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Abstract The weak cosmic censorship conjecture, since
its proposal, has always been a controversial hypothesis, but
its significance in astrophysics is undeniable. For a regular
black hole, its center does not contain a singularity, and the
destruction of the horizon of such black holes is not pro-
tected by the weak cosmic censorship conjecture. Therefore,
we employ Gedanken experiments to study the hairy Kerr
black holes, which are promising candidates to serve as ”sim-
ulators” of astrophysical black holes. By investigating these
black holes through testing particles and scalar fields car-
rying large angular momentum, we explore whether these
black holes can achieve overspinning. Our results suggest
that the overspinning behavior of these hairy Kerr black holes
in extremal or near-extremal conditions strongly depends on
the hairy parameters (α, l0). This not only potentially offers
us an opportunity to explore the interior structure of black
holes, but may also provide clues for constraining the hairy
parameters. This phenomenon might reveal the connection
between the no-hair theorem of black holes and the weak
cosmic censorship conjecture, bringing new perspectives to
our understanding of these theories.

1 Introduction

Black holes, as a product of the predictions of general relativ-
ity, were most directly confirmed only recently when LIGO
detected gravitational wave signals from a binary black hole
merger for the first time [1]. Within the framework of gen-
eral relativity, the singularity theorems proposed by Penrose
and Hawking state that, under certain material energy and
initial conditions, gravitational collapse inevitably leads to
the emergence of spacetime singularities [2,3]. At these sin-
gularities, all physical laws diverge, meaning gravitational
theory is not applicable near these singularities. If these
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exposed ”points” (naked singularities) exist in spacetime,
they would disrupt the well-defined spacetime geometry and
causal laws. To ensure that physical laws are not threatened
by these naked singularities, Penrose proposed a hypothesis
that these so-called singular points should not exist indepen-
dently in spacetime but should be surrounded by an event
horizon. Only if these singular points are hidden within the
horizon, the geometry of spacetime and causal laws outside
the event horizon will not be affected by the singularity. This
is what is known as the weak cosmic censorship conjecture
(WCCC) [4]. The weak cosmic censorship conjecture, as a
mechanism to protect classical gravitational theory, although
it cannot be described by a strict mathematical formula to date
[5], its status in black hole physics is undeniably significant.

The weak cosmic censorship conjecture, serving as a
hypothesis for classical gravitational theory, requires further
exploration to determine its universal applicability. If this
conjecture is violated, we may observe the internal struc-
ture of black holes and quantum gravitational phenomena
[6]. There are many methods to test the weak cosmic cen-
sorship conjecture, such as through numerical simulations,
like simulating the collapse evolution of matter [7–16], col-
lisions of supermassive black holes [17–20], and testing the
conjecture in phase space [21–25]. Besides these methods,
in 1974, Wald first proposed a version of a thought exper-
iment (Gedanken experiment) [26], considering throwing a
test particle with large electric charge and angular momentum
into an extremal Kerr–Newman (KN) black hole. The results
showed that the weak cosmic censorship conjecture is sup-
ported in Kerr–Newman black holes under first-order pertur-
bations. Since the first version of the thought experiment was
proposed, corresponding situations have been discussed in
different types of black holes [27–29]. Notably, in reference
[28], Alberto Saa and others considered near-extremal Kerr–
Newman black holes under first-order perturbations. Their
results indicated that a test particle could fall into the black
hole, potentially creating a naked singularity by disrupting
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the event horizon. These studies focused on first-order per-
turbations. Later, Hubeny extended the first version of the
thought experiment to second-order perturbations, showing
that the event horizon of a Kerr–Newman black hole could
be disrupted in extremal cases [30]. This led to a surge of
research [31–44]. Some of these studies suggest the possi-
bility of black hole overspinning. Notably, in reference [31],
Gao and others mentioned that if spacetime effects are fully
considered during the process of a particle falling into a black
hole, the weak cosmic censorship conjecture seems to be
supported. To make the Gedanken experiment more rigor-
ous, in 2017, Sorce and Wald proposed a more complex sec-
ond version [45,46], extending Hubeny’s Gedanken experi-
ment results to any matter satisfying zero-energy conditions
[30,47]. Their results suggest that disrupting the event hori-
zon of near-extremal Kerr–Newman black holes becomes
improbable after considering certain factors. Following the
new version of the Gedanken experiment, research in dif-
ferent systems or backgrounds emerged, such as [48–61],
where authors tested the weak cosmic censorship conjecture
in various scenarios.

Recently, explorations into quantum effects have sparked
significant interest in Gedanken experiments. In two versions
of the Gedanken experiments, considering spacetime effects
and radiation effects seems to solidify the status of the weak
cosmic censorship conjecture. However, in an article by Li
Zilong et al, they suggest that, under quantum effects, it is
possible for the event horizon of a regular black hole to be
disrupted [6]. In other words, regular black holes might not be
under the ”supervision” of the weak cosmic censorship con-
jecture, and their event horizons could be disrupted, opening
possibilities for studying the internal structure of black holes.
Considering some quantum tunneling scenarios, the disrup-
tion of the event horizon is possible [40,41,55,62,63]. In
literature [64], Semiz and others corrected the views on the
counter-effect and superradiance. Their results suggest that
black holes can capture a small number of particles, which
could potentially disrupt the black hole’s event horizon. In
summary, when test particles or scalar fields scatter near the
event horizon of black holes, due to quantum effects, extremal
or near-extremal black holes might absorb some hazardous
particles or scalar fields, causing the black hole to overspin.
This is significant for exploring the internal structure of black
holes.

Therefore, seeking a more physically realistic black hole
to explore the potential disruption of its event horizon is a
meaningful research endeavor. In the quest for astrophysi-
cal black holes existing in the universe, people believe that
conventional black hole solutions cannot exist due to the cos-
mic environment not being purely a vacuum and steady state,
but rather filled with matter and fields (like dark energy or
dark matter). This necessitates further research into black
hole solutions that align more closely with physical reality.

Recently, a popular ”mimicker” emerged, namely the hairy
Kerr black hole solution [65,66]. This rotating hairy Kerr
black hole is constructed through gravitational decoupling,
not using the Newman-Janis (NJ) algorithm to construct rota-
tion, thus avoiding some drawbacks brought about by com-
plex coordinate transformations inherent in the NJ algorithm
[67]. Theoretical research has extensively studied the hairy
Kerr black hole, as seen in references [68–70]. Around the
hairy Kerr black hole, additional matter sources create devi-
ations from the Kerr black hole structure, aligning more with
physical reality and of great interest to us. In the spacetime of
the hairy Kerr black hole, the event horizon radius strongly
depends on the hairy parameters (α, l0), and their laws satisfy
the strong energy conditions outside the event horizon [71].
We find that the presence of hairy parameters (α, l0) affects
the inner and outer radius of the event horizon, sparking our
intense interest in the internal structure of the hairy Kerr black
hole. Because the hairy black hole spacetime is more in line
with the physical reality, in this article, we will use test par-
ticles and scalar fields carrying large angular momentum to
explore this spacetime.

The structure of the article is as follows: In the sec-
ond section, we briefly introduce the hairy Kerr black hole.
In the third and fourth sections, we use test particles and
scalar fields, respectively, to examine the possibility of the
event horizon disruption in the hairy Kerr black hole. In
the final section, we provide a summary and further discus-
sion. Throughout the article, we adopt the natural unit system
where c = G = 1.

2 Hairy black holes in gravitational decoupling

In classical general relativity, a black hole can be described
solely by its mass M , charge Q, and spin parameter a, as
per the famous no-hair theorem [72,73]. However, like the
weak cosmic censorship conjecture, this theorem cannot be
described with a rigorous mathematical formula. To test its
rigor, several articles have presented examples that contradict
the no-hair theorem [74–77], with the first counterexample
being the ”charged” black hole solution found in literature
[78]. Additionally, in these counterexamples, people have
discovered extra ”hairs” such as scalar field hair and soft
quantum hair [76,77,79]. In our real universe, black holes
might be surrounded by dark matter or dark energy, or there
could be additional hairs due to the interaction between black
hole spacetime and matter, potentially leading to correspond-
ing spacetime changes. Recently, Ovalle and others proposed
a simple method for generating hairy black holes, which was
later extended to rotating cases by Contreras et al [65,71].
Through the method of gravitational decoupling, it is quite
straightforward to extend many black holes from known solu-
tions to non-trivial extensions.
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For the extension of the Kerr black hole to hairy black
holes, in Boyer–Lindquist coordinates, as given by [80]

ds2 =
[

1 − 2rm̃ (r)

ρ̃2

]
dt2 + 4̃arm̃ (r) sin2θ

ρ̃2 dtdφ

− ρ̃2

�̃
dr2 − ρ̃2dθ2 − �̃sin2θ

ρ̃2 dφ2, (1)

where

ρ̃2 = r2 + ã2cos2θ, (2)

ρ̃2 = r2 + ã2cos2θ, (3)

�̃ =
(
r2 + ã2

)2 − ã2�̃sin2θ, (4)

ã = J̃

M̃
. (5)

In gravitational decoupling, the Einstein field equations can
be written as

G̃μν = kT̃μν = k(Tμν + Sμν). (6)

There, Sμν represents the additional source [81]. Contreras
et al. achieved a non-trivial extension of the Kerr black
hole, namely the hairy Kerr black hole, by introducing an
extra energy-momentum tensor into the known Einstein–
Kerr black hole solution. The metric is as follows [65]

m̃ = M − α
r

2
e−r/(M− lo

2 ), (7)

and

�̃ = r2 + a2 − 2rM + αr2e−r/(M− lo
2 ). (8)

The solution of this hairy Kerr black hole follows the strong
energy condition and is similar to the Kerr black hole, with
the singularity of spacetime existing at grr = �̃ = 0 and
�̃ �= 0. In the hairy Kerr black hole, lo = αl represents
the primary hair, with α being the deformation parameter
caused by the presence of surrounding matter. The condition
lo ≤ 2M ≡ lk ensures the asymptotic flatness of spacetime
[65].

In our paper on hairy Kerr black holes, we primarily dis-
cuss the impact of the hair parameters (α, l0) on its event
horizon. This is because we know that the event horizon of
the hairy Kerr black hole is strongly dependent on the hair
parameters (α, l0).

The event horizon of the hairy Kerr black hole is given by
grr = �̃ = 0. That is, writing formula (8) as

�̃ = r2 + a2 − 2rM + αr2e
− r

M− lo
2 = 0. (9)

From the calculation of Eq. (9), we obtain

rh = M ± M

√
1 − γ + a2

M2 , (10)

there γ = αr2
h e

−rh/(M− lo
2 ), and rh represents the event hori-

zon. Analyzing Eq. (10), it can be easily deduced that when
γ + a2 < M2, the term under the square root is positive.
From a physical perspective, this indicates a spacetime with
a black hole. However, it is clear that when γ + a2 > M2,
the term under the square root becomes negative. In physical
terms, this implies that the metric does not possess an event
horizon, thus no longer describing a black hole. Our inter-
est lies in the case where there is no event horizon, as this
represents an opportunity to further understand the internal
structure of black holes.

To better describe the effect of the hairy parameters (α, lo)
and the spin parameter a on the hairy Kerr black hole, we will
illustrate the relationship between the number of horizons of
the hairy Kerr black hole and these parameters in a graph,
labeled as Fig. 1. From the Fig. 1a, b in Fig. 1, we can intu-
itively discern that the number of event horizons is strongly
dependent on the variation in the hairy parameters. For the
Fig. 1a, as the parameter α gradually increases, the number
of event horizons transitions from two to one, and eventually,
the horizon disappears. This indicates that the value of α leads
to the overspin of the hairy Kerr black hole. In the Fig. 1b,
different values of l0 result in various degrees of disruption
to the hairy Kerr black hole. However, we find that when the
value of α in the hairy parameter is as large as possible and
l0 is as small as possible, in this case, the event horizon of
the hairy Kerr black hole is more easily destroyed. Overall,
the destruction of the event horizon of the hairy Kerr black
hole is strongly dependent on the hairy parameters.

For the hairy Kerr black hole, the area of the event horizon
is given by the following formula:

A =
∫∫ √

gθθgϕϕdθdϕ = 4π
(
r2
h + a2

)
, (11)

and the angular velocity at the event horizon is as follows:

�H = −g03

g33
= a

r2
h + a2

. (12)

3 Investigating the impact of hairy parameters on the
destruction of the event horizon through test particles

To investigate whether the hairy Kerr black hole can be over-
spun using test particles, we need to examine the following
conditions: first, whether the test particles can fall into the
event horizon; second, whether the test particles that fall into
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Fig. 1 a The variation in the number of event horizons of the hairy
Kerr black hole with respect to the hairy parameter α when the hairy
parameter l0 is set to a fixed value. b The change in the number of event

horizons of the hairy Kerr black hole with respect to the hairy parameter
α when l0 takes different values, with M = 1)

the event horizon meet the conditions for overspinning the
hairy Kerr black hole. When both of these conditions are
satisfied, we analyze the impact of hairy parameters on the
destruction of the event horizon.

According to the calculations in Sect. 2, the equation for
the event horizon of the hairy Kerr black hole is as follows:

rh = M ± M

√
1 − γ + a2

M2 (13)

In this equation, γ = αr2
h e

−rh/(M− lo
2 ), and rh represents the

event horizon. Analyzing the Eq. (13), the event horizon of
the hairy Kerr black hole exists only when γ + a2 ≤ M2.
However, when γ + a2 > M2, it implies that the event hori-
zon does not exist in this spacetime, exposing the spacetime
singularity at the center to observers at infinity. This provides
an opportunity to understand the internal structure of black
holes. In this paper, we primarily discuss this scenario.

In the spacetime of the hairy Kerr black hole, the motion
of particles is typically described by the geodesic equation:

d2xμ

dτ 2 + �
μ
αβ

dxα

dτ

dxβ

dτ
= 0, (14)

The Lagrangian for this system is:

L = 1

2
μgμν

dxμ

dτ

dxν

dτ
= 1

2
μgμν ẋ

μ ẋν . (15)

To measure the angular momentum and energy of test par-
ticles, we design the test particles to slowly approach along
the equatorial plane. Since the test particles move on the

equatorial plane, there is no motion in the θ direction, which
means dθ

dτ
= 0. Therefore, the momentum of the test particle

in the θ direction is zero, and the test particle only moves on
the equatorial plane, with no component in the θ direction
(i.e., dθ

dτ
= 0), which can be expressed as

pθ = ∂L

∂θ̇
= mg22θ̇ = 0. (16)

In this case, based on the motion equation of the test particle,
the angular momentum δ J and energy δE can be represented
by the components of the test particle in theφ and t directions,
respectively, as follows

δ J = Pφ = ∂L

∂φ
= mg3ν ẋ

ν, (17)

and

δE = −Pt = −∂L

∂ ṫ
= −mg0ν ẋ

ν . (18)

If a test particle can enter the interior of the event horizon,
then the total energy and angular momentum of the hairy
Kerr black hole will also undergo corresponding changes.
This means that when the test particle enters the interior of
the event horizon, a composite system consisting of the hairy
Kerr black hole is formed. At this point, the changes in the
energy and angular momentum of this composite system are
expressed as follows

M −→ M ′ = M + δE, (19)
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and

J −→ J ′ = J + δ J. (20)

When a test particle moves outside the event horizon of
a the hairy Kerr black hole, its four-dimensional velocity is
timelike, represented by the following equation:

UμUμ = dxμ

dτ

dxμ

dτ
= gμν

dxμ

dτ

dxν

dτ
= 1

μ2 g
μνPμPν = −1.

(21)

After rearranging this equation, we obtain

g00δE2 − 2g03δEδ J + g11P2
r + g33δ J 2 = −m2. (22)

From this, we can calculate the energy increment gained by
the hairy Kerr black hole from the test particle, given by

δE = g03

g00 δ J ± 1

g00

√[
(g03)

2
δ J 2 − g00(g33δ J 2 + g11P2

r + m2
]
.

(23)

Regarding the Eq. (23) mentioned above, we find that the
energy can have two values. However, careful analysis
reveals that when considering a test particle moving from
infinity towards the event horizon, the motion of the test par-
ticle must be timelike and future-directed. This requires sat-
isfying the following condition:

dt

dτ
> 0. (24)

By organizing the energy and angular momentum of the test
particle, we find that when the conditions of the motion being
timelike and future-directed are met, the derived conditions
for energy and angular momentum are as follows:

δE > −g03

g33
δ J. (25)

Therefore, under the energy condition of Eq. (25), it can
be concluded that the energy increment gained by the black
hole from the test particle can only take the negative sign,
expressed as

δE = g03

g00 δ J− 1

g00

√[
(g03)

2
δ J2 − g00(g33δ J2 + g11P2

r + m2
]

(26)

In the analysis of the conditions that energy and angular
momentum must satisfy, we find that for a test particle to

precisely fall into the event horizon, its energy and angular
momentum must fulfill the following condition

δ J < − lim
r→rh

g33

g03
δE . (27)

By jointly solving Eqs. (12) and (27), we obtain

δ J < − lim
r→rh

g33

g03
δE = δE

�H
= r2 + a2

a
δE . (28)

This means that there must be an upper limit to the angu-
lar momentum of the test particle.From a physical intuition
perspective, when a test particle has a very large angular
momentum, the centrifugal repulsion becomes much greater
than the attraction between the particle and the black hole. In
this case, the test particle will ’deviate’ from the hairy Kerr
black hole. In other words, if the angular momentum of the
test particle is too large, it will not be able to fall into the black
hole. Therefore, for a test particle to be captured by the hairy
Kerr black hole, there must be an upper limit to its angular
momentum, denoted as δ Jmax . Hence, from Eq. (28), we can
determine that the upper limit of the angular momentum δ J
of the test particle is

δ Jmax <
δE

�H
= rh2 + a2

a
δE . (29)

Furthermore, according to the event horizon conditions of
the hairy Kerr black hole, we know that a test particle entering
the event horizon does not imply that the hairy Kerr black
hole can be overspun. This is because when a test particle
enters the event horizon, it forms a composite system with
the angular momentum and mass of the hairy Kerr black
hole itself. The event horizon of the hairy Kerr black hole
disappears only when the formed composite system satisfies
γ + a2 > M2. By rearranging this condition, we can derive

a > M

√
1 − γ

M2 = Mσ, (30)

that is

J > M2σ. (31)

When a test particle enters the event horizon, the hairy Kerr
black hole absorbs the angular momentum δ J and energy δE
of the test particle, forming a new composite system. The
condition for this system to disrupt the event horizon of the
hairy Kerr black hole becomes

J ′ > σ ′M ′2
. (32)

Here,σ ′ = σ − 1
2σ

γ (kM−2)

M3 δE − (O)δE2 and there, k =
rh

(2 M−l0)2 . This is because σ contains mass M , and when
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the composite system is formed, the mass in σ also under-
goes a corresponding change (M + δE, δE � M) (a Tay-
lor series expansion has been utilized here). Ignoring higher
order small quantities, σ ′ becomes σ − 1

2σ
γ (kM−2)

M3 δE , that

is σ ′ = σ − 1
2σ

γ (kM−2)

M3 δE , then Eq. (32) becomes

J ′ > σ ′M ′2 =
(

σ − 1

2σ

γ (kM − 2)

M3 δE

)
M

,2

. (33)

By substituting Eqs. (19) and (20) into Eq. (33), we obtain

J + δ J >

(
σ − 1

2σ

γ (kM − 2)

M3 δE

)
(M + δE)2. (34)

Expanding Eq. (34) yields

J+δ J >

(
σ− 1

2σ

γ (kM − 2)

M3 δE

) (
M2 + δE2 + 2MδE

)
.

(35)

After rearranging, we get

δ J >
(
σM2 − J

)
+

(
2σM − 1

2σ

γ (kM − 2)

M

)
δE

+
(

σ − 1

σ

γ (kM − 2)

M2

)
δE2− 1

2σ

γ (kM − 2)

M3 δE3.

(36)

The Eq. (36) represents a lower limit for a test particle to dis-
rupt the event horizon of a hairy Kerr black hole. Analyzing
the above equation, since δE is a first-order small quantity,
neglecting the effects of higher-order perturbations, Eq. (36)
becomes

δ Jmin >
(
σM2 − J

)
+

(
2σM + γ

σM
− γ k

2σ

)
δE . (37)

This equation represents the lower limit of angular momen-
tum for a test particle to disrupt the event horizon after enter-
ing it. Through the above analysis, only when the chosen test
particle satisfies both conditions of Eqs. (29) and (37), can
the event horizon of the hairy Kerr black hole potentially be
disrupted, exposing the internal structure of the hairy Kerr
black hole.

Next, we will discuss two scenarios separately: extremal

and near-extremal cases. In the extremal case, when γ+a2

M2 =
1, the event horizon of a hairy Kerr black hole can be written
as

rh = M. (38)

In the first-order approximation, the condition for the destruc-
tion of the event horizon of such a hairy black hole can be
expressed as follows

δ Jmax <
δE

�H
= rh2 + a2

a
δE, (39)

and

δ Jmin >

(
2σM + γ

σM
− γ k

2σ

)
δE . (40)

By combining Eqs. (30), (38), and (39), we can calculate

δ Jmax <
rh2 + a2

a
δE

= M2σ 2 + M2σ 2 + γ

Mσ
δE =

(
2Mσ + γ

Mσ

)
δE .

(41)

From Eqs. (40) and (41), it can be visually observed that the
angular momentum and energy of the test particle can simul-
taneously satisfy these two conditions. In other words, as long
as the angular momentum of the test particle falls within the
energy range constrained by these two conditions, the event
horizon of the hairy Kerr black hole can be destroyed. When
the hair parameters (α, l0) approach zero (i.e., α = 0), the
hairy Kerr black hole degenerates into a Kerr black hole. The
analysis results from the above equation are consistent with
previous studies on Kerr black holes, which conclude that
the event horizon of an extremal Kerr black hole cannot be
destroyed by test particles [59].

If we take into account second-order or higher-order small
quantities, it does not affect the analysis results. Combining
Eqs. (36), (40), and (41), we have

δ Jmax − δ Jmin =γ k

2σ
δE −

(
σ − 1

σ

γ (kM − 2)

M2

)
δE2

+ 1

2σ

γ (kM − 2)

M3 δE3.

(42)

Clearly, for the given Eq. (42), it is evident that when higher-
order perturbations are taken into account, the upper limit of
the angular momentum for the test particle is always greater
than the lower limit. The symbol γ represents a function of
the hairy parameters γ (α, l0). In other words, the Eq. (42)
can only have a possibility of being less than zero when
there are no hairy parameters present (δ Jmax − δ Jmin <

0). At this time, the hairy Kerr black holes has become a
standard Kerr black hole. In other cases, it is greater than
zero (δ Jmax − δ Jmin > 0), corresponding to the scenario
where hairy Kerr black holes can be overspun.

123



Eur. Phys. J. C (2024) 84 :319 Page 7 of 15 319

For another scenario, namely the near-extremal case (a ≈
σM), the conditions for test particles to enter the event hori-
zon and disrupt the event horizon become

δ Jmax <
rh2 + a2

a
δE, (43)

and

δ Jmin >

(
2σM + γ

σM
− γ k

2σ

)
δE + (αM2 − J ). (44)

For the aforementioned case wherea ≈ σM , we can describe
the degree of proximity using a dimensionless small param-
eter ε, given by

γ + a2

M2 = 1 − ε2. (45)

The parameter ε is a number that approaches zero, i.e., ε �
0. When ε = 0, the equation becomes an extremal case.
Based on Eqs. (43) and (44), it can be concluded that in order
to destroy the event horizon of the spacetime in the near-
extremal case, the condition for destroying its event horizon
becomes

1

�H
− 2σM − γ

σM
+ γ k

2σ
> 0. (46)

The term (σM2 − J ) neglected in the above equation is a
second-order small quantity. That is to say, If the conditions
stated in the equation are satisfied, the event horizon of a
hairy Kerr black hole can be destroyed in the near-extremal
case.

Due to ε � 1, performing some series expansions yields

rh = M(1 + ε), (47)

and

a = M

(
σ − ε2

2σ
+ O(ε4)

)
. (48)

By combining Eqs. (45), (46), (47), and (48), we obtain the
calculation result as

1

�H
− 2σM − γ

σM
+ γ k

2σ

= aγ k + 4M2σε + (
2σM2 + γ

σ

)
ε2 − O(ε4)

2aσM
. (49)

The above analysis only considers the case of first-order per-
turbation. If we take higher-order perturbations into account

and combine Eqs. (36) and (49), we obtain the expression as

δ Jmax − δ Jmin

= aγ k + 4M2σε + (
2σM2 + γ

σ

)
ε2 − O

(
ε4

)
2aσ

δE

−
(
σM2 − J

)
−

(
σ − 1

σ

γ (kM − 2)

M2

)
δE2

+ 1

2σ

γ (kM − 2)

M3 δE3. (50)

Among them
(
σM2 − J

) = M2ε2

2σ
− O

(
ε4

)
. Equation (50)

can be expressed as

δ Jmax − δ Jmin

= aϒk + 4M2σε + (
2σM2 + γ

σ

)
ε2 − O

(
ε4

)
2aσM

δE

− M2ε2

2σ
−

(
σ − 1

σ

γ (kM − 2)

M2

)
δE2

+ 1

2σ

γ (kM − 2)

M3 δE3 + O
(
ε4

)
. (51)

According to the equation above, it is clear that in the
near-extremal case, even under higher-order perturbations,
the event horizon of a hairy Kerr black hole can be dis-
rupted by test particles due to the presence of hair param-
eters (α, l0),i.e.,δ Jmax − δ Jmin > 0. Moreover, the larger
the hair parameter, the easier the disruption, which sug-
gests that the existence of hair parameters seems to facili-
tate the formation of naked singularities. These hair param-
eters (α, l0) are represented by γ , i.e., γ (α, l0). Of course,
if the hairy Kerr black hole degenerates into a Kerr black
hole(δ Jmax − δ Jmin > 0), the conclusion obtained here is
consistent with previous research, which states that the event
horizon of a Kerr black hole in the near-extremal case can be
disrupted [59].

It is worth noting that, whether in extremal or near-
extremal conditions, even when higher-order terms are taken
into account (these higher-order terms include the spacetime
background and the self-energy of the test body), we find that,
in extremal conditions, it is approximately from Eq. (42) that

δ Jmax − δ Jmin = γ k

2σ
δE + (higher -order terms). (52)

In near-extremal conditions, it is approximately from Eq. (51)
that

δ Jmax − δ Jmin = aϒk

2aσM
δE + (higher -order terms).

(53)

From the above two equations, it can be intuitively obtained
that our analysis results are dominated by a first-order term.
When the spacetime background and the backreaction of
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the test body are sufficiently considered, these backgrounds
will affect the higher-order terms of our analysis frame-
work. However, due to the actual theory behind spacetime
and its complexity, we cannot accurately calculate the spe-
cific expressions of these higher-order terms. In this regard,
existing articles have also discussed this point (see refer-
ence [6,30]), where they found that when the test body is
uncharged, the impact of these effects is extremely small
(this is because the electromagnetic self-field backreaction
effect, which contributes most to the backreaction, can be
ignored at this time). Since our test body is also uncharged,
our backreaction will be even smaller, which means that it
has a very small impact on our analysis results, at least not
affecting the first-order results. Of course, since these effects
are extremely important for testing the weak cosmic censor-
ship conjecture, we will try to obtain a more accurate range
through numerical evolution in future work.

4 Using a scalar field to overspin a hairy Kerr black hole

Another method commonly used to test the weak cosmic
censorship conjecture is to scatter a black hole with a mas-
sive scalar field and investigate whether the resulting com-
posite system can lead to the disruption of the black hole’s
event horizon. In this subsection, we also adopt Semiz et
al.’s approach and use a scalar field carrying large angular
momentum to scatter a hairy Kerr black hole [82]. In order to
study the possibility of event horizon disruption, we examine
two scenarios: an extremal case and a near-extremal case, and
analyze the impact of the hairy parameters on the disruption
of the event horizon in these two situations.

4.1 Scattering of scalar fields with mass

When a scalar field is incident on a hairy Kerr black hole,
scattering occurs. Assuming that the mass of this scalar field
ψ is given bym, the motion equation of the scalar field can be
described by the Klein–Gordon equation, which is as follows:

∇μ∇ν − μ2ψ = 0. (54)

According to the definitions of covariant and contravariant,
the equation can be written as

1√−g
∂μ

(√−ggμν∂νψ
) − μ2ψ = 0. (55)

According to the metric (1), we can calculate its determinant
as

g = detgμν = −ρ̃4 sin2 θ. (56)

The contravariant tensor of metric (1) is given by the follow-
ing expression:

gμν = �μν

g
. (57)

Substituting metric (1) into the above Eq. (55) yields

(
r2 + a2

)2 − a2�̃ sin2 θ

�̃ρ̃2

∂2ψ

∂t2 − 4am̃r

�̃ρ̃2

∂2ψ

∂t∂φ

− 1

ρ̃2

∂

∂r

(
�̃

∂ψ

∂r

)
− 1

ρ̃2 sin2 θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)

− �̃ − a2 sin2 θ

�̃ρ̃2 sin2 θ

∂2ψ

∂φ2 − μ2ψ = 0. (58)

The form of the solution for the scalar field ψ in the above
equation is as follows

ψ (t, r, θ, φ) = e−iωt R (r) Slm(θ)eimφ. (59)

The Slm(θ) in the above equation is the angular spherical
function, where l and m are constants for the angular sep-
aration variable, taking positive integer values. Substituting
Eq. (59) into the scalar field equation (58) yields the angular
equation for the scalar field:

1

sin2 θ

d

dθ

(
sin θ

dSlm (θ)

dθ

)

−
(
a2ω2 sin2 θ + m2

sin2 θ
− μ2a2 cos2 θ − λlm

)
Slm (θ) = 0.

(60)

The radial equation for the scalar field is obtained as

d

dr

(
�̃
dR

dr

)

+
(

(r2 + a2)2

�̃
ω2 − 4am̃r

�̃
mω + m2a2

�̃
+ μ2r2 + λlm

)
R(r) = 0.

(61)

Upon solving Eq. (61), it is found that its solution is a spheri-
cal function. Due to the normalization of spherical functions,
when calculating the energy flux in the subsequent steps, inte-
gration over the entire event horizon surface is performed,
with the integration of the spherical function equal to one.
Therefore, we are now more concerned with the radial solu-
tion of the scalar field equation. For convenience in solving,
we introduce the tortoise coordinate r∗ and define the tortoise
coordinate as

dr

dr∗
= �̃

r2 + a2 . (62)
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By substituting the tortoise coordinate from the above equa-
tion into the radial equation (62) of the scalar field. we can
resolve it to obtain

�̃(
r2 + a2

)2

d

dr

(
r2

) dR

dr∗
+ d2R

dr∗2 +
[(

ω − ma

r2 + a2

)2

+ 2�̃amω(
r2 + a2

)2 − �̃(
r2 + a2

)2

(
μ2r2 + λlm0

)]
R = 0.

(63)

We mainly analyze the vicinity of the event horizon (r ∼ rh),
where

�̃ ∼= 0. (64)

By substituting Eq. (64) into Eq. (63), we can approximate
it as follows

d2R

dr∗2 +
(

ω − ma

r2 + a2

)2

R = 0. (65)

The expression for the angular velocity at the event horizon
of a Kerr black hole is given by The expression for the angular
velocity at the event horizon of a Kerr black hole is given by

�H = a

rh2 + a2 . (66)

By substituting Eq. (66) into Eq. (65), the radial equation for
the scalar field can be expressed as

d2R

dr∗2 + (ω − m�H )2 R = 0. (67)

The solution to Eq. (67) can be written in exponential form
as

R(r) exp [±i(ω − m�H )r∗] . (68)

The positive and negative signs in the solution of Eq. (68)
correspond to outgoing and incoming waves, respectively.
We primarily consider the scattering of a scalar field onto
a hairy Kerr black hole, where the black hole absorbs the
energy of the scalar field. Therefore, selecting the negative
sign in Eq. (68) is more physically realistic. The solution to
the radial equation for the scalar field in this case is

R (r) = exp [−i(ω − m�H )r∗] . (69)

Substituting Eq. (59) into Eq. (69), we can obtain the approx-
imate solution of the scalar field near the event horizon as

ψ (t, r, θ, φ) = exp [−i(ω − m�H )r∗] e−iωt Slm(θ)eimφ.

(70)

With this approximate solution, we can proceed to calculate
the angular momentum and energy absorbed by the hairy Kerr
black hole when a scalar field scatters onto it. The absorbed
energy and angular momentum can be obtained by calculat-
ing the flux of energy and angular momentum around the
event horizon.

The energy-momentum tensor of a scalar field (ψ) with
mass (μ) can be expressed in the following form

Tμν = ∂μψ∂νψ
∗ − 1

2
gμν

(
∂μψ∂νψ∗ + μ2ψψ∗) . (71)

By substituting the metric (1) into the above equation, we
can obtain

T r
t = rh2 + a2

ρ̃2 ω (ω − m�H ) Slm(θ)eimφS∗
l ′m′(θ)e−imφ,

(72)

and

T r
φ = rh2 + a2

ρ̃2 m (ω − m�H ) Slm(θ)eimφS∗
l ′m′(θ)e−imφ.

(73)

Therefore, the energy flux through the event horizon is given
by

dE

dt
=

∫∫
T r
t
√−gdθdφ = ω(ω − m�H )

[
rh

2 + a2
]
,

(74)

and the angular momentum flux through the event horizon is
given by

d J

dt
=

∫∫
T r

φ

√−gdθdφ = m (ω − m�H )
[
rh

2 + a2
]
.

(75)

From the above two equations, it can be observed that when
(ω > m�H ), the values of the angular momentum flux and
energy flux through the horizon are positive. This implies that
in this scenario, the hairy Kerr black hole extracts energy (δE)
and angular momentum (δ J ) from the scalar field. When
(ω < m�H ), however, the angular momentum flux and
energy flux through the event horizon are negative. In this
case, the scalar field extracts energy from the black hole,
which is known as black hole superradiance [83].

For a very small time interval (dt), the amount of angular
momentum and energy absorbed by the spacetime from the
scalar field can be expressed as
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dE = ω(ω − m�H )
[
rh

2 + a2
]
dt, (76)

and

d J = m(ω − m�H )
[
rh

2 + a2
]
dt. (77)

By utilizing Eqs. (76) and (77), we can determine the energy
and angular momentum extracted by the black hole from the
scalar field after the scattering process. With this acquired
energy and angular momentum, we can analyze the disrup-
tion of the event horizon of the hairy Kerr black hole follow-
ing the scattering of the scalar field.

4.2 The overspinning state of the hairy Kerr black hole
after scattering with a scalar field

In this section, we mainly analyze whether a composite sys-
tem formed by the scattering of a scalar field carrying large
angular momentum with a hairy Kerr black hole can disrupt
its event horizon. We also discuss the impact of the hairy
parameter on the disruption of the event horizon.

For a continuous scalar field scattering process, we
approach it using the concept of infinitesimal differentials,
analyzing each time interval dt . In the analysis process, each
dt interval is treated in the same way, with the only differ-
ence being the initial state parameter values. Therefore, we
only need to analyze one specific process among them.

From the analysis in Sect. 2, it is known that the hairy
Kerr spacetime can be destroyed when the spin parameter a
changes. Using the same approach, in the scalar field scat-
tering process, the initial mass and angular momentum of
the hairy Kerr spacetime are M and J , respectively. After
the scalar field scatters, the mass of the hairy Kerr black
hole becomes M ′ = M + dE , and the angular momentum
becomes J ′ = J + d J , forming a composite system. By
analyzing the formula of the event horizon, we can deter-
mine whether the event horizon is disrupted by examining
the sign of the composite system σ ′M ′2 − J ′. If the sign is
positive, the event horizon of the black hole always exists.
If the sign of σ ′M ′2 − J ′ is negative, the event horizon of
this type of Kerr black hole is disrupted, exposing its internal
structure to observers at infinity.

For the changes of a composite system within a very
short time interval dt , the energy and angular momentum
of the composite system formed after a hairy Kerr black hole
absorbs energy δE and angular momentum δ J from the scalar
field within this time interval dt are

σ ′M ′2 − J ′ =
(
σ − 1

2σ
γ (kM−2)

M3 δE
)

(M + dE)2

− (J + d J )

= (
σM2 − J

) + σdE2 + 2σMdE

− 1
2σ

γ (kM−2)
M dE − 1

σ
γ (kM−2)

M2 dE2

− 1
2σ

γ (kM−2)

M3 dE3 − d J. (78)

When considering only the low-order terms and neglecting
the higher-order terms, the above equation becomes

σ ′M ′2 − J ′ =
(
αM2 − J

)
+

(
2σM + γ

Mσ
− γ k

2σ

)
dE − d J.

(79)

Substituting the expressions for the energy and angular
momentum absorbed by a hairy Kerr spacetime from the
scalar field (Eqs. (76) and (77)) analyzed in Sect. 4.1 into Eq.
(79), we obtain

σ ′M ′2 − J ′ =
(
σM2 − J

)
+

(
2σM + γ

Mσ
− γ k

2σ

)
m2

×
⎛
⎝ ω

m
− 1(

2σM + γ
Mσ

− γ k
2σ

)
⎞
⎠ ( ω

m
− �H

)

×
[
rh

2 + a2
]
dt. (80)

In extremal situations, that is αM2 = J , Eq. (80) becomes

σ ′M ′2 − J ′ =
(

2σM + γ

Mσ
− γ k

2Mσ

)
m2

×
⎛
⎝ ω

m
− 1(

2σM + γ
Mσ

− γ k
2σ

)
⎞
⎠ ( ω

m
− �H

)

×
[
rh

2 + a2
]
dt. (81)

By using the formula for angular velocity (Eq. (12)), in the
extremal case, the angular velocity at the event horizon of a
hairy Kerr black hole can be simplified as

�H = a

r2
h + a2

= Mσ

M2σ 2 + M2σ 2 + γ

= 1

2Mσ + γ
Mσ

≤ 1(
2σM + γ

Mσ
− γ k

2σ

) .

(82)

The equality in the above equation holds only when the hairy
parameters (α, l0) are zero (α = 0). From the above equation,
it can be seen that the presence of other hairy fields or matter
around a hairy Kerr black hole can have an impact, leading
to a deviation in the angular velocity of the hairy Kerr black
hole. This result also implies the possibility of disruption in
the event horizon of the hairy Kerr black hole.
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If we choose the mode of the incident scalar field as fol-
lows

ω

m
= 1

2

⎛
⎝ 1(

2σM + γ
Mσ

− γ k
2σ

) + �H

⎞
⎠ . (83)

In that case, the state of the composite system becomes

σ ′M ′2 − J ′ = −1

4

(
2σM + γ

Mσ
− γ k

2σ

)
m2

×
⎛
⎝ 1(

2σM + γ
Mσ

− γ k
2σ

) − �H

⎞
⎠

2 (
rh

2 + a2
)
dt2.

(84)

According to formula (84), it is evident that whether a hairy
Kerr black hole can be destroyed in near extremal cases
strongly depends on the hairy parameters (α, l0). We can
obtain the following equation as the hairy parameters (α, l0)
change, that is

σ ′M ′2 − J ′ ≤ 0. (85)

The equality in the above equation holds only when the hairy
parameters (α, l0) vanish, indicating that there are no addi-
tional hairs present in the spacetime. This represents the
degeneration of the hairy Kerr black hole into a standard
Kerr black hole, and the analytical results align with those
obtained from general relativity, which states that extremal
Kerr black holes cannot be disrupted by scalar fields.

In fact, due to the influence of the hairy parameters (α, l0),
the angular velocity of the hairy Kerr black hole undergoes a
deviation. This indirectly results in the existence of a range
of wave modes capable of disrupting the event horizon, the
range of which is analyzed in Eq. (81) as

�H = 1

2Mσ + γ
Mσ

<
ω

m
<

1(
2σM + γ

Mσ
− γ k

2σ

) . (86)

This also implies that as long as the range of the incident
wave modes satisfies the condition in the above equation, the
composite system formed after the scalar field incident the
black hole will satisfy

σ ′M ′2 − J ′ < 0. (87)

In other words, when the mode range of the scalar field sat-
isfies Eq. (86), the event horizon of an extremal hairy Kerr
black hole can be disrupted. Moreover, the larger the values
of the hairy parameters (α, l0), the greater the range of wave
modes that satisfy this condition. This implies that it is easier

to disrupt the event horizon of a hairy Kerr black hole as the
values of the hairy parameters increase.

In near extremal situations, i.e. σM2 ∼ J . In this case,
there is the following equation

σ ′M ′2 − J ′ =
(
σM2 − J

)
+

(
2σM+ γ

Mσ
− γ k

2Mσ

)
m2

×
⎛
⎝ ω

m
− 1(

2σM + γ
Mσ

− γ k
2σ

)
⎞
⎠ ( ω

m
− �H

)

×
[
rh

2 + a2
]
dt. (88)

If the mode of the incident scalar field is

ω

m
= 1

2

⎛
⎝ 1(

2σM + γ
Mσ

− γ k
2σ

) + �H

⎞
⎠ . (89)

Then Eq. (88) becomes

σ ′M ′2 − J ′ =
(
σM2 − J

)
− 1

4

�H(
2σM + γ

Mσ
− γ k

2σ

)m2

×
(

1

�H
−

(
2σM + γ

Mσ
− γ k

2σ

))2

×
(
rh

2 + a2
)
dt2. (90)

Similar to the consideration of the near-extremal case in
Sect. 2, here we also consider using a dimensionless small
quantity to represent its degree of approximation, i.e

a2 + γ

M2 = 1 − ε2. (91)

Since ε is a number approaching zero, by expanding Eq. (91)
using the Taylor series and then substituting it into Eq. (90),
we have

(
σM2 − J

)
= M2ε2

2σ
− O

(
ε4

)
, (92)

and

1

�H
−

(
2σM + γ

Mσ
− γ k

2σ

)

=
2σ

[
2M2ε + M2ε

2−O
(
ε4

)] + aγ k + γ
σ
ε2−O(ε4)

2aσ

= aϒk + 4M2σε + (
2σM2 + γ

σ

)
ε2 − O(ε4)

2aσ
. (93)
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Then, we can obtain the final expression as

σ ′M ′2 − J ′ =
(
σM2 − J

)
− 1

4

�H(
2σM + γ

Mσ
− γ k

2σ

)�H
2

× m2
(

1

�H
−

(
2σM + γ

Mσ
− γ k

2σ

))2

×
(
rh

2 + a2
)
dt

=
[
M2ε2

2σ
− O

(
ε4

)]
− 1

4

�H(
2σM + γ

Mσ
− γ k

2σ

)m2

×
(
aγ k + 4M2σε + (

2σM2 + γ
σ

)
ε2 − O(ε4)

2aσ

)2

×
(
rh

2 + a2
)
dt. (94)

During the analysis of the scalar field impingement pro-
cess, we consider the composite state within an extremely
short time intervaldt , which means that heredt is a first-order
small quantity. From an analysis of the above equation, it is
understood that only when the hairy parameters (α, l0) are
zero, we have αM ′2 − J ′ > 0. Under these circumstances,
the spacetime becomes a Kerr black hole, and the results of
the analysis are consistent with the idea that a near-extremal
Kerr black hole cannot be destroyed by a scalar field. Only
when the hairy parameters are non-zero, an analysis of the
above formula makes it easy to deduce that the first term is a
second-order small quantity (O(+ε2)) and the second term
is a first-order small quantity (O(−dt)). The final effect of
this expression is a negative value,that is

σ ′M ′2 − J ′ < 0. (95)

This indicates that, due to the presence of ’hair’ around the
hairy Kerr black hole, these hairs cause a shift in the angular
velocity of the hairy Kerr black hole, providing a possibility
for the disruption of its event horizon.

In summary, we discuss the disruption of the event hori-
zon by the incidence of scalar fields carrying large angular
momentum on extremal and near-extremal hairy Kerr black
holes. We find that in both extremal and near-extremal sit-
uations, the event horizon of the hairy Kerr black hole can
be disrupted by the scalar field, and the probability of this
disruption strongly depends on the ’hair’ surrounding it. The
more ’hair’ present around a hairy Kerr black hole, the easier
it is for its event horizon to be disrupted.

5 Discussion and conclusions

In this article, we have thoroughly explored the anomalies of
the weak cosmic censorship conjecture in hairy Kerr black

holes. Specifically, when we carefully examine the destruc-
tion of the event horizon of hairy Kerr black holes using
Gedanken experiments with test particles or scalar fields,
we find that the destruction of the event horizon is strongly
dependent on the hairy parameters. In our research, we con-
clude that it is possible to overspin hairy Kerr black holes
using test particles, and that, whether in extremal or near-
extremal conditions, hairy Kerr black holes seem to violate
the weak cosmic censorship conjecture. When we explore
hairy Kerr black holes with scalar fields carrying large angu-
lar momentum, our findings suggest that, in extremal or
near-extremal conditions, the additional hair (α, l0) present
in hairy Kerr black holes leads to their overspinning.

We investigated the scenarios where test particles and
scalar fields are incident on hairy Kerr black holes. Compared
to standard Kerr black holes, we find that the event horizons
of standard Kerr black holes without hair are not destroyed,
neither in the extremal case with test particle detection nor
in both extremal and near-extremal cases with scalar field
detection. However, the event horizons of hairy Kerr black
holes can be disrupted. This clearly indicates that the ability
of hairy Kerr black holes to overspin strongly depends on
the hairy parameters(α, l0). Additionally, for a regular black
hole, since there is no singularity at its center, its overspinning
is not protected by the weak cosmic censorship conjecture,
which is a point of interest for us. This is because if hairy Kerr
black holes can act as ”simulators” of astrophysical black
holes, then in astrophysics, we can allow accretion disks to
autonomously absorb appropriate particles to overspin them,
providing a natural laboratory for exploring quantum gravity
inside black holes.

Certainly, the applicability of the weak cosmic censorship
conjecture in hairy Kerr black holes can be verified by con-
straining the hairy parameters (α, l0). If we can effectively
limit or constrain the values of these hairy parameters, it
would help ensure the weak cosmic censorship conjecture
is upheld in the context of hairy Kerr black holes. This dis-
covery is not only crucial for our future research directions
but may also reveal a profound connection between the black
hole no-hair theorem and the weak cosmic censorship con-
jecture. Specifically, this implies that a deep understanding
and constraint of the hairy parameters are essential not only
for the validity of the weak cosmic censorship conjecture but
might also offer new insights into the black hole no-hair the-
orem, thereby enhancing our understanding of the interplay
and influence between these two fundamental theories.

Acknowledgements We acknowledge the anonymous referee for a
constructive report that has significantly improved this paper. This
work was supported by the Special Natural Science Fund of Guizhou
University (Grant No.X2022133), the National Natural Science Foun-
dation of China (Grant No. 12365008) and the Guizhou Provincial
Basic Research Program (Natural Science) (Grant No. QianKeHeJiChu-
ZK[2024]YiBan027).

123



Eur. Phys. J. C (2024) 84 :319 Page 13 of 15 319

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This is a purely
theoretical study and did not use any data.]

Code Availability Statement The manuscript has no associated
code/software. [Author’s comment: This article is purely theoret-
ical research and does not involve generating or analyzing any
code/software.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. B.P. Abbott et al., GW150914: the advanced LIGO detectors in the
era of first discoveries. Phys. Rev. Lett. 116(13), 131103 (2016).
https://doi.org/10.1103/PhysRevLett.116.131103

2. R. Penrose, Gravitational collapse and space-time singulari-
ties. Phys. Rev. Lett. 14, 57–59 (1965). https://doi.org/10.1103/
PhysRevLett.14.57

3. S.W. Hawking, R. Penrose, The Singularities of gravitational col-
lapse and cosmology. Proc. Roy. Soc. Lond. A 314, 529–548
(1970). https://doi.org/10.1098/rspa.1970.0021

4. R. Penrose, Gravitational collapse: the role of general relativity.
Riv. Nuovo Cim. 1, 252–276 (1969). https://doi.org/10.1023/A:
1016578408204

5. R.M. Wald, Gravitational collapse and cosmic censorship. In: Iyer,
B.R., Bhawal, B. (eds.) Black holes, gravitational radiation and
the universe: Essays in honor of C.V. Vishveshwara. Springer
Netherlands, Dordrecht, pp 69–86 (1999). https://doi.org/10.1007/
978-94-017-0934-7_5

6. Z. Li, C. Bambi, Destroying the event horizon of regular black
holes. Phys. Rev. D 87(12), 124022 (2013). https://doi.org/10.
1103/PhysRevD.87.124022

7. D. Christodoulou, Violation of cosmic censorship in the gravita-
tional collapse of a dust cloud. Commun. Math. Phys. 93, 171–195
(1984). https://doi.org/10.1007/BF01223743

8. P.S. Joshi, D. Malafarina, Recent developments in gravitational
collapse and spacetime singularities. Int. J. Mod. Phys. D 20, 2641–
2729 (2011). https://doi.org/10.1142/S0218271811020792

9. R. Mizuno, S. Ohashi, T. Shiromizu, Violation of cosmic censor-
ship in the gravitational collapse of a dust cloud in five dimen-
sions. PTEP 2016(10), 103E03 (2016). https://doi.org/10.1093/
ptep/ptw147

10. E. Ames, H. Andréasson, O. Rinne, Hoop and weak cosmic cen-
sorship conjectures for the axisymmetric Einstein–Vlasov sys-
tem. Phys. Rev. D 108(6), 064054 (2023). https://doi.org/10.1103/
PhysRevD.108.064054

11. F. Corelli, T. Ikeda, P. Pani, Challenging cosmic censorship
in Einstein–Maxwell-scalar theory with numerically simulated
Gedanken experiments. Phys. Rev. D 104(8), 084069 (2021).
https://doi.org/10.1103/PhysRevD.104.084069

12. Y. Tavakoli, A.K. Ardabili, P.V. Moniz, Exploring the cosmic
censorship conjecture with a Gauss–Bonnet sector. Phys. Rev.
D 103(8), 084039 (2021). https://doi.org/10.1103/PhysRevD.103.
084039

13. K. Mosani, D. Dey, P.S. Joshi, Global visibility of a strong curva-
ture singularity in nonmarginally bound dust collapse. Phys. Rev.
D 102(4), 044037 (2020). https://doi.org/10.1103/PhysRevD.102.
044037

14. G. Manna, Gravitational collapse for the K-essence emergent
Vaidya spacetime. Eur. Phys. J. C 80(9), 813 (2020). https://doi.
org/10.1140/epjc/s10052-020-8383-y

15. M. Sharif, A. Anwar, Higher-dimensional charged LTB collapse in
f(R) gravity. Eur. Phys. J. Plus 133(7), 284 (2018). https://doi.org/
10.1140/epjp/i2018-12087-9

16. P. Figueras, M. Kunesch, S. Tunyasuvunakool, End point of black
ring instabilities and the weak cosmic censorship conjecture.
Phys. Rev. Lett. 116(7), 071102 (2016). https://doi.org/10.1103/
PhysRevLett.116.071102

17. T. Andrade, R. Emparan, D. Licht, R. Luna, Black hole collisions,
instabilities, and cosmic censorship violation at large D. JHEP 09,
099 (2019). https://doi.org/10.1007/JHEP09(2019)099

18. T. Andrade, R. Emparan, D. Licht, R. Luna, Cosmic censorship
violation in black hole collisions in higher dimensions. JHEP 04,
121 (2019). https://doi.org/10.1007/JHEP04(2019)121

19. D.R. Brill, G.T. Horowitz, D. Kastor, J.H. Traschen, Testing cosmic
censorship with black hole collisions. Phys. Rev. D 49, 840–852
(1994). https://doi.org/10.1103/PhysRevD.49.840

20. M.W. Choptuik, E.W. Hirschmann, S.L. Liebling, F. Pretorius, An
axisymmetric gravitational collapse code. Class. Quantum Grav-
ity 20, 1857–1878 (2003). https://doi.org/10.1088/0264-9381/20/
9/318

21. G.-P. Li, K.-J. He, B.-B. Chen, Testing thermodynamic laws and
weak cosmic censorship conjecture of conformal anomaly cor-
rected AdS black hole. Eur. Phys. J. Plus 136(1), 2 (2021). https://
doi.org/10.1140/epjp/s13360-020-00953-0

22. H. Xin-Yun, K.-J. He, X.-X. Zeng, W. Jian-Pin, Thermodynamics
and weak cosmic censorship conjecture of an AdS black hole with
a monopole in the extended phase space. Chin. Phys. C 44(5),
055103 (2020). https://doi.org/10.1088/1674-1137/44/5/055103

23. Y.-W. Han, M.-J. Lan, X.-X. Zeng, Thermodynamics and weak cos-
mic censorship conjecture in (2+1)-dimensional regular black hole
with nonlinear electrodynamics sources. Eur. Phys. J. Plus 135(2),
172 (2020). https://doi.org/10.1140/epjp/s13360-020-00186-1

24. Y.-W. Han, X.-X. Zeng, Y. Hong, Thermodynamics and weak
cosmic censorship conjecture of the torus-like black hole.
Eur. Phys. J. C 79(3), 252 (2019). https://doi.org/10.1140/epjc/
s10052-019-6771-y

25. X.-X. Zeng, Y.-W. Han, D.-Y. Chen, Thermodynamics and weak
cosmic censorship conjecture of BTZ black holes in extended phase
space. Chin. Phys. C 43(10), 105104 (2019). https://doi.org/10.
1088/1674-1137/43/10/105104

26. R. Wald, Gedanken experiments to destroy a black hole.
Ann. Phys. 82(2), 548–556 (1974). https://doi.org/10.1016/
0003-4916(74)90125-0

27. T. Jacobson, T.P. Sotiriou, Over-spinning a black hole with a
test body. Phys. Rev. Lett. 103, 141101 (2009). https://doi.org/10.
1103/PhysRevLett.103.141101. (Erratum: Phys. Rev. Lett. 103,
209903 (2009))

28. A. Saa, R. Santarelli, Destroying a near-extremal Kerr–Newman
black hole. Phys. Rev. D 84, 027501 (2011). https://doi.org/10.
1103/PhysRevD.84.027501

29. R. Ghosh, C. Fairoos, S. Sarkar, Overcharging higher curvature
black holes. Phys. Rev. D 100(12), 124019 (2019). https://doi.org/
10.1103/PhysRevD.100.124019

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.116.131103
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1007/978-94-017-0934-7_5
https://doi.org/10.1007/978-94-017-0934-7_5
https://doi.org/10.1103/PhysRevD.87.124022
https://doi.org/10.1103/PhysRevD.87.124022
https://doi.org/10.1007/BF01223743
https://doi.org/10.1142/S0218271811020792
https://doi.org/10.1093/ptep/ptw147
https://doi.org/10.1093/ptep/ptw147
https://doi.org/10.1103/PhysRevD.108.064054
https://doi.org/10.1103/PhysRevD.108.064054
https://doi.org/10.1103/PhysRevD.104.084069
https://doi.org/10.1103/PhysRevD.103.084039
https://doi.org/10.1103/PhysRevD.103.084039
https://doi.org/10.1103/PhysRevD.102.044037
https://doi.org/10.1103/PhysRevD.102.044037
https://doi.org/10.1140/epjc/s10052-020-8383-y
https://doi.org/10.1140/epjc/s10052-020-8383-y
https://doi.org/10.1140/epjp/i2018-12087-9
https://doi.org/10.1140/epjp/i2018-12087-9
https://doi.org/10.1103/PhysRevLett.116.071102
https://doi.org/10.1103/PhysRevLett.116.071102
https://doi.org/10.1007/JHEP09(2019)099
https://doi.org/10.1007/JHEP04(2019)121
https://doi.org/10.1103/PhysRevD.49.840
https://doi.org/10.1088/0264-9381/20/9/318
https://doi.org/10.1088/0264-9381/20/9/318
https://doi.org/10.1140/epjp/s13360-020-00953-0
https://doi.org/10.1140/epjp/s13360-020-00953-0
https://doi.org/10.1088/1674-1137/44/5/055103
https://doi.org/10.1140/epjp/s13360-020-00186-1
https://doi.org/10.1140/epjc/s10052-019-6771-y
https://doi.org/10.1140/epjc/s10052-019-6771-y
https://doi.org/10.1088/1674-1137/43/10/105104
https://doi.org/10.1088/1674-1137/43/10/105104
https://doi.org/10.1016/0003-4916(74)90125-0
https://doi.org/10.1016/0003-4916(74)90125-0
https://doi.org/10.1103/PhysRevLett.103.141101
https://doi.org/10.1103/PhysRevLett.103.141101
https://doi.org/10.1103/PhysRevD.84.027501
https://doi.org/10.1103/PhysRevD.84.027501
https://doi.org/10.1103/PhysRevD.100.124019
https://doi.org/10.1103/PhysRevD.100.124019


319 Page 14 of 15 Eur. Phys. J. C (2024) 84 :319

30. V.E. Hubeny, Overcharging a black hole and cosmic censor-
ship. Phys. Rev. D 59, 064013 (1999). https://doi.org/10.1103/
PhysRevD.59.064013

31. S. Gao, Y. Zhang, Destroying extremal Kerr–Newman black holes
with test particles. Phys. Rev. D 87(4), 044028 (2013). https://doi.
org/10.1103/PhysRevD.87.044028

32. B. Gwak, B.-H. Lee, Cosmic censorship of rotating anti-de Sit-
ter black hole. JCAP 02, 015 (2016). https://doi.org/10.1088/
1475-7516/2016/02/015

33. H.M. Siahaan, Destroying Kerr–Sen black holes. Phys. Rev.
D 93(6), 064028 (2016). https://doi.org/10.1103/PhysRevD.93.
064028

34. S. Shaymatov, N. Dadhich, Extending the weak cosmic censor-
ship conjecture to the charged Buchdahl star by employing the
Gedanken experiments. JCAP 06, 010 (2023). https://doi.org/10.
1088/1475-7516/2023/06/010

35. S. Ying, Thermodynamics and weak cosmic censorship conjecture
of 4D Gauss–Bonnet–Maxwell black holes via charged particle
absorption. Chin. Phys. C 44(12), 125101 (2020). https://doi.org/
10.1088/1674-1137/abb4c9

36. G. Chirco, S. Liberati, T.P. Sotiriou, Gedanken experiments on
nearly extremal black holes and the third law. Phys. Rev. D 82,
104015 (2010). https://doi.org/10.1103/PhysRevD.82.104015

37. F. de Felice, Y.-Q. Yu, Turning a black hole into a naked singularity.
Class. Quantum Gravity 18, 1235–1244 (2001). https://doi.org/10.
1088/0264-9381/18/7/307

38. K.-J. He, G.-P. Li, H. Xin-Yun, Violations of the weak cosmic
censorship conjecture in the higher dimensional f (R) black holes
with pressure. Eur. Phys. J. C 80(3), 209 (2020). https://doi.org/
10.1140/epjc/s10052-020-7669-4

39. D. Chen, Thermodynamics and weak cosmic censorship conjecture
in extended phase spaces of anti-de Sitter black holes with particles’
absorption. Eur. Phys. J. C 79(4), 353 (2019). https://doi.org/10.
1140/epjc/s10052-019-6874-5

40. G.E.A. Matsas, A.R.R. da Silva, Overspinning a nearly extreme
charged black hole via a quantum tunneling process. Phys. Rev.
Lett. 99, 181301 (2007). https://doi.org/10.1103/PhysRevLett.99.
181301

41. M. Richartz, A. Saa, Overspinning a nearly extreme black hole and
the weak cosmic censorship conjecture. Phys. Rev. D 78, 081503
(2008). https://doi.org/10.1103/PhysRevD.78.081503

42. J.V. Rocha, R. Santarelli, Flowing along the edge: spinning up black
holes in AdS spacetimes with test particles. Phys. Rev. D 89(6),
064065 (2014). https://doi.org/10.1103/PhysRevD.89.064065
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64. İ Semiz, K. Düztaş, Weak cosmic censorship, superradiance and
quantum particle creation. Phys. Rev. D 92(10), 104021 (2015).
https://doi.org/10.1103/PhysRevD.92.104021

65. E. Contreras, J. Ovalle, R. Casadio, Gravitational decoupling for
axially symmetric systems and rotating black holes. Phys. Rev.
D 103(4), 044020 (2021). https://doi.org/10.1103/PhysRevD.103.
044020

66. S.G. Ghosh, M. Afrin, Shadows of hairy Kerr black holes and con-
straints from M87*. in 16th Marcel Grossmann Meeting on Recent
Developments in Theoretical and Experimental General Relativity,
Astrophysics and Relativistic Field Theories, vol. 1 (2023). https://
doi.org/10.1142/9789811269776-0093

67. S.P. Drake, P. Szekeres, Uniqueness of the Newman–Janis algo-
rithm in generating the Kerr–Newman metric. Gen. Relat. Gravit.
32, 445–458 (2000). https://doi.org/10.1023/A:1001920232180

68. Y. Yang, D. Liu, A. Övgün, Z.-W. Long, X. Zhaoyi, Probing hairy
black holes caused by gravitational decoupling using quasinormal

123

https://doi.org/10.1103/PhysRevD.59.064013
https://doi.org/10.1103/PhysRevD.59.064013
https://doi.org/10.1103/PhysRevD.87.044028
https://doi.org/10.1103/PhysRevD.87.044028
https://doi.org/10.1088/1475-7516/2016/02/015
https://doi.org/10.1088/1475-7516/2016/02/015
https://doi.org/10.1103/PhysRevD.93.064028
https://doi.org/10.1103/PhysRevD.93.064028
https://doi.org/10.1088/1475-7516/2023/06/010
https://doi.org/10.1088/1475-7516/2023/06/010
https://doi.org/10.1088/1674-1137/abb4c9
https://doi.org/10.1088/1674-1137/abb4c9
https://doi.org/10.1103/PhysRevD.82.104015
https://doi.org/10.1088/0264-9381/18/7/307
https://doi.org/10.1088/0264-9381/18/7/307
https://doi.org/10.1140/epjc/s10052-020-7669-4
https://doi.org/10.1140/epjc/s10052-020-7669-4
https://doi.org/10.1140/epjc/s10052-019-6874-5
https://doi.org/10.1140/epjc/s10052-019-6874-5
https://doi.org/10.1103/PhysRevLett.99.181301
https://doi.org/10.1103/PhysRevLett.99.181301
https://doi.org/10.1103/PhysRevD.78.081503
https://doi.org/10.1103/PhysRevD.89.064065
https://doi.org/10.1103/PhysRevD.94.124031
https://doi.org/10.1103/PhysRevD.94.124031
https://doi.org/10.1007/JHEP11(2017)129
https://doi.org/10.1007/JHEP11(2017)129
https://doi.org/10.1103/PhysRevD.96.104014
https://doi.org/10.1103/PhysRevD.96.104014
https://doi.org/10.1142/S0218271818430034
https://doi.org/10.1142/S0218271818430034
https://doi.org/10.1103/PhysRevD.50.846
https://doi.org/10.1140/epjc/s10052-019-6851-z
https://doi.org/10.1140/epjc/s10052-019-6851-z
https://doi.org/10.1016/j.nuclphysb.2019.114722
https://doi.org/10.1016/j.nuclphysb.2019.114722
https://doi.org/10.1088/1475-7516/2019/08/016
https://doi.org/10.1103/PhysRevD.100.084059
https://doi.org/10.1103/PhysRevD.100.084059
https://doi.org/10.1088/1674-1137/44/1/015101
https://doi.org/10.1088/1674-1137/44/1/015101
https://doi.org/10.1007/JHEP09(2018)081
https://doi.org/10.1007/JHEP09(2018)081
https://doi.org/10.1103/PhysRevLett.118.151103
https://doi.org/10.1103/PhysRevLett.118.151103
https://doi.org/10.1007/JHEP04(2022)066
https://doi.org/10.1140/epjc/s10052-021-09906-y
https://doi.org/10.1140/epjc/s10052-021-09906-y
https://doi.org/10.1140/epjc/s10052-022-10120-7
https://doi.org/10.1140/epjc/s10052-020-08475-w
https://doi.org/10.1140/epjc/s10052-020-08475-w
https://doi.org/10.1140/epjc/s10052-023-12117-2
https://doi.org/10.1140/epjc/s10052-023-12117-2
https://doi.org/10.1140/epjc/s10052-023-12163-w
https://doi.org/10.1007/s11433-020-1659-0
https://doi.org/10.1007/s11433-020-1659-0
https://doi.org/10.1016/j.physletb.2012.03.068
https://doi.org/10.1016/j.physletb.2012.03.068
https://doi.org/10.1103/PhysRevD.84.104021
https://doi.org/10.1103/PhysRevD.92.104021
https://doi.org/10.1103/PhysRevD.103.044020
https://doi.org/10.1103/PhysRevD.103.044020
https://doi.org/10.1142/9789811269776-0093
https://doi.org/10.1142/9789811269776-0093
https://doi.org/10.1023/A:1001920232180


Eur. Phys. J. C (2024) 84 :319 Page 15 of 15 319

modes and greybody bounds. Phys. Rev. D 107(6), 064042 (2023).
https://doi.org/10.1103/PhysRevD.107.064042

69. W. Meng-He, H. Guo, X.-M. Kuang, Precession and Lense–
Thirring effect of hairy Kerr spacetimes. Phys. Rev. D 107(6),
064033 (2023). https://doi.org/10.1103/PhysRevD.107.064033

70. R. Avalos, E. Contreras, Quasi normal modes of hairy black holes
at higher-order WKB approach. Eur. Phys. J. C 83(2), 155 (2023).
https://doi.org/10.1140/epjc/s10052-023-11288-2

71. J. Ovalle, R. Casadio, E. Contreras, A. Sotomayor, Hairy black
holes by gravitational decoupling. Phys. Dark Univ. 31, 100744
(2021). https://doi.org/10.1016/j.dark.2020.100744

72. S.W. Hawking, Black holes in general relativity. Commun. Math.
Phys. 25, 152–166 (1972). https://doi.org/10.1007/BF01877517

73. W. Israel, Event horizons in static vacuum space-times. Phys.
Rev. 164, 1776–1779 (1967). https://doi.org/10.1103/PhysRev.
164.1776

74. C. Herdeiro, E. Radu, H. Rúnarsson, Kerr black holes with Proca
hair. Class. Quantum Gravity 33(15), 154001 (2016). https://doi.
org/10.1088/0264-9381/33/15/154001

75. T.P. Sotiriou, S.-Y. Zhou, Black hole hair in generalized scalar–
tensor gravity. Phys. Rev. Lett. 112, 251102 (2014). https://doi.
org/10.1103/PhysRevLett.112.251102

76. R. Li, J. Zhao, W. Xinghua, Y. Zhang, Scalar clouds in charged
stringy black hole-mirror system. Eur. Phys. J. C 75(4), 142 (2015).
https://doi.org/10.1140/epjc/s10052-015-3370-4

77. C.A.R. Herdeiro, E. Radu, H. Rúnarsson, Kerr black holes with
self-interacting scalar hair: hairier but not heavier. Phys. Rev.
D 92(8), 084059 (2015). https://doi.org/10.1103/PhysRevD.92.
084059

78. P. Bizon, Colored black holes. Phys. Rev. Lett. 64, 2844–2847
(1990). https://doi.org/10.1103/PhysRevLett.64.2844

79. S.W. Hawking, M.J. Perry, A. Strominger, Soft hair on black holes.
Phys. Rev. Lett. 116(23), 231301 (2016). https://doi.org/10.1103/
PhysRevLett.116.231301

80. M. Gurses, G. Feza, Lorentz covariant treatment of the Kerr–Schild
metric. J. Math. Phys. 16, 2385 (1975). https://doi.org/10.1063/1.
522480

81. J. Ovalle, Decoupling gravitational sources in general relativity:
from perfect to anisotropic fluids. Phys. Rev. D 95(10), 104019
(2017). https://doi.org/10.1103/PhysRevD.95.104019

82. I. Semiz, Dyonic Kerr–Newman black holes, complex scalar field
and cosmic censorship. Gen. Relat. Gravit. 43, 833–846 (2011).
https://doi.org/10.1007/s10714-010-1108-z

83. R. Brito, V. Cardoso, P. Pani, Superradiance: new frontiers in black
hole physics. Lect. Notes Phys. 906, 1–237 (2015). https://doi.org/
10.1007/978-3-319-19000-6

123

https://doi.org/10.1103/PhysRevD.107.064042
https://doi.org/10.1103/PhysRevD.107.064033
https://doi.org/10.1140/epjc/s10052-023-11288-2
https://doi.org/10.1016/j.dark.2020.100744
https://doi.org/10.1007/BF01877517
https://doi.org/10.1103/PhysRev.164.1776
https://doi.org/10.1103/PhysRev.164.1776
https://doi.org/10.1088/0264-9381/33/15/154001
https://doi.org/10.1088/0264-9381/33/15/154001
https://doi.org/10.1103/PhysRevLett.112.251102
https://doi.org/10.1103/PhysRevLett.112.251102
https://doi.org/10.1140/epjc/s10052-015-3370-4
https://doi.org/10.1103/PhysRevD.92.084059
https://doi.org/10.1103/PhysRevD.92.084059
https://doi.org/10.1103/PhysRevLett.64.2844
https://doi.org/10.1103/PhysRevLett.116.231301
https://doi.org/10.1103/PhysRevLett.116.231301
https://doi.org/10.1063/1.522480
https://doi.org/10.1063/1.522480
https://doi.org/10.1103/PhysRevD.95.104019
https://doi.org/10.1007/s10714-010-1108-z
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1007/978-3-319-19000-6

	The weak cosmic censorship conjecture in hairy Kerr black holes
	Abstract 
	1 Introduction
	2 Hairy black holes in gravitational decoupling
	3 Investigating the impact of hairy parameters on the destruction of the event horizon through test particles
	4 Using a scalar field to overspin a hairy Kerr black hole
	4.1 Scattering of scalar fields with mass
	4.2 The overspinning state of the hairy Kerr black hole after scattering with a scalar field

	5 Discussion and conclusions
	Acknowledgements
	References




