;, = 0, Eq. (2.19)
leads to bilinear identity of KP hierarchy. The Eqs. (2.1)-
(2.29) leads to definitions and properties in KP hierarchy.

2.2 Neutral fermions and BUC hierarchy
In this section, we introduce neutral fermions ¢, and qgm

(n,m € Z), which are generators of the algebra A over C
and satisfy

(b Dl = [Pm, Pult = (1) 8msn0s  [Gms dn] =0,
2 72 1

The neutral fermionic Fock space F and the dual Fock
space F* can be defined as

~ def

FZEA-10) = {al0)]a € A},

FE 0] A= ((0la | a € A), (232)

where the vacuum state |0) and the dual vacuum state (0| are
denoted by

$n|0) = $4|0) =0 forn <O,

(Ol = (0|¢y =0 forn > 0. (2.33)

Introduce the operators H,, and I-_I,’n (m € Nodd)

1 .
Hy =5 (=D 90 jm.

JjeZ

@ Springer

_ 1 L
H, = S DTG (2.34)
JEZL
Note that
(Hyy. $n] = bn-m. [Hy. $u] = bnm.
- - m
(Hy,. H) = LHy. = 2 8neno. (2.35)
In particular,
H,;1|0) = ﬁ,’n|0) =0 ifm > 0. (2.36)
The Hamiltonian is written as
20
H/ , — =Y /
Ly =) {(xz layl) 1
le£+Nogd
20 -,

It should be noted that BUC hierarchy satisfies the bilinear
identity, which is given in [7].

Lemma 2.4 For the generating functions of neutral
fermions,

PR)=>_¢uk", ()= Guk", (2.38)
neZz neZz

we have

HERY) g ()= HE®Y) — (Ee=2000) g (1)

AW G (e HERY) — o8 (6=20000 5 ). (2.39)

where

- 0 1 o0 1 0
k)= K, al=—,-—,——, ... ).
b= 3wkl 3 (ay1 30ys' 50ys )

ne=£Nodd
(2.40)
Proof From Egs. (2.35) and (2.37), we obtain
/ 29 !
[Hix, ), 000] = > (x— Tay ) 2@
le£+Noqd
= ¢+ (x — 20y, K)$ (k),
, - 29\,
[Hix,y), 6] = ) <y1 - 73—)”) k' (k)
le£+Nodd
= {x(y — 204, b)p(k). (2.41)
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Therefore, we have
HERY) (e HEY) = (L300 ). (2.42)

The proof of the other formula is quite similar, so is omitted.

]
Consider the neutral fermion vertex operators
H(z) 2
Yi(z) =e"+* =exp Z -z "H,|,
n
ne+Ngygq
—H' (z) 2 nyy/
YT_(z) =e "' =exp Z -z H_, |, (2.43)
ne+Nodd n
where
H' (z) = Z zz—"H’
+ n n’
ne+Nodd
2
H (z) =— ~"H . 2.44
o) > A, (2.44)
ne+Nogq

2.3 Plane partitions

A partition (strict partition) is a non-increasing (strictly
decreasing) sequence consisting of non-negative integers,
denoted as « = (a1, 2, ...), with weights || = D ;- a;.
Define a partition o’ = (e}, &), ...), which is obtained by
taking the transpose of «. Suppose that there are r nodes
on the main diagonal of partitions « and set t; = o; — 1,
pi=a/—iforl <i <r,wehavep; > p»>---> p, >0,

t) > tp > -+ > t, > 0. The partition « can be also expressed

as

a:(t17t27"'?tr|pl7p21"'7pr)‘ (2'45)

A hook refers to the set of boxes

h(p, 1)) = {Ui=oG +k, D} U{UZ G J + D],
p=0,1t>0. (2.46)

The partition o can be denoted by the hook as

r
a=Jhpj 1l (2.47)
j=l1
wherer > 1, py>--->p,>0andt; > --- >t > 0.

Example 2.5 The partition « = (4,2,0]3,1,0) in Fig. 1
can be constructed by a set of hooks, where h(3,4[1) =
[UiLa +k njufuisar+o}na2p = @2,
(3,2),(2,3), (2,4} and 1(0, 0[3) = {(3,3)}.

h(3,4|1)

h(1,2[2)

1(0,0|3)

Fig. 1 Partition v = (4,2,0|3,1,0)

For the partitions @ = («1, @2, ...)and 8 = (B1, B2, .. .),
we say that g interlaces o and write « > f, which is defined

by the following relation
a>pf — azpizw=p=--, (2.48)

where o > ap > --
the set

->0and By > B2 > --- > 0. Consider

,
Do =1 JhWS. 510 | pj=pi=p— 1,
j=1

t,~>t}>t,+1+1, Vi<j<ry, (2.49)
where t.41 = 0 and h(—1,¢|r) = @. All partitions that
intersect o and B are contained in D.

Let a strict partitions &« = (my, mo, ..., my,), the right
state and left state corresponding to & can be written as

2r
&) = (=1) ©@m, - - - $m,, 10) = (—1)"0)*1:} ®m;10),

j=1
@ = (=1 ¥ (0lp_ps, - - oy

2r
= =)o H ¢-m;,

j=1

(2.50)

where

l» mpy 2 l»

mip > --->my =0, a)::{\/zm2 -0 (2.51)
) r — .

Lemma 2.6 [9]Settinga = (my, ..., my.), fromEgs.(2.43)
and (2.50), the following relations hold

@ Springer
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2n(Bld) ;B B < @ and n(B) = n(@),

BITs@la) = { (-1 @B+3 1817181 § < & and n(f) = n@) — 1, (2.52)
0, otherwise,
2n(Bl) 7lal—IB| B < & and n(B) = n@@),

(@ Y- (@B) = { (—1yr@pnBlar+s l&=18l < & and n(f) = n(@) — 1, (2.53)
0, otherwise.

A plane partition 7 is a set of non-negative integers 7;;
which satisfies

Tij 2 T(Gi+1)j> Tij = Ti(j+1)»

.lim Tij = 'lim Tij = 0,
i—00 j—o00

fori, j > 1. (2.54)

Each plane partition can be represented as a composition of
specific partitions, denoted as (..., 7_1, 7o, 71, ...). Indi-
cate r; as

\Y
L

T (TT1G+1)> T2 4+2) > TT3(i43)s -+ -) fori >
P = .
(=it D)1 T(—i42)2, T(—i43)3,-..) fori < —1,

T

Fig. 2 A 3-dimensional view of a plane partition 7. The value of r;;
denotes the number of boxes stacked at the location

4 (N4 [N\3 1
4 IN\4 l
T3 T4
SEARNEANI
T T2
1
T_9 TT_1 T

T3
Fig. 3 A 2-dimensional view of the plane partition in Fig. 2. The

sequence of values covered in the slice is the corresponding partition.
In particular, 79 = (4,4, 1) and || = 31

@ Springer

then the plane partition 7z satisfies

D=T_pf <+ <M <TM_| <TQ>T >T0 > +++ >
7TN=®,
(2.56)

for sufficiently large M, N € N and the weight |7| =
S il

A strict plane partition 7 satisfies
Tij = AGt1)j> Tij = TG+ Tij > TG4 (+1)
_lim ﬁ','j = _lim ﬁ’ij = 0,

i—00 j—o0o

(2.57)

for all integers i, j > 1.

For a strict plane partition 77, we refer to the set of all
connected boxes as paths, which are connected horizontal
plateaux in the 3-dimensional view. p(77) denotes the number
of paths possessed by 7. For strict plane partitions 77; and 77 ;,
n(7;) represents the number of nonzero elements in 7; and
n(7;|7 ;) represents the number of non-zero elements in 7;
but not in 77;.

The generating function for plane partitions is given by

> qn:ﬁ(qun)"'

misa_ n=1
plane partition

(2.58)

5 INg 1N\3 1
4 1
T3 T4
3| \d 1
T T2
1
T_o T_1 T

Fig. 4 A2-dimensional view of a strict plane partition 7. The sequence
of values covered in the slice are strictly decreasing. The difference
between Fig. 4 and Fig. 3 is the main diagonal
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The generating function for strict plane partitions can be
expressed as

o n
144"
() | — -1
> 2rmglt _||(1_qn .

7T is a strict n=1
plane partition

(2.59)

3 UC plane partitions

In this section, we construct generalized charged fermion
vertex operators and investigate interlacing 2-partitions. By
means of fermion calculus approach, the generating function
for UC plane partitions has been developed.

3.1 Generalized charged fermion vertex operators

Introduce
10 " 1 9 v

Xp—— —— s Yn— — = — s Vl’leiN,
ndy, n n 0x, n

3.1

where z and v are indeterminate. The Hamiltonian Hy (X, y)
can be rewritten as

o 7" v
H+(Z,V):Z<_ n H, — n n):

n=1

o0

ZI’L ,UVL -
H_(z,v) = Z (711_,1 + 7H_,l) )

n=1

(3.2)

Let us define the generalized charged fermion vertex opera-
tors

o0 7" v
Ii(z,v) =@V = exp —Z( . H, + p Hn) ;

1

" .
S H..+—H.,)].
1 n n

(3.3)

M2 3

I_(z,vV)=e H-@V=exp (—

n

It is easy to derive

'+ (z, v)|vac) = |vac), (vac|l'_(z,v) = (vac|. 34

Taking &4 (x — dy, k) = &4(z, k) and Ex(y — dx, k) =
&1 (v, k), we have

~ 0 1/k +n
n=1

—n(1-(4))

~ 0 1/k +n
Ex(y — 0k, k) = EL(v, k) = :FZ ;<;>
n=1

()

Proposition 3.1 ThevertexoperatorsT 4 (z, v)andT'_(z, v)
satisfy the following relations

(3.5)

_ 1
Tz VY T1 (2, v) = Y — “Vor+:

o Vv tm)
Py @ =Y Z—mm
m=0

o
M= @ Y T2, V) = Y 2" Vw—m),
m=0

P2 @ YT, ¥) =¥ — i),

B 1
[ (2, V) T 2, V) = ¢ — ~bar),

00 ¢* y
— /+
Fe@MgpTy! @y =~
m=0

oo
I @ Vg T @ V) = Y 0" Gr—m)-
m=0
I @il (2. v) = ¥ — vl ). (3.6)

Proof We only prove the first formula of Eq. (3.6), other
formulas can be proved similarly. By means of Egs. (2.26),
(2.29) and (3.5), we get

M4z VY (2. v)

k
= M+ (ke H+@Y) = (1 - —> v (k). (3.7)
Z
It follows from Eq. (2.25) that
> Te@ vk I @)
n'eZ+1/2
- ¥ <¢nk"% - ﬂk”%) : (3.8)
neZ+1/2 ¢
Comparing the orders of k on both sides yields
1 1
L@ VY T3 @ V) = Y = Y. (3.9)
O

The operators H, (z, v) and H_(Z', V') satisfy

o o 1
(Hy(2,v), —H-(& V)] = 3 Y —z™" ()" [H, Ho]
m=1n=1

@ Springer
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v [Hyyy H-y)

v\ 7!

) +ln<1——> .
v

Ly (@ VT (2, V) = B+ @V —H-EOIr_ (¢ ¥\ (2, v)

Z -1 v -1 .y
:(1—-) (1—;) r_(Z,V)T+(zv). (3.10)

Z

(

Then

Remark 3.2 The vertex operators "4 (z, v) and I'_(z, v) are
reduced to the charged fermion vertex operators I'y (z) and
I'_(z) by deleting the variables ¢,,, ¢, and v, respectively.
Then Egs. (3.4)—(3.10) lead to the properties for KP hierar-
chy.

3.2 Generating interlacing 2-partitions

If the Maya diagram has charge 0, there is a one-to-one cor-
respondence between the Maya diagram and the partition.
The right state corresponding to partitions « and 8 in space
Fo,0 can be represented as

lar, B) == (= 1) 4y, - -
B B O

= U v, T v T o0 1 95 Ivac),
=1 k=l jo1 =1

(3.11)

Vi, V-

[vac),

1//::,. ‘Prh 1

where k =)} _, [(mk+%)+k] ,
m < ---<m <0,n; <---
mg < 0andny < --- < mg < 0. The left state has a similar
representation in the charge (0, 0) sector of the dual Fock
space F*,

=i [t 3) +k],

<nr<0m1<-~-<

(o, Bl := (=1 T (vaclgs, - b, B}
"¢;|1/fn,"'1/fn11/f;,"'1/f;,
= (= vac|1:[»¢m Hw F{»wn,ﬂ»wmk,
j=1
(3.12)
where «’ >t [(mi — %) +k]. &' > et [k
—%)—l—k],O <mp<--<m,0<n<--<n,0<

mp<---<mgand0 <n; <--- < ng.
Define 2-partition x and write (x) = («, ), which repre-
sents a pair of partitions & and 8. Then we have | x) = |, B),

(x| = (a, B| and the weight | x| = ||+ |B]. Let 2-partitions

@ Springer

(x) = (a, B) and (3) = (&, B), we say that (j) interlaces
(x), and write (x) > (X),

(X)>(X) < a>a and B> B. (3.13)
In particular, if § = @, 2-partition yx is reduced to the partition

a. Equations (3.11) and (3.12) lead to

o) := (= D)* Y, --'wm,ﬁ, ...w* |vac)
= (=D~ H‘l//mjﬂ‘l//nkwac
j=1
(| == (=1)* (vac|yr, - -~wn1¢;’,‘,, Y,

(3.14)

= (=1 vac|H» wn,H»wmk
j=l1

Definition 3.3 An ‘UC plane partition’ is defined as (...,
X—1s X0, X1, - - -), which denotes a pair of plane partitions
and satisfies

D =x-M<- <X2=<X-1=<X0>X1>X2>"""

- xn =9, (3.15)

where the weight of the UC plane partition is the sum of the
weights of these 2-partitions.

Example 3.4 The UC plane partition (x—3, x—2, X—1, X0, X1-
X2, X3, x4) in Fig. 5 represents a pair of plane parti-
tions 71 = (x_3,a_2,_1,00, 01,0, x3,04) and T =
(B-3, B2, B—1, Bo. B1, B2, B3, Ba), where (xi) = (ai, Bi)
and the weightis Y7, ;| + |6i] = 61.

Lemma 3.5 Let |a) and (a| be states corresponding to the
partition « in the Fock space F and the dual Fock space F*,
which are described in Eq. (3.14). Then we have

[Bl—ll|

Z , B=<a,

(BIT+(@)|a) = . (3.16)
0, otherwise,

lee|—1B]

F4 , B<a,

(@|T—(2)|B) = ) (3.17)
0, otherwise.

Proof Set ni11) = % From Egs. (3.6) and (3.14), one

obtains

r

My @le) = () H (e @ym, T @)

j=1

x H T+ @y, T7 @) @) lvac)

k=1
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™
J !
)
a3 Oy
JIN [\
a1 9
)
d_9 X1 O

-3

Fig. 5 The UC plane partition (x—3, X—2. X—1. X0» X1» X2+ X3 X4)

d 1
= (—1)KH<1/fm,- - Zl/f(m,-+1)> - T|vac),

j=1
(3.18)

r o]
1 *
(Z ;m») vac)

=1
* *
7 w("lﬁ-i)) (Z ;w(nz-ﬂ'))
i=0
o0 l .
e Z ;w(n,-—ki) |vac).
i=0

The following equation holds

Il
=}

Il
.Mg
| —

(3.19)

—ngFn g —1

1
; ;w(*nwri) = Z
1=

i=0

1 *
2 Vi

1 S
+an+1*nk Z;w(n(k+1)+i)’ l<k=<r-1
i=0

Using the commutation relations (2.1), we have
> 1 > 1
* k .
(Z ;%H)) <Z ;‘/’mi)) =0
i=0 i=0

From Egs. (2.14), (3.20) and (3.21), we obtain

—ni+nr—1 1 —np+n3—1 1
T |vac) =< > ;W(*nm))( > ;w(*"ﬁi))

i=0 i=0

(3.20)

(3.21)

7n,~+%71 1
. ( Z ;xp(*nr_i_i))Wac}. (3.22)
i=0
Therefore
4 1
Iy (@)|e) = (—l)KH<¢mj - Zlﬂ(m_,ﬂ))
j=1

T
1
Bs B
1IN | \J
B B
1
B2 f-1 Bo
B3
ro ot ngn—l
XH( Z _i‘ﬂ(*nk+1)>|vac)- (3.23)
k=1 i
Set
1 1 .
pi=-mj=g. fj=-mj=5 VI<j<n
t(r-H) = —N@+1) — 5 = _1’

—mj > —m'; > —mj—1,

1
h(—l,—n’r—§|r)z(2i, [

—nj > —n'; > —nj+1 + 1.

= (3.24)

It can be clearly found that the terms of the expansion of the
Eq. (3.23) contain all of the partitions in D,, accompanied
by the weighting factor z. Each weighted partition can be
expressed as

d ’ p " 1 1
j=1 k=1

(3.25)
The powers of z can be written as
r
Y nj+nj—m—n) =Bl - lal, (3.26)
j=1
where
-
1 1 .
@“=1 h(""] Ty T T §|]),
J=1
' ;1
p=Un\ —mj—5.—n; =5l (3.27)
j=1

From Egs. (3.24)—(3.27), the Eq. (3.23) can be rewritten as
Fy@la) =Y P17,

B=<a

(3.28)

@ Springer
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A similar proof for the left state yields

ro fng-ntnj—1
(@|T—(2) = (=) (vac|}} Yo DY
=1 i=0
r
< @, — 2 1)- (3.29)
k=1
ForVvVl < j <, let
1 1
Pj=mE+1)—j — 5 lj =ne+1)-j — 5
1 L1
tr+1:no—zz—l, h —1,n1—§|r =,
Mme+h—j = m/(r+l)—j = me+1y—j — 1
Nea—j = Ny = Ne+—j + 1. (3.30)
Then one obtains
(@l _(z) =Y *=1Plp (3.31)
B=<a
O

Lemma 3.6 Let the states corresponding to the 2-partition

(x) = (a, B) be |x) = la, B) and (x| = («, B|. The follow-
ing relations hold

(X' IT+@ VX)) = (@, BT+ (2 Ve, B)

. 1=l BBl o < B < B, (3.32)
0, otherwise,
(XIT- (2, WX} = (o, BIT-(z, V)|, B)
_ =l 1yIBI=18 o <, B < B, (3.33)
0. otherwise.

Proof By means of the Eq. (3.11)

r

My @v)e. p) = (D H (@ vvm Iy @)
j=1

~H (Cr@ v ri@w)
k=1

<T@ gz 17 @v)
j=1

N

X F[» (M4 (z, V)¢;7k12 F;l (z, V)4 (z, v)|vac)

k=1
. 1
= (_I)KH<T//mJ - ;w(mj—i-l))
j=! ‘
XH(Z 1//(nk+t)> - Ty lvac), (3.34)
k=1 "i=0

@ Springer

where
I 1
I = (—1)K1H'<¢m_,- - ;¢(m,~+1)>
j=1
r o ]
x H(Z — ¢, +,.)) |vac). (3.35)
k=1 “i=0 v
By using the Eq. (3.16), we have
=) olF =) (3.36)
B'=<p
Setting |B') = (— 1)’”¢> c G @%@ Ivac), Ty s
1 s
rewritten as
= > D gy gy - B vac).
B'=<B

(3.37)

According to the commutation relations (2.1) one obtains

Ci(z e, ) = Y o171,
B'=<p
(bm ¢ ! ¢"’( I)Kﬂ<wm/
j=1
1 r
— —1//(m;+1>>‘1:[‘<z H/’<m+z))|va°>
< k=1 <
— Z V81— Bl(— 1)'<1¢~, i ¢ ...¢;~’l‘,Y - Tr|vac),
B'=<B l
(3.38)
where
d 1
= (—1)Kﬂ(wm_, - Zlﬁ(mjﬂ))
j=1
r 0 1 ,
B (X i vl = 30 ey,
k=1 “i=0 o <o
(3.39)
Taking o) = (=)', + - Yy W5+ ¥ [Vac), combin-

ing the Eq. (3.11) gets

[y (z, v)la, B)

= 3 IS el g

B'<p o' <a
..¢Yh§¢;f,l ..¢;;1/,m,1...¢m;¢:,l...¢:;
— Z Zla’\—la\vlﬂ’l—lﬁl|a/7,3/).

o <a

B'=<p

|vac)

(3.40)
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Using the similar approach yields

3 gl A=l g,

B'<p

(a, BIT—(z,v) = (3.41)

Setting 8 = @, Egs. (3.40) and (3.41) are reduced to

/_
— Z Z|Ol| |01||a/>’

o' <a

!’
S el

o' <

[y (z, v)|e)

(|l —(z,v) = (3.42)

The case of @ = @ is similar to the above.

3.3 Generating function for UC plane partitions

Consider the correlation function

oo
= —2i+1
SA(p,q)=<vaC|F[>F+(p 2T

[e¢)
<FFrop™ ¢ ) vac),

k=1

(3.43)

where p and ¢ are indeterminate. Set 2-partition (x) =
(o, B), and insert Zx |x){x| in the middle of a pair of mul-
tiplicative vertex operators. It follows that

Sap. )= Y vac|F[»F+<p =

xisa
2-partition

)

o
2k—1 2k—1
< (X1 T-(p™7 g7 )lvac)

k=1
ad —2i+1 2i+1
= Z (VaclHF+(p 2 ,q )
o and B i=1

are partitions

<l ST (™ . T lvae). (3.44)

k=1

By means of Egs. (3.40)—(3.42), the generated weights are
of the form

i

+1
B pmeop™",

i=1

!/ !/
—i+1° /3—1'-5—1)

N
2k—1 2k—1
x Hrteiy B IT=(p ™7 g T e B
k=1

(3.45)

l_[ pla\ 651

Set (x)) = ()}, Bj) and &’ =y =B, = By, =0,
then we have

W=y << (x) < (xlp

< (x0) > (X)) > (x2) = -+ > (xpy) =9, (3.46)

where M = max{M, M}, N = max{N;, Np} and —M <
Jj < N. Note that the plane partition 7t consists of oz;. and the
plane partition 7’ consists of /3;.. Hence interlacing relation
above indicates

V=o' y=---=a p <<y <a | <ay>a]>a)
Sy = =ay =0,
>ﬁ§>-~->ﬂ§\,2:~-=,3]’v=®. (3.47)

The Eq. (3.45) can be rewritten as
1_[ plal 1Bl _ l_[ p 1_[ qlﬁk (3.48)

—M;

Then we derive the generating function for UC plane parti-
tions

Sap.y =y plg™l.

7 and 7’ are
plane partitions

On the other hand, by using the Eqs. (3.4) and (3.10), we
can express the generating function for UC plane partitions
as the product of the generalized MacMahon’s formula

(3.49)

= 1 = 1
Satpoq) =[] [1 (vac|
ni=lI 1_pn1 mp=1 1 _qml
ad 2j+1 2j+1
—Z] —=2]
xFHp i g7)
j=2
s 2k—1 2k—1
<Hr-(r77 .q77 )lvac)
k=1
o o
(=) MG)
n=1<1_pn m=1 1_qm

4 BUC plane partitions

In this section, the BUC plane partitions will be developed.
By using the fermion calculus method, we construct general-

@ Springer



371 Page 12 of 17

Eur. Phys. J. C (2024) 84:371

ized neutral fermion vertex operators. Based upon interlacing
strict 2-partitions derived by the vertex operator, we investi-
gate the properties of the generating function for BUC plane
partitions.

4.1 Generalized neutral fermion vertex operators

Set

2 9
1n dyp

290 2

—n —n
) yn - - = -V 3
n oxy, n

2
Xn -z
n
n

Vn € Zodd, 4.1)

where z and v are indeterminate. Replacing the variables
above, we obtain

2 2 -
H (z,v) = Z (;Z"H,; + ;UnHr/z) )
ne+Nodd

2 2 -
H. (z,v) = — Z <r_¢ZnH/_" + ;v”H/_n) .

ne+Nogd

4.2)

Meanwhile the generalized neutral fermion vertex operators
Y+ (z,v) and Y_(z, v) are defined as

Yi(z,v) = eHi @)

2 2 -
= exp Z (;z"H,’Z + ;v”H,i) ,

ne+Nodd

Y_(z,v) = e H-@Y)

2 2 -
=exp| Y. (;z"H/_n+;v"H/_,,> . (43)

ne+Noydqq
In particular,
T4 (z,v)[0) = 10),

(0|T=(z, v) = (0] “4.4)

Taking the transformation of ¢4 (x — 25;, k) and ¢+ (y —
25,/(, k), we have

=, 2 k :I:m
=2 ) =@ =+ Y Z(Z)

meNygd

+1
:1n<:i:z+k> ’
z—k

=, 2 [k +m
Cx(y — 205, k) = ¢ (v, k) = £ Z ;1(;)

meNodd

k +1
=ln<:l:v+ > .
v—k

(4.5)

@ Springer

Proposition 4.1 The following equations hold
o
1
Tz Ti(—2,—V)=¢; +2) i-n
n=1

Yo (=2, =G Y= (2, V) = +2 ) (=2)"Pjn,

n=1
o
_ _ 1 -
Tz Ti(—2,—V)=¢; +2) = i-n:
n=1

T (2, VP T (2.V) =¢; +2) (—2)"$j1n.  (46)

n=1

Proof From Egs. (2.39), (2.41) and (4.5), it is clear that

z+k
Y1 (z,vV)pk) Y1 (—2, —V) = ¢(k)< ) 4.7

z—k

Substituting Eq. (2.38) into the above equation and compar-
ing the orders of k, one obtains

o
1
Y@V T (2.~ =9 +2) = bjn. (4.8)
n=1
Other equations can be proved with the same method. O

By means of Egs. (2.35) and (4.2), we have

[Hﬁr(z, v),—H (Z,v)]=1In (Z + z/) i (v + v/>.

z2—z
(4.9)

It follows that

Yoz, VY_(Z,V) = elHr @V~ HLE@ V] = HL @ V) i ()

[zt v+
T \z—7 v—1

x Y_(Z,vV)Yy(z, V). (4.10)
4.2 Generating interlacing strict 2-partitions
Let strict partitions &« = (my,ma,...,my,) and B =

(n1,na, ..., na). In the Fock space F and the dual Fock
space JF*, the states corresponding to & and B can be
described as

@, B) == (=) 5w b, -+ Gy, Py + + P, 10)
2r 2s
= (=" wo' H én, Hr 4,100,
j=1 j=1

(@, 13~| . =(_1)F+S+|/§|+\&|ww/(0|¢_n2S - ¢_nl¢_m2r

X ...¢_ml
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o 2s _ 2r
= (=) w0 O F ¢, T ¢

j=1 j=1
@.11)

where m|; > --- >mo 20,01 > --- > np, > 0and

nys 2 1,

1
’_ )
@ o= {\/Z nas = 0.

may 2 1,

L
w = {ﬁ, 0, (4.12)

Denote strict 2-partition x as (x) = (&, B), which possesses
the same properties as 2-partition. Note that if 8 = @, strict
2-partition (x) = («, B) is equivalent to the strict partition
a. Eq. (4.11) leads to

2r
|@) = (=1 @, - Py, 10) = (= 1) @ ¢m; 10),

j=1
@ = (=" (0l¢_py, - - pm,

2r
= (=" (O F ¢,

j=1

(4.13)

Definition 4.2 Define the ‘BUC plane partition’as (..., x—1,
X0, X1, - - -) which represents a pair of BKP plane parti-
tions 7 and 7/, where 7 = (...,a_1,0q9,0Q1,...), 7’ =
(.os B=1, Bo, Bi, -..) and (k) = (@, Br)-

Lemma 4.3 Let the states corresponding to the strict 2-

partition (7) = (&, B) be |7) = |&, B) and (%| = (@, BI.
Then

2@ 1) 716" |—1& pn(B'1B) ;11— 1B]

2n(@'l) ||~ 1al _yn(Brgn(B'1B)+5 1B~ 1B

(X142 WX) =

(—1)@n@10)+5 1@/ |~ 1alpn(B'IB) ;1F'|~1F]

C stands fora <a, B < B, n@) =n(@ — 1 and
n(B) =n(p),
D stands for@ <a, B < B, n@) =n@) — 1 and
n(B)=np) — 1. (4.16)
Proof By means of Egs. (4.6) and (4.11), one obtains
T+(Z, V)lé’ 5)

2r
= (=) 0o/ H (14 @ Vg, T (-2, —V))

(— 1)1 @+nB)pn@10)+nB1B)+1 13 [+1B'1=181=181 i ¢ D holds,

05
on@\@) 7lal—1a'|pn(B'1) 71 B1-15']

(@18 7la1=1a' | yn(B)pn(B'1B)+5 IBI-IF'|
(— 1)@ @130+ |l —1d' | n(B'IB) 7 1BI-1F'|

(XIT-@wIx) =

j=1
2s
<H (T @ Vg, T (2, V) T4 (2. v)[0)
k=1
2r 00 1
=D'otf (¢m,. +2)] —i¢<m,._i)) =D/
j=1 i-1 <
2s _ 00 1.
~H (mk +2)° J%,-)) 10) = Ty - T»[0),
k=1 i=1
4.17)
where
_ 2r 00 1
7 =l (¢>mj +2)° —,¢(m,._,~>> :
j=1 i=1 <
2s o0 1
7 = (_1)sw/ﬂ <¢nk +2 Z qu(nk_,-)) ) (4.18)
k=1 i=1
Substituting Eq. (2.52) into Eq. (4.18), we have
if Aholds,
if Bholds,
if Bholds, (4.14)
otherwise,
if Aholds,
if Bholds,
if Cholds, 4.15)

(— 1) @+nBon@10)+n B 1B+ & +BI-1&1=I1B'l £ D holds,

0,

otherwise,

where (x') = (&', B') and

A stands for & < a, B/ < B, n(@) = n(@) and n(,g/)

=n(p),
B stands for & <&, B < B, n(@) = n(@) and n(f)
=n(p) -1,

Do)y = Y BB IB1-1811 gy 1 (1B /2
BB
n(p)=n(p)
Z 2”(f§/|f§)z\5/\—|/§||/§/>_ (4.19)
#'<f

n(B)=n(p)—1
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Since the assumed state is not involved in the subsequent
calculations, we let

1B)) = (=1)° i, -~ $iy, 10) = (=1’ Hqsn 10).
(4.20)

From the commutation relations (2.31), the Eq. (4.17) can be
rewritten as

Y4 (z,v)|ay, az)

= Z 2"(5’\/3)Z|/3/|*|;3|(_l)xw’l(ﬁﬁl .. .q;ﬁh Tl |0)
/3/<f5
n(B))y=n(p)
+ (_1)"(ﬂ)ﬁ Z 2n(ﬂ/\ﬁ)zll3/|—|ﬂ|(_1)sw/l q;;”
_F=B_
n(pH=n(p)—1
i, T110). 4.21)

It follows from Eq. (2.52) that

Z 2n(&’|&)z\&’\—l&\|&/)

(@) =n (@)

+(=D"OV2 Y

&' <a

n@)=n(a)—1

T110) =

(@13 1 1= | 51y

(4.22)
Setting
2r
&) = (1) @1, - i, 10) = (=1 o1 4 ¢, 10).
j=1
(4.23)
Applying the above results to Eq. (4.21) yields
Ti@ e = >
0@y @)
% Z @@ 1’ |=laon(B'1B) 1B/ 1Bl g By
B<B
n(B=n(B)
+(—1)"By2 >

n(@)=n(a)
% Z @@ &' 1—1alpn(B'1B) A 1B'1=1Bl ! | By

PB
n(p=n(p)-1

+(=D"OV2 Y

& <a

n@)=n(a)—1

@ Springer

o Z 2n(5['\5¢)z\5¢,|—|&|Zn(ﬁl‘ﬁ)zlgll_lﬁl|6!/, ,g/)
BB
n(B)=n(p)
+ (_1)11(5!)+ﬂ(5)2 Z

n(@)=n(a)—1
» I @ -lal 1B 1Bl By,
_ BB
n(p)=n(p)—1
(4.24)

Similarly, it is show that

@pr@v= Y
G (@)
y Z 2,,(&/|&)Z|&\7|a/|zn(5’|B>Z|B|f\ﬁ’\(5/,5/|
BB
n(B)=n(p)
+ 1y Pv2
e
5 Z 2n(&f|&)z|a|-|a’|2n<5'|ﬁ>zwﬁw—|5’|<5/,5/|
_B<B
n(B)=n(p)—1
+ DOV Y

a’<a

n(@)=n(@)—1
5 )3 (@18 =1 | pn B 1B NBI-IF | (g |
BB
n(B)=n(p)
F (=11 @+n(B)y Z

n(&,)‘izi‘&),l
y Z 2n(5,/|&)z|a|—|&’|2n<5/|/§>z\ﬁ\—|5’|<5/,5/|,
B
n(B)=n(f)-1
(4.25)

[}

In particular, if E = (), Eqgs. (4.24) and (4.25) are respec-
tively transformed into
Tievia =y 2@y

n(&”l)j;;(&)

+(-1)"®V2 Z

al <

n(a’) n(a) 1

21 (@'13) 1 |16 g

(a|Y—(z,v) = Z 2"(‘1 |‘1)Z|0t|—|0t l(a |
a'<a
n(@)=n(&)
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+=)"@vz

n(@)=n(@)—1

(@@ la || @'
(4.26)

A similar conclusion can be obtained for & = /.

4.3 Generating function for BUC plane partitions

Define correlation function Sp (¢, ¢) as

—2i+1 —2i+1

Sp(t,q) = O v+¢777,¢77)
i=1

2k—1

o
x« FFr-e'T g o), 427)
k=1

which provides a generating function for BUC plane parti-
tions, where ¢ and ¢ are indeterminate.

Proposition 4.4 For a strict plane partition 7w, we have

M N
o1 (o) 1_[ (T |7T—i+1) l_[ (@l j-1) — ()
i=1 j=1

(4.28)

Proof Letus use the example of strict plane partition in Fig. 4
to explain this formula. From Fig. 4, it is clear that

=621, a7 =@ 1, 772=03)
A3 =), 7 4=0,

#l=w@,2), #2=@31,

P=@, 7=, =0 (4.29)
and
@ EY) o gn@IEY g @AY
GEHED 1 @Y — g g TE) —
2n(ﬁ72|7?71) — 1’ 2n(ﬁ73|ﬁ72) — 1’ 2}1(7%74‘7?73) = 0.
(4.30)

W | =] o
\}
—_

Fig. 6 All the paths in Fig. 4

From the above relations, it is showed that diagonal slices
not being intersected receive a factor of 2, otherwise zero.
Multiplying n(7°) = 3 as the power of 2 and p(7) = 11 in
Fig. 6, we have

4 5
(%) HZn(ﬁ_ilﬁ_f+.> l—[ (@}l j-1) — g1l _ pp(@)
i=1 j=1
(4.31)

It follows that this method extends to arbitrary strict plane
partitions. O

Setting a strict 2-partition (¥) = (&, B) and inserting
> i | X ) (x| to the above equation yields

Yo e TR0 G

i=1

Sp(t,q) =
X 1s a strict
2-partition

o0
«FFroa® . ¢" 0
k=1

O T 075 Ara. B

i=1

& and f are
strict partitions

o0
2k—1 2k—1
xHr-aT 70,
k=1

(4.32)

Equations (4.24)—(4.26) show that the generated weights
are given by

M
P 2itl =il ~
@, Bl ™2 g 2 )lal . Bl
-1

i

- Z2j4l Z2jHl s
< H@ BT T )ag. B
k=1

N
—2j
(4.33)

Let (X)) = @, B}). &y, = @y, = By, = By, = 0.
M = max{Mi, M}, N = max{Ny, No}and —M < j < N.
Note that the plane partition 77 is made up of &; and the plane
partition 77 is made up of B ; Combining Proposition 4.4, the
Eq. (4.33) can be represented as

oM N
(@) 1—[ Qn(a*illa*ilﬂ) 1—[ 2"(‘)"‘1‘%1—1)
i1=1 k1=1

My i, - Nio o4
x [( > )(la_illf‘a_,'l_Hl) H [( )
i1=1 ki1=1

)&, 113, D

. M 5 Ny I
2B T 2 FalP) T 2Pty
ir=1 kr=1

@ Springer



371 Page 16 of 17

Eur. Phys. J. C (2024) 84:371

My i1 s . Ny okt

(—F)UB 118 4D (=%
o T
ir=1 ko=1

)(By—1 =15, D

N -
= 2pHp@) TT 1411, (4.34)

j=—M

It shows that all strict 2-partitions (x ]’.) = (o?}, ﬁ;) satisfy

=Ly < <X <G < Ko > (XD

= (X3) = - = (Xy) =9, (4.35)

which is equivalent to

B=a = =0, < <a,<a,;<a>a
=y >y = =0y =0,
G=PB y==Py < <B,y=<p,
< B > By >;§é>-~->,3~1’v2=-~-=/§]’\,=@.
(4.36)
Then the Eq. (4.34) can be rewritten as
N B .
2 P(@)+p (") 1_[ tla}\qlﬂ}l — oP(@)+p(E)
j=—M
Ni y N> ~
< T " [T ™. (4.37)
i=—M; k=—M>
It follows that
Sp(t,q) = Z 2P(7~T)+P(7~T/)t\7~f\q|7~f/|.
7 and 77’ are
strict plane partitions
(4.38)

In addition, by means of the Eq. (4.10), the generating
function for BUC plane partitions can be represented as

o0 oo
1+ 1+g™m
s =TT (155 ) TT (%)
my=1

ny=1

o0 o0
—2j+1 —2j+1 2k—1 2k—1
X<0|1:[>T+(p 7,9 2 )ﬂTf(p 2 ,q 2)|0)
j=2 k=1

o0 o0
I+m\" 1L4+4g™\"
:.“:1_[(1—[”> H(l— ) :
n=1

m
m=1 4

(4.39)

Equation (4.39) can be regarded as the extension of the
shifted MacMahon’s formula [26].
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5 Conclusions and discussions

In this paper, by means of constructing the generalized
fermion vertex operators and interlacing (strict) 2-partitions,
we have discussed generating functions for UC and BUC
plane partitions which can be written as product forms. It
should be pointed out that the fermion calculus approach
play a vital role in establishing generating functions of plane
partitions. How to use this method to look for the structure
and properties of plane partitions in other integrable systems,
such as symplectic universal character (SUC) hierarchy and
the orthogonal universal character (OUC) should be an inter-
esting question, which will be studied in the near future.
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