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Abstract Supersymmetric states in M-theory are mapped
after compactification to perturbatively non-supersymmetric
states in type IIA string theory, with the supersymmetric parts
being encoded in the non-perturbative section of the string
theory. An observer unable to recognise certain topological
features of string theory will not detect supersymmetry. Such
relativity of symmetry can also be derived in the context of
Theorem 3 in Patrascu (Phys Rev D 90:045018, 2014). The
tool of choice in this context is the universal coefficient theo-
rem linking cohomology theories with coefficients that reveal
respectively hide certain topological features. As a conse-
quence of these observations, it is shown that the same theo-
rem is capable of linking perturbative with non-perturbative
string theoretical domains. A discussion of inflow anomaly
cancellation is also included in the context of universal coef-
ficient theorems.

1 Introduction

M-theory, as a unified theory of physics, makes no dis-
tinction between perturbative and non-perturbative states.
Indeed 11-dimensional M-theory describes both perturba-
tive and non-perturbative effects of ten dimensional super-
string theory [1,2]. It has been shown that 4-dimensional M-
theory vacua with N > 0 supersymmetry appear to have no
unbroken supersymmetry from the perspective of perturba-
tive type IIA string theory. The M-theoretical supersymmetry
appears as a non-perturbative effect and is encoded in the
appearance of non-trivial Ramond–Ramond (RR) charges
[3]. Given a spacetime X , in order to obtain the low energy
effective theory one compactifies string theory on this space-
time. The result will include many U (1) gauge fields. Per-
forming Kaluza–Klein (KK) reduction of the 10-dimensional
type IIA string theory or type IIB supergravity, Ramond–
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Ramond gauge fields will emerge. Such gauge fields will
form a vector space which will be dual to a space of har-
monic forms in X . This implies [4] that the RR charges will
take values in the cohomology of our spacetime with real
coefficients H∗(X,R). After quantising the RR charge, a
cohomology with integer coefficients will replace the pre-
vious one H∗(X,Z) which, further on, will be replaced
with H∗(X,Z/N ) for large N [4]. On the other side per-
turbative string theory can only detect zero RR-charges (the
non-trivial charges are invisible from the standpoint of per-
turbative string theory). In non-perturbative string theory
we have a sector of the spectrum associated to D-branes
wrapped around supersymmetric cycles W in X . These will
have non-zero charges under RR gauge fields. Such charges
can be calculated in terms of the topology of the embed-
ded cycle f : W ↪→ X and the topology of the Chan–
Paton bundle E → W . Moreover, within the inflow mech-
anism for anomaly cancellation, the charges of the RR bulk
fields are induced by the gauge fields and gravitational curva-
tures. Contributions to these RR charges also come from cer-
tain twisted normal bundles. The three phenomena, namely
charge induction, inflow anomaly cancellation, and a relation
between perturbative and non-perturbative string theoretical
domains may have a common origin, related to the universal-
ity of the choice of coefficient structures in (co)homology. As
M-theory does include both trivial and non-trivial RR charges
and does not make a fundamental distinction between per-
turbative and non-perturbative effects, it is possible that the
arbitrariness related to the choice of the coefficient structure
in (co)homology is a new fundamental property of M-theory,
not studied before.

2 Detectability of topological features

As there is no distinction to be made between perturbative and
non-perturbative states from the perspective of M-theory, it
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is important to identify a unifying viewpoint relating the situ-
ation when RR charges are only seen to be zero and the situa-
tion when one classifies them either in terms of cohomology
with coefficients in Z, H∗(X;Z) or within K-theory (which
is yet another form of generalised cohomology). Indeed, such
a unifying viewpoint can be obtained by analysing universal
coefficient theorems in cohomology as well as the way they
connect ordinary and generalised cohomology theories [5–
7]. Indeed, the existence and calculability of universal coeffi-
cient theorems for various generalised cohomology theories
is still subject to intensive research in homological algebra
and algebraic topology. This article claims no final mathe-
matical construction. However, the various observations it
makes regarding the physical properties of RR-charges and
their classification are of importance in identifying relations
between perturbative and non-perturbative string theory sec-
tors.

In Ref. [8] it is derived, and in [3] it is mentioned that
the worldsheet action of the D = 10 type IIA superstring
can be obtained by identifying the third worldvolume coor-
dinate with the eleventh spacetime coordinate in the D = 11
supermembrane. The eleventh coordinate corresponds to a
circle. From a cohomological perspective, detecting a circle
depends on the choice of a coefficient structure. From Ref. [9]
it is known that when twisted cohomology is employed to
analyse a circular subspace of a certain topological space, the
cohomology completely ignores the parts of the space formed
by circles along which the monodromy of the coefficient sys-
tem is non-trivial. In another sense, the measuring device
(expressed mathematically as the coefficient structure) must
be added in order for the cohomology to be able to tell us any-
thing about the topology of the space. However, if we decide
to employ a coefficient structure that has non-trivial mon-
odromy around certain circular subspaces, those subspaces
will not be visible. From the point of view of cohomology
with coefficients having non-trivial monodromy when con-
sidered around the circular subspace of our manifold, such
circular spaces may as well not exist. However, non-trivial
RR charges appear and can be calculated in terms of the
topology of the embedded supersymmetric cycles W ↪→ X
defined above. One could argue that the freedom given by
the ability to arbitrarily choose the coefficients is an unnec-
essary complication. However, (co)homology theory cannot
be defined without such coefficients. Indeed, the coefficient
structure is included in the very axioms of cohomology the-
ory (Eilenberg–Steenrod axioms) and can only be chosen to
be trivial, but never eliminated. Therefore, in the best case we
can think of the choice of coefficient structures as of a more
generalised gauge choice which can reveal certain topologi-
cal properties while mask others. Therefore we have to accept
that taking different choices of coefficients makes mathemat-
ical sense. Once we accept this, we must think about what the
physical effects of such choices can be. Phenomena appear-

ing to alter significantly when the coefficient structures are
altered may not be fundamental. Coefficient choice invari-
ant phenomena however may be the foundation for a unified
theory of nature. M-theory appears to have such properties
and appears at least up to a certain point to be constructed
in a coefficient-covariant way. Twisted acyclicity of a circle
means that the complement of the tubular neighbourhood of
a link looks like a closed manifold to a twisted cohomology,
because the boundary being fibered to circles, is invisible in
the twisted cohomology [9]. The same remains valid for a set
of pairwise transversal, generically immersed closed mani-
folds of codimension 2 in arbitrary closed manifolds, with
the condition that the monodromy around each such mani-
fold is non-trivial. The modified cohomology does not feel
the intersection of the submanifolds as a singularity [9]. This
is natural if one thinks that the coefficient structure makes
the movement around the circle gain a non-trivial lift due to
the existence of the coefficient-bound monodromy. In terms
of a twisted (co)homology theory there simply is no inter-
section. It is important to notice that a particular situation
where the inflow anomaly cancellation is relevant is for inter-
section anomalies, arising for example on I-branes. While
this is certainly not the only relevant situation, it is worth-
while to observe that lifting the intersection by means of
non-trivial coefficients in cohomology has a similar effect as
the inflow mechanism. While the inflow mechanism implies
a higher dimensional “flow” towards the anomaly, bringing
in an “anti-anomaly” that would cancel the original anomaly
and make the theory consistent, the structure of coefficients in
cohomology adds the “anti-anomaly” by means of a redefini-
tion of a topological measuring device. The two effects seem
to be related and have as origin a common principle. The
historical path to dealing with gauge anomalies was quite
impressive. For example the first approach was to postulate
the existence of a new fermion that would lead to an anti-
anomaly term that would precisely cancel the term of the
anomaly existing in the original theory. This idea led to vari-
ous discoveries of new fermions in nature but it finally proved
as an insufficient approach. New, more abstract ways in
which anomalies can be cancelled have been introduced, the
anomaly Inflow representing the idea that a gauge anomaly
does not have to be eliminated if it can be compensated by
contributions from the higher dimensional space in which
the anomalous theory is embedded. We therefore replaced
the introduction of new fermions with the introduction of
anti-anomalies arising from higher dimensions. In this arti-
cle I propose a different approach, as mentioned earlier. The
gauge anomalies can be in fact cancelled or compensated
for by the effects of a new gauge invariance related to the
coefficient structures in cohomology. Changing the coeffi-
cient structure in cohomology certainly changes the ability
of the respective cohomology to detect certain topological
features but being an arbitrary choice, it must not be fun-
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damental to nature, and hence situations differing only by
the effects of different choices in cohomology must compen-
sate each other out to produce a coefficient choice invariant
description of nature. Several gauge anomalies can there-
fore be compensated by demanding such higher invariance.
There is more to it. There are several effects that are here in
a sense equivalent. The procedure of anomaly cancellation
by higher dimensional Inflow being equivalent to a change
in cohomology coefficients can lead us to the conclusion that
the additional dimensions used for anomaly cancellation are
in fact emerging from a gauge principle that is manifest at the
level of the different arbitrary choices of coefficients in coho-
mology. It seems like there are dual views on this problem,
and if we take a look at the dimension axiom in cohomol-
ogy (and abandon it) we may understand why. If P is a one
point space then by the dimension axiom the (co)homology
Hn(P) = 0 for all n �= 0 and H0(P) is the coefficient group.
The coefficient group provides us with the structure of the
elemental point of a space in cohomology. Eliminating this
axiom as is being done in generalised cohomology allows us
to introduce arbitrary coefficients, even in higher orders, lead-
ing to non-trivial structures associated to our point. Making
this modification within the inner structure of our “point” is
apparently equivalent to considering an inflow anomaly can-
cellation via a relation with a higher dimension. This leads
us to the conclusion that additional “inner” structure is dual
to additional higher dimensions. If one follows this train of
thoughts one can imagine that additional dimensions are an
emergent outcome originating from the existence of internal
topological structure and associated gauge invariance in our
elemental points, related to a different, higher form of gauge
symmetry. In that sense coefficient gauge symmetry is dual
to emergent higher dimensions. If we are about to look at
the cobordism between immersed links, we will see from the
perspective of twisted cohomology only a compact cobor-
dism between closed manifolds. This allows us (provided
we find a consistent relation between twisted cohomology
and cohomology with constant coefficients) to analyse man-
ifolds with links of codimension two as if they were single
closed manifolds. All this has been shown in [9] which is a
purely mathematical paper. However, the interpretation of all
these statements in terms of string theory, M-theory, as well
as the connection between perturbative and non-perturbative
domains is novel and is a part of this research work.

In the case in which a D-brane wraps around a cycle of
a curved manifold, its normal bundle may twist leading to
chiral asymmetry for the theory in its world volume.

The wrapping and intersecting D-branes will be plagued
by anomalies which in general do not cancel among them-
selves and may appear not to be cancelled by the standard
inflow mechanism which one may invoke considering the
possibility of imbedding the theory in a higher dimensional
structure. To understand this difficulty it is important to

understand how the inflow mechanism would work in the
cases when it is directly applicable. In such fortunate cases,
the anomalous theory can be embedded in a higher dimen-
sional theory. The bigger theory has an associated classi-
cal action which will have an anomalous variation which is
localised at the world volume for our anomalous theory and
cancels its anomaly. The term “inflow” therefore originates
from the fact that an “anti-anomaly” flows from the higher
dimensional theory leading to the cancellation of our lower
dimensional anomaly. The cases in which such a method
fails appear due to the fact that the anomalies cannot in
certain cases be properly factorised. The reason for such a
non-factorability is inherently topological. If D-branes are
wrapped around non-trivial cycles of a certain compactifi-
cation manifold, the anomalies appear in the form of non-
vanishing variations of the effective action under a local
gauge transformation [10]. This is a catastrophic scenario
that must be dealt with. References [11–13] discuss these
issues extensively. Reference [10] recovers the inflow mech-
anism by arriving again at a proper factorisation by means of
the topological result providing us with a relation between
the Thom and Euler classes.

When, in the context of M-theory, the eleventh spacetime
coordinate corresponds to a U (1) fibre [3] the membrane
worldvolume would correspond to a U (1) bundle over the
two dimensional worldsheet of the string and not to a direct
product. Dimensional reduction of the 11 dimensional super-
gravity on a circle leads to type IIA supergravity. In terms of
solutions of these theories, this implies that any solution of
the form M10×S1 of 11 dimensional supergravity can be seen
as a solution of type IIA superstring theory [3]. This exam-
ple however restricts the argument to direct product solutions.
This however is not required.

Any solution that has the form of a U (1) bundle over
a 10 dimensional base manifold admits a 10 dimensional
interpretation. An example discussed in [3] is the AdS4 × S7

case for 11 dimensional supergravity, precisely because S7

has the form of aU (1) bundle overCP3. If the bundle is non-
trivial, the KK vector potential that appears after reducing the
11 dimensional theory to the 10 dimensional theory becomes
topologically non-trivial. It is worthwhile mentioning that
every circle on S7 can be shrunk to a circle, in contrast to the
CP2 × S1 case.

In Ref. [14] it is noted that a key feature of K-theory is
that when comparing two objects, X ′ and X ′′, it is allowed to
augment them by some object Y . In condensed matter (the
subject of Ref. [14]) such augmentation is done by a trivial
system, a procedure known in high energy physics from the
BRST-anti-BRST quantisation [15]. Two systems may not be
trivially deformable one into the other, but still, after such an
extension, trivial deformation becomes possible. In cohomol-
ogy theory such an augmentation is controlled by the coef-
ficient structure. Indeed, in ordinary cohomology theory the
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cohomology associated to a point is trivial i.e. H0(Pt) = Z

and Hn(Pt) = 0 for n > 0, where Pt represents a point
space. The zero order cohomology of the point H0(Pt) rep-
resents the coefficient structure. In generalised cohomology
theory however, the point may obtain additional structure,
first by allowing the zero order cohomology to become non-
trivial, and second, by allowing non-zero higher cohomology
groups for the point. For a brief definition of these concepts
see [16]. Therefore, a broad spectrum of additional structures
can be included in a theory only by departing from the trivial
cohomology structure. Indeed, I showed in [7] that a global
anti-anomaly can be introduced only by means of non-trivial
coefficient structure in cohomology. That such a global anti-
anomaly can play the same role as an extra-dimensional flow
compensating the anomalies by means of the inflow technol-
ogy can be seen as follows. I will mostly use the notation of
[10].

3 Alternative anomaly cancellation

Let M be the m-dimensional world volume of the brane and
let LM be the Lagrangian density controlling the dynamics
on the brane. To introduce the brane into the bulk theory one
has to add to the bulk action the term∫
M
LM . (1)

If we want to express this in terms of an integral over the
whole bulk spacetime X we introduce, following [10], an
additional differential form τM such that∫
M

ζ =
∫
X

τM ∧ ζ (2)

for any rank-m form ζ defined over M∗. The rank of our
additional form is equal to the codimension of M in X . This
equation defines τM as an element of the dual of the space
of forms i.e. the space of currents. These are the differential
form analogues of distributions and τM is the appropriate
generalisation of the Dirac delta distribution.

If ζ is restricted to be a closed form on M , the equation
above defines only a cohomology class [τM ], known as the
Poincaré dual of M . It contains topological information about
M . τM itself is a representative of this class. In physics, this
is associated to a brane current of the brane wrapped around
M .

This can be expressed in terms of exact sequences as fol-
lows. In the most general case, if we have a subspace of a
space then we can think of it as filling out some of the direc-
tions in the large space and then, we may define an orthogonal
complement that fills out the other directions. Together they
span the full space in a minimal way. In a sense, this can be
extended to the idea of D-branes in our spacetime. However,

when additional structure is added not by looking “outside”
at the large vector space, but instead by adding structure to
points via coefficients in (co)homology, forming the orthogo-
nal complements may become more complicated because we
may not have an immediate inner product (or some suitable
pairing) to rely upon. In the most general case, if A is a sub-
space of B and Afills up certain directions in B, the remaining
directions are encoded in B/A. If A is precisely the kernel of
the surjection B → C then A fills out some of the directions
in B and all the complementary directions are encoded in C .
This means basically just that 0 → A → B → C → 0
is a short exact sequence. Therefore, a sequence being exact
means we can write∫
M

ζ =
∫
X

τM ∧ ζ (3)

in a global sense and hence τM is globally meaningful. As
the objects we deal with here (namely τM and ζ ) are identi-
fied as cohomology (resp. homology) classes, what we need
to analyse is a pairing between homology and cohomology.
This is where universal coefficient theorems enter our discus-
sion. In the most general case, consider our spacetime X and
our D-branes M1 and M2 represented algebraically as chain
complexes over a ring R. Then there exists an evaluation map

HomR(X,A1) × X → R (4)

providing us with the evaluation (a pairing)

( f, z) → f (z). (5)

Such a pairing passes to the Kronecker pairing

<,>: Hq(X;A2) × Hq(X;A1) → R (6)

relating homology with cohomology. Such a pairing is bilin-
ear and its adjoint is a homomorphism

Hq(X,A2) → Hom(Hq(X,A1);A2) (7)

with coefficients A1 and A2 It however need not be an iso-
morphism. Universal coefficient theorems provide a measure
of how this adjoint fails to be an isomorphism in terms of Ext
and Tor groups. The exact sequence

0 → ExtR(Hq−1(X;A2), A1) → Hq(X;A2)

→ Hom(Hq(X;A1),A2) → 0 (8)

shows that the Ext group needs to be added in order for the
sequence to be exact. When this happens the homology and
cohomology with the different coefficients define the integral
over the entire space X in a consistent manner.

In what follows we will see that the global definition of
τM and the expression τM1 ∧ τM2 governing the I-brane are
crucial for the cancellation of anomalies by means of inflow
techniques. Defining such global structures within integrals
covering the whole space X therefore relies on the existence
of exact sequences associated to (co)homology theories with
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coefficients expressed in terms of potentially intersecting D-
branes. The correction to τM1 ∧ τM2 due to global effects is
therefore encoded in the Ext group of the universal coeffi-
cient theorem in (co)homology.

In string theory let M be the worldvolume of a D-brane.
The RR potential called C couples to it and the brane current
τM arises. The RR field strength is denoted by H . On M
we have the tangent bundle of the total spacetime X as being
T (X) which decomposes into the Whitney sum of the tangent
and normal bundles to M , namely T (M) and N (M).

Let us start now the other way around. We have the world-
volume of a D-brane and over each point on this D-brane we
add the structure of H0(Pt), the zero order cohomology of
the point. Then, according to the specific problem, if our
D-brane wraps around topologically non-trivial structures of
our bulk spacetime X , we may add to each point higher coho-
mology structures Hq(Pt). The more complex the topology
of the bulk space, the more structure one has to encode in
the coefficients of the (co)homology in order to represent the
fact that the D-brane can probe it.

We can construct locally

τM = δ(x1)dx1 ∧ · · · ∧ δ(xdimN (M))dxdimN (M) (9)

where xμ are Gaussian normal coordinates in the transverse
space of M , or equivalently Cartesian coordinates in the fibre
of N (M). Such an expression is however not defined globally.
The intersection of two brane world-volumes produces a so
called I-brane M12 = M1 ∩M2. Following the assumption of
right angles in [10], the tangent bundle of the total spacetime
decomposes as

T (X) = T (M1) ∩ T (M2) ⊕ T (M1) ∩ N (M2) ⊕ N (M1)

∩T (M2) ⊕ N (M1) ∩ N (M2). (10)

The intersection is assumed to be fibre-wise. Clearly,

T (M12) = T (M1) ∩ T (M2) (11)

and

N (M12) = T (M1) ∩ N (M2) ⊕ N (M1) ∩ T (M2)

⊕N (M1) ∩ N (M2). (12)

Then it follows that τM1 ∧τM2 = τM12 provided that N (M1)∩
N (M2) = ∅. Given the local form of τM above, in any other
case τM12 = 0. On the I-brane there can be an anomaly of
the form

I12 = π

∫
τM12 ∧ (Y1 ∧ Ỹ2 + Y2 ∧ Ỹ1) (13)

where Yi and Ỹi , i = 1, 2 are some invariant polynomials of
the Yang-Mills field strengths and gravitational curvatures
on Mi . With this notation and the results of [10] the anomaly
can be canceled if one implements the following Ansatz for

Chern–Simons type action on D-branes

−μ

2

∑
i

∫
Mi

NiC − (−1)q H ∧ Y (0)
i

= −μ

2

∑
i

∫
X

τMi ∧ (NiC − (−1)q H ∧ Y (0)
i ). (14)

In this equation q is 1 for the II-A string theory and 0 for the
II-B string theory and i labels the D-brane wrapping world-
volume Mi whose brane current is τM . Ni is the constant
part of Yi . C and H represent formal sums of all the RR anti-
symmetric tensor potentials and field strengths respectively.
When we integrate we implicitly take products of forms with
the required total rank. The rank will appear as an indexation
for a formal sum, for example, for a type IIA string theory
we have

C = C(1) + C(3) + C(5) + C(7) + C(9). (15)

Note that H will have corrections to its usual expression dC .
Given the coupling of the Ansatz above, the equations of
motion are

d ∗ H = μ
∑
i

τi ∧ Yi (16)

with the Bianchi identities being

dH = −μ
∑
i

τi ∧ Ỹi (17)

where

Ỹ j (l) = −(−1)
dim(M j )−q

2 (−1)
l
2 Y j (l). (18)

With these conditions we have

H = dC − μ(−1)qτM ∧ Ỹ (0)
j (19)

where Ỹ (0)
j is the secondary characteristic. We need to

observe that the field strengths H are physical observables
and therefore must be gauge invariant. Therefore, to any
gauge variations, the variations of C must have a compen-
sating nature

δgC = μ
∑
j

τMj ∧ Ỹ (1)
j (20)

where Ỹ (1)
j is the Wess–Zumino descent of Ỹ j . The variation

of the Ansatz under gauge transformations is

δgS = −μ2

2

∑
i j

∫
X

τMi ∧ τMj ∧ (Ỹ (1)
j Ni + Ỹ j (Yi )

(1))

= −μ2

2

∑
i j

∫
X

τMi ∧ τMj ∧ (Yi ∧ Ỹ j )
(1). (21)
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This would cancel the anomaly if μ2

2 = π when N (M1) ∩
N (M2) = ∅. However, on the I-brane there are still anomalies
due to the fact that we used only a local form for τM .

Such anomalies are described in [10] and the inflow
method is used in order to cancel them.

Consider the case when two D-branes intersect and there-
fore one obtains massless fermions from the open string sec-
tors with two ends on the two D-branes. Given N1 D-branes
wrapping around M1 and N2 D-branes wrapped around M2

and the sector of the string starting on M1 and ending on M2

the difference in the boundary conditions on the two ends of
the string modifies its zero point energy and shifts the modes
of its worldsheet operators. As a result, the massless fermions
are a section of the chiral spinor bundle lifted from

T (M1) ∩ T (M2) ⊕ N (M1) ∩ N (M2) (22)

and in the end the bundle is tensored with the (N1, N̄2) vec-
tor bundle due to their Chan–Paton quantum numbers. The
anomaly can be written as

II−brane = 2π

∫
M12

(ch(F1) ∧ ch(−F2)

∧ Â[T (M1) ∩ T (M2)]
Â[N (M1)∩N (M2)]

∧ e[N (M1) ∩ N (M2)])(1)

(23)

by means of brane currents we have for the case of intersec-
tions

II−brane = ±2π

∫
τM12 ∧ (e[N (M1) ∩ N (M2)]

∧ch(F1) ∧ ch(−F2) ∧ Â[T (M1T (M2)

Â[N (M1) ∩ N (M2)])
(1)

(24)

where use has been made of the fact that e(∅) = 1. It can be
checked that the previous equation can be factorised. If we
denote

Yi = ch(Fi ) ∧
√

Â[T (Mi )]
Â[N (Mi )]

(25)

together with

Ỹ j = −(−1)
dim(M j )−q

2 ch(−Fj )

√√√√ Â[T (Mj )]
Â[N (Mj )]

(26)

with this definition, the anomaly can be cancelled by the
inflow.

This yields

II−brane = −π

∫
τM1 ∧ τM2 ∧ (((−1)

dim(M2)−q
2 ch(F1)

∧ch(−F2)+{1↔2}) ∧ Â[T (M1) ∩ T (M2)]]
Â[N (M1) ∩ N (M2)]

)(1). (27)

It is clear that the two terms in the integrand above sum up
rather than cancelling each other, leading to the anomaly

II−brane = −(−1)
dim(M2)−q

2 2π

∫
τM1

∧τM2 ∧ (ch(F1) ∧ ch(−F2)

∧ Â[T (M1) ∩ T (M2)]]
Â[N (M1) ∩ N (M2)]

)(1). (28)

While factorizability is important for inflow anomaly can-
cellation, when the relevant normal bundle is nontrivial,
the Euler class in the integrand of II−brane makes it non-
factorizable. The cause for this is the fact that while τM is a
physical observable, it is not always globally defined over M
[10].

τM = δ(x1)dx1 ∧ · · · ∧ δ(xdimN (M))dxdimN (M) (29)

makes sense only within each coordinate patch. Between
patches the transversal coordinates are defined only up to
the transition functions of the normal bundle. We therefore
need to add new terms which vanish when N (M) is trivial
but allow us to define τM globally when N (M) is not triv-
ial. These new terms will carry the topological information
about N (M) and, according to the defining equation of τM
they must have components with indices tangential to M .
This calculation has been covered in [10] and I repeat it here
for completeness. When pulling τ(M) back to M only cer-
tain pieces of the correction remain. The result will be the
Euler class e[N (M)] of N (M). It may be noticed that τM is
determined by N (M) because it is defined as the limit of non-
singular differential forms with shrinking compact supports
in the neighbourhood of M , approximated by the neighbour-
hood of the zero section of N (M). For any oriented real
orientable vector bundle E , we can define τM by taking M
to be the zero section E . We may define �[E] = τM , for any
vector bundle E

π−→ M . Otherwise stated

τM ∧ τM = τM ∧ �[N (M)] = τM ∧ [e[N (M)]] (30)

where [e] denotes a representative of the cohomology class
of e. Given also that �(A ⊕ B) = �(A) ∧ �(B), we have
for the I -brane worldvolume M12 = M1 ∩ M2 that

τM1 ∧ τM2 = �[T (M1) ∩ N (M2) ⊕ N (M1) ∩ N (M2)]
∧�[N (M1) ∩ T (M2) ⊕ N (M1) ∩ N (M2)]

= �[T (M1) ∩ N (M2) ⊕ N (M1) ∩ T (M2)

⊕N (M1) ∩ N (M2)] ∧ �[N (M1) ∩ N (M2)]
= τM12 ∧ e[[N (M1) ∩ N (M2)]]. (31)

This is finally the correct replacement for the naive equation

τM1 ∧ τM2 =
{

τM12 if N (M1) ∩ N (M2) = ∅
0 otherwise.

(32)
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Therefore, there exists an additional gauge-type symme-
try in quantum field theories, in particular such quantum field
theories that rely on a cohomology description. Aside the
usual gauge degrees of freedom, we have yet another free-
dom of changing the theory, this time by altering the coef-
ficient structure while following the exact sequence given
by the universal coefficient theorem. This “gauge” symme-
try is extremely powerful, as various relations can emerge
between apparently different theories that are however con-
nected by means of universal coefficient theorems. This type
of “higher” symmetry has been discussed previously in [17].
In this article I show that such a higher symmetry can be
used in order to eliminate certain anomalies emerging in the
context of intersecting branes.

The main idea of this article is that the same information
can be encoded by coefficient structures in (co)homology.
A different way of saying this is to observe that homology
in general represents a partition of a topological space. The
homology groups partition the topological space under study
into homology classes (finally equivalence classes) that are
designed to retrieve certain geometrical data. This in turn
allows us to differentiate between topological spaces based
on the criterium that they share the same type of geometrical
data as that retrieved by the homology. The dualization of this
construct leads to cohomology, which, while it looks similar,
it often encodes more or different types of information than
homology.

It is attractive to see the coefficient structure as a form of
gauge, and to see a transformation from one coefficient struc-
ture to another as a gauge transformation of a special kind.
In fact, I am using this interpretation in this article. But the
coefficient structure does more than this. As said, homology
offers a sort of partitioning of the topological space, in such
a way that a specific type of geometric data can be retrieved,
while making other types of data blurred or undetermined.
This reminds us more of the compatibility of observables in
quantum mechanics, but then, I showed relatively recently
in Refs. [18,19] that the two, namely gauge freedom and
quantum mechanics may have some aspects in common.

While the topological space to be probed remains the
same, there is an intrinsic limitation to the type of geomet-
rical information that can be retrieved from it, and that lim-
itation is given by the coefficient structure in (co)homology.
This structure basically encodes the type of “partition” of our
topological space, which makes some of the geometrical or
topological properties manifest, while obscuring others. The
“partitioning” however needs to be understood in a more
general sense, as changing the coefficients of (co)homology
amounts to changing the point structure used to describe the
space. Basically, having coefficients different from Z means
modifying the Eilenberg–Steenrod axioms. In the ordinary
(co)homology case, the dimension axiom states that for P
being a one-point space, the homology Hn(P) = 0 for all

n �= 0 and if P is a one-point space H0(P) is the coefficient
group. This coefficient group is for ordinary (co)homology
the integers. This would imply a partitioning of the topolog-
ical space we wish to describe by means of geometric points
with the usual structure of a point. If this axiom is abandoned
however, the partitioning will be done by means of a differ-
ent object, maybe a string, or a brane, in any case, a structure
that would be sensitive to geometric and topological features
of the space to which our ordinary (co)homology would be
not. It is possible to imagine that a symmetry relating dif-
ferent coefficient structures (by means, for example, of the
universal coefficient theorem) would reveal at the level of
the analysed space, higher symmetries that could not be oth-
erwise detected. These same coefficient structures have the
ability to carry an anti-anomaly inducing the cancellation of
the original anomaly by altering the pairing between coho-
mology and homology, that is, altering the integral over the
whole space X involving τM . In a sense the “inflow” can be
seen as originating in the prescription of altering the pairing

<,>: Hq(X; A2) × Hq(X; A1) → R (33)

such that its adjoint becomes part of an exact sequence. This
leads to a global definition of the pairing and particularly in
the ability to define τM such that it is valid over the whole
space. As stated before, the conditions for the sequence to be
exact lie in ExtR(Hq−1(X; A2), A1). Let me analyse this a
bit further. To understand the concept of extension one has
to imagine exact sequences as self-sustained mathematical
entities. Indeed, one may act on an exact sequence 0 →
A → B → C → 0 with a covariant functor F . The functor
may be itself right (resp. left) exact if, after applying it to the
exact sequence one obtains a sequence F(A) → F(B) →
F(C) → 0 (respectively 0 → F(A) → F(B) → F(C))
which is exact. When the functor with which we act on our
exact sequence is HomR(∗, M) where R is a Ring and in
general M is a module then the sequence

0 → HomR(C,A) → HomR(B,A) → Hom(A,A) (34)

is not exact. In order to make it exact what we need to add are
the extensions, which, by definition, transform the resulting
sequence into

0 → HomR(C,A) → HomR(B,A) → Hom(A,A)

→ Ext1
R(C,A) → · · · → ExtqR(B,A) → ExtqR(A,A)

→ Extq+1
R (C,A) → · · · (35)

which is exact. The extension satisfies the property that
Ext0

R(A1,A2) = HomR(A1,A2) and ExtnR(F,A) = 0 if
F is a free module and n > 0. Therefore, ExtnR(∗,A) = 0 is
called the n-th derived functor of the functor HomR(∗,A).
Therefore, it is intuitive to see that Ext represents what needs
to be added to the resulting sequence after the application of a
functor to it, such that the resulting sequence becomes exact.
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Now, of course, cohomology theory measures (in its most
basic form) in how far a complex fails to be exact. Therefore,
in our case, the case of the universal coefficient theorem,
we obtain an exact sequence in (co)homology after changing
the coefficients. The sequence we obtain is certainly cohomo-
logically trivial (being exact) and this is obtained due to the
fact that we added the anti-anomaly as a structure given to the
mathematical points of our theory. The addition of Ext there-
fore makes our τM well defined over the whole space without
having to look at the properties of higher dimensional spaces.
Obviously, as τM is an element of a cohomology class, we
discuss exact sequences in cohomology and apply the Hom
functor to those, while changing their coefficients. This basi-
cally demands for the universal coefficient theorem.

For cohomology, the universal coefficient theorem states
that the following sequence is exact:

0 → Ext (Hp−1(X;A1),A2) → H p(X;A2)

h−→ Hom(Hp(X;A1),A2) → 0. (36)

Given two coefficient structures A1 and A2 this short exact
sequence connects cohomology with coefficients in one
structure to homology with coefficients in the other. If the
map between the two were an isomorphism, the Ext group
would be trivial. This is often not the case, particularly when
one wishes to connect cohomology theories induced by coef-
ficient structures that have different resolutions with respect
to certain topological features. This is precisely the situa-
tion I discussed above, considering that the RR charges will
not be visible in the perturbative domain of the string the-
ory. Indeed, it is not possible to use cohomology to detect
topological features without making a choice of a coefficient
structure. Such choice expands or reduces the structure asso-
ciated to the fundamental object (the point in this case) and
at the same time makes certain topological features more
or less visible. Indeed, this is valid for K-theory which is,
axiomatically speaking, also a generalised cohomology the-
ory. Another aspect related to changing the coefficient struc-
ture in cohomology is related to the relativity of symmetry,
a property I proved in Ref. [20, Theorem 3, pag. 4]. It is
intriguing that a special case of this result has been obtained
[3] by a different and more particular method. Indeed, [3]
notices that M-theory with N > 0 supersymmetry can be
seen in terms of type IIA perturbative string theory as having
N = 0 as long as RR charge is not detectable. The ten-
sion point of [3] is between the so called “revolutionary” and
“counter-revolutionary” viewpoints. While the “revolution-
ary” viewpoint will claim that the 11-dimensional M-theory
is fundamental, and any vacuum of the 11-dimensional super-
gravity is acceptable, independent of the results of a low
energy type IIA theory, while the “counter-revolutionary”
viewpoint will claim that the only acceptable vacua are those
of type IIA supergravity, while M-theory is only a strong

coupling limit of the string theory. The tension between these
two viewpoints can now be alleviated by understanding that
the two situations arise due to the choice of two different
coefficient structures in cohomology, one capable of reveal-
ing the topological features associated to the RR-charge and
the other incapable of doing so. The two choices are how-
ever perfectly legitimate from the perspective of the univer-
sal coefficient theorem which allows us to move from one
description to the other. In Ref. [8] D-brane Chern–Simons
actions were derived. These imply the presence of topolog-
ical defects on the D-branes. Such defects carry their own
RR charges which are determined by their own topological
(instanton) numbers [21]. Anomaly cancelation arguments
by the inflow mechanism [21] require the modification of
the Chern–Simons actions. Of course the effect will be to
change the induced RR charges on the D-brane wrapped
around a cycle of a non-trivial compactification manifold.
In terms of cohomology with non-trivial coefficients this can
be interpreted as adding the additional structure to points. Of
course, in the most general case, adding or removing addi-
tional topological structure (additional topological defects)
can be done for arbitrary extended objects like D-branes but
also, as is the case here, for Dirichlet 0-branes. The author
of Ref. [3] concludes that the possibility of noticing super-
symmetry in the non-perturbative theory and “overlooking”
it in the perturbative approach could be a method to “have
your supersymmetry and eat it too”. However, the final con-
clusion is that nature should intrinsically be non-perturbative
and therefore what one must measure is the non-perturbative
physics including supersymmetry and not merely the pertur-
bative region of some string theory. Having supersymmetry
and eat it too, according to Ref. [3] can only occur if “for
some unknown reason, the experimentalist’s apparatus is so
primitive as to be unable to detect Ramond–Ramond charge,
in which case he or she would conclude that the world has no
unbroken supersymmetry”. Analysing this situation from the
perspective of cohomology with non-trivial coefficients and
the universal coefficient theorem, it results that, in order to
detect certain topological features one has to make a choice
of coefficients that may reveal or hide topological features
associated to the Ramond–Ramond charge, leading to vis-
ibility resp. invisibility of the latter. Therefore, the experi-
mentalist might not be able to detect certain topological fea-
tures unless he or she is willing to create an experiment in
which some other features will remain undetectable. This
way of thinking is well known from basic quantum mechan-
ics where incompatible observables cannot have a common
eigenbasis. To extend this to the level of detectability of topo-
logical features one requires the universal coefficient theo-
rem. Formally, one has to consider the changes leading to
τM1 ∧ τM2 = τM12 ∧ e[[N (M1) ∩ N (M2)]] from a purely
cohomological perspective. The change in I-brane current
τM1 ∧ τM2 of an I-brane measuring intersections of the two
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branes is naively trivial when N (M1) ∩ N (M2) �= ∅. As an
observable τM must be globally defined over M . When N (M)

is non-trivial one needs to change τM topologically such that
it becomes globally well defined. Indeed, this can be done by
encoding the full topological information within the coeffi-
cients in cohomology. I showed on several occasions that the
coefficients in cohomology can play the role of global anti-
anomalies or of structures that may turn anomalous theories
into well defined ones.

4 Examples and discussion

The inflow anomaly cancellation usually refers to the mecha-
nism through which an anomalous contribution in one dimen-
sion, usually on a boundary, is cancelled by a contribution
from the “bulk” manifold. This anomaly is not only important
in string theory and in particular in the case of intersecting
D-branes but also when we consider for example Dirac oper-
ators on various types of manifolds. In fact, this subject has
been studied in the context of topological phases of matter
as well as in various analyses of quantum field theory. For
recent discussions see [22–28] and for a historical approach
to the matter the reader can look into [29].

In particular it is useful to distinguish anomalies that
can be eliminated by inflow as being perturbative and non-
perturbative. It is well known that perturbative anomalies in
a spacetime of dimension d are related to a Chern–Simons
function in dimension d+1. A condensed matter example for
this type of inflow anomaly cancellation is the integer quan-
tum Hall effect. However, in the description of fermions on
manifolds with or without boundary, we encounter not only
perturbative anomalies but also non-perturbative ones. In
order to describe systems with such non-perturbative anoma-
lies, the Chern–Simons functional term is replaced by the η-
invariant of the Atiyah–Patodi–Singer theorem. Another sit-
uation is the one related to anomalous bosonic systems. Con-
densed matter systems often present a so called topologically
protected symmetry (SPT) phase in which we have a gapped
phase with a global symmetry groupG, and with the property
that the phase is topologically non-trivial but would become
trivial if the symmetry was explicitly broken. We can there-
fore re-interpret the anomaly inflow in this context to better
understand the SPT phases, provided that the role of the η

invariant of the non-perturbative fermion anomaly is replaced
with group cohomology. In all cases, as has been noted in
Ref. [23] the anomaly in dimension d is related to an invert-
ible topological field theory in dimension d + 1. The general
idea is that a gauge anomaly emerging in a lower dimension
(for example on a boundary) is being cancelled by a similar
inverse anomaly emerging in a higher dimension (say, in the
associated bulk space of that boundary). The inflow anomaly
that cancels the lower dimensional anomaly usually appears

due to topological features of the higher dimensional man-
ifold (unless we have a perturbative anomaly which can be
explained however also by means of Chern–Simons counter-
contributions). What I showed in this article was that we can
identify the relative freedom of choosing a coefficient struc-
ture in cohomology (to be compensated with Tor and Ext
groups in the exact sequence of the universal coefficient the-
orem) with an additional gauge symmetry, one previously
unknown, that, when implemented as such, results in addi-
tional terms that would annihilate the usual anomalies in the
lower dimensional manifold. These terms will appear in the
construction of the inner products (our bra–ket combinations
we use often in quantum mechanics) as modifications due to
the additional segments of the exact sequence of the univer-
sal coefficient theorem. In fact, as quantum states are perfect
indicators of the non-local and topological features of the
manifolds on which they are defined, it makes perfect sense
to encode topological information at the level of bra and
ket states. The associated pairing involving Dirac operators
therefore will lead us to the action functionals and partition
functions for the fermion system we wish to describe. How-
ever, if the background context involves topological features
that are non-trivial, in particular, such feature that can be
described by cohomology with various coefficients and we
have to impose a coefficient structure invariance by using the
universal coefficient theorem (and hence account for the Tor
and Ext terms) then our pairings will get a different form,
one that will modify the action functional and the partition
function accordingly. These modifications are found to be of
the type required to cancel the inflow anomaly terms. There
are several types of pairings between homology groups and
between homology and cohomology, and as quantum states
are naturally sensible to such topological features, it makes
sense to encode the (co)homological information in the form
of bra and ket representations. In principle the homology
groups Hk(C) relate to the shape of the manifold. The coho-
mology groups Hk(C) relate to the differential forms defined
over the manifold. Hence, if there is a manifold, say, M , char-
acterised by a sequence of homology groups then one can
define the integral
∫
M

ω (37)

characterised by the differential form ω and by the manifold
M . Integration can be seen as the pairing

Hk(M,R) × Hk(M,R) → R (38)

such that we have

([M], [ω]) →
∫
M

ω (39)

where this pairing is constructed with real coefficients and
this coefficient structure characterises also the measure of
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integration and implicitly the differential form ω. Here, [M]
represents a class in homology and [ω] represents a class in
cohomology. The pairing above however is an isomorphism
(one-to-one relation) only when this particular choice of coef-
ficients is made. For other coefficients this pairing may fail
to be an isomorphism. The correction is encoded in a term
controlled by the Ext and Tor groups

Hk(M,G) × Hk(M,G) → G (40)

where the map becomes

([M], [ω]) →
∫

{M}
ω ⊕

∫
Ext (Hn−1(C),G)

η. (41)

Here the first integral is over the manifold {M}, visible
when the coefficient structure G is used and the correction
appears as an integral of another differential form over the
extension group constructed from the homology with general
integer coefficients over a lower dimension. Here, I simply
used the universal coefficient theorem in cohomology. The
non-trivial topology however is not visible from the lower
dimension, and hence the simplification, but this simplifi-
cation is compensated by the extra terms appearing in the
action (the anomaly terms emerging from the requirement
of coefficient choice invariance). This shows that properties
defined on some more complex topological objects may be
acceptably described on simpler topological objects if con-
trolled changes in the groups used to describe them are being
employed. We see therefore that in the process of calculation
of pairings, the topological structure encoded in the ket and
bra vectors can be moved into the description of the pair-
ings, and that imposing invariance with respect to changes in
coefficients implies the introduction of additional terms in the
process of taking the inner product. In fact, in the description
of the spectra of Dirac operators, the encoding of topolog-
ical features in ket and bra vectors appears quite often in
Refs. [23,24], and that for a very good reason. My argument
here is that the construction of partition functions in the form
of pairings between fermion states as expressed in [23,24] is
dependent on specific choices of coefficients in cohomology,
in particular because the topological information encoded in
such states is in fact (co)homological in nature. Therefore the
emergence of a non-perturbative anti-anomaly encoded by
the η-invariant can be related to a modification of the pairing
used to construct the partition function, originating from the
application of the universal coefficient theorem between dif-
ferent coefficient structures in cohomology. Requiring invari-
ance with respect to such choices of cohomology results in
correction factors appearing in the form of the η-invariant.
Let us therefore start with a massive Dirac fermion 
 on a
D-dimensional manifold Y with charges fromU (1). We also
presume the existence of a conjugate field 
̄ that carries the
oppositeU (1) charges. The general action for such a fermion

can be written as

I = −
∫
Y
dDx

√
g
̄( /DY + m)
. (42)

Here we have a Dirac operator defined on the higher dimen-
sional manifold Y , with the form

/DY =
D∑

μ=1

γ μDμ (43)

with {γμ, γν} = 2gμν . If we assume the manifold Y has no
boundary, then the Dirac operator DY = i /DY is self-adjoint.

If, however, the manifold Y has a boundary, W = ∂Y then
we can represent the metric of Y as

ds2
Y = dτ 2 + ds2

W (44)

whereds2
W is the metric on the boundary with the time coordi-

nate τ parametrising the normal direction. We may adopt the
normalisation of [23] that τ is zero on the boundary and neg-
ative away from the boundary inside Y . Our massive fermion

 will have to obey a boundary condition in the case of a
manifold with boundary. This boundary condition will have
to satisfy several properties according to Ref. [23]. In par-
ticular the boundary condition is required to be elliptic but
not self-adjoint. Ellipticity of the boundary condition ensures
that the Dirac operator with such a boundary condition has
the properties required to make the Euclidean theory well
defined [23]. In particular a boundary condition on the Dirac
equation at τ = 0 is elliptic if, after dropping from the equa-
tion all lower order terms like mass terms and couplings to
background fields, or after taking the momentum along the
boundary to be very large, the equation and its adjoint have
no solutions that satisfy both our elliptic boundary condi-
tion and vanish for τ → −∞. The boundary condition we
therefore can impose will be

L : (1 − γ τ )
τ=0 = 0 (45)

where γ τ is the gamma matrix in the τ direction. We can
see that this boundary condition is elliptical but it is not
self-adjoint. In fact, this is a desirable property because any
attempt to create a self-adjoint boundary condition will fail
due to the surface term at τ = 0. Moreover a self-adjoint
boundary condition would not lead to a chiral potentially
anomalous system which we want to study [23]. However,
we still will need, if we are to describe a physically mean-
ingful system on the boundary W , that the dynamics of the
boundary modes is described by a self adjoint Hamiltonian.
If we continue W to the Lorentz signature and keep x0 as the
time coordinate, then the Hamiltonian that propagates a state
in the x0 direction must still be self-adjoint, and the bound-
ary condition L satisfies this requirement. Therefore we can
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re-write the action functional near the boundary as

I = −
∫
Y
dDx

√
g
̄γ τ

(
∂

∂τ
+ DW + γ τm

)

 (46)

where

DW =
∑
μ�=τ

γ τ γ μDμ (47)

is a self adjoint Dirac operator on W . We call the operator γ τ

a chirality operator. Following the rest of the constructions
from Ref. [23] one can easily observe that the Dirac equa-
tion has a mode localised near the boundary for m < 0 and
therefore we can write


 = χexp(|m|τ), (1 − γ τ )χ = 0, DWχ = 0 (48)

with χ a fermion field on the even dimensional boundary W .
The equation satisfied by this fermion is DWχ = 0 and hence
the fermion mode propagating along W , namely χ , is mass-
less. It also obeys the equation γ τχ = χ which makes this
fermion chiral. After regularisation we can easily quantise
this fermion. If we want to calculate the partition function
of the massive fermion 
 on the manifold Y with the above
boundary condition L we may imagine the coordinate τ as
a Euclidean time coordinate and the boundary W = ∂Y as a
time slice. The path integral over Y provides us with a phys-
ical vector state which we call |Y 〉. This would be a vector
state in the Hilbert space HW of W . The boundary condition
is also a state vector in HW namely |L〉. The partition func-
tion is therefore written as a pairing between these two states
in the form

Z(Y, L) = 〈L| |Y 〉 . (49)

In this construction the respective states encode also the topo-
logical features of both the bulk space and the boundary, as
well as the topological structure of the boundary condition.
In fact, as shown in [25], the boundary condition itself is
non-local. The pairing introduced above in the form of an
inner product encodes also topological information in such
a way that the end result preserves a series of symmetries, in
particular gauge symmetries. However, at this point nothing
has been said about the symmetry resulting from the changes
of coefficients in cohomology, and it is precisely there where
topological corrections may appear, in the form of Tor and
Ext contributions. If we introduce a large mass gap in the
Hilbert space HW as implemented by [23], by considering
the mass |m| very large, the path integral on the cylindrical
region (−ε, 0] ×W gives an Euclidean time evolution e−εH

where H is our Hamiltonian. With a very large mass, the
factor e−εH plays the role of a projector on the ground state
|�〉:
e−εH ∼ 〈�| |�〉 (50)

and in this limit |Y 〉 ∼ |�〉 with the vacuum state normalised
〈�| |�〉. This will allow us to write the partition function as

Z(Y, L) = 〈L| |�〉 〈�| |Y 〉 . (51)

This allows us to split the bulk part from the boundary part
(encoded by the boundary condition). The ground state |�〉
carries a phase ambiguity. The space of ground states LW

is a one dimensional subspace of the Hilbert space HW . Let
the background fields be characterised by a parameter space
W . If we transport the vacuum state in a loop on the parame-
ter space of the background, there is a non-trivial holonomy
which translates into a Berry phase for our quantum state.
Each point on the parametric space W combines with the
one dimensional space LW resulting in a complex line bun-
dle over W with non-trivial holonomies determined by the
Berry phases. As we can easily see, the numbers 〈�| |Y 〉
and 〈L| |�〉 which do not have a well defined phase can be
replaced with the following objects

|�〉 〈�| |Y 〉 ∈ LW , 〈L| |�〉 〈�| ∈ L−1
W (52)

which are well defined as they do not depend on the phase
of the state |�〉. However, this replaces the usual scalar inner
product with a vector and it has a dynamics inside a fibre
bundle. This amounts to the fact that we have to understand
the partition function of the chiral fermion χ on the bound-
ary W as a section of a line bundle L−1

W also known as the
determinant line bundle and not a simple complex number.
The factor 〈�| |Y 〉 is an exponentiated η-invariant that can be
seen as an element of LW . If the Dirac operator on W has no
zero modes, we can still avoid the line bundle description if
we replace the vacuum state |�〉 with one that has no phase
ambiguity. We can in fact use the so called Atiyah–Patodi–
Singer boundary condition noted in [23] “APS” where, with
such a condition, the path integral on Y corresponds to a state
vector |APS〉 ∈ HW . With |Y 〉 a multiple of |�〉 we obtain
the partition function as

Z(Y, L) = 〈L| |�〉 〈�| |APS〉
| 〈APS| |�〉 |2 · 〈APS| |Y 〉 (53)

where the inner product 〈APS| |Y 〉 is the partition function of
the massive fermion 
 onY with APS boundary condition. In
the limit of Y and W large compared to the massive fermion
Compton wavelength, we have

〈APS| |Y 〉 = exp(−iπηD) (54)

where ηD is the invariant defined by Atiyah–Patodi–Singer.
The remaining factor is simply the determinant of the
Dirac operator on the boundary |Det (D+

W )| for the massless
fermion χ (with positive chirality here). Therefore

Z(Y, L) = |Det (D+
W )| · exp(−iπηD). (55)

This is the standard approach analysed in particular in [23–
28] and is the basis of the inflow anomaly calculations for
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situations with non-trivial topology. However, to a similar
result one can arrive if one analyses what happens when, in
the context of the line bundles of the type LW , we change
the coefficients in cohomology that are supposed to detect
such topological structure. What we have here is an initially
cyclical manifold where acyclicity emerges due to the line
bundle structure encoded via the phase ambiguity. We can
eliminate it by either setting up a non-local boundary con-
dition like the APS boundary condition, and hence main-
taining the initial scalar product, or we can keep the line
bundles, work with the initial boundary conditions and the
state |�〉 but then correcting for the acyclicity emerging from
this approach. By acyclicity we mean basically the fact that in
general, cyclical coefficient structures used to detect topolog-
ical features make the topological “detector” (here, the coho-
mology) insensitive to cyclical structures. Therefore, using
a cyclical coefficient structure makes our manifold (where
a Berry phase exists) equivalent with a situation in which
no non-trivial Berry Phase holonomy exists, and no different
boundary conditions are required. However, this transition
doesn’t occur at no cost. In fact, the cost is precisely a Tor-
sion type correction of the inner product, which is by our
construction, cyclical, namely

exp(−iπηD). (56)

The way in which cyclic coefficients can hide information in
(co)homology, which however can be detected when chang-
ing coefficients, I will describe by referring to my own article
Ref. [26]. Following that, let me consider a complex bun-
dle, which in particular can represent also quantum states.
The connectivity of such a space is determined by means
of (co)homology with, say, complex coefficients. When the
algebraic structure of the coefficients in cohomology is mod-
ified, the accessible information about the connectivity of
our space may change. A specific non-trivial choice of coef-
ficients can therefore lead to a non-trivial superposition of
disconnected topological spaces which may result in a con-
nected topological space. Let me therefore consider two cir-
cular spaces S1 as explained in [26] and show that by a par-
ticular change in coefficients, the two circular spaces rep-
resenting together a disconnected space will become home-
omorphic to a single space and hence connected (albeit not
simply connected). Then, the resulting non-simply connected
space will be mapped by another change of coefficients into
a simply connected space homeomorphic to a single point.
The translation of this effect in the current problem is that
the topologically non-trivial effects encoded by the line bun-
dle can be eliminated by modifications in the coefficients of
cohomology, while demanding the invariance of the physics
with respect to such changes amounts to the emergence of
Torsion terms in the universal coefficient theorem which
modify our inner products by means of Tor integrals pre-
sented above. For this to occur, the particular choice of coef-

ficients must contain a certain twisted cyclicality. This would
correspond to our Berry phase in the present problem. For
simplicity I will discuss the process in terms of integer and
twisted cyclical integer coefficients. This will also suit very
well in the construction of the APS boundary condition and
the APS invariant η. Let us therefore start with a circle space
S1 and an abelian group A. Then let us define

ρ : π1S
1 → Aut (A) (57)

a representation of the fundamental group of the circle into
the abelian group A. Then, the homology of the circle
with coefficients in the group A twisted by the map ρ is
Hk(S1, Aρ). If one considers as I did in [26] a simple exam-
ple of A = Z3 and the map ρ : Z → Aut (Z3) as being

ρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 → 0

1 → 2

2 → 1

3 → 0

4 → 2

. . .

(58)

The cellular chain complex associated to the homological
representation of the circle is then

0 → Z[t, t−1] δ−→ Z[t, t−1] → 0 (59)

where δ is the boundary map which by definition repre-
sents the multiplication with (t − 1). This means that t and
t−1 define the required ring structure for the circular space.
Therefore we obtain the isomorphism

Z[π1S
1] ∼= Z[t, t−1] ∼= Z[Z] (60)

which simplifies the calculation. We now tensor with Z3

to obtain the homology with the desired coefficients over
Z[t, t−1]. Then we obtain

Z3
∼=−→ Z[t, t−1] ⊗Z[t,t−1] Z3

δ⊗I d−−−→ Z[t, t−1] ⊗Z[t,t−1] Z3
∼=−→ Z3. (61)

The first map is a → 1 ⊗ a and the last map is 1 ⊗ a → a.
We reduce to 1 ⊗ a before we apply the last map, the result
being

a → 1 ⊗ a → (t − 1) ⊗ a = 1 ⊗ (ta − a) → ta − a. (62)

The boundary map obtained after taking the tensor product
with Z3 is

D : Z3 → Z3 (63)

D(0) = 0

D(1) = t · 1 − 1 = 2 − 1 = 1

D(2) = t · 2 − 2 = 1 − 2 = 2 (64)
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(due to the nature of Z3) and hence it is the identity on Z3.
Therefore the homology groups of S1 with coefficients in Z3

twisted by the non-trivial map ρ are all trivial

H0(S
1;Z3)ρ ∼= H1(S

1;Z3)ρ ∼= · · · ∼= 0. (65)

Therefore a circle can be mapped into a point via a control-
lable change of coefficients in homology. A similar procedure
can merge two disjoint circles into one single circle. In order
to do this the coefficient group A will now be Z2 and the
twisting will have the form

ρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 → 1

1 → 0

2 → 1

3 → 0

4 → 1

. . .

(66)

The analysed space will now be a disjoint union of circles S1

namely X = S1 � S1. Using the Mayer–Vietoris theorem it
results that

Hq(S
1) ∼= Hq(S

1) ⊕ Hq(S
1). (67)

Using now the twisted coefficients as described above the
homology won’t be able to distinguish the two circles and
hence we arrive at the single circle case. Therefore we can
see that the coefficient groups in cohomology determine the
topological resolution of the cohomology, having the ability
to make certain cycles in the manifold invisible. In a sense, the
choice of a coefficient structure is similar to a choice of gauge,
but ultimately, if we are to restore gauge invariance we have to
construct a partition function that does not depend on various
choices of coefficient groups, at least on the topological side.
The path integral of the boundary fermion is, as mentioned
above, the determinant

Det (D+
W ). (68)

The fermion on the boundary has a gauge anomaly which
makes it a non-gauge invariant construct, but this anomaly
appears in a similar way when integrating the massive
fermion on the bulk space Y . The two anomalies, one origi-
nating from the higher dimensional space Y and its fermion,
the other from the boundary space W and its fermion can-
cel each other out. This is what we call an inflow anomaly
cancellation. The higher dimensional anomaly “flows into”
the lower dimensional boundary fermion and cancels the
anomaly already existing there.

If all the information we had would be that the coefficient
structure switches between cyclical and acyclical, this is all
we would have, but in fact, we have to deal with Dirac oper-
ators. The Hirzebruch signature theorem defined for closed
manifolds is a special situation of the more general index

theorem for elliptic operators. We can define a special opera-
tor acting on a space of differential forms which is known to
have the index identified with the signature of the manifold

I nd(O(S)) = Sign(M) (69)

where S is the space of differential forms on the manifold M .
We can construct an operator (and equivalently a boundary

value problem) called the signature operator which acts on
spaces of differential forms. If we construct the index of such
an operator we obtain by Hodge theory the signature of the
manifold. As stated above, in the case of manifolds, we might
think to develop a similar approach, namely to consider a
manifold X with boundary Y and construct a suitable elliptic
boundary value problem for the signature operator whose
index will be the signature of X.

However, as seen previously, the definition of boundary
conditions encounters topological obstructions which are
non-zero for the operator associable to the signature. The
observation by Atiyah, Patodi and Singer was that instead of
looking for local boundary conditions, it is more suitable to
look for global boundary conditions, as presented above. Fol-
lowing Ref. [27] we can write the operator near the boundary
as

σ

(
∂

∂u
+ B

)
(70)

where B = ±(d ∗ − ∗ d) is a self adjoint operator on Y . The
boundary condition requires that the boundary value φ|Y lies
in the subspace spanned by the eigenfunctions φλ of B with λ

negative. Let P be the orthogonal projection onto the space
spanned by the eigenfunctions of B with positive or zero
eigenvalues λ ≥ 0, then the boundary condition is simply

P(φ|Y ) = 0. (71)

The operator P is pseudo-differential and has a symbol
p(y, ξ) which is an idempotent matrix m × m of rank 1

2m
defined on the cotangent sphere bundle of Y . The symbol of
an operator is usually a scalar or matrix function associated
to an operator, that has properties that reflect the properties
of the original operator. The symbol of the operator usually
takes values in an algebraic structure that is simpler than
that of the original operators. If the operators act on function
spaces, for example on a function of n variables, or, in general
functions on n-dimensional manifolds, then the symbol can
be constructed as a function of 2n variables or functions on
a 2n dimensional manifold. The relation between symbols
and operators is at the foundation of quantum mechanics,
where the operator itself corresponds to a quantum observ-
able, while the symbol corresponds to a classical observable.
As described above the construction of the boundary condi-
tion appears in the form of an operator which has a symbol
that encounters obstructions to the implementation of the
elliptic boundary condition. The global boundary condition
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can however be implemented by a global operator (the equiv-
alent of a quantum operator) P(φ|Y ) = 0 which results in
a proper generalisation of the finite index and its relation
to the signature of the manifold. However, this construction
implies that the boundary condition has to be global and
implemented, as done before, by a quantum state obtained
via the application of a quantum operator. The observation
of this article is that in fact if such operators can be defined in
a specific cohomology, then altering the coefficient structure
has the same effect as the one of imposing a global condition.
In particular, requiring that the formulation of our theory is
invariant with respect to changes of coefficient structures (of
a certain type, say cyclical coefficients to normal ones) leads
to moving the topological features from the operators to the
form of the inner products used in the construction of the par-
tition function. Basically, by this invariance we obtain as a
result a shift of the information from the topology side of the
problem to the elliptic spectrum side, and hence to spectral
information contained in the eigenvalues of our operator. In
this sense, demanding invariance to changes of coefficients is
equivalent to the idea that topological information can both be
encoded in the properties of operators acting on differential
forms and in the spectrum of our elliptic operators. This may
seem just like another way of looking at the Atiyah–Singer
index theorem, but it is much more than that. The principle
of coefficient change invariance introduces a much broader
type of gauge symmetry in physics problems, one in which
problems unsolvable with one coefficient structure become
solvable with another. An intriguing application that I was
thinking at when writing this article was an alternative way
of looking at the cryptographic protocols based on elliptic
curves. A symmetry linking cohomology theories with differ-
ent (elliptic curve) coefficients would allow the mapping of
cryptographic hard problems to cryptographic simple ones.
Moreover, the universality of such a new symmetry implies
that such transformations can always be performed. Invari-
ance to choices of coefficients must be a universal property
and therefore, for any hard elliptic curve cryptographic prob-
lem there must be an equivalent trivial problem “out there”.
Finding that connection however is not trivial. This however,
is not the main theme of this article and therefore further dis-
cussions on this subject will be left for another time. How-
ever, the modification of the inner product due to the inclusion
of the Tor terms presented above, amounts to a global bound-
ary condition of the type introduced in [27]. As shown in [26]
the index of the Dirac operator can be calculated in terms of
the η invariant. However, the index of the Dirac operator can
be written in a cohomological form as shown in [27]. With
this, a cohomological reformulation of the Atiyah–Singer
index theorem is possible and results in an identification of
the η contribution to the anomaly with a cohomological term
appearing in the index theorem. Through that, the coefficient
structure enters the construction of the η invariant. Demand-

ing invariance of our construction to changes in the coeffi-
cient structure is overall a very large symmetry. Indeed, as
shown previously, the coefficient structure can be of many
types, including elliptic curves, various groups, Lie groups,
the real numbers, the rational numbers, p-adic numbers, etc.
What will be relevant here will be to impose this invariance
when moving from, say, Z or R to a periodic group like Zp.
In this context the modification amounts to a contribution to
η that must restore the type of periodicity that becomes invis-
ible due to the change in coefficients, leading to precisely the
expected type of correction, namely

ηD =
∑
k

sign(λk) (72)

with the eigenvalues of the Dirac operator λk . We consider
a vector bundle E over a manifold Y with the self-adjoint
elliptic first order operator A : C∞(Y, E) → C∞(Y, E).
The elliptic operator has a discrete real spectrum of eigen-
values λ with the respective eigenfunctions φλ. The global
boundary condition is now implemented by means of a pro-
jection operator P that takes the functions of C∞(Y, E) and
projects them on the space spanned by the eigenfunctions
corresponding to positive or null eigenvalues, φλ, λ ≥ 0. We
can construct the operators

D = ∂

∂u
+ A

D∗ = − ∂

∂u
+ A (73)

by considering the cylindrical construction Y ×R
+ of Y with

the half-line u ≥ 0. As shown in [27] the projector opera-
tor implementing the global boundary condition is pseudo-
differential. If we define B = A + H where H is the pro-
jection on the null space of A, then B is invertible and |B|,
the positive square root of B2 is pseudo-differential. With
this P = 1

2 (B + |B|) as expected. For the operator D we
therefore can impose the global boundary condition

P · f (∗, 0) = 0 (74)

namely we eliminate all the positive and null eigenvalues
from the spectrum. Such a condition can be re-written in the
form of a inner product, as explained in [27] in the form
∫
Y
( f (y, 0), φλ(y)) = 0, ∀λ ≥ 0. (75)

For the adjoint operator the boundary condition becomes

(1 − P) · f (∗, 0) = 0. (76)

It is important to make some statements about the Dirac oper-
ators taken from [28]. First, Dirac operators can be seen as
a result of the quantisation of the theory of connections, and
the super-trace of the heat kernel of the square of a Dirac
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operator is the quantisation of the Chern character of the cor-
responding connection. The index theorem by Atiyah and
Singer is therefore a statement about the relation between
the heat kernel of the square of a Dirac operator and the
Chern character of the associated connection. Such a rela-
tionship holds at the level of cohomology and at the level
of differential forms. The heat operator e−t D2

associated to
a Dirac operator D can be seen as an interpolation between
the identity operator when t = 0 and the projection on the
kernel of the Dirac operator when t = ∞. Dirac operators
on a compact Riemannian manifold M are defined within the
context of the Clifford algebra bundle C(M). The Clifford
algebra at a point x ∈ M is Cx (M), namely the associative
complex algebra generated by cotangent vectors α ∈ T ∗

x (M)

with its defining relation being

α1 · α2 + α2 · α1 = −2(α1, α2) (77)

where (α1, α2) is the Riemannian metric on the cotangent
bundle to M . Given an orthonormal basis ei of TxM with
dual basis ei , we can say that the Clifford algebra Cx (M) is
generated by elements ci satisfying

(ci )2 = −1

ci c j + c j ci = 0, ∀i �= j. (78)

We can regard the Clifford algebra above as a deformation of
the exterior algebra ∧T ∗

x M . We can define the symbol map
as a bijection of the form

σx (c
i1 · · · ci j ) = ei1 ∧ · · · ∧ ei j . (79)

The inverse of this map we can call

cx : ∧T ∗
x M → Cx (M). (80)

If we have a complex Z2 graded complex bundle on M , let’s
call it E , resulting in the splitting

E = E+ ⊕ E− (81)

we call E a bundle of Clifford modules if there is a bundle
map c : T ∗M → End(E) such that

c(α1)c(α2) + c(α2)c(α1) = −2(α1, α2)

c(α) : E+ ↔ E−. (82)

This means that Ex is a Z2 graded module for the algebra
Cx (M). If M is even dimensional the Clifford algebra is
simple and we have a decomposition

End(E) ∼= C(M) ⊗ EndC(M)(E). (83)

If we consider an even-dimensional case, and M is a spin
manifold, there is a Clifford module S called spinor bun-
dle such that End(S) ∼= C(M). On such a manifold, any
Clifford module can be written as a twisted spinor bundle
W ⊗ S with W = HomC(M)(S, E). Then we can define

�M ∈ �(M,C(M)) as the chirality operator in C(M) given
by

�M = idim(M)/2c1 · · · cn (84)

so that �2
M = 1. If we regard E as a vector bundle on M and

take �(M, E) the space of smooth sections of E we consider

A(M, E) = �(M,∧T ∗M ⊗ E) (85)

the space of differential forms on M with values in E . If E is
a Clifford module then by the symbol map, the space of sec-
tions is isomorphic to the space of bundle valued differential
forms

�(M, End(E)) ∼= A(M, EndC(M)(E)). (86)

Therefore a section k ∈ �(M, End(E)) corresponds to a
differential form σ(k) with values in EndC(M)(E). Now, if M
is a spin manifold and E = W⊗ S is a twisted spinor bundle,
then σ(k) is a differential form with values in End(W). A
Clifford connection on a Clifford module E is a connection
∇E on E satisfying the formula

[∇E
X , c(α)] = c(∇Xα) (87)

where α is a 1-form on M , X is a vector field, and ∇Xα is
the Levi Civita derivative of α. Then the Dirac operator is
associated to the Clifford connection ∇E by the composition
of arrows

�(M, E)
∇E−−→ �(M, T ∗M ⊗ E)

�−→ (M, E). (88)

With respect to a local frame ei of T ∗M , D can be written as

D =
∑
i

ci∇E
ei . (89)

The heat kernel of the square of the Dirac operator is then
〈
x |e−t D2 |y

〉
∈ Hom(Ey, Ex ) (90)

and it can also be written as

(e−t D2
s)(x) =

∫
M

〈
x |e−t D2 |y

〉
s(y)|dy|, ∀s ∈ �(M, E)

(91)

where |dy| is the Riemannian measure on M . There exists

an asymptotic expansion for
〈
x |e−t D2 |y

〉
for small t with

dim(M) = n = 2l of the form

〈
x |e−t D2 |y

〉
∼ (4π t)−l e−d(x,y)2/4t

∞∑
i=0

t i fi (x, y) (92)

with fi a sequence of smooth kernels for the bundle E given
by local functions of the curvature of ∇E and Riemannian
curvature of M . d(x, y) is the geodesic distance between x
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and y. The small time differential form obtained as the image
of the symbol map

σ(
〈
x |e−t D2 |x

〉
) ∈ A(M, EndC(M)(E)) (93)

contains a series of differential forms. If g is a unimodular
Lie algebra then we define an analytic function on g by

jg(X) = det

(
sinh(ad(X)/2)

ad(X)/2

)
(94)

as the Jacobian of the exponential map exp : g → G. The
square root of the Jacobian would be defined in the neigh-
bourhood of 0 ∈ g as j1/2

g (0) = 1. With this, considering the
Riemannian curvature matrix of M , R ∈ A2(M, so(T M)),
we can choose a local orthonormal frame ei of T M and con-
sider the matrix R with coefficients in the form of 2-forms
as

Ri j = (Rei , e j ) ∈ A2(M). (95)

Then we can use the matrix in the definition of the Jacobian
for the transformation and obtain

Jg(R) = det

(
sinh(R/2)

R/2

)
(96)

where the matrix under the determinant is a matrix with
even degree differential form coefficients. The determinant is
invariant under conjugation by invertible matrices and there-
fore it is an element of A independent of the frame of T M .
The zero form component of J (R) is by definition 1 and we
can define the Â genus of the manifold M as

Â = J (R)−1/2 = det1/2
(

R/2

sinhR/2

)
∈ A(M). (97)

This is a closed differential form whose cohomology class is
independent of the metric. If we use a Clifford module E on
M and we note the connection also by E and the curvature
FE , then the twisting curvature FF/S of E is defined by the
formula

FE/S = FE − RE ∈ A(M, EndC(M)(E)) (98)

where RE (ei , e j ) = 1
2

∑
k<l(R(ei , e j )ek, el)ckcl If M is a

spin manifold with spinor bundle S and E = W ⊗ S, FE/S is
the curvature of the bundle W then for a ∈ �(M,C(M)) ∼=
�(M,∧T∗M), and noting the k-form component of σ(a) as
σk(a) we have

〈
x |e−t D2 |x

〉
∼ (4π t)−l

∞∑
i=0

t i ki (x) (99)

with coefficients ki ∈ �(M,C(M) ⊗ EndC(M)(E)) where
σ j (ki ) = 0, ∀ j > 2i and σ(k) = ∑l

i=0 σ2i (ki ) ∈
A(M, EndC(M)(E)). Then

σ(k) = det1/2
(

R/2

sinh(R/2)

)
exp(−FE/S) (100)

If we define the index of D to be the integer

ind(D) = dim(ker(D+)) − dim(ker(D−)) (101)

where D± is the restriction to �(M, E±) then by McKean
and Singer formula, the index is homotopy invariant. If E is a
Z2 graded vector space and A ∈ End(E) then the supertrace
Str(A) is the trace of the operator �A, where � ∈ End(E)

is the chirality operator which is equal to ± on E±. Then for
each t > 0 the index of D is equal to

ind(D) = Str(e−t D2
) =

∫
M
Str

〈
x |e−t D2 |x

〉
|dx | (102)

and therefore the index of D is defined by means of the restric-
tion to the diagonal of the heat kernel of D2 at arbitrarily small
times, and these diagonal terms of the heat kernel which are
determined entirely in terms of local formulas in the curva-
ture of the connection ∇E and the Riemann curvature of M .
We therefore arrive at

ind(D) = (4π)−n/2
∫
M
Str(kn/2(x))dx (103)

and therefore because

σ(kn/2(x))[n] ∈ An(M, EndC(M)(E))

∼= �(M, EndC(M)(E)) (104)

we have

σ(kn/2(x))[n] = det1/2
(

R/2

sinh(R/2)

)
exp(−FE/S).

(105)

In order to see how invariance with respect to coefficients
in cohomology brings the inflow anomaly compensation, we
have to look at how to understand characteristic classes and
how their dependence on the coefficient structures manifest
itself. In general, when we describe a G-bundle for a certain
group G, the group itself is a defining part of the fibre bun-
dle. The group brings in information and structure while the
basis space (let us call it X) is lifted via the fibres and its non-
trivial global structure. Such bundles over the basis space
X, together with the principal group G, determines the bun-
dle but its characterisation is usually non-trivial. However, it
turns out that there exists a classifying space of the group G
called BG and in fact the morphisms from the basis space
to BG completely classify the G-bundles over X themselves.
Moreover, if we introduce an abelian topological group A we
can define the cohomology of our classifying space BG as
a morphism from the classifying space to the abelian topo-
logical group A. The same type of classification can be done
towards the de-looping of the abelian group A, call it Bn A.
Indeed we have

Hn(BG, A) ∼= π0(H(BG,Bn A)). (106)
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The characterisation of the bundle therefore can be done by
means of its cohomology with coefficients in G which is gen-
erally complicated, or by means of an (eventually spectral)
decomposition of the cohomology resulting in the cohomol-
ogy of BG with coefficients in a simpler group A or equiv-
alently Bn A. Such a cohomology will contain equivalence
classes of cocycles which describe the bundle. Therefore a
characteristic class will be a cohomology equivalence class
emerging from the following sequence

X
c−→ BG k−→ Bn A (107)

where c represents the map from X toBG and it classifies the
G-bundle. At the same time, the class k[c] ∈ Hn(X, A) is a
characteristic class of the bundle. Therefore the characteristic
classes are obtained depending on the coefficient structure of
their original cohomology.

5 Conclusion

As a conclusion, in this article I introduce the first ideas
regarding an alternative method of anomaly cancellation
based on anti-anomalies introduced by changing the coef-
ficient structure in the cohomological theories defining the
integrals performed over the dual currents over D-branes.
Thinking of coefficients in cohomology as of anomaly can-
cellation tools would provide us with alternatives to stan-
dard anomaly cancellation relying usually only on a higher-
dimensional perspective.
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