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Abstract We present the very first constraints on the num-
ber of Standard Model (SM) copies with an additional Dirac
right-handed neutrino. From cosmology, we are able to pose
strong limits on large regions of the parameter space. More-
over, we show that it is possible to account for the right dark
matter density in form of stable particles from the dark sec-
tors.

1 Introduction

The mass of the Higgs boson is affected by quantum cor-
rections, which lead to a quadratic divergence that, in the
absence of new physics, would tend to push its mass up to
the cut-off of the Standard Model (SM), at around the Planck
mass MP = 1.22 · 1019 GeV. Accounting for the discrep-
ancy between the expected scale and the actual observed
Higgs mass MHiggs ≈ 125 GeV [1] represents one of the
major challenges in particle physics and it is known as the
hierarchy problem [2,3]. The more conventional approach
relies on mechanisms that strive to explain the, otherwise
unnatural, cancellation of terms necessary to make sense of
the observed Higgs mass. However, there have been other
attempts to address the hierarchy problem from a totally dif-
ferent perspective. This is the case for theories that assume
a smaller fundamental scale of gravity, narrowing hereby
the gap between the Higgs mass and the cut-off, or in other
words, between the weak and gravity scale. The Planck scale
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is degraded to an effective gravity scale that results, for exam-
ple, from the large size of extra dimensions [4,5] or the large
amount of extra particle species [6,7]. In this work, we will
focus on the latter approach of assuming “many species”.
More specifically, we will follow [8] and assume many copies
of the SM.

In addition to taking care of the hierarchy problem, intro-
ducing many copies of the SM immediately generates very
interesting dark matter (DM) candidates. See later, or [9],
for realizations of DM within this framework. Yet another
unresolved question that can be addressed is the smallness
of the active neutrino masses. If those masses arise through
the Higgs mechanism as it is thought to be the case for the
charged leptons and quarks, then it is puzzling why neutrinos
should have a mass many orders of magnitudes smaller than
the rest of the fermions, in particular within the same gener-
ation. The most established course of action in this regard is
the well-known Seesaw mechanism [10–14], which imposes
a Majorana nature on the neutrinos and implies the violation
of lepton number conservation. It also requires the existence
of very heavy right-handed neutrinos (RHNs), whose Majo-
rana mass is usually linked with more new physics [15]. With
the framework investigated, however, we can tackle the neu-
trino mass problem by considering Dirac RHNs and invok-
ing, once again, a large amount of SM copies [8,16]. We see,
therefore, that the motivation of our framework goes beyond
the hierarchy problem, making it worthwhile to explore fur-
ther, even independently of the hierarchy problem.

In this work, we will focus on the neutrino sector of the
theory and its cosmological impact, which may allow us, for
the first time, to constrain the number of SM copies. The
paper is organized as follows. In Sect. 2, we will engage in
more detail with the model in question. In Sect. 3 we address
the cosmological production of RHNs, while in Sect. 4 we
discuss their cosmological impact and we show our results.
We then conclude in Sect. 5.
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2 Model

As mentioned before, we will follow here [8] and assume N
copies of the SM, enlarged by a Dirac RHN.

It has been shown [6] that by introducing NPS � 1 particle
species, the fundamental scale of gravity M f must fulfill the
following relation

M f ≤ MP√
NPS

. (2.1)

Note that since every SM copy consists of NSM = O(100)

particle species, we have NPS = NNSM. Equation (2.1)
makes evident that for a large number of SM copies N � 1,
the fundamental scale of gravity M f is suppressed with
respect to the Planck mass MP , narrowing the gap between
the electroweak (EW) and gravity scale. Only for N ∼ 1030

we completely solve the hierarchy problem, M f � 1 TeV =
O(MHiggs). Yet, any number N of SM copies contributes to
the “softening” of the hierarchy problem, whose complete
solution could consist of a combination of different mecha-
nisms.

So our model consists of N copies of the SM extended by a
Dirac RHN. For the sake of simplicity, we will only consider
one flavor following also [8], where it was shown that the
masses generated after EW symmetry breaking will be very
small as a consequence of unitarity and a large number of
copies. The corresponding Lagrangian then reads

LYukawa = (
LεΦ∗)

i λi jνR, j + h.c., (2.2)

where Φi and Li stand for the Higgs and lepton SU(2)-
doublets of the i th SM copy while ε ≡ iσ2 is the totally anti-
symmetric SU(2) tensor (σk refers to the kth Pauli-matrix).
Here, λ is a N × N Yukawa matrix in the space of copies
and νR, j is the RHN of the j th SM copy. The vertex of Eq.
(2.2) is only possible because RHNs are SM-singlets and can
communicate beyond their own copy. However, it is not the
only renormalizable and gauge-invariant interaction mixing
sectors, since the Higgs portal and the photon kinetic mixing
are also allowed. Nonetheless, these are more strongly sup-
pressed than the neutrino Yukawa couplings [8]. Even if they
dominate the communication among copies, their influence
will only strengthen the constraints discussed in this work.
Our choice of not considering them is therefore very conser-
vative and at the same time maintains the predictivity of the
theory by not introducing new free parameters.

Now back to our Yukawa interaction (2.2). Assuming all
SM copies interact the same way with the rest of copies (this is
a consequence of the exact permutation symmetry introduced
in [8]), we arrive at the only possible configuration of the
Yukawa matrix, namely

λ =

⎛

⎜⎜⎜
⎝

a b . . . b
b a . . . b
...

...
. . .

...

b b . . . a

⎞

⎟⎟⎟
⎠

. (2.3)

As already mentioned, the Lagrangian of Eq. (2.2) gener-
ates a Dirac mass matrix M = λ 〈Hi 〉, which we can easily
diagonalize in order to determine the mass eigenvalues and
eigenstates. We obtain (N − 1)-degenerate states with mass

mν = (a − b)v, (2.4)

and one single heavier state with mass eigenvalue

mH = (a − b + Nb) v, (2.5)

where 〈Hi 〉 ≡ v = 174 GeV is the Higgs vacuum expectation
value in all copies. The latter mass eigenstate might be very
heavy, given that its mass scales with the number of copies
N � 1.

Both a and b in Eq. (2.3) were introduced as Yukawa
couplings. Since they are of the same nature, we do not expect
them to be at totally different orders of magnitude, as was
argued in [8]. That is, the ratio a/b should not be too large
a/b �� 1, which corresponds to the RHNs not being localized
in one copy, as we would expect from singlets. In [8] was also
mentioned that due to unitarity,

b ≤ 1√
N

, (2.6)

making the neutrino mass (2.4) small, for large N . For the
sake of concreteness, we will assume mν = 0.1 eV through-
out the paper. Note that the philosophy in solving the neutrino
mass problem within our model is very different from the
Seesaw mechanism. The former gives an infrared solution
by introducing many light states, while the latter introduces
one or few heavy states and it is therefore an ultraviolet solu-
tion.

Moreover, a key aspect of our model relies on the fact that
we introduce, besides the RHN with its Yukawa couplings,
only one degree of freedom (the number of SM copies N )
to approach the hierarchy problem and at the same time the
neutrino mass problem (by suppressing b ≤ 1√

N
) and even

potentially DM.
Now, we can express the flavor eigenstates νi , 1 ≤ i ≤ N ,

as linear combinations of mass eigenstates. Without loss of
generality, we label our copy i = 1 and choose a mass basis,
in which:
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ν1 =
√

N − 1

N
νm1 + 1√

N
νmH ,

ν j =
N−1∑

k=2

a j
k ν

m
k − 1√

N (N − 1)
νm1 + 1√

N
νmH .

(2.7)

Here ν j (2 ≤ j ≤ N ) correspond to the flavor eigenstates of
other copies and are therefore sterile neutrinos (SNs) from
our perspective. νm1 , νmk (2 ≤ k ≤ N − 1) correspond to the

degenerated states with mass mν , while νmH = 1√
N

∑N
i=1 νi

is the heavier state with mass mH . We call νmk νmH sterile-like
mass eigenstates or simply SNs, when understood from the
context that these are not flavor states. The coefficients a j

k in
(2.7) must satisfy some conditions due to orthonormality

N−1∑

k=2

a j
k a

j ′
k = δ j j ′ − 1

N − 1

N∑

j=2

a j
k a

j
k′ = δkk′

N∑

j=2

a j
k = 0 (2 ≤ k ≤ N − 1).

(2.8)

From Eq. (2.7) we see that the heavier state νmH interacts to
the same extent with all copies via its mixing angle

sinθ = 1√
N

, (2.9)

which is determined by the number of copies N . This is one
of the reasons behind the model’s high predictability. Note
that this mixing vanishes for increasing N → ∞, recovering
the no-new physics scenario in the SM neutrino sector.

We can now easily compute the oscillation probabilities,
provided coherence is not lost and νmH is energetically acces-
sible,

Psurv ≡ P(ν1 → ν1) = 1 − 4
N − 1

N 2 sin2
(

Δm2L

4E

)

Pj ≡ P(ν1 → ν j ) = 4

N 2 sin2
(

Δm2L

4E

)
,

(2.10)

where Δm2 ≡ m2
H − m2

ν .

3 Production in the early universe

There are mainly two approaches when it comes to the pro-
duction of both light (νmj , j ≥ 2) and heavy (νmH ) SNs in the
early universe. Either they achieve equilibrium at some point

in the history of the universe, when they permanently inter-
act with the primordial plasma until they eventually decou-
ple from the thermal bath (Freeze-Out). Or, they are always
out of equilibrium and are only produced through inelas-
tic processes without ever interacting with the primordial
plasma (Freeze-In). We point out that only our SM copy can
be present in the early universe (at least to the same extent),
otherwise we would violate several cosmological constraints,
some of which will be addressed further below. Therefore,
we will always presume a primordial thermal bath composed
exclusively of particles of our copy. In [9], for instance, infla-
tionary and reheating mechanisms were proposed to achieve
this very naturally. The most efficient production mecha-
nisms arise from their only direct interactions via the Yukawa
coupling (2.2) and the mixing angle (2.9).

3.1 Freeze-out

If in equilibrium, SNs are simply Fermi-Dirac distributed. As
the universe cools down, the annihilation rate will decrease
until it falls below the expansion rate of the universe, such
that the effective annihilation rate vanishes and the comoving
number density remains constant, unless SNs are unstable.
If SNs are relativistic, or at least they were at the time of
decoupling from the thermal bath, their distribution function
reads

fF (E) = 1

e
E
T + 1

, (3.1)

with E the energy and T the temperature of the SNs, which
in general may differ from the temperature of the thermal
bath. The number density, defined generally as

n(T ) ≡ g
∫

d3 �p
(2π)3 f (E, T ), (3.2)

where g stands for the internal degrees of freedom, has the
following form in equilibrium:

nF (T ) = 3ζ [3]
2π2

(gF
2

)
T 3. (3.3)

If SNs are non-relativistic at decoupling, their relic density
will be exponentially suppressed and can be neglected.

3.2 Freeze-in

SNs that never achieve equilibrium are usually assumed to be
absent in the very early universe. However, they can be pop-
ulated through inelastic processes like Higgs decays, inverse
decays, and oscillations of active neutrinos that are constantly
produced and destroyed in the primordial plasma. This usu-
ally happens at high temperatures, such that at some point the
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production effectively ceases and again, the comoving parti-
cle density becomes constant. In the following, we will study
the dominant production mechanisms when out of equilib-
rium of both light and heavy SNs, that as we mentioned,
emerge from the Yukawa coupling and the mixing angle. We
will describe separately the production for mH < MHiggs

and mH > MHiggs:

Regime: mH < MHiggs

3.2.1 Active neutrino oscillations

SNs can be non-resonantly produced through oscillations
induced via incoherent interactions of the active neutrinos
with the thermal plasma [17]. In order to determine the dis-
tribution function f j of ν j , we resort to the Zeno-ansatz
approach [18,19], neglecting the inverse process proportional
to f j � f1,

(
∂

∂t
− Hp

∂

∂p

)
f j (p, t) = Γ j

conv f1(p, t) (3.4)

where H is the Hubble expansion rate of the universe,

Γ
j

conv = Γa
2

〈
PT
j

〉
the effective conversion rate of ν1 into ν j ,

Γa is the interaction rate of active neutrinos with the plasma

[20], while
〈
PT
j

〉
is the averaged transition probability Pj at

finite temperature. We can then solve Eq. (3.4) also for the
number density n j analytically, assuming no lepton asym-
metries, namely (see Appendix A)

n j (T ) ≈ 1.27 · 102

√
10.8

g∗(Tmax)

(√
Δm2

eV

) (
T 3

N 2

)
, (3.5)

where g∗ is the number of relativistic degrees of free-

dom and the temperature Tmax ≈ 13.3 MeV
(mH

eV

) 1
3 cor-

responds to the maximal production rate. These sterile fla-
vor states propagate and quickly decohere into heavy and
light mass eigenstates due to their different group veloc-
ities [21,22]. The wave packages of the light neutrinos
νmi (1 ≤ i ≤ N − 1) do not come apart because of their
degeneracy, but they constitute as a whole a mass eigen-

state ν̃mj ≡
√

N
N−1

[∑N−1
k=2 a j

k ν
m
k − 1√

N (N−1)
νm1

]
of mass

mν . Hence, ν j = 1√
N

νmH +
√

N−1
N ν̃mj , for all j = 2, . . . , N .

The number densities of both light and heavy mass states are
then a weighted sum over the flavor states [23,24],

n� ≡
N∑

j=2

∣∣
∣∣∣

√
N − 1

N

∣∣
∣∣∣

2

n j = (N − 1)2

N
n j ,

nH =
N∑

j=2

∣∣∣
∣

1√
N

∣∣∣
∣

2

n j = N − 1

N
n j ,

(3.6)

where n j (T ) is given in Eq. (3.5). Of course, we have
n� + nH = ∑

j n j , and we approximate n� ≈ Nn j and
nH ≈ n j . After production, heavy SNs eventually start
decaying, such that the number density nH becomes expo-
nentially suppressed.

For very heavy SNs with mH � O(MHiggs), we have
Tmax � mH . This means that νmH is non-relativistic or even
energetically inaccessible at the time of production and our
equations break down.

3.2.2 Higgs decays

Via (2.2), our Higgs H1 might decay into SNs. We write the
Lagrangian in mass eigenstates and keep only the relevant
terms,

LBSM
Yukawa ⊃ √

N − 1bνm1 H1ν
m
H,R + h.c. (3.7)

Our Higgs does not couple to νmk (2 ≤ k ≤ N − 1) due
to the conditions (2.8). Hence, in the early universe, the
Higgs H1 of our copy eventually decays into νm1 and νmH
with the respective probability. The active-like neutrino νm1
quickly equilibrates, while νmH is populated out of equilib-
rium. The production occurs at temperatures comparable to
the mass of the decaying particle, Tprod ∼ MHiggs, before
H1 disappears permanently from the thermal bath. We note
at this point that other decay channels into SNs from our
SM are mediated by the mixing angle θ from Eq. (2.9) and
are extremely suppressed at high temperatures (see again
Appendix A). This also means ν1 ≈ νm1 . Then, the heavy
SN yield Y∞

H ≡ nH
s (nH is the number density of the

heavy SNs and s is the entropy density), after production
via Higgs decays has ceased, can be approximated by [25]
(see Appendix B).

Y∞
H ≈ 135

8π3(1.66)
√
g∗gS∗

(
MPΓH1→νH ν1

M2
Higgs

)

, (3.8)

where ΓH1→νH ν1 = (N−1)b2

16π
MHiggs

(
1 − m2

H
M2

Higgs

)2

is the

decay rate for the process H1 → νm1 νmH and g∗, gS∗ should
be evaluated at T = Tprod. Further on, our heavy neutrino
may decay itself, mainly into dark sectors. This state couples
democratically to all copies, so only a negligible fraction 1

N
of the final states will belong to our SM. The relevant decay
channels depend on the heavy neutrino mass, but we do not
need to keep track of all decay products. We can simply esti-
mate that a fraction 1

O(1)
of the heavy SN’s energy density

ρH (T ) = 〈p〉nH (T ) ≈ 2.45TnH (T ) will end up as dark
radiation at the time it might have a cosmological impact
(T � 1 MeV). But also energetically accessible, stable, and
massive particles like dark electrons, positrons and eventu-
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ally (anti-)baryons may contribute to the DM density. Note
that these would not annihilate as every copy is very diluted
and out of equilibrium. Hence, if the yield of heavy SN after
production is given by Y∞

H = n∞
H /s, we would end up with

a matter density

ΩDMh2 = Y∞
H s0h2

ρc
μ. (3.9)

We have defined the “effective mass” of the decay products
of νmH as μ ≡ ∑

a〈Na〉ma , where the sum goes over all final
stable states with mass ma at the end of the decay chain. The
critical density and the entropy density, today, are denoted as
ρc, s0, respectively.

Regime: mH > MHiggs

3.2.3 Inverse decay

For very large SN masses mH > MHiggs, the process H1 →
νm1 νmH is not energetically allowed anymore. However, the
inverse reaction, the annihilation of an active neutrino and
a Higgs into νmH , is viable. This will partially happen in the
unbroken phase of our copy, but since the other sectors are
so diluted, they remain unaffected through the EW phase
transition in our sector. This gives modifications of order
O ( 1

N

)
, which we neglect.

As detailed in Appendix B, the yield of νmH , after produc-
tion has stopped, is

Y∞
H ≈ 135gHMP

(1.66)8π3m2
H

ΓH→H1ν1

gS∗
√
g∗

(
2C(x0)

3π

)
, (3.10)

where ΓH→H1ν1 = (N−1)b2

32π
mH

(
1 − M2

Higgs

mH2

)2

and C(x0) =
∫ ∞
x0

dxx3K1(x) is a function of the cut-off x0 = mH
T0

of the

theory. In our scenario, this is T0 = M f = MP√
NPS

≈ MP

10
√
N

.

For x0 � 1, we can approximate C(x0) ≈ 3π
2 and we have

an infrared process, independent of the cut-off. This is no
longer true for mH > M f , since there was never enough
energy to produce heavy SNs and C(x0) quickly vanishes for
x0 > 1. In reality, heavy SN decays do not set in when pro-
duction is finished. With such large widths due to the many
possible channels, the decay happens while being produced.
This is also true for νmH decays in the last section. How-
ever, this does not change the picture since in the end we are
interested in the energy and number densities deposited in
the dark sectors. The difference with the last section is that
here the decaying particle is not in equilibrium, but frozen-in.
Assuming that νmH only decays into

∑
j,k Hjν

m
k , with total

width ΓH = ∑
j,k ΓνH→Hj νk , we can estimate the yield of

light SNs Y∞
l = ∑

k Y
∞
k as,

Y∞
l ≈

∑

k

Y∞
H

N
≈ Y∞

H , (3.11)

Moreover, νmH decays while relativistic and we have ρ∞
l ≈

1
2ρ∞

H . Furthermore, there will be also here contributions to
the DM coming from the massive final states in the cascades
initialized by the heavy SN. We can make the same approach
as in Eq. (3.9). Although, note that the “effective mass” μ

of the final products is a function of the decaying particle’s
mass and therefore not the same in both cases.

4 Constraints

The conceivable presence in the early universe of SNs, both
light and heavy, might have a great impact on the evolution
of the universe. This allows us to constrain the theory by
determining the viable parameters that are in agreement with
cosmological observables. We find that BBN and the flatness
of the universe pose the strongest constraints and we will
focus only on them. We then discuss our results, which are
outlined in Fig. 1.

4.1 BBN

BBN is sensitive to the total energy density ρtotal of the
universe, to which also SNs contribute. In the radiation-
dominated epoch, ρtotal ≈ ρR , where ρR is the radia-
tion energy density. The latter is usually parametrized by
the so-called effective number of neutrino species Neff ≡
NSM

eff + ΔNeff, and is defined by

ρR = ργ

(

1 + 7

8

(
4

11

)4/3

Neff

)

, (4.1)

where ργ = π2

15 T
4
γ is the energy density of photons at tem-

perature Tγ . With no new physics we naively expect Neff = 3
and ΔNeff = 0. However, there are some corrections due to
the partial heating of neutrinos during e± annihilations, such
that NSM

eff ≈ 3.043–3.045 [26–28].
So, in order not to change much the energy density of

the universe, and hence the primordial nuclei abundances,
we must impose ΔNeff � 0.2 [29], at the time of BBN,
TBBN ≈ 1 MeV.

4.1.1 Discussion

Through the mechanisms discussed in Sect. 3, both light and
heavy SNs can be abundantly produced in the early universe.
It turns out that heavy SNs will decay immediately after their
production, prior to BBN, and therefore do not influence the
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Fig. 1 Cosmological constraints on the parameter space of our model
spanned by the number N of SM copies vs the mass mH of the heavy
SN, where we have fixed the neutrino mass to be mν = 0.1 eV. All
constraints come from BBN, except for the green and olive areas which
indicate overproduction and violation of unitarity, respectively. We have
included regions corresponding to thermal equilibrium, non-resonant
production via oscillations, production via decays H1 → νmH νm1 and

inverse decays H1ν
m
1 → νmH , as shown in the legends. Above the

continuous black line, the heavy SN is heavier than the fundamental
scale of gravity mH > M f and its distance to the vertical Higgs line
“mH = MHiggs”, can be seen as to what extent the hierarchy problem
is solved. The light gray lines reveal the ratio between the Yukawa cou-
plings, a/b = 103, 1010, 1020. The point “DR” refers to the parameters
used in [9]

cosmic expansion rate directly. However, they decay essen-
tially into dark sectors, transferring their energy density. A
considerable fraction 1/O(1) will be in form of dark radia-
tion at the time of BBN, contributing to ΔNeff.

Light SNs, on the other hand, are still ultra-relativistic
at BBN and will act as dark radiation. Parameters that
allow light SNs to achieve equilibrium with our SM are
excluded, since ΔNeff = 1 (ΔNeff ≈ N , after summing
over all copies!). In the left-hand side of Fig. 1, where
mH < MHiggs, active neutrinos effectively oscillate into neu-
trinos in other copies, even if the latter are not in equilib-
rium, posing the strongest limit on the number of species. In
this region, the temperature of maximal production Tmax ≈
13.3 MeV

(mH
eV

) 1
3 increases for larger masses mH , such that

active neutrino interact at a higher rate. Therefore, more SNs
are produced, requiring larger N not to spoil BBN. We have
marked in Fig. 1 the mass mH for which Tmax coincides with
the QCD-temperature TQCD, when the number of relativis-

tic degrees of freedom g∗ changes abruptly. This generates
a jump down in the SN relic density. In the right-hand side
of Fig. 1 we also obtain very strong limits on N from BBN.
Mediated always through the heavy SN, we produce light
SNs (and dark photons) that might spoil BBN. However, the
constraints are shadowed by the necessity of avoiding the
overproduction of DM. Every time we produce a light SN,
there is another heavy dark particle being created, like dark
Higgs, W or Z bosons that can decay into their sectors and
bend the universe (in contradiction to flatness). This will be
addressed in the following.

4.2 Flatness

The total energy density today equals the critical density

ρc = 3H2
0

8πG = 10.537 h2 GeV m−3 [30]. Therefore, any con-
tribution of the SNs or their decay products to the energy
density, today, should not exceed the DM density ΩDMh2 ≡
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ρDMh2

ρc
= 0.120 ± 0.001, otherwise it would be in contradic-

tion with a flat universe [29], as just mentioned. Note that one
of the most interesting cases is when our scenario generates
precisely the right density to explain DM.

4.2.1 Discussion

Matter density does not get red-shifted as radiation does,
while the universe expands. For that reason, matter will dom-
inate at some point the energy content of the universe. Any
non-relativistic particle, whose energy density at the time of
BBN was negligible, still has the chance of contributing sub-
stantially to the total density of the universe, in form of DM.
This suggests that the massive final states outside our copy in
the decay cascades (i.e. stable particles) of any particle, will
contribute to the DM density, provided they do not disap-
pear through annihilations. In our scenario, the only particle
that decays into dark sectors and is produced in the early
universe is νmH . Therefore if massive particles survive from
these decays, they inevitably contribute to the DM density.
This yields constraints even stronger than from BBN, pre-
dominantly in the right-hand side of Fig. 1.

We have used Eq. (3.9) to parametrize the contribution
to DM. For mH � 2me ∼ 1 MeV upwards, heavy SNs
mostly decay in such a way that at least one electron is pro-
duced at the end of the cascade, when all unstable particles
have decayed. Of course, because of charge conservation,
also a positron is produced. For the relevant parameters, each
copy is so diluted that these e−e+-pairs (as well as proton-
antiproton) do not annihilate into photons, as we have con-
firmed using the respective cross sections given in [9,31].
This means that the “effective mass” μ � 2me ∼ 1 MeV is a
very conservative lower limit, in particular for larger masses.
Remarkably, we are able to reproduce the right DM density
in form of electrons and positrons, as can be seen in Fig. 1.
This corresponds to the edge of the green, overproduction
region.

4.3 Note

We want to remark that our constraints, as usual for cos-
mological considerations, are model-dependent and may be
circumvented, for example, by exploring cosmologies with
reheating temperatures lower than the temperature at which
SNs are most effectively produced. In contrast, we included
the condition of Eq. (2.6) required by unitarity. Furthermore,
there are upper bounds on N coming from axion physics
that can complement our findings, and may be as strong as
N � 106 [32].

5 Conclusions

We motivated at the beginning theories with many particle
species. We focused in particular on the possible existence
of many Standard Model copies, with an additional right-
handed neutrino. Precisely this neutrino portal can trigger
a considerable production in the early universe of the dark
sectors that have a great impact on cosmology. We considered
BBN and the flatness of the universe to pose very strong limits
on the number of extra Standard Model copies, especially for
heavy sterile neutrinos with very large masses. On the other
hand, we found regions in the parameter space, where stable
particles from other copies can account for the right dark
matter density.
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A Non-resonant production via oscillations

In vacuum, and in the mass basis, the Hamiltonian is

Ĥ =

⎛

⎜⎜⎜
⎝

EH 0 . . . 0
0 E . . . 0
...

...
. . .

...

0 0 . . . E

⎞

⎟⎟⎟
⎠

= diag (Δ, 0, . . . , 0) + E1N , (A.1)

where 1N is the N × N identity matrix, EH =
√
m2

H + p2,

E = √
m2

ν + p2 and Δ ≡ EH − E . In the interacting basis,
the Hamiltonian reads

Ĥ → SĤ ST = Δ

N
1N + E1N , (A.2)
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with 1N the N × N constant matrix, i.e with only ones in
all entries. The orthonormal matrix S diagonalizes the Dirac
mass matrix M = λv and can be chosen to be

S =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

1√
N

√
N

N−1 0, . . . , 0

1√
N

−1√
N (N−1)

1√
N

−1√
N (N−1)

(
a j
k

)

...
...

1√
N

−1√
N (N−1)

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

, (A.3)

such that

νm = ST ν, (A.4)

and

ν ≡ νL + νR = (ν1, . . . , νN )T ,

νm ≡ νmL + νmR = (
νmH , νm1 . . . , νmN−1

)T
.

(A.5)

Due to orthonormality, the coefficients a j
k in (A.3) must fulfill

the conditions given in Eq. (2.8). Now, at finite temperature,
the energy of the interacting neutrino of our SM, ν1, gets
shifted by the finite density potential V ,

ĤT = Δ

N
1N + E1N − diag(V, 0, . . . , 0). (A.6)

Actually, the potential matrix should look like

V̂ =

⎛

⎜⎜
⎜
⎝

V + Va Vab . . . Vab
Vab 2Vb . . . Vb
...

...
. . .

...

Vab Vb . . . 2Vb

⎞

⎟⎟
⎟
⎠

, (A.7)

since for each pair νi , ν j there is a (or two, for i = j)
bubble diagram(s) with a thermal propagator of ν1, whose
background generates the potential [33]. In the first row
and column, there is also the contribution from a tadpole
diagram. However, Va, Vab, Vb are suppressed with respect
to V by a2, ab, b2, respectively. In particular, in the rele-
vant region of the parameter space, we have a

b � 103 and
b < 1

N , such that even Nb2 < 1
N is suppressed. Hence,

V̂ ≈ diag(V, 0, . . . , 0).
We need to diagonalize ĤT to find the mass eigenstates

and energies at finite temperature. We find the eigenvalues

ET
H = 1

2

[

Δ + V +
√

Δ2 + 2(N − 2)
ΔV

N
+ V 2

]

+ E,

ET
1 = 1

2

[

Δ + V −
√

Δ2 + 2(N − 2)
ΔV

N
+ V 2

]

+ E, (A.8)

while the rest of energies, and their respective eigenstates,
remain unmodified. The eigenvectors (not normalized yet)
corresponding to ET

H , ET
1 are

ν
m,T
H = (BH , 1, . . . , 1)T ,

ν
m,T
1 = (B1,−1, . . . ,−1)T ,

(A.9)

where

BH = Ba − Bb, B1 = Ba + Bb, (A.10)

with

Ba ≡
√

N 2

4
+ N

N − 2

2

V

Δ
+ N 2

4

V 2

Δ2 ,

Bb ≡ N − 2

2
+ N

2

V

Δ
.

(A.11)

The norm squared of the vectors of (A.9) are

N 2
i = B2

i + (N − 1), (A.12)

for i ∈ {1, H}, such that we normalize ν
m,T
i → ν

m,T
i
Ni

. Then,

ν1 = B1

N1
ν
m,T
1 + BH

NH
ν
m,T
H (A.13)

We define the mixing angle in matter as the amplitude
〈νm,T

H |ν1〉,

sinθT = BH

NH
,

cosθT = B1

N1
.

(A.14)

Indeed, the mixing angle (A.14) at finite temperature reduces
to (2.9), for V = 0. The remaining interacting states can be
expressed as

ν j =
N−1∑

k=2

a j
k ν

m
k − 1

N1
ν
m,T
1 + 1

NH
ν
m,T
H . (A.15)

All unitarity conditions from Eq. (2.8) still hold. From Eqs.
(A.13, A.15) it is easy to compute the transition probabilities
in matter:

PT
j = 1

N − 1
sin22θT sin2

(
ΔT L

2

)
, (A.16)

where L is the distance traveled and ΔT ≡ ET
H − ET

1 =
Δ

√
sin22θ + (

cos2θ + V
Δ

)2
, which has the same exact form

as for the usual active-sterile scenario, as well as the mixing
angle in matter [34]
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sin22θT = sin22θ

sin22θ + (
cos2θ + V

Δ

)2 . (A.17)

Since V > 0, there are no resonances, and the oscillation
time is much shorter than the interaction time, such that we
can average the oscillatory term, yielding

〈
PT
j

〉
= 1

2

1

N − 1
sin22θT . (A.18)

Note that this also means that we are justified in neglecting the
quantum-Zeno effect [35], which arises from the destruction
of quantum phase due to constant interactions. We are now
ready to solve Eq. (3.4). Assuming g∗ = const., we can write
the left-hand side as

(
∂

∂t
− Hp

∂

∂p

)
f j (p, t) = Hx

∂ f j (x, y)

∂x
, (A.19)

where x =
√

Δm2

T , y = p
T . This is a first-order differential

equation that can be solved analytically, even when including
the damping factor coming from the Zeno-quantum effect
[35]

〈
PT
j

〉
→ 1

2

1

N − 1

sin22θT

(
D

ΔT

)2 + 1
=

1

2

1

N − 1

sin22θ

sin22θ + ( D
Δ

)2 + (
cos2θ + V

Δ

)2 .

(A.20)

Since active neutrinos are in equilibrium in the early universe,
the decoherence or damping function D reduces to D = Γa

2
[36]. At temperatures T � MW (MW being the mass of the
W -boson) [33],

Γa(p, T ) � χa
7π

24
G2

FT
4 p, (A.21)

with χe = 13
9 and χμ = χτ = 1. For concreteness, we will

always use a = e. The weak potential V = V L + V T arise
from neutrino neutral and charged current forward scattering
on particles in the plasma [37]. Assuming no asymmetries
that generate lepton number, one has [33,37] V L = 0 and

V T = 28πG2
F sin2θW T 4 p

45α

(
ζa + cos2θW

2

)
, where α is the fine-

structure constant, GF the Fermi constant, θW the Weinberg
angle and ζa(T ) ≈ Θ

(
T − mla

)
represents the contribu-

tion to the weak potential from the charged current, which
depends on whether or not there is a background of charged
leptons la in the plasma at temperature T .

Assuming no initial abundance, f j (x = 0) = 0 and inte-
grating (3.4) up until x → ∞, we obtain

f j (y) = χa√
Wa

· 7π2GFMP
√

Δm2

1.66
√
g∗(Tmax)

√
45α

56π

sin22θ

N − 1
A f1(y)

≈ χa√
Wa

· 67.7

√
10.75

g∗(Tmax)

√
Δm2

eV

sin22θ

N − 1
f1(y),

(A.22)

where Wa = sin2θW

(
ζa + cos2θW

2

)
and

A ≡ √
2

√√

1 +
(

χa45α
Wa192

)2 − cos2θ

√

sin22θ +
(

χa45α
Wa192

)2
≈ 1 (A.23)

is the result of the quantum Zeno effect. Note that the distribu-
tion of (A.22) is proportional to the equilibrium distribution
f1(y) = fF (y) ( fF as in Eq. (3.1)). Integrating the distribu-
tion function f j of (A.22) over momentum as in (3.2) yields
finally the number density n j of Eq. (3.5).

B Production via decays and inverse decays

Consider the process 1 → a, b, imposing m1 > ma + mb.
The Boltzmann equation describing the production of parti-
cle “a” is [38]

Hsx
dYa
dx

= Ca, (B.1)

where x ≡ m1
T , Ya ≡ na

s and s = 2π2

45 gS∗ T 3 is the entropy
density with its corresponding number of degrees of freedom
gS∗ . The collision term Ca , neglecting Pauli blocking and
stimulated emission, as well as the inverse decay ( fa, fb �
1) reads [38]

Ca =
∫

dΠ1dΠadΠb(2π)4δ(4)(pa + pb − p1) · |M|2 f1 .

(B.2)

where dΠi ≡ gi
d3 �pi

(2π)32Ei
, gi is the number of internal degrees

of freedom and fi correspond to the distribution function of
i ∈ {1, a, b}. We can immediately recognize that the inte-
gration over �pa and �pb correspond to the decay rate of the
process 1 → a, b, such that

Ca = 2m1Γ1→a,b

∫
dΠ1 f1(E1) , (B.3)

which holds for an arbitrary distribution function f1. In case
the decaying particle is in equilibrium, we can approximate
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f1 as Boltzmann-distributed f1(E1) = e− E1
T and we obtain

Ca = m3
1g1

2π2 Γ1→a,b · x−1K1(x), (B.4)

where

K1 (x) ≡ x−1
∫ ∞

x
du

√
u2 − x2e−u (B.5)

is the modified Bessel function of the second kind of order
one. Integrating (B.4) over our “time”-parameter x up to x =
∞ yields

Ya(∞) ≈ 135g1MP

(1.66)8π3m2
1

Γ1→a,b

gS∗
√
g∗

(B.6)

For the inverse process a, b → 1, consider the dif-
ferent initial conditions of having vanishing small f1 and
Boltzmann-distributed fa , fb. This is a completely differ-
ent scenario from before, note that fa was not Boltzmann-
distributed, f1 did not vanish and fb was arbitrary. The decay
1 → a, b can be initially neglected (∝ f1 ≈ 0). We obtain
the following collision operator

C1 = 2m1Γ1→a,b

∫
dΠ1e

− E1
T , (B.7)

which interestingly yields the same expression as in (B.4),
and therefore (B.6).
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