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Abstract We describe a one-dimensional kink crystal,
which represents a collection of equal and equally localized
kinks forming a lattice in the real axis. The results are ana-
lytical, original and may motivate other studies on localized
structures in high energy physics.

The study of localized structures in the real line has a very
long history. In high energy physics, it started more than
50 years ago, with the unveiling of kinks; see, e.g., Refs.
[1–6] and references therein. The kink solution is in gen-
eral a simple analytical configuration that has the form of
the hyperbolic tangent. It finds distinct applications in high
energy physics [5,6], and also appears in condensed matter,
where it is used to model domain wall. In magnetic systems,
for instance, kinks or domain walls may describe boundaries
between regions having distinct magnetic domains [7,8].

After the finding of kinks in high energy physics,
researchers have investigated the possibility of construct-
ing lattices or chains of such localized structures. In Ref.
[9], for instance, the authors considered thermal creation of
kink–antikink pairs in the two-dimensional φ4 theory in the
presence of spontaneous symmetry breaking. This was soon
followed by another work, [10], in which an array of kink
and antikink was studied on the circle. The search for kink
or domain wall lattices was also analyzed more recently in
[11,12], in particular, in [11] the authors constructed lattices
with alternating kinks and antikinks, which could be stable in
certain models. The problem concerning chains alternating
kinks and antikinks was further considered very recently in
Ref. [13], adding other results. Due to the complicated task,
some investigations dealing with lattice or chain of kinks are
implemented numerically, while analytical results are mainly
obtained when kink and antikink alternate to provide solu-
tions, which may not be stable since kinks and antikinks in
general conspire against each other.

There are other well distinct routes to construct lattices
of kinks or domain walls. One important possibility con-
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cerns investigations of inhomogeneous chiral phase in the
quark matter [14]. Interesting studies related to this appeared
before in Refs. [15–17], where twisted kink crystal is inves-
tigated in the 1 + 1 dimensional Nambu–Jona-Lasinio or
chiral Gross–Neveu model. Another possibility of current
interest concerns the presence of kink crystalline condensate,
multikink and twisted kink crystal in holographic supercon-
ductor; see [18,19] and references therein. In these systems,
the presence of periodic inhomogeneous configurations of
the kink type is of interest in high energy and in condensed
matter physics, with the investigations connecting systems
described by the Nambu–Jona-Lasinio, the Gross–Neveu,
the Ginzburg–Landau and the nonlinear Schrödinger equa-
tions. In the present work, however, the kink crystal which
we shall introduce follows another approach, leading to ana-
lytical and original solution, different from the kink crystals
found before in the related literature.

To investigate the subject, we introduce a model described
by two real scalar fields in 1 + 1 spacetime dimensions. It is
inspired by Refs. [20,21]: in [20] one includes a modification
in the kinematics of one of the two fields, which induces novel
profile to the kink; and in [21] it is shown how the behavior of
fermions in the new kinklike background works, contributing
to the presence of new states inside the fermionic gap, besides
the fermion zero mode uncovered long ago in [22]. We start
writing the Lagrangian density that defines the system

L = 1

2
f (χ)∂μφ∂μφ + 1

2
∂μχ∂μχ − V (φ, χ), (1)

where f (χ) is a non-negative function of the field χ which
modifies the kinematics of the field φ. We consider stan-
dard Minkowski metric, natural units, and dimensionless
fields and spacetime coordinates. The equations of motion
for φ(x, t) and χ(x, t) are

∂μ

[
f (χ)∂μφ

] + Vφ = 0, (2)
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and

∂μ∂μχ + Vχ − 1

2

d f (χ)

dχ
∂μφ∂μφ = 0. (3)

In the search for static configurations, they can be written in
the form

d

dx

(
f (χ)

dφ

dx

)
= Vφ,

d2χ

dx2 − 1

2

d f (χ)

dχ

(
dφ

dx

)2

= Vχ ,

(4)

where Vφ = ∂V /∂φ and Vχ = ∂V/∂χ .
In the above model, the energy densityρ(x) corresponding

to static fields φ(x) and χ(x) is given by

ρ(x) = 1

2
f (χ)

(
dφ

dx

)2

+ 1

2

(
dχ

dx

)2

+ V (φ, χ). (5)

It is possible to introduce a new function W (φ, χ) in order
to rewrite the above expression as

ρ(x) = 1

2
f (χ)

(
dφ

dx
− Wφ

f (χ)

)2

+ 1

2

(
dχ

dx
− Wχ

)2

+ V (φ, χ) − 1

2

W 2
φ

f (χ)
− 1

2
W 2

χ + dW

dx
, (6)

where Wφ = ∂W/∂φ and Wχ = ∂W/∂χ . We then see that
solutions of the first-order equations

dφ

dx
= Wφ

f (χ)
,

dχ

dx
= Wχ , (7)

minimize the energy density when the potential takes the
form

V (φ, χ) = 1

2

W 2
φ

f (χ)
+ 1

2
W 2

χ . (8)

One notices that, since f (χ) is a non-negative function, the
potential is bounded from below, which is important to con-
trol the physics of the system. Moreover, the minimum energy
is obtained in the form

EB =�W =|W (φ(∞), χ(∞))− W (φ(−∞), χ(−∞))|.
(9)

Interestingly, the energy of the static solutions only depend
on their asymptotic values. The above framework is inspired
by an old work [23], and is known as the Bogomol’nyi proce-
dure. Solutions that obey the first order equations also solve
the equations of motion when Wχφ = Wφχ . They are also
stable, since they are minimum energy solutions.

Let us now choose

W (φ, χ) = b2φ − 1

3
φ3 + αa2χ − 1

3
αχ3, (10)

where a, b and α are positive real constants. Differently from
[20], we now take f (χ) = χ2, which leads to the new poten-
tial

V (φ, χ) = 1

2

(b2 − φ2)2

χ2 + 1

2
α2(a2 − χ2)2. (11)

The presence of χ2 in the denominator of the first term of the
potential induces a divergence at χ = 0, but this is precisely
what makes the model interesting. To see this, one uses (7)
to write the first-order equations

dφ

dx
= b2 − φ2

χ2 ,
dχ

dx
= α(a2 − χ2). (12)

The equation for the field χ above can be solved indepen-
dently. The solution can be written as

χ(x) = a tanh (αa(x − x0)) , (13)

where x0 is a constant of integration which is related to the
center of the solution, and a is the corresponding amplitude.
For simplicity, we take a = 1 and x0 = 0, indicating that
the center of the χ(x) configuration is at the origin x = 0.
Substituting this result in the first-order equation for φ, we
get the solution

φ(x) = b tanh

(
b

α
(αx − coth(αx)) + x̄0

)
, (14)

where x̄0 is another integration constant. However, compared
to the integration constant of the χ field, this new constant has
a different meaning: it induces a modification in the form of
the solution, as it is illustrated in Fig. 1 for b = 1. Although
this may be of interest, we shall not explore the effects of
the integration constant x̄0 in this work. Our main motiva-
tion here is to construct a kink crystal, and we shall do it
considering the simplest possibility. Other effects related to
the amplitude and integration constants can be easily incor-
porated in future investigations.

In the model investigated above, we draw attention to two
distinct features. The first one is that the discontinuity that
appears at the center of the φ(x) solution is a consequence
of the term 1/χ2 in the potential; however, it causes no prob-
lem since the energy density (see below) is well-defined and
integrates to a finite value. The second feature is that the
solution now engenders the form of a kink-kink configura-
tion, with the center of both kinks and their relative location
being controlled by the parameter α, as we further describe
below.
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Fig. 1 The solutions φ(x) shown in Eq. (14) for x̄0 =
−1 (orange), 0 (green) and 1 (purple)

Fig. 2 The energy density ρ1(x), depicted for α = 1/3 (blue) and
α = 1/2 (red)

It is possible to use Eq. (5) to write the energy density for
the above solutions in the form ρ = ρ1 + ρ2, where

ρ1(x) = sech4
(
x − 1

α
coth(αx)

)
coth2(αx), (15)

and ρ2(x) = α2sech4(αx). Since the ρ2 term only depends
of the χ field, which is described by the well-known χ4

model, we only depict the ρ1 contribution in Fig. 2 for x̄0 = 0.
There we are using α = 1/3 and α = 1/2, and we see two
distinct lump-like energy densities, associated to the kink-
kink configuration illustrated in Fig. 1.

One notices that the maxima of the energy density occur
exactly at the center of each kink in the kink-kink solution.

Since the function f (χ) = χ2 was able to split the φ(x)
kink into two distinct kinks in the kink-kink configuration, we
then think of finding another function, capable of generating
a lattice of kinks. This would be the kink crystal which we
are searching for, inspired by the comments introduced in
the beginning of this work. After some calculations, we have
found the interesting function

f (χ) = 1 + cos(arctanh(χ)). (16)

Fig. 3 Solution of the kink crystal, using α = 1/2

In this case, using (10) the potential can be written as

V (φ, χ) = 1

2

(1 − φ2)2

1 + cos (arctanh(χ))
+ 1

2
α2(1 − χ2)2.

(17)

There are divergences whenever arctanh(χ) = (2n + 1)π ,
with n ∈ Z, but this cause no problem, as we further explain
below. Indeed, the model still attains first-order equations in
the form

dφ

dx
= 1 − φ2

1 + cos (arctanh(χ))
,

dχ

dx
= α (1 − χ2).

(18)

The first-order equation for the field χ was already solved
above, so we use this result on the first-order equation for φ

to get

φ(x) = tanh

(
1

α
tan

(αx

2

))
, (19)

where we have also discarded an integration constant, since
it affects the solution in a way similar to the case displayed in
Fig. 1. The above solution is depicted in Fig. 3 for α = 1/2.
It represents the kink crystal.

It is important to notice that φ(x) exhibit a lattice behavior,
where multiple equal and equally spaced kinks are formed,
in the form of a…kink-kink-kink-kink…configuration, and
not in the form of …kink–antikink–kink–antikink…, which
appeared before in several investigations. The kink crystal is
a direct consequence of the periodicity of the function f (χ),
and one further observes that the zeros of f (χ), when calcu-
lated for the solution χ(x) = tanh(αx) are compensated by
the zeros of 1 − φ2, which appear in the potential and in the
first order equations, for the solution φ(x) shown in Eq. (19).
Indeed, 1−φ2 goes to zero faster than f (χ) at the solutions.
Thus, the model behaves adequately, in the presence of the
above field configurations.
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Fig. 4 Energy density of the kink crystal, using α = 1/3 (top panel,
blue) and α = 1/2 (bottom panel, red)

We can verify from the φ(x) configuration, that the center
of the kinks are spaced by d = 2π/α. Moreover, using Eq.
(5), the energy density can also be rewritten as ρ = ρ1 + ρ2,
with ρ1 now given by

ρ1(x) = sech4
(

1

α
tan

(αx

2

)) (
1

1 + cos (αx)

)
, (20)

which we depict in Fig. 4 for α = 1/3 and α = 1/2. We
notice that α does not modify the height of the maxima, but
it controls the distance between the kinks, that is, it controls
the lattice spacing, being related to the lattice constant d =
2π/α that specify the kink crystal. This can also be visually
identified in Fig. 4. We can also calculate the energy per kink
in the kink crystal; it gives the value E = 4/3.

Although the kink crystal is stable configuration, since it
fulfills the Bogomol’nyi bound, it is also of interest to study
linear stability and the behaviour of the zero mode. This can
be done considering small perturbations around the static
solutions, in the form of φ(x, t) = φ(x) + η(x) cos(ωt)
and χ(x, t) = χ(x) + ζ(x) cos(ωt), with η and ζ as small
fluctuations. Substituting these expressions on the equations
of motion (2) and (3) we get, up to first order in η and ζ ,

− ηxx − 1

f
fχχxηx + 1

f
Vφφη − 1

f
fχφxζx +

+ 1

f

(
Vφχ − φxχx fχχ − φxx fχ

)
ζ = ω2η, (21)

Fig. 5 Behavior of the zero mode, for α = 1/3 (top panel, blue) and
α = 1/2 (bottom panel, red)

and

−ζxx +
(
Vχχ + 1

2
fχχφ2

x

)
ζ + fχφxηx + Vχφη = ω2ζ.

(22)

Despite the difficulty, but since the static solutions obey the
first-order equations (18), we have been able to prove that
η0(x) ∝ dφ(x)/dx and ζ0(x) ∝ dχ(x)/dx solve the above
equations for ω = 0. Therefore, using (19), we have that
η0(x) is proportional to

sech2
(

1

α
tan

(αx

2

))
sec2

(αx

2

)
, (23)

which has no node per period, as we display in Fig. 5.
When we search the literature for chains of kinks, an

important and distinct quality of the above model is that it
supports a lattice of kinks, which is stable, analytical and orig-
inal. The result is of current interest, and engenders several
distinct directions of investigation, in particular, the inclu-
sion of fermions, as considered in [21], to see how they
behave in the background of the kink crystal. We can also
consider extensions of the present investigation to two spatial
dimensions, to investigate crystals in the plane, in particular,
the case of vortices. Studies in the suggested directions are
presently under consideration, and we hope to return to them
in the near future.
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