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Abstract In this work, we consider an extension of the
symmetric teleparallel equivalent of General Relativity (ST
EGR), namely, f (Q) gravity, by including a boundary term
BQ , where Q is the non-metricity scalar. More specifically,
we explore static and spherically symmetric black hole and
regular black hole solutions in f (Q,BQ) gravity coupled to
nonlinear electrodynamics (NLED). In particular, to obtain
black hole solutions, and in order to ensure that our solutions
preserve Lorentz symmetry, we assume the following rela-
tion fQ = − fB , where fQ = ∂ f/∂Q and fB = ∂ f/∂BQ .
We develop three models of black holes, and as the start-
ing point for each case we consider the non-metricity scalar
or the boundary term in such a way to obtain the metric
functions A(r). Additionally, we are able to express matter
through analytical solutions for specific NLED Lagrangians
LNLED(F). Furthermore, we also obtain generalized solu-
tions of the Bardeen and Culetu types of regular black holes,
by imposing specific metric functions.
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1 Introduction

The discovery of the recent accelerated expansion of the
Universe [1,2] has spurred much interest in modified the-
ories of gravities [3–5], as an alternative to dark energy
[6] and a possible cause of this late-time cosmic speed-up.
In fact, a plethora of modified gravity theories have been
explored in the literature that involve generalizations of the
Hilbert–Einstein action, such as the f (R) gravity [7] and
extensions [8–12], and the inclusion of second order curva-
ture invariants such as Rμν Rμν , Rαβμν Rαβμν , CαβμνCαβμν ,

εαβμν Rαβγ δ Rγ δ
μν , etc [13]. For further details on applications

of certain modified gravities, we recommend the follow-
ing references [14–16]. However, this class of Riemannian
geometries has been recently extended to include new fun-
damental blocks to describe spacetime, such as the presence
of the torsion scalar T [17] and nonmetricity, Q [18].

A fundamental result in differential geometry states that
the general affine connection, which is a mathematical tool
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that plays a central role in defining the transport of tensors
over the manifold and in defining the covariant derivative,
may always be decomposed into the following three inde-
pendent components [19,20]:

	̄β
μν = 	β

μν + K β
μν + Lβ

μν, (1)

where the first term corresponds to the Levi-Civita connec-
tion

	β
μν = 1

2
gβα

(
∂μgνα + ∂νgαμ − ∂αgμν

)
, (2)

while the second term is known as the contorsion

K β
μν = 1

2
T β

μν + T β

(μν), (3)

and is defined in terms of the torsion tensor

T β
μν = 2Γ

β
[μν] = −T β

νμ. (4)

Finally, we have the deformation tensor

Lβ
μν = 1

2
Qβ

μν − Qβ

(μν) = Lβ
νμ, (5)

which is defined by the divergence of the metric tensor, i.e.
the non-metricity tensor

Qβμν ≡ ∇βgμν �= 0, (6)

where ∇β denotes the covariant derivative, which is given
with respect to the affine connection (1).

In fact, by imposing assumptions on the affine connection,
one specifies the metric-affine geometry. Thus, in the stan-
dard formulation of General Relativity (GR), one assumes
a Levi-Civita connection, which implies a vanishing torsion
and nonmetricity, while in the Teleparallel Equivalent of GR
(TEGR), based on the torsion scalar T , one uses the Weitzen-
böck connection, implying zero curvature and nonmetricity
[17,21]. Another equivalent formulation of GR is the sym-
metric teleparallel equivalent of GR (STEGR), where it is the
nonmetricity tensor Q that describes the gravitational inter-
action [18,22]. These three frameworks have been denoted
the “Geometric Trinity of Geometry” [23].

As interesting extension of STEGR, namely, f (Q) grav-
ity, is related with the inclusion of a boundary termBQ . It was
found that the resulting theory, f (Q,BQ) gravity, is dynam-
ically equivalent to f (R) gravity, with f (Q,BQ) = f (Q −
BQ) [24]. In fact, it was also shown that in extended teleparal-
lel gravity f (T ), gravity, one also has f (T, B̃) = f (−T + B̃)

gravity (where BQ �= B̃) [25]. Thus, it was suggested [24]
that in this perspective, considering boundary terms in f (Q)

gravity represents the last ingredient towards an “Extended
Geometric Trinity of Gravity”, where f (R), f (T, B̃), and
f (Q,BQ) can be dealt with under the same standard.

Furthermore, there are several relevant studies on the the-
ory f (Q) with cosmological applications that have been
investigated in [26–30]. In addition to the studies mentioned

earlier on this theory, we also recommend consulting the fol-
lowing references to deepen your understanding [31–38]. A
study on FLRW cosmology within the scope of the theory
f (Q,BQ), considering several families of connections, was
developed in Ref. [39]. The behavior of cosmological models
of dark energy described by the theory f (Q,BQ) was inves-
tigated with perfect fluid in Ref. [40] and with quintessence
in Ref. [41].

It this work, we explore static and spherically symmet-
ric black hole and regular black hole solutions in f (Q,BQ)

gravity coupled to nonlinear electrodynamics (NLED). Since
the discovery of non-singular black hole solutions [42,43], a
plethora of solutions have been analysed in this class of solu-
tions (rather than provide an exhaustive list of the solutions,
we refer the reader to [43–50] and the references therein).

This paper is organised in the following manner: in Sect. 2,
we present the fundamentals of theories of gravity with non-
metricity. In Sect. 3, we consider f (Q,BQ) gravity coupled
to NLED and present the equations of motion of f (Q,BQ)

that will be used throughout this work. In Sect. 4, we find
several static and spherically symmetric black hole solutions.
In Sect. 5, we explore regular black holes, and generalize the
regular Bardeen and Culetu solutions. Finally, in Sect. 6, we
summarize our results and conclude.

2 Theory of gravity with non-metricity

2.1 Fundamentals

In this section, we present the fundamentals of f (Q,BQ)

gravity, where the non-metricity tensor is given by Qβμν ≡
∇βgμν �= 0, as mentioned above. The two characteristics of
the non-metricity tensor are defined by their contractions:

Qα = gμν Qαμν = Qν
αν, (7a)

Q̃α = gμν Qμαν = Qν
αν. (7b)

It is useful to define a superpotential, given by

Pβ
μν = −1

2
Lβ

μν − 1

4

[(
Q̃β − Qβ

)
gμν + δ

β

(μQν)

]
, (8)

so that the nonmetricity tensor (6) with the superpotential (8),
defines the nonmetricity scalar from the contraction as fol-
lows

Q = −Qβμν Pβμν. (9)

Applying the corresponding geometric configurations
where the curvature is zero, i.e. the teleparallel condition,
and where the geometry has no torsion, we obtain the fol-
lowing relation
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C
Rβ

αμν + C∇μLβ
να − C∇ν Lβ

μα + Lβ
μρ Lρ

να − Lβ
νρ Lρ

μα = 0, (10)

where
C∇ denotes the derivative that corresponds to the

Christoffel symbol (2), as well as the curvature tensor
C
Rβ

αμν ,
which has its explicit form given by

C
Rβ

αμν = ∂α	β
νμ − ∂ν	

β
αμ + 	β

αρ	ρ
νμ − 	β

νρ	ρ
αμ. (11)

The contraction of this tensor produces the Ricci tensor

C
Rμν = C

Rβ
μβν, (12)

and Eq. (10) reduces to the following expression after the
appropriate contractions

C
R = Q − C∇β

(
Qβ − Q̃β

)
, (13)

where

C
R = gμν

C
Rμν, (14)

is the contraction of Eq. (12), expressed in terms of (2).
Thus, taking into Eq. (13) we verify that the non-metricity

scalar differs from the Ricci scalar by a term of the total
derivation

BQ = C∇β

(
Qβ − Q̃β

)
, (15)

which will be a fundamental quantity used throughout this
work.

2.2 Coincident gauge

Let us now discuss an interesting symmetry property used
in STEGR that simplifies this formulation somewhat, where
the coordinate transformation considered here is known as
the “coincident gauge” [22]. More specifically, a variety of
flat geometry, where we have a flat connection with T β

μν = 0,
can be described by

	̄β
μν =

(
�−1

)β

α
∂μ�α

ν . (16)

where �α
μ belongs to GL(4,R).

The constraint in which the torsion is zero implies
(
�−1

)α

β
∂[μ�

β
ν] = 0, (17)

so that it is possible to rewrite the connection (16) from a
parametrization according to the transformation �α

μ = ∂μξα .
Consequently, we obtain

	̄β
μν = ∂xβ

∂ξρ
∂μ∂νξ

ρ, (18)

where ξλ is a set of arbitrary functions of the coordinates xλ.

As mentioned above, this result makes it possible, by
a suitable choice of coordinates, to make the connection
flat, torsion-free, and therefore consequently vanishes. The
choice of coordinates that cancels the connection is given by
xλ = ξλ, thus

	̄β
μν = 0, (19)

due ∂μ∂νξ
ρ = 0.

The coordinate transformation that implies a connection
described by the above result is called the “coincident gauge”
[22,51], so that we have

	β
μν = −Lβ

μν. (20)

The non-metricity tensor defined according to Eq. (6) now
becomes

Qβμν ≡ ∂βgμν. (21)

The coincident gauge is an extremely useful symmetry,
which will be used to develop the solutions outlined through-
out this work.

2.3 f (Q) gravity

The STEGR describes the gravitational interaction by the
non-metricity tensor, Qαμν , and the action is defined as:

SSTEGR =
∫ √−gd4x

(
Q + 2κ2Lm

)
, (22)

where κ2 = 8πG/c4, G is the gravitational constant and Lm

is the Lagrangian of the matter field.
Note that from the relation (13), the action of STEGR

differs from the Einstein–Hilbert action of GR by a boundary
term BQ , given by Eq. (15), which means that STEGR is an
equivalent formulation of GR.

A nonlinear generalization of STEGR is a proposal in
which the action is described as follows

S f =
∫ √−gd4x

[
f (Q) + 2κ2Lm

]
, (23)

where f (Q) is an arbitrary function of the nonmetricity scalar
Q.

However, this theory raises some issues, for instance, if
one chooses the coincident gauge with static and spherical
symmetry, the equations of motion imply a theory with a lin-
ear f (Q) function or constant scalar non-metricity, as veri-
fied in [52]. This is undoubtedly due to the use of a geomet-
ric object which is not a Lorentz invariant. To overcome this
challenge, a theory must be constructed that accounts for this
invariance.
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2.4 f (Q,BQ) gravity

In this work, we develop solutions based on a recent proposal
by extending the theory f (Q), namely, f (Q,BQ) gravity
[24,53], where BQ is the boundary term given by Eq. (15).
In this approach, the action is defined as:

S f (Q,BQ) =
∫ √−gd4x

[
f
(
Q,BQ

)+ 2κ2Lm

]
. (24)

The variation of the action (24) with respect to the metric
tensor, yields the following equation of motion:

fQ (Q)
C
Gμν − 1

2
gμν

[
f (Q) − fQ (Q)Q

− fB
(
BQ

)
BQ

]+2Pα
μν∂α

[
fQ (Q)

+ fB
(
BQ

) ]−gμν

C
� fB

(
BQ

)

+C∇μ

C∇ν fB
(
BQ

) = κ2�μν, (25)

where
C
Gμν is the Einstein tensor of GR and we denote

fQ
(
Q,BQ

) = ∂ f
(
Q,BQ

)
/∂Q, fB

(
Q,BQ

) = ∂ f
(
Q,BQ

)

/∂BQ , the energy–momentum tensor is�μν and� = ∇μ∇μ.
Note that the contribution of the boundary term leads to the
existence of fourth order field equations in this theory [24].

Now, the variation of the action (24) with respect to the
affine component provides the following field equation

∇μ∇ν

[√−g Pμν
α

(
fQ (Q) + fB

(
BQ

))] = 0. (26)

If we substitute BQ = 0 into the field equation (25), lead-
ing to fB(Q,BQ)=0, we arrive at the field equations of f (Q)

gravity. Note that the resulting equations of motion can be
rewritten as [54–56]

fQ (Q)
C
Gμν − 1

2
gμν

(
f (Q) − fQ (Q)Q

)

+2Pα
μν∂α fQ (Q) = κ2�μν. (27)

An interesting property is that f (R) gravity is recovered
by considering R = Q − BQ , i.e., f (R) = f (Q,BQ) =
f (Q − BQ), which yields the following field equations

(
C
Gμν + 1

2
gμν R + gμν

C
� − C∇μ

C∇ν

)
fR (R)

−1

2
gμν f (R) = κ2�μν. (28)

3 f (Q,BQ) gravity coupled to non-linear
electrodynamics

3.1 Action and metric

In this section, we consider f (Q,BQ) gravity coupled to
NLED. The action is given by

S =
∫

d4x
√−g

[
f (Q,BQ) + 2κ2LNLED(F)

]
, (29)

where LNLED(F) is the Lagrangian density describing the
NLED that depends on the electromagnetic scalar F as

F = 1

4
Fμν Fμν, (30)

and the electromagnetic field Fμν , defined as

Fμν = ∂μ Aν − ∂ν Aμ, (31)

is the Maxwell–Faraday antisymmetric tensor, where Aβ is
the magnetic vector potential.

Varying the action (29) with respect to Aβ , we have

∇μ[LF Fμν] = ∂μ[√−gLF Fμν] = 0, (32)

where we denote LF = ∂LNLED(F)/∂ F .
Finally, varying the action (29) with respect to the metric,

we obtain the equations of motion (25) and the matter con-
tributions expressed by the energy–momentum tensor, with
the following contribution

�μ
ν = F

�μ
ν , (33)

where the nonlinear electromagnetic energy–momentum ten-

sor
F
�

μ
ν is defined as

F
�μ

ν = δμ
ν LNLED(F) + LF Fμα Fνα. (34)

The solutions that we discuss later in the context of black
holes and regular black holes will be obtained using the fol-
lowing static and spherically symmetric metric

ds2 = A(r)dt2 − 1

A(r)
dr2 − �2(r)

(
dθ2 + sin2 θ dφ2

)
, (35)

where A(r) and �(r) are functions of the radial coordinate
r .

Here, we only consider the magnetic charge, so that the
only non-zero component of the tensor Fμν is

F23 = q sin θ, (36)

and the electromagnetic scalar is given by

F = q2

2�4(r)
. (37)

123



Eur. Phys. J. C (2024) 84 :332 Page 5 of 18 332

In this way, using the metric (35), we can describe bound-
ary term (15) as follows

BQ(r) = A′′(r) + 6A′(r)�′(r) + 4A(r)�′′(r)

�(r)

+4A(r)�′2(r) − 2

�(r)
, (38)

and the nonmetricity scalar (9) now becomes

Q(r) = −
2�′(r)

(
�(r)A′(r) + A(r)�′(r)

)

�2(r)
. (39)

3.2 Equations of motion

Thus, taking into account the field equation (25), the line ele-
ment (35), and the energy–momentum tensor (33), the equa-
tions of motion for f (Q,BQ) gravity coupled with NLED
are given by

1

2
fQ(r)

⎡

⎣Q(r) −
2
(
�(r)A′(r)�′(r) + A(r)�′(r)2 − 1

)

�(r)2

⎤

⎦+ 1

2
BQ(r) fB(r) − f (r)

2
−

f ′
B(r)

(
�(r)A′(r) + 4A(r)�′(r)

)

2�(r)

= κ2LNLED(r), (40)
1

2
A(r) cot θ

(
f ′
B(r) + f ′

Q(r)
) = 0, (41)

cot θ
(

f ′
B(r) + f ′

Q(r)
)

2�2(r)
= 0, (42)

1

2
fQ(r)

⎧
⎨

⎩
Q(r) −

2
[
�(r)

(
A′(r)�′(r) + 2A(r)�′′(r)

)
+ A(r)�′2(r) − 1

]

�(r)2

⎫
⎬

⎭
−

2A(r)�′(r)
(

f ′
B(r) + f ′

Q(r)
)

�(r)

− f (r)

2
+ 1

2

⎡

⎣−
f ′
B(r)

(
�(r)A′(r) + 4A(r)�′(r)

)

�(r)
− 2A(r) f ′′

B(r) + BQ(r) fB(r)

⎤

⎦

= κ2LNLED(r),− f ′
B(r)

(
�(r)A′(r) + A(r)�′(r)

)

�(r)
− A(r) f ′′

B(r) (43)

+1

2
fQ(r)

(
Q(r) − �(r)A′′(r) + 2A′(r)�′(r) + 2A(r)�′′(r)

�(r)

)
+ 1

2
BQ(r) fB(r)

−1

2

⎡

⎣ f (r) +
(
�(r)A′(r) + 2A(r)�′(r)

)(
f ′
B(r) + f ′

Q(r)
)

�(r)

⎤

⎦

= κ2
(
LNLED(r) − q2 L F (r)

�4(r)

)
, (44)

where the prime denotes a derivative with respect to the radial
coordinate r .

4 Black hole solutions in f (Q,BQ) gravity

In this section, in order to deduce black hole solutions, con-
sider the following metric

ds2 = A(r)dt2 − 1

A(r)
dr2

−r2
(

dθ2 + sin2 θ dφ2
)

, (45)

where we have used �(r) = r for simplicity.
Thus the boundary term (38) is now given as

BQ(r) = −r2 A′′(r) + 6r A′(r) + 4A(r) − 2

r2 , (46)

and the non-metricity scalar (39) takes the form

Q(r) = −
2
(

r A′(r) + A(r)
)

r2 , (47)

where Eqs. (46) and (47) satisfy condition (13).
To obtain black hole solutions, and in order to ensure that

our solutions preserve Lorentz symmetry, we assume the fol-
lowing relation, throughout this work:
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fQ = − fB . (48)

Equation (48) contains the particular case of the symmet-
ric teleparallel theory f (Q,BQ) = Q − BQ , and even if
fQ = 1 and fB = −1 this equation is identically satis-
fied. In the coincident gauge, condition (48) must always be
enforced, where the equations of motion (41) and (42) are
identically satisfied. If Eq. (48) is not imposed for the entire
radial coordinate range, two of the equations of motion, i.e.,
(41) and (42), will not be satisfied for some value or interval
of r . We conclude that condition (48) is a necessary impo-
sition for the coincident gauge in the theory f (Q,BQ) with
static spherically symmetry. It is likely that this condition can
be relaxed for metrics that also depend on time, such as the
Lemaître–Tolman–Bond metric, as is the case with the f (T )

theory [57].
Thus, solving the equations of motion (43)–(44), we

obtain the following quantities:

LNLED(r) = 1

2κ2

⎡

⎣
r2 f ′(r)

(
r A′′(r) + 2A′(r)

)

r3 A3(r) + 6r2 A′′(r) − 2r A′(r) − 8A(r) + 4
− f (r)

⎤

⎦ , (49)

LF (r) =
r5
(

r2 A′′(r) − 2A(r) + 2
)

f ′(r)

2κ2q2
(

r3 A3(r) + 6r2 A′′(r) − 2r A′(r) − 8A(r) + 4
) . (50)

4.1 First model of black hole

It is an extremely difficult task to solve the equations of
motion, and therefore we propose several simplifications. As
a starting point, we model the boundary term described by
Eq. (46) and assume that it is a regular quantity, so that we
can solve the differential equation to find an expression for
the metric function A(r).

Thus, consider the following boundary term

BQ(r) = b0

r2 , (51)

so that the black hole solution can therefore be determined
from Eq. (46) as follows:

− r2 A′′(r) + 6r A′(r) + 4A(r) − 2

r2 = b0

r2 . (52)

which provides the following metric function

A(r) = 2 − b0

4
+ b1

r4 − 2M

r
, (53)

where b0 an b1 are constants. Note that we obtain the
Schwarzschild metric function by imposing b0 = −2 and
b1 = 0 into Eq. (53). In the limit r → 0, the metric function
diverges, while in the limit r → ∞, it is asymptotically flat.

If we set b0 = −2, the metric function (53) is asymptotically
Minkowskian.

The non-metricity scalar for this solution is given by

Q(r) = b0 − 2

2r2 + 6b1

r6 . (54)

Note that the non-metricity scalar and the boundary term sat-
isfy the condition (13). Although Q(r) and BQ(r) are diver-
gent in the limit r → 0, the combination Q(r)−BQ(r) = R
is what characterizes whether the solution is regular or not.
Thus, as Q(r) − BQ(r) is singular at r = 0, the geometry
of the spacetime is that of a singular solution (we refer the
reader to the comment in Ref. [52] under Eq. (46)).

To determine the existence of event horizons in a given
solution, it is necessary to solve the following equation:

A(rH ) = 0, (55)

where rH is the radius of the horizon.

In addition, we can use the following condition to obtain
the values of the critical parameters

d A(r)

dr

∣∣∣
∣
r=rH

= 0. (56)

We can therefore solve Eqs. (55) and (56) simultaneously to
obtain algebraic solutions for the radius of the event horizon
and the value of a certain critical parameter in the model.
However, depending on the model, it may be difficult to find
analytical solutions for these quantities. Therefore, we will
approach this problem numerically by assigning values to
the constants to investigate the presence of event horizons
through graphical representations.

Therefore, to find numerical solutions, we set the follow-
ing values for the parameters: b0 = 0.5 and M = 1.0. If the
two conditions (55) and (56) are satisfied simultaneously, we
obtain the critical parameter value b1c = 32. Figure 1 shows
the behavior of the metric function (53), where b1c takes the
values b1 > b1c, b1 = b1c and b1 < b1c. For b1 > b1c there
are no event horizons; for b1 = b1c there is only one horizon;
and for b1 < b1c two event horizons are present. We can see
in Fig. 1 that all the curves for the different values of b1 with
r 	 1 match.

The quantities LNLED and LF take the form
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LNLED(r) = − 1

2κ2

(
f (r) − 6b1 f ′(r)

b0r3

)
, (57)

LF (r) =
r
[(

b0 + 2
)
r4 + 36b1

]
f ′(r)

8b0κ2q2 , (58)

respectively, and indeed, these obey the consistency relation

LF − ∂LNLED

∂r

(
∂ F

∂r

)−1

= 0. (59)

If we solve the consistency condition (59), we get the
following solution

f (r) = −
f0r 4

√
3 	

(
1
4 ,− (b0−2)r4

48b1

)

2 4
√

− (b0−2)r4

b1

+ f1, (60)

where f0 and f1 are the constants of the integration.
Consequently, we can express the function as follows

f (Q,BQ) = −
√

ξ
Q−BQ

4
√

6
E 3

4

(

− (b0 − 2)ξ2

1728 b1
(
Q − BQ

)2

)

.

(61)

where Ek is the exponential integral function

Ek (w) =
∫ ∞

1

e−wt

t k
dt, (62)

and ξ is given by

ξ = 3

√

36
√

b0(Q − BQ)2
(
324b1(Q − BQ)2 − (b0 + 2)3

)− (b0 + 2)3 + 648b1(Q − BQ)2

+ (b0 + 2)2

3

√

36
√

b1(Q − BQ)2
(
324b1(Q − BQ)2 − (b0 + 2)3

)− (b0 + 2)3 + 648b1(Q − BQ)2

− b0 − 2. (63)

By choosing b0 = −2 and b1 = 1 in Eq. (61), we get the
form of

f (Q,BQ) = −
6
√

3 E 3
4

(
1

2 3√6(Q−BQ)2/3

)

2 25/6 6
√
Q − BQ

(64)

that permits us see more clearly that the Eq. (64) satisfies
fQ = − fB .

We have investigated the asymptotic behavior of function
(61) for small and very large values ofQ−BQ . We found that
there is no linear behavior in these two cases. To illustrate
this, in Fig. 2 we compared function (61) for small values of
Q−BQ using the blue curve with the linear case represented
by a dashed red line. However, if we analyze very small
intervals of Q − BQ , the behavior we observe is practically
linear.

Fig. 1 The plot depicts the metric function (53), i.e., A(r), for the
specific values of b0 = 0.5 and M = 1.0, where Eq. (56) determines
the critical value of the constant b1, given by b1c = 32.0. For b1 > b1c
there is no horizon, for b1 = b1c, there is only one horizon and for
b1 < b1c, there are two horizons

From the function f (r) at our disposal, the quantities are
now expressed as:

fB(r) = −r3e
(b0−2)r4

48b1

2b0
, (65)

LNLED(r) =
r E 3

4

(
− (b0−2)r4

48b1

)

8κ2 + 3b1e
(b0−2)r4

48b1

b0κ2r3 , (66)

LF (r) = re
(b0−2)r4

48b1
(
(b0 + 2)r4 + 36b1

)

8b0κ2q2 , (67)

where Eqs. (66) and (67) satisfy the consistency condi-
tion (59).

Finally, using Eq. (30), we derive the expression for r(F),
and consequently, we are able to express the electromagnetic
Lagrangian in terms of F , which is given by

LNLED(F)

=
b0q2 E 3

4

(
− (b0−2)q2

96b1 F

)
+ 48b1 Fe

(b0−2)q2

96b1 F

8 4
√

2b0
4
√

Fκ2q3/2
. (68)

We illustrate the behavior of the Lagrangian (68) in Fig. 3 for
q = 0.7, b0 = 0.5 and three different values of b1. A note
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Fig. 2 Graphic representation of function f (Q,BQ), described by
expression (61). Where we consider M = 10, b0 = −2 and b1 = 1.
The blue curve represents the behavior of our model for (Q−BQ) 
 1,
while the dashed red line represents the linear case

Fig. 3 Graphic representation of LNLED(F), described by expres-
sion (68), with respect to F . Where we consider q = 0.7 and b0 = 0.5

that setting b = 2 is an inconsistent value, as it lies outside
the domain of our solution.

Let us now analyze the asymptotic limits of the Lagrangian
described by Eq. (68). For instance, for F 	 1, we observe
that

LNLED(F) ∼ 3 23/4b1 F3/4

b0κ2q3/2 . (69)

Whereas for F 
 1,

LNLED(F) ∼ exp

[
(b0 − 2) q2

96b1 F

]

[

−3
(
23/4 (b0 + 2) b1

)
F3/4

(b0 − 2) b0q3/2κ2

]

. (70)

Therefore, based on results (69) and (70), we find that we
have not recovered the linear case.

If we analyze the graph in Fig. 3, we find that the
Lagrangian LNLED(F) described by Eq. (68), is nonlinear.

Another important feature is that it is not “function mul-
tivalued”. We also note that this Lagrangian is a bijective
function, since each element in the domain maps to only one
element in the codomain. This is a peculiarity of magneti-
cally charged solutions where we have a unique represen-
tation, which means that a single Lagrangian is sufficient
to describe a single solution. This aspect does not apply to
electrically charged solutions, where the Lagrangians are no
longer bijective, as for one value of F there can be one or
more values of LNLED(F) (see Refs. [45,58]). Furthermore,
we see in the graph that the Lagrangian LNLED(F) has no
peaks, which is another characteristic feature of magnetically
charged solutions. We can also observe that by increasing the
value of b1 while maintaining q and b0 fixed, the Lagrangian
LNLED(F) assumes increasing values.

4.2 Second model of black hole

In this model we adopt the symmetry presented in Eq. (48),
as before, since it gives us analytical solutions. We model the
non-metricity scalar from Eq. (47) so that it becomes a regular
quantity, which allows us to obtain a differential equation
to find an expression for A(r). For instance, consider the
following non-metricity scalar

Q(r) = q0

r2 + r2
0

, (71)

so that the solution is therefore characterized by Eq. (47),
and is given by

−
2
(

r A′(r) + A(r)
)

r2 = q0

r2 + r2
0

. (72)

which yields the following metric function

A(r) = −2M

r
− q0

2

[
1 − r0

r
tan−1

(
r

r0

)]
. (73)

where q0 an r0 are constants. The metric function (73)
diverges when we take the limit r → 0, however, for the
limit r → ∞, this A(r) function is asymptotically flat. If
we set q0 = −2 and r0 = 0 in Eq. (73), we recover the
Schwarzschild solution.

We may consider once again Eqs. (55) and (56) to deter-
mine the radius of the event horizon and the critical param-
eter by numerical solutions. However, for the specific model
described by the metric function (73), we did not find an
extreme value for q0. In Fig. 4, we depict the behavior of
A(r). When q0 = 0, we observe a curve that is consistently
negative and tends towards zero. Conversely, for q0 > 0 there
is no horizon, while for q0 < 0 there is an horizon. Equation
(73) shows that the function A(r) tends to −q0/2 in the limit
when r tends to infinity. This behavior can be illustrated in
Fig. 4, where for q0 > 0 the metric function A(r) stabilizes
at a fixed negative value (as shown by the green curve), while
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Fig. 4 The plot depicts the metric function (73), i.e., A(r), for the
specific values of b0 = 0.1 and M = 1.0. For q0 > 0 there is no
horizon, for q0 = 0, the curve is negative and tends to zero and for
q0 < 0, there is only one horizon

for q0 < 0 A(r) tends to a fixed positive value (as shown by
the red curve).

In this model the boundary term is given by

BQ(r) = 2(q0 + 1)r4 + (3q0 + 4)r2r2
0 + 2r4

0

r2
(
r2 + r2

0

)2 . (74)

Equations (71) and (74) satisfy relation (13). Although Q(r)

is regular for for all values of r and q0, the combination
Q(r)−BQ(r) = R in this model exhibits a singularity in the
limit of r → 0.

We also find that the quantities LNLED and LF take the
following forms

LNLED(r) = − f (r)

2κ2

− 1

8κ2

[
q0r3r2

0

(
r2 + r2

0

)
f ′(r)

(q0 + 1)r6 + (2q0 + 3)r4r2
0 + 3r2r4

0 + r6
0

]

,

(75)

and

LF (r) =
r5
(

r2 + r2
0

)
f ′(r)

[
(q0 + 2)r4 + 4r2r2

0 + 2r4
0

]

8κ2q2
[
(q0 + 1)r6 + (2q0 + 3)r4r2

0 + 3r2r4
0 + r6

0

] ,

(76)

respectively.
Solving the consistency condition (59), we deduce

f (r) = 1

4
f0

{

− eq0

r2
0

Ei

(

−r2

r2
0

− 1

)

− 2

r2
0

Ei

(

−r2

r2
0

)

− e
− r2

r2
0
[
(q0 + 2)r4 + 2(q0 + 2)r2r2

0 + 2r4
0

]

r2
(
r2 + r2

0

)2

}

+ f1, (77)

where f0 and f1 are the integration constants, and Ei(ω) is
the exponential integral function

Ei (w) =
∫ ∞

−w

e−t

t
dt. (78)

With the function f (r) at our disposal, the quantities are
now expressed in the following form:

fQ(r) = 1

4
e
− r2

r2
0 , (79)

LNLED(r) = 1

8κ2

{
eq0

r2
0

Ei

(

−r2

r2
0

− 1

)

+ 2

r2
0

Ei

(

−r2

r2
0

)

+e
− r2

r2
0
[
(q0 + 2)r2 + 2r2

0

]

r2
(
r2 + r2

0

)
}
, (80)

LF (r) = e
− r2

r2
0
[
(q0 + 2)r6 + 4r4r2

0 + 2r2r4
0

]

8κ2q2
(
r2 + r2

0

)2 , (81)

where Eqs. (80) and (81) satisfy the condition (59).
We can also represent the Lagrangian density as follows

LNLED(F) = 1

8κ2

[e
− q√

2Fr2
0

(
2
√

Fq(q0 + 2) + 4
√

2Fr2
0

)

q
(

2
√

Fr2
0 + √

2q
)

+eq0

r2
0

Ei

(

− q√
2Fr2

0

− 1

)

+ 2

r2
0

Ei

(

− q√
2Fr2

0

)]
. (82)

The asymptotic limits of the Lagrangian (82) for F 	 1
are

LNLED(F) ∼ −0.219
eq0

8κ2r2
0

+
√

F

2
√

2κ2q

+ − ln(F) + q0 + 2γ − 2

8κ2r2
0

−
√

1
F q (2q0 + 1)

8
(√

2κ2r4
0

)

+ q2(15q0 + 1)

96Fκ2r6
0

, (83)

where γ is the Euler constant. The numerical value 0.219
came from an approximation of the integral exponential
function. We have constructed a plot to demonstrate the
asymptotic limit of Lagrangian (82) for F 
 1. To illus-
trate this behavior, we compared the curve of our model with
a Lagrangian proportional to F , i.e. the linear case, repre-
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Fig. 5 Graphic representation of LNLED(F), described by expres-
sion (82), with respect to F . Where we consider q = 0.7 and r0 = 0.5.
The blue curve represents the behavior of our model for F 
 1, while
the dashed red line represents the linear case

Fig. 6 Graphic representation of LNLED(F), described by expres-
sion (82), with respect to F . Where we consider q = 0.7 and r0 = 0.5

sented by the blue curve and the dashed red line, respectively,
as depicted in Fig. 5.

We see that we cannot recover the linear case if we take
the asymptotic limits.

The behavior of Lagrangian (82) for three different sce-
narios of q0 (q0 > 0, q0 = 0, q0 < 0) is described in Fig. 6.

In Fig. 6, we see that we get different curves of LNLED(F)

(Eq. (82)) for different values of q0 if we keep the values of q
and r0 constant. Similarly, we could hold the values of q0 and
q constant and vary only the value of r0 or alternatively hold
r0 and q0 constant and vary q. From the graph we can also
see that the Lagrangian LNLED(F) (Eq. (82)) is a monotoni-
cally increasing function. This could be a characteristic of a
solution in nonlinear magnetically charged electrodynamics.

Fig. 7 The plot depicts the metric function (53), i.e., A(r), for the
specific values of r0 = 0.1 and M = 5.0, the critical value of the
constant q0, given by q0c = −55.475. For q0 > q0c there is only one
horizon, for q0 = q0c, there is light-type singularity and for q0 < q0c,
there is no horizon

4.3 Third model of black hole

In constructing the third model, we assume again the sym-
metry provided by (48), and consider the following regular
non-metricity scalar

Q(r) = q0

(r + r0)2 . (84)

Thus, from Eq. (47), we have

−
2
(

r A′(r) + A(r)
)

r2 = q0

(r + r0)2 , (85)

which yields the following solution

A(r) = −2M

r
− q0

2r

[

r − r2
0

r + r0
− 2r0 ln(r + r0)

]

. (86)

The metric function (86) diverges in the limit of r → 0, but
becomes asymptotically flat at spatial infinity, r → ∞.

Here, too, we analyze the presence of horizons and the
critical parameter q0c using Eqs. (55) and (56), based on
numerical solutions. Using these equations and the values
for the constants r0 = 0.1 and M = 1, we find the critical
parameter value q0c = −55.475. Under these assumptions,
we plot the metric function (86) in Fig. 7 for three scenarios:
q0 > q0c, q0 = q0c, and q0 < q0c. When q0 exceeds the
critical value, q0 > q0c, we observe the presence of an hori-
zon. For q0 = q0c, we observe a light-type singularity, and
if q0 < q0c, no horizon is formed.

In this scenario, the boundary term is given by

BQ(r) =2(q0 + 1)r3 + 3(q0 + 2)r2r0 + 6rr2
0 + 2r3

0

r2(r + r0)3 , (87)
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so that the scalar (84) and boundary term (87) satisfy the con-
dition (13). In this model, we also find that the combination
Q(r) − BQ(r) is singular in the limit of r → 0.

Now, Eqs. (49) and (50) are expressed as

LNLED(r)

= − 1

2κ2

[
q0r3r0(r + r0) f ′(r)

4(q0 + 1)r4 + (7q0 + 16)r3r0 + 24r2r2
0 + 16rr3

0 + 4r4
0

+ f (r)] , (88)
LF (r)

=
r5(r + r0) f ′(r)

[
(q0 + 2)r3 + 6r2r0 + 6rr2

0 + 2r3
0

]

2κ2q2
[
4(q0 + 1)r4 + (7q0 + 16)r3r0 + 24r2r2

0 + 16rr3
0 + 4r4

0

] .

(89)

Using Eqs. (88) and (89) in the relation (59), allows us to
determine

f (r) = f0

r2
0

[
4e2q0Ei

(
−2(r + r0)

r0

)
+ 8Ei

(
−2r

r0

)

+ r0e
− 2r

r0
(
2(q0 + 2)r4 + (3q0 + 10)r3r0 + 6r2r2

0 − 2rr3
0 − 2r4

0

)

r2(r + r0)3

⎤

⎦

+ f1, (90)

where f0 and f1 are integration constants, so that Eqs. (88)
and (89) are given by

LNLED(r) = 1

2κ2r2
0

{
−4e2q0Ei

(
−2(r + r0)

r0

)
− 8Ei

(
−2r

r0

)

+
r0e

− 2r
r0

[
−2(q0 + 2)r3 − (q0 + 6)r2r0 + 2r3

0

]

r2(r + r0)2

⎫
⎪⎬

⎪⎭
,

(91)

LF (r) =
r2e

− 2r
r0

[
(q0 + 2)r3 + 6r2r0 + 6rr2

0 + 2r3
0

]

2κ2q2(r + r0)3 , (92)

respectively.
Finally, using Eq. (30), we derive the expression for r(F),

so that

LNLED(F)

=
e
− 23/4√

q
4√Fr0

(
−2 23/4 4

√
Fq3/2(q0 + 2) − 2

√
Fq(q0 + 6)r0 + 4

√
2Fr3

0

)

κ2qr0

(
2 4
√

Fr0 + 23/4√q
)2

− 2

κ2r2
0

[

e2q0Ei

(

−23/4√q
4
√

Fr0
− 2

)

+2Ei

(

−23/4√q
4
√

Fr0

)]

, (93)

which is depicted in in Fig. 8 for different values of q0. We
note that LNLED(F) is non-linear and has the properties of

Fig. 8 The plot depictsLNLED(F), described by Eq. (93), for the values
q0 = −0.1, q0 = −1.0 and q0 = −1.9

an increasing bijective function. If we fix the values of r0 and
q, we find different models for varying values of q0.

The asymptotic limits of the Lagrangian (8) for F 	 1
are

LNLED(F) ∼ 0.01
e2q0

κ2r2
0

+
√

2
√

F

κ2q
− 4 4

√
2 4
√

F

κ2√qr0

+
4
√

1
F
√

q(3q0 + 8)

3 4
√

2κ2r3
0

+ 2 ln(F) − q0 − 8γ + 12

2κ2r2
0

−
2
( 1

F

)3/4
(

15 4
√

2q3/2q0 − 2 4
√

2q3/2
)

45
(
κ2r5

0

)

+ 375q2q0 − 4q2

180Fκ2r6
0

−
√

1
F (q(3q0 + 4))

6
(√

2κ2r4
0

) , (94)

where γ is the Euler constant. The numerical value 0.01 came
from an approximation of the integral exponential function.
We illustrate again the behavior described by the Lagrangian
of our model, Eq. (93), with a Lagrangian that is propor-
tional to the linear case, represented by the blue curve and
the dashed red line, respectively, as described in Fig. 9.

5 Regular black hole solutions in f (Q,BQ) gravity

In this section, we explore solutions for regular black holes,
taking into account the metric functions of the Bardeen [42]
and Culetu solutions [59,60]. To obtain these solutions, we
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Fig. 10 The left plot depicts the graphical representation of the expression Ln[ fQ(r)], described by Eq. (102), with respect to the coordinate r .
The right plot represents the graphic representation of Ln[ fQ(Q)] with respect to the boundary term Q. We have considered M = 10 and q = 1

Fig. 9 Graphic representation of LNLED(F), described by expres-
sion (93), with respect to F . Where we consider q = 0.7, q0 = −1.0
and r0 = 0.5. The blue curve represents the behavior of our model for
F 
 1, while the dashed red line represents the linear case

use again the symmetry imposed in Eq. (48), and the line
element (45).

5.1 Bardeen-type solutions

For the first solution, consider the metric function described
by Bardeen’s model [42], given by

A(r) = 1 − 2Mr2

(q2 + r2)3/2 , (95)

so that Eqs. (38) and (39) take the following forms:

BQ(r) = 6Mq2r2

(
q2 + r2

)7/2

+ 36Mq4

(
q2 + r2

)7/2 − 2

r2 , (96)

Q(r) = 12Mq2

(
q2 + r2

)5/2
− 2

r2 , (97)

respectively. We verify that in the limit of r → 0 the combi-
nation of Q(r) − BQ(r) from Eqs. (96) and (97) is regular,
so that the spacetime geometry is regular.

The following electromagnetic relations are given by

LNLED(r) = 1

2κ2

[3Mq2r3
(

3r2 − 2q2
)

f ′(r)

(
q2 + r2

)7/2 − 15Mq2r4
− 2 f (r)

]
,

(98)

LF (r) = 15Mr9 f ′(r)

4κ2
[(

q2 + r2
)7/2 − 15Mq2r4

] , (99)

so that from the consistency relation (59), we obtain the fol-
lowing expression:

f (r) = f0

∫ (∫
exp (ζ ) dr

)
dr + f1, (100)

where f0 and f1 are constants, to simplify this expression
and subsequent ones, we define

ζ = − 1

3Mq2r3
(
2q2 − 3r2

) ((
q2 + r2

)7/2 − 15Mq2r4
)

×
[

2q14 + 14q12r2 + 2r14 +

+q8
(

70r6 − 123Mr4
√

q2 + r2

)

+3q4r8
(

345M2 − 101M
√

q2 + r2 + 14r2
)

+2q2r10
(

7r2 − 36M
√

q2 + r2

)

+6q10
(

3Mr2
√

q2 + r2 + 7r4
)
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+2q6r6
(

45M2 − 186M
√

q2 + r2 + 35r2
)]

. (101)

From Eq. (100), we obtain the derivative of fQ(r), given by

fQ(r) = r3
(
q2 + r2

)7/2

4
((

q2 + r2
)7/2 − 15Mq2r4

)

×
∫

exp (ζ ) dr. (102)

We depict the linearity of the function fQ(r), described by
Eq. (102), with respect to the non-metricity scalar in two ways
in Fig. 10. On the left, the graph illustrates the variation of the
natural logarithm of fQ(r) with respect to r , highlighting a
non-linear dependence onQ. On the right, it is evident that the
function fQ(Q) is non-linear with respect toQ. Furthermore,
we observe that the function f (Q,BQ) is also non-linear with
respect to Q (Fig. 11).

With these expressions we find that the Lagrangian density
is now given by

LNLED(r) = 1

4κ2

[
M
(
9q2r5 − 6q4r3

)

(
q2 + r2

)7/2 − 15Mq2r4

×
∫

exp (ζ ) dr − 2 f (r)

]
, (103)

where f (r) in the above equation is given by Eq. (100), and
LF (r) is

LF (r) = 15Mr9

4κ2
[(

q2 + r2
)7/2 − 15Mq2r4

]

×
∫

exp (ζ ) dr. (104)

Equation (104) is depicted in Fig. 12, where we verify that
LF (F) is a non-linear and bijective function with respect to
F .

In Fig. 11 we show a comparison of the behavior of the
Lagrangian obtained in our model (103) with a Lagrangian
from the linear case.

5.2 Culetu-type solutions

In this second approach, we use the model proposed by
Culetu [59,60]:

A(r) = 1 − 2M

r
exp

(
− q2

2Mr

)
, (105)

so that Eqs. (38) and (39) take the following forms:

BQ(r) =
e− q2

2Mr

(
−4Mr3e

q2

2Mr + 4Mq2r + q4
)

2Mr5
, (106)

Q(r) = 2q2e− q2

2Mr − 2r2

r4 , (107)

Fig. 11 Graphic representation of LNLED(F), described by expres-
sion (103), with respect to F . We consider here M = 10, q = 1,
a1 = 2.45 × 107 and a2 = −72.45. The blue curve represents the
behavior of our model for F 
 1, while the dashed red line represents
the linear case, both described by the logarithmic function

Fig. 12 Graphic representation ofLF (F), described by Eq. (104), with
respect to F , where we have considered M = 10 and q = 1

respectively. We verify that, in the limit r → 0, the combi-
nation of Q(r)−BQ(r) from Eqs. (106) and (107) is regular,
rendering a regular spacetime geometry.

We also deduce the following relations

LNLED(r) = − 1

2κ2

(
f (r)

−
2Mq2r2 f ′(r)

(
q2 − 4Mr

)

16M2r4e
q2

2Mr − 32M2q2r2 − 6Mq4r + q6

)
, (108)

LF (r) =
Mr6 f ′(r)

(
q2 − 8Mr

)

κ2
(

16M2r4e
q2

2Mr − 32M2q2r2 − 6Mq4r + q6
) ,

(109)
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which from the consistency condition (59), provides the fol-
lowing

f (r) =
∫

exp

⎧
⎪⎨

⎪⎩
−

e2q4Ei
(

q2

2Mr − 2
)

+ q4
[

4M
r − 5Ei

(
q2

2Mr

)]
+ 8Mre

q2

2Mr
(
Mr + q2

)

8M2q2

⎫
⎪⎬

⎪⎭

×
f0
(
q2 − 4Mr

)2
(

−32M2q2r2 + 16M2r4e
q2

2Mr − 6Mq4r + q6
)

r5
dr + f1,

(110)

where f0 and f1 are constants.
Unfortunately, we were unable to obtain an analytic solu-

tion for the function f (r) directly from the consistency rela-
tion. However, we succeeded in determining the function
fB(r), which is described as

fB (r) = 4M2r2 (q2 − 4Mr
)2

× exp

⎧
⎪⎨

⎪⎩
−

q4
[
e2Ei

(
q2

2Mr − 2
)

− 5Ei
(

q2

2Mr

)]
+ 8Mre

q2

2Mr
(
Mr + q2

)

8M2q2

⎫
⎪⎬

⎪⎭
.

(111)

The qualitative behavior of Eq. (111) with respect to the
radial coordinate r is depicted in the left plot of Fig. 13, where
the function fB(r) is non-linear in relation to r , indicating
non-linearity with respect to the boundary term B. This can
be directly verified in the right plot of Fig. 13, where the
function fB is clearly non-linear. Therefore, we conclude
that the function f (Q,B) must be non-linear in the boundary
term BQ .

Taking into account Eqs. (110) and (111), we find that the
Lagrangian density is now given by

LNLED(r)

= − 1

2κ2

⎡

⎢⎢
⎣− exp

⎧
⎪⎪⎨

⎪⎪⎩
−

q2
[
−5rEi

(
q2

2Mr

)
+ e2rEi

(
q2

2Mr − 2

)
+ 4M

]

8M2r

−
re

q2
2Mr

(
Mr + q2

)

Mq2

⎫
⎪⎪⎬

⎪⎪⎭

×
2Mq2

(
q2 − 4Mr

)3

r3 + f (r)

⎤

⎥
⎦ (112)

and its derivative is

LF (r) = Mr
(
q2 − 8Mr

) (
q2 − 4Mr

)2

κ2

× exp

⎡

⎣−
q2
(
−5rEi

(
q2

2Mr

)
+ e2rEi

(
q2

2Mr − 2
)

+ 4M
)

8M2r

−re
q2

2Mr
(
Mr + q2

)

Mq2

⎤

⎦ . (113)

From Eq. (30), we obain r(F), which allows us to write
LF in terms of F , which is given by

LF (F) = exp

{

− q2

8M2

[

e2Ei

(
4√Fq3/2

23/4 M
− 2

)

−5Ei

(
4√Fq3/2

23/4 M

)]

+
4√2Fq3/2

2M

+
4√2Fq3/2 + M√

2F Mq
e

4√Fq3/2

23/4 M

}

× M

2Fκ2

(
4√2Fq3/2 − 8M

) (
4√2Fq5/2 − 4Mq

)2
.

(114)

We present the behavior of Eq. (114) in Fig. 14, which depicts
LF (F) as a non-linear bijective function with respect to F .

For a more comprehensive understanding, we depict the
asymptotic limits of the Lagrangian (112) in two distinct
graphs. In Fig. 15, we illustrate the behavior of L(F) for
F 
 1. In this context, we compare our Culetu model with
the linear case, depicted by the blue curve and the dashed
red line, respectively. Meanwhile, we explore the behavior
of L(F) for F 	 1, once again comparing it with the linear
case.

6 Summary and conclusion

In this work we investigated solutions for black holes
and regular black holes in the newly proposed theory of
f (Q,BQ) gravity. This theory is a generalization of the
f (Q) theory, which describes gravitational effects through
the non-metricity tensor Qβμν . More specifically, we couple
f (Q,BQ) gravity with NLED and find generalizations of
solutions for black holes and regular black holes. In particu-
lar, we thus further extend the class of regular solutions for
models of the Bardeen and Culetu type black holes found in
the literature. It is interesting to note that in the f (Q) theory,
in a coincident gauge, a constraint was found that renders
the theory linear [52], while in f (Q,BQ) gravity, we gain a
certain freedom which is not necessarily linear.

In the first model, the solution (53) can be asymptotically
Minkowskian if b0 = −2. However, it is also possible to
choose values for b0 that are smaller than −2, but in this
case, the metric function (53) remains asymptotically flat
and the metric signature becomes (−,+,−,−). This solu-
tion also generalizes GR with a term proportional to 1/r4.
When b0 = −2 and b1 = 0, we arrive at the Schwarzschild
solution. However, if b1 �= 0, we get a different geome-
try that is still asymptotically flat. Therefore, it is interest-
ing to study the physical properties of this solution, such as
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Fig. 13 The left plot depicts Ln[ fB(r)], described by expression (111), with respect to the radial coordinate r . The right plot represents Ln[ fB(r)]
with respect to the boundary term BQ . We consider M = 10 and q = 1

Fig. 14 Graphical representation of the derivative of the electromag-
netic Lagrangian LF (F), described by expression (114), as a function
of F . We consider here M = 10 and q = 1

shadows and gravitational lensing, for example. Although the
non-metricity scalar in Eq. (54) is regular, the combination
Q−BQ is singular, rendering a singular spacetime geometry.

In the second model, described by the metric function (73),
the latter diverges in the limit r → 0, while, as r → ∞,
A(r) becomes asymptotically flat. If we choose q0 = −2, the
metric function A(r) becomes asymptotically Minkowskian.
Although the non-metricity scalar is regular Eq. (71), this
does not guarantee that the spacetime solution is regular, as
the combination of Q and BQ for this model ensures that our
solution is singular.

The equations of motion of the f (Q,BQ) theory are quite
complicated, coupled non-linear differential equations. Tak-
ing the vacuum as a possibility, there are two ways to pro-
ceed, one is to consider a functional form for the function
f (Q,BQ), and then integrate the equations to obtain the
metric functions, first fixing a gauge. Another is to leave
f (Q,BQ) generic, fix a gauge, and integrate the equations
to determine the metric functions and the functional form of
f (Q,BQ) together. These two paths seem impractical due to

Fig. 15 Graphic representation of L(F), described by expres-
sion (112). We consider here M = 10 and q = 1. The blue curve
represents the behavior of our model for F 
 1, while the dashed red
line represents the linear case

the complexity of the equations. Our strategy was to couple
an NLED Lagrangian, leave the functions L and LF free,
solve the equations to determine these functions with respect
to f (Q,BQ) and the metric functions, and then set up the
consistency equation such that LF is the derivative of L
with respect to F . Then we define a model for the metric
functions, integrate the consistency equation to determine
f (Q,BQ), and finally the functional form of L(F), if possi-
ble. This procedure has already been successfully applied to
several other modified gravitational theories [46,47,61–64].
The solutions obtained are generally of an NLED that does
not become linear for the weak field limit, i.e. F 
 1, but this
also happens for some solutions in general relativity, such as
the first one suggested by Bardeen [43].

In the third black hole model, we obtain the metric func-
tion described by Eq. (86). In the limit of r → 0, this metric
function diverges; however, if in the limit of r → ∞, we
find that the metric function is asymptotically flat. However,
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if we choose q0 = −2, this metric function becomes asymp-
totically Minkowskian. Again, we find that the combination
of the quantities Q and BQ is singular, rendering a singular
geometry. Analogously to regular black hole solutions that
exhibit a regular spacetime, the derivative of the Lagrangian,
LF , for both models of regular black holes is also distinct
from its counterparts in GR.

Considering that the theory addressed in this work is of
recent development, we see in this proposal a significant
opportunity to explore new approaches. Our intention is to
continue the study of f (Q,BQ), exploring alternatives simi-
lar to those analysed in other theories, such as studies of black
hole thermodynamics in f (R) gravity [65–67], f (T ) gravity
[68–72] and f (T, B̃) gravitational theories [73], perturbation
theory in f (R) [74–76], f (R, T ) [77,78], f (T ) [79,80] and
f (Q) gravities [51,81], as well as the study of black hole
shadows and the analysis of gravitational lensing in f (R)

[82–85], f (R, T ) [86] and f (T ) gravity [87]. Furthermore,
we intend to explore new solutions of black holes and reg-
ular black holes in the context of nonlinear electrodynamics
and with scalar field, through other classes of connections,
i.e., beyond the coincident gauge, as presented and applied in
[39,53,88] These are some of the areas we intend to address
in the future to deepen our understanding and contribute to
the development of this new modified theory of gravity.
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