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Abstract We describe a method to generate scalar–tensor
theories with Weyl symmetry, starting from arbitrary purely
metric higher derivative gravity theories. The method con-
sists in the definition of a conformally-invariant metric ĝμν ,
that is a rank (0,2)-tensor constructed out of the metric ten-
sor and the scalar field. This new object has zero conformal
weight and is given by φ2/�gμν , where (−�) is the confor-
mal dimension of the scalar. As gμν has conformal dimension
of 2, the resulting tensor is trivially a conformal invariant.
Then, the generated scalar–tensor theory, which we call the
Weyl uplift of the original purely metric theory, is obtained
by replacing the metric by ĝμν in the action that defines the
original theory. This prescription allowed us to define the
Weyl uplift of theories with terms of higher order in the Rie-
mannian curvature. Furthermore, the prescription for scalar–
tensor theories coming from terms that have explicit covari-
ant derivatives in the Lagrangian is discussed. The same
mechanism can also be used for the derivation of the equa-
tions of motion of the scalar–tensor theory from the original
field equations in the Einstein frame. Applying this method of
Weyl uplift allowed us to reproduce the known result for the
conformal scalar coupling to Lovelock gravity and to derive
that of Einsteinian cubic gravity. Finally, we show that the
cancellation of the volume divergences in the theory given
by the conformal scalar coupling to Einstein–Anti-de Sitter
gravity is achieved by the Weyl uplift of the original theory
augmented by counterterms, which is relevant in the frame-
work of conformal renormalization.
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1 Introduction

In recent times, conformally invariant gravity theories have
attracted a lot of attention in different branches of physics and
mathematics. These theories are invariant under Weyl trans-
formations, i.e., local scale transformations of the metric,
gμν → e2σ(x)gμν , that preserve the angles and not the dis-
tances. Their applicability spans a wide range of topics, e.g.
in renormalization group (RG) flows, string theory, critical
phenomena etc. Recently, motivated by the Gauge/Gravity
duality [1,2], it has been pointed out the significance that
bulk Weyl symmetry has in the construction of gravity theo-
ries with well defined AdS asymptotics consistent with Holo-
graphic Renormalization [3–12]. Such theories have a well
defined Dirichlet variational principle with respect to the con-
formal structure, are free from the IR divergences due to the
infinite volume element and their black-hole solutions have
finite asymptotic charges and free energy. The simplest exam-
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ple of local scale invariance in the context of gravity is given
by the four-dimensional Conformal Gravity (CG) [13–15],
that admits Einstein gravity as part of its solution space.1

Though CG is a higher derivative theory that allows ghosts
(modes with negative kinetic energy), it has better UV behav-
ior than Einstein gravity [29–32].

Now, modified theories of gravity have been subjects of
interest over a long time, the main reason being that Gen-
eral Relativity (GR) is not renormalizable and hence can
not be traditionally quantized. Interestingly, it turned out
that the renormalization at one-loop requires the Einstein–
Hilbert (EH) action to be corrected by terms of higher order
in the Riemannian curvature [31,33]. Also, it was realized
that the effective low energy gravitational action demands
higher order curvature invariants as well, when quantum cor-
rections are taken into account [34–36]. Along this line of
constructing modified gravity theories, one of the most well-
known alternatives to GR, is given by scalar–tensor theory
[37–42].

In this context, one interesting extension, which is an
active field of research, is that of conformal couplings of
scalar fields to gravity theories, or in other words, the con-
struction of Weyl–invariant scalar–tensor theories, which is
the main focus of this paper. A notable feature of this class
of theories is the presence of black holes with either primary
or secondary hair, that motivated a great amount of work
on the subject [43–47]. Important work was done by Oliva
and Ray in Ref. [48] in the context of generalized Lovelock
gravity, where they constructed a four-rank tensor involv-
ing the curvature and the field derivatives, that transforms
covariantly under Weyl rescalings, and which was used to
construct the scalar conformal couplings to Lovelock the-
ory.

Furthermore, the significance of bulk Weyl symmetry in
the defintion of geometric objects with well-defined asymp-
totics in metric theories has been signaled in a series of
papers [27,49,50]. In the same context, the authors in Ref.
[51], have shown that the requirement of full local Weyl
invariance for the bulk fields for a conformally coupled
scalar–tensor theory with quartic potential, renders the action
finite. In this paper, we present a method for obtaining the
scalar conformal coupling to any diffeomorphism-invariant
(purely metric) gravity theory, thereby generalizing what has
been obtained in a case by case basis in Refs. [43–48,51].
This furthermore allows us to construct actions which when
coupled to purely metric theories exhibit interesting fea-
tures such as scalarization. Our proposal will be supported
by a series of examples, including the cases of Einstein,
Lovelock and other higher curvature gravity (HCG) theo-
ries.

1 For a selection of references on CG, see Refs. [16–27]. See also earlier
works in Refs. [28–30].

The paper is organized as follows. In Sect. 2, we present
the prescription that will allow us to promote any purely met-
ric Lagrangian to a Weyl invariant scalar–tensor theory. In
Sect. 2.1, we will provide a trivial example of our method for
the EH–Anti-de Sitter (EH–AdS) case in generic D dimen-
sions. In Sect. 3, we will show how this prescription can
be applied in order to derive the most generic scalar con-
formal couplings to higher curvature gravity theories and
provide examples that include Lovelock theories (Sect. 3.1)
and quasitopological gravity theories (Sect. 3.2). In Sect. 4,
we will discuss about the relation between Weyl symme-
try and AdS counterterms through the concrete example of
Einstein–AdS action written in MacDowell–Mansouri form
in D = 4, being Weyl-uplifted following our prescription.
Section 5 will be devoted for the summary of our results and
future developments.

2 Scalar–Tensor Weyl uplift of metric theories

In this section, we present a general prescription for con-
structing Weyl-symmetric scalar–tensor theories of gravity,
starting from purely metric diffeomorphism-invariant theo-
ries in arbitrary dimensions.2

The prescription considers purely-metric gravity actions
of arbitrarily high order in derivative and Riemannian curva-
ture, of the form

I =
∫

dDx
√−gL

(
Rμν

ρσ ,∇λRμν
ρσ , . . . ,∇λ1

· · · ∇λn Rμν
ρσ , gμν

)
. (2.1)

Considering the local Weyl transformations of the metric and
the scalar field

gμν → e2σ gμν φ → e−�σ φ (2.2)

applied in the arbitrary diffeomorphism-invariant action
above, we construct Weyl–invariant scalar–tensor gravity
theories of the same order in derivative for a fixed scaling
dimension of the scalar field.

In particular, the conformal dimension � of the scalar
field is fixed by requiring the global scale invariance of the
canonical kinetic term in the action. In D-dimensions this
term is given by

I =
∫

dDx
√−g

1

2
∂μφ∂vφg

μν. (2.3)

2 The equivalence between scalar–tensor theories and higher curvature
theories has been explored by Starobinsky in [52] and Wands in [53].
In those cases the scalar–tensor theory is dynamically equivalent to
the higher–curvature gravity theory as they generically have additional
degrees of freedom; unlike in our case, where the theory obtained has an
extra scalar degree of freedom, albeit having also an additional gauge
symmetry which can remove it through gauge–fixing.
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Then, under the transformations (2.2), considering a con-
stant σ , the different components of the action (2.3) change
as

gμν → e−2σ gμν,
√−g → eDσ √−g, ∂μ → ∂μ,

∂μφ → e−�σ ∂μφ. (2.4)

Therefore, using Eqs. (2.4), the action is transformed as

I → e(D−2�−2)σ I. (2.5)

But the action (2.3) should remain Weyl–invariant, thereby
leading to the value

(D − 2� − 2)σ = 0 ⇒ � = D − 2

2
. (2.6)

Then, for the scalings given above (2.2), one defines the
conformal invariant metric as

ĝμν = φ2/�gμν. (2.7)

It is easy to check that the Eq. (2.7) is indeed confor-
mal invariant by simply replacing φ and gμv by their Weyl–
transformed counterpart given in Eq. (2.2) as follows

ĝμν = φ2/�gμν → (e−�σ φ)2/�e2σ gμν =��e−2σ φ2/���e2σ gμν = ĝμν

(2.8)

Indeed, as the metric tensor has conformal weight 2 in
every dimension, the resulting conformal invariant metric
ĝμν is a rank-(0, 2) tensor which is unchanged under Weyl
symmetry. Therefore, any tensor constructed out of the ĝμν

will be Weyl invariant, that will be the guiding principle for
our analysis.3

In particular, the prescription that will be used for the
derivation of a Weyl–invariant scalar–tensor theory, is based
on the replacement of the original metric gμν by ĝμν in the
action (2.1). Explicitly, this class of theories has the generic
form given by

I [ĝμν] =
∫

dDx
√

−ĝL
(
R̂μν

ρσ , ∇̂λ R̂μν
ρσ , . . . , ∇̂λ1

· · · ∇̂λn R̂μν
ρσ , ĝμν

)
, (2.9)

where R̂μν
ρσ and ∇̂λ are the Riemann tensor and the covariant

derivative, respectively, computed with the conformal invari-
ant metric. One important conceptual clarification is that, in
the action of Eq. (2.9), the hatted quantities are not the metric,
the Riemann tensor and the covariant derivative, but rather
they are tensors and differential operators with the same func-
tional forms as the un-hatted objects, but where instead of
using the metric tensor to define them, one uses ĝμν . Namely,

3 Note that the method of introducing a gauge symmetry by adding a
compensating field is sometimes known as the Stuckelberg trick, which
was used in Refs. [54,55] to construct conformal invariant scalar-tensor
actions in 4D.

the Weyl uplift consists on maintaining the functional form
of the Lagrangian density while replacing all the geometric
objects by their hatted counterparts.

In order to see more explicitly how the prescription works
for Weyl-uplifting an arbitrary metric theory, which may con-
tain explicit covariant derivative terms, contractions of the
Riemannian curvature to arbitrary order, explicit dependence
on the metric tensor and combinations thereof, it is conve-
nient to examine the uplift of the Riemann tensor and the
covariant derivative separately.

Firstly, we consider the Riemann tensor evaluated on the
conformally invariant metric. From the transformation laws
given in Ref. [53], we derive the identity that

R̂μν
λρ = Rμν

λρ

[
φ2/�gμν

]
= φ−D/�Sμν

λρ , (2.10)

where Sμν
λρ is defined in Ref. [48] as

Sμν
λρ = φ2Rμν

λρ − 4

�
φδ

[μ
[λ ∇ρ]∇ν]φ

+4(� + 1)

�2 δ
[μ
[λ ∇ρ]φ∇ν]φ − 1

�2 δ
μν
λρ ∇κφ∇κφ,(2.11)

and its partial and full traces are given by

Sμ
ν = δλ

ρS
μρ
νλ = φ2Rμ

ν − 1

�
δμ
ν ∇κφ∇κφ − φ

�
�φδμ

ν

−2φ∇ν∇μφ + 2(� + 1)

�
∇νφ∇μφ, (2.12)

and

S = 1

2
δ
μν
ρλ S

λρ
μν = φ2R − 4(D − 1)

(D − 2)
φ�φ, (2.13)

respectively. On the same footing, the Levi-Civita connection
of the conformally invariant metric reads

�̂
μ
νλ = �

μ
νλ + �

μ
νλ, (2.14)

where

�
μ
νλ = 1

�φ

(
δ
μ
λ ∂νφ + δμ

ν ∂λφ − gνλg
μσ ∂σ φ

)
. (2.15)

Then, when computing the Weyl-uplifted covariant deriva-
tive of a tensor, one has to use the standard rules for the
covariant derivative, but considering the modified connec-
tion, i.e.,

∇̂ν = ∇ν(�̂
μ
νλ). (2.16)

For example, its action on contravariant and covariant vec-
tors, obtains the form

∇̂νv
μ = ∂νv

μ + �̂
μ
νλv

λ = ∇νv
μ + �

μ
νλv

λ, (2.17)

and

∇̂νwμ = ∂νwμ − �̂λ
νμwλ = ∇νwμ − �λ

νμwλ, (2.18)

respectively.

123



  373 Page 4 of 12 Eur. Phys. J. C           (2024) 84:373 

Analogously, the equations of motion of the Weyl-uplifted
theory can be obtained directly from those of the original
theory, replacing the metric by the conformal-invariant met-
ric and evaluating the Riemannian curvatures and covariant
derivatives using ĝμν with the explicit dependence on the
scalar. The derivation is straightforward due to the relation
between gμν and ĝμν , as shown in Eq. (2.7). In particular,
starting from the action

I
[
ĝμν

] = I
[
gμν, φ

]

=
∫

dDx
√

−ĝL
(
R̂μν

ρσ , ∇̂λ R̂μν
ρσ , ĝμν

)
, (2.19)

we obtain the relation between the equations of motion
(EOM) of the metric field in the Weyl and in the Einstein
frame as

δ I

δgμν

= δ I

δĝστ

δĝστ

δgμν

= φ2/� δ I

δĝμν

, (2.20)

or equivalently

εμν
(
gλρ, φ

) = φ2/�ε̂μν
(
ĝλρ

)
, (2.21)

where εμν
(
gλρ, φ

) = δ I
δgμν

. Here, ε̂μν

(
ĝλρ

)
describes field

equations of the conformally invariant metric tensor in the
Einstein frame, but in the Weyl frame it encodes a certain
combination of the scalar field φ and the physical metric
gμν , as ε̂μν

(
ĝλρ

) = ε̂μν
(
φ2/�gλρ

)
. In a similar way, for the

EOM of the scalar field we get

δ I

δφ
= δ I

δĝμν

δĝμν

δφ
= 2

�φ
ε̂
(
ĝλρ

)
, (2.22)

where ε̂
(
ĝλρ

) = ĝμνε̂
μν

(
ĝλρ

)
is the trace of the EOM ten-

sor in the Einstein frame. Interestingly enough, taking into
account Eq. (2.21) and the definition ĝμν = φ2/�gμν , we get
that

ε̂
(
ĝλρ

) = ĝμνε̂
μν

(
ĝλρ

)
= gμνε

μν
(
φ2/�gλρ

)
= ε

(
gλρ, φ

)
. (2.23)

Defining the energy–momentum tensor of the scalar sector
as the variation of the non-minimally-coupled scalar action
with respect to the metric (Tμν = εμν

(
gλρ, φ

)
), the EOM of

the metric tells us that the scalar is a stealth, i.e., Tμν = 0.
Moreover, the EOM of the scalar is given by the trace of Tμν ,
which vanishes identically due to the stealth condition. This
results is compatible with the tracelessness requirement that
any conformally invariant theory should satisfy.

The previous expressions constitute the building blocks
for obtaining the conformal scalar couplings to any metric
theory, and in the following sections, we will study different
interesting examples.

It may be argued that the theories of the form of Eq. (2.9)
are trivial, or that they have fake Weyl symmetry, as the scalar
degree of freedom is simply the result of a field redefinition,

and it is a redundant degree of freedom that can be gauged
away by fixing the Weyl frame to be the frame where the
metric is equal to the conformally invariant metric. Neverthe-
less, in cases when the boundary condition for the spacetime
is fixed – e.g., having a Fefferman–Graham expansion near
the AdS boundary – the physical metric is the one associated
with the boundary behavior, which is the case in holography.
Furthermore, for probes that couple to the geometry in the
scalar–tensor theory, i.e., the standard Nambu–Goto coupling
to the worldline of a point-like particle or a cosmic brane, the
metric to which they couple is gμν and not ĝμν , and therefore
the physical situations described by both cases are no longer
equivalent.

Having clarified these issues, we provide examples of dif-
ferent scalar–tensor theories that can be constructed follow-
ing the prescription described previously.

2.1 Einstein–AdS gravity in the Weyl frame

We begin by examining the Weyl uplift of Einstein–AdS
gravity, whose action reads

IEH =
∫

dDx
√−g

(
R − 2�

)
. (2.24)

Based on the recipe described in the previous section, we
consider the scalar–tensor action given by

I [ĝμν] =
∫

dDx
√

−ĝ
(
R̂ − 2�

)
, (2.25)

where

R̂ = 1

2
δ
μν
ρλ R̂

ρλ
μν (2.26)

and R̂ρλ
μν is defined in Eq. (2.10). Then, from Eqs. [(2.7), (2.10)–

(2.13)], we have that√
−ĝ = φD/�√−g (2.27)

and

R̂ = φ−D/�S = φ−D/�

(
φ2R − 4(D − 1)

(D − 2)
φ�φ

)
. (2.28)

Thus, we arrive at an expression for the action written as4

I
[
ĝμν

] = I
[
φ, gμν

] =
∫

dDx
√−g

×
[
φ2R − 4(D − 1)

(D − 2)
φ�φ − 2�φD/�

]
. (2.29)

Notice that the resulting action is written in terms of a
conformally covariant differential operator dubbed the D-
dimensional Yamabe operator [55,56]. One can recover the

4 The trick to relate Einstein gravity with the non-minimal scalar–tensor
theory has been used previously, e.g., see Ref. [54].
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canonical kinetic term of the scalar when integrating by parts,
and then the action can be written as

I
[
φ, gμν

] = 8(D − 1)

(D − 2)

∫

M
dDx

√−g

×
[

(D − 2)

8(D − 1)
φ2R + 1

2
∂μφ∂μφ − (D − 2)

4(D − 1)
�φ

2D
D−2

]

−4(D − 1)

(D − 2)

∫

∂M
dD−1x

√|h|nμ

(
φ∂μφ

)
. (2.30)

In this form, one recognizes in the bulk term the standard
non-minimally-coupled scalar–tensor theory, which is invari-
ant under Weyl transformation up to a boundary term [51].
The resulting boundary term restores the Weyl symmetry in
order to recover the Yamabe operator (2.29).

In order to derive the EOM of the theory, as discussed
in the previous section, one starts with the Einstein’s field
equations

ε̂μν(ĝ) = R̂μν(ĝ) − 1

2
R̂ĝμν + �ĝμν = 0. (2.31)

Then, replacing the conformal invariant metric and using the
Weyl transformation laws of the Riemann curvature and its
contractions, one obtains

ε̂μν

(
φ, gμν

) = Rμν − 1

2
Rgμν + �φ2/�gμν

− 2

φ
∇μ∇νφ + D

�φ2 ∇μφ∇νφ

− 1

�φ2 ∇ρφ∇ρφgμν + 2

φ
�φgμν = 0,

(2.32)

which up to the overall factor φ2/� recovers the EOM for the
scalar–tensor theory as given in Ref. [51]. Taking the trace
of the Eq. (2.32), we obtain

�φ − D − 2

4 (D − 1)
φR + D

2 (D − 1)
�φ

2
�

+1 = 0, (2.33)

what is the EOM of the scalar field, in complete agreement
with Ref. [51].

Even though this is a rather trivial example of the relation
between the Einstein–Hilbert action and the conformally-
invariant and non-minimally coupled scalar–tensor theory, it
provides the basic principles and necessary tools for the gen-
eralization of the prescription for arbitrary diffeomorphism-
invariant gravity theories and their corresponding Weyl
uplifted scalar–tensor counterparts.

3 Weyl uplift of higher curvature gravity theories

An important class of theories whose corresponding Weyl-
symmetric scalar–tensor versions can be obtained directly
with our procedure are higher-curvature theories. The generic

case, evaluated on the conformally-invariant metric, can be
written as

I
[
ĝμν

] =
∫

dDx
√

−ĝL
(
ĝμν, R̂

μ
νρλ

)
, (3.1)

where the Lagrangian contains all possible contractions
between the metric and the Riemann tensor, up to an arbitrary
order. Decomposing this action in orders of the Riemann ten-
sor, we can write

I
[
φ, gμν

] =
∫

dDx
√

−ĝ

(
λ0,1�

−2 + λ1,1 R̂

+
∞∑
n=2

∑
j

λn, j�
2n−2R̂(n, j)

)
, (3.2)

where R̂(n, j) is a scalar constructed out of a particular con-
traction of n Riemann tensors of the form R̂μν

ρλ , and the sum
over j is carried over all possible inequivalent contractions.

Considering the relation between R̂μν
ρλ and Sμν

ρλ given in
Eq. (2.10), we have that the uplifted scalar–tensor theory
obtained from Eq. (3.2) can be written as

I
[
φ, gμν

] =
∫

dDx
√−g

[
λ0,1�

−2φ
D
� + λ1,1

×
(

φ2R − 4(D − 1)

(D − 2)
φ�φ

)

+
∞∑
n=2

∑
j

λn, j�
2n−2φ−(n−1) D

� S(n, j)

]
, (3.3)

where the S(n, j) corresponds to the same combination of
scalars as the ones given by R̂(n, j), but where the Riemann
tensor R̂μν

ρλ has been replaced by Sμν
ρλ . The action derived in

Eq. (3.3) defines a whole new class of scalar conformal cou-
plings to higher-curvature theories of gravity and constitutes
one of the main results of this work.

In what follows, we provide the derivation of the EOM
for these generalized scalar–tensor theories of gravity. Our
starting point is the equation of motion of arbitrary higher-
curvature gravity, which is given by [57]

Eμ
ν = Pμσ

ρλ Rρλ
νσ − 1

2
δμ
ν L + 2gβλ∇α∇λP

μα
νβ = 0, (3.4)

where the tensor Pμν
σρ is defined as

Pμν
σρ ≡ ∂L

∂Rσρ
μν

. (3.5)

It is convenient to consider the L as decomposed in terms
of the sum of the different scalars constructed from contrac-
tions of the Riemann curvatures at different orders, i.e., we
consider

L̂ =
∞∑
n=0

∑
j

λn, j�
2n−2R̂(n, j), (3.6)
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where R̂(0,0) = 1 and R̂(0,1) = R̂. Then, we can write the P
tensor in the Weyl frame, P̂μν

σρ , as

P̂μν
σρ =

∞∑
n=1

∑
j

λn, j�
2n−2φ−(n−1)D/�P μν

φ(n, j)σρ, (3.7)

where

P μν

φ(n, j)σρ = ∂S(n, j)

∂Sσρ
μν

(3.8)

is given by the corresponding derivatives of the S(n, j) den-
sities with respect to the Sσρ

μν tensor. Note that the S(n, j) has
the same functional form as the j-th independent higher cur-
vature scalar of order n, but constructed from the Sσρ

μν tensor
instead of the Riemann tensor. In total, Eq. (3.6) obtains the
form

L̂ =
∞∑
n=0

∑
j

λn, j�
2n−2φ−nD/�S(n, j). (3.9)

Finally, the EOM can be cast in the compact form below:

ε̂μ
ν

(
ĝμν

) = Êμ
ν

(
gμν, φ

) = P̂μσ
ρλ R̂ρλ

νσ

−1

2
δμ
ν L̂ + 2ĝβλ∇̂α∇̂λ P̂

μα
νβ = 0. (3.10)

Each one of the terms in the previous equation amounts to a
combination of the physical metric gμν and the scalar field φ,
given in Eqs. [(2.10), (2.16)–(2.18), (3.7)–(3.9)]. The com-
putation of the uplifted double covariant derivative in the
last term of the equation above, is computed in detail in
Appendix B.

Furthermore, as shown in Sect. 2, the EOM of the scalar
field is given by the trace of Eq. (3.10) as

E = Êμ
μ

(
gμν, φ

) = P̂μσ
ρλ R̂ρλ

μσ

−D

2
L̂ + 2ĝβλ∇̂α∇̂λ P̂

α
β = 0, (3.11)

where P̂α
β = P̂μα

μβ . At this point, we have all the necessary
tools to apply the Weyl uplift prescription of higher-curvature
gravity theories in some concrete examples.

3.1 The case of Lovelock gravity

The first example that we will analyze, is the one of Lovelock
gravity [58], which is expressed as a linear combination of
Lovelock densities Lk and obtains the general form

I
[
gμν

] =
∫

dDx
√−g

⎛
⎜⎝R − 2� +

� D−1
2 	∑

k=2

λk�
2k−2Lk

⎞
⎟⎠ ,

(3.12)

where

Lk = 1

2k
δμ1...μ2k
ν1...ν2k

Rν1ν2
μ1μ2

...Rν2k−1ν2k
μ2k−1μ2k . (3.13)

Following the prescription that we have described previously,
by replacing all the geometric objects by the hatted ones,
we generate the Weyl uplifted version of Lovelock theory,
using Eq. (3.3). Then, the corresponding scalar–tensor the-
ory constructed out of conformal coupling of scalar fields to
Lovelock densities becomes

I [gμν, φ] =
∫

dDx
√−g

[
− 2�φD/�

+
(

φ2R − 4(D − 1)

(D − 2)
φ�φ

)

+
� D−1

2 	∑
k=2

λk�
2k−2φ−(k−1)D/�

2k
δμ1...μ2k
ν1...ν2k

Sν1ν2
μ1μ2

...Sν2k−1ν2k
μ2k−1μ2k

]
,

(3.14)

in agreement with Ref. [48]. The EOM of this theory can
be obtained directly from Eq. (3.10), which corresponds to
the Lanczos–Lovelock tensor evaluated on the conformally
invariant metric, that reads

Êμ
ν = R̂μ

ν − 1

2
(R̂ − 2�)δμ

ν − Ĥμ
ν = 0 (3.15)

where

Ĥμ
ν =

� D−1
2 	∑

k=2

λk�
2k−2

2(k+1)
δμμ1...μ2k
νν1...ν2k

R̂ν1ν2
μ1μ2

...R̂ν2k−1ν2k
μ2k−1μ2k . (3.16)

Then, expressing all the hatted quantities in terms of the fields
defined in the Weyl frame, we obtain the EOM of the metric
as

Êμ
ν

(
gμν, φ

) = Rμ
ν − 1

2
Rδμ

ν + �φ2/�δμ
ν

− 2

φ
∇μ∇νφ + D

�φ2 ∇μφ∇νφ

− 1

�φ2 ∇ρφ∇ρφδμ
ν + 2

φ
�φδμ

ν − φ2/�Hμ
ν = 0, (3.17)

where

Hμ
ν =

� D−1
2 	∑

k=2

λk�
2k−2φ−kD/�

2(k+1)
δμμ1...μ2k
νν1...ν2k

Sν1ν2
μ1μ2

...Sν2k−1ν2k
μ2k−1μ2k

(3.18)

is the Weyl uplift of the Lanczos–Lovelock tensor. Then,
since the derivation of the EOM of the scalar field amounts
to the computation of the trace of Eq. (3.17), we get

E = φ�φ − D − 2

4 (D − 1)
φR + D(D − 2)

4 (D − 1)
φ

2
�

+1

− φ
2
�

+1

D − 1

� D−1
2 	∑

k=2

λk�
2k−2 (D − 2k)

2(k+2)

φ−kD/�δμ1...μ2k
ν1...ν2k

Sν1ν2
μ1μ2

...Sν2k−1ν2k
μ2k−1μ2k = 0. (3.19)
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Both Eqs. (3.17) and (3.19) are in agreement with the field
equations derived in Ref. [48].

3.2 The case of quasitopological and generalized
quasitopological gravity

Lovelock theories of gravity belong to a more generic class
of theories, dubbed quasitopological gravities [59–63]. Even
though the former has second-order equations of motion
whereas the EOM of the latter are of fourth-order, they
share similar features when evaluated on static and spher-
ically symmetric backgrounds [64]. In particular, the trace
of their EOM is proportional to the Lagrangian of the the-
ory, a property that is satisfied by Lovelock theories as well.
An interesting sub-class of quasitopological gravities has
been constructed in odd bulk dimension and is given in Ref.
[22].

By analogy to the Lovelock class of theories, we pro-
vide the Weyl uplift of the quasitopological densities of
the particular type mentioned above, by evaluating the
corresponding action in the conformally invariant metric.
Therefore, for the k-th order in the curvature densities we
have

Ik
(
ĝμν

) =
∫

dDx
√

−ĝ

[
1

2k (D − 2k + 1)
δμ1...μ2k
ν1...ν2k

×
(
Ŵ ν1ν2

μ1μ2
...Ŵ ν2k−1ν2k

μ2k−1μ2k − R̂ν1ν2
μ1μ2

...R̂ν2k−1ν2k
μ2k−1μ2k

)

− ck Ŵ
μ2k−1μ2k
μ1μ2 Ŵμ1μ2

μ3μ4
...Ŵμ2k−3μ2k−2

μ2k−1μ2k

]
, (3.20)

where

ck = (D − 4)!
(D − 2k + 1)!

[k (k − 2) D (D − 3) + k (k + 1) (D − 3) + (D − 2k) (D − 2k − 1)][
(D − 3)k−1 (D − 2)k−1 + 2k−1 − 2 (3 − D)k−1] . (3.21)

These densities are defined in dimension D = 2k − 1
for arbitrary values of k. Taking into account the transfor-
mation of the Weyl tensor as Ŵαβ

μν = φ−2/�Wαβ
μν along with

Eq. (2.10), we obtain

Ik
(
gμν, φ

) =
∫

dDx
√−gφ(D−2k)/�

×
[

1

2k (D − 2k + 1)
δμ1...μ2k
ν1...ν2k

(
W ν1ν2

μ1μ2
...W ν2k−1ν2k

μ2k−1μ2k

−φ−k(D−2)/�Sν1ν2
μ1μ2

...Sν2k−1ν2k
μ2k−1μ2k

)

−ckW
μ2k−1μ2k
μ1μ2 Wμ1μ2

μ3μ4
...Wμ2k−3μ2k−2

μ2k−1μ2k

]
, (3.22)

which expresses the conformal coupling of a scalar field to
the quasitopological densities here considered.

The aforementioned class of theories belong to a bigger
family of gravity theories, called Generalized quasitopologi-
cal gravities (GQTs). The latter are characterised by the pres-
ence of spherically symmetric solutions whose lapse func-
tion satisfies a defining relation which can be a differential
equation of up to second order in radial derivatives. How-
ever, unlike the quasitopological densities, the correspond-
ing equation for the lapse is not algebraic [65]. The simplest
example of this class of theories can be found in 4D, with
Einsteinian Cubic Gravity (ECG) [66], whose action is given
by

I =
∫

d4x
√−g

( 1

2κ
[R − 2�] + κλP

)
κ = 8πG, (3.23)

where

P = 12R ρ σ
μ ν R λ δ

ρ σ R μ ν
λ δ + R μν

ρσ R ρσ
λδ R λδ

μν

−12Rμνρσ R
μρRνσ + 8R ν

μ R ρ
ν R μ

ρ , (3.24)

and λ is a dimensionless coupling constant. The EOM of this
theory can be obtained from Eq. (3.4), considering that L is
the Lagrangian density given by the parenthesis of Eq. (3.23)
and the P-tensor is given by [67]

Pcd
ab = ∂L

∂Rab
cd

= 1

4κ
δcdab + 12κλ

(
R[d
a Rc]

b

+2δ
[d
[b R

|m|
a] Rc]

m + 2δ
[c
[bR

d]
a]m n R

mn + 3R m[c|n|
a R d]

bm n

+1

4
Rmn
ab Rcd

mn

)
. (3.25)

Using Eq. (3.25), one can find the explicit form of the EOM,
which we present in Appendix A. Then, following our pre-
scription, it is straightforward to derive the scalar–tensor the-

ory by uplifting the corresponding action in the Weyl frame,
which takes the form

Î [gμν, φ] =
∫

d4x
√−gφ4L̂, (3.26)

where the uplifted Lagrangian density is given by

L̂ =
[

1

2κ

(
− 2� + φ−4

[
φ2R − 6φ�φ

] )

+κλφ−12
(

12S σ δ
α β S μ ν

σ δ S α β
μ ν

+S σδ
αβ S μν

σδ S αβ
μν −12SαβσδS

ασ Sβδ+8S β
α S σ

β S α
σ

)]
,

(3.27)
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and the S-tensor is defined in Eq. (2.11). Then, the EOM for
the metric field in the Weyl frame becomes

ε̂μ
ν

(
ĝμν

) = P̂μσ
ρλ R̂ρλ

νσ − 1

2
δμ
ν L̂ + 2ĝβλ∇̂α∇̂λ P̂

μα
νβ = 0,

(3.28)

where

P̂cd
ab = 1

4κ
δcdab + 12κλφ−8

×
(
S[d
a Sc]b + 2δ

[d
[b S

|m|
a] Sc]m + 2δ

[c
[bS

d]
a]m nS

mn

+3S m[c|n|
a S d]

bm n + 1

4
Smn
ab Scdmn

)
, (3.29)

and

ĝμν = φ−2gμν R̂μν
λρ = φ−4Sμν

λρ , (3.30)

with the ∇̂α∇̂λ P̂
μα
νβ term given in Appendix B. Moreover, as

mentioned earlier, one can take the trace of the EOM given
in Eq. (A.1), and then Weyl uplift it to get the EOM for the
scalar field φ, i.e., ε̂ = ε̂

μ
μ = 0.

The examples presented above confirm that the prescrip-
tion of Weyl uplift of metric theories is a powerful tool for the
determination of new classes of conformally coupled scalar–
tensor theories.

4 Weyl uplift and counterterms in scalar–tensor AdS
gravity

Recent works have pointed out the significance of bulk Weyl
invariance of metric theories in the cancellation of the IR
divergences of the gravitational action [27,49,50]. The appli-
cability of this new principle has been extended to a particu-
lar class of scalar–tensor theories [51,68], that being the bulk
part of the action in Eq. (2.30) in D = 4. The restoration of
the Weyl invariance of the action of the theory, such that it is
fully symmetric – and not up to a boundary term – leads to
the Yamabe action of Eq. (2.29), or equivalently Eq. (2.30).
This action is partially renormalized, since there are certain
configurations in the solutions space (constant scalar field),
where infinities in the on-shell action still arise. Indeed, the
φ = 1 choice in the action of Eq. (2.29) leads to Einstein–
AdS gravity as given in Eq. (2.24), which is both divergent
and breaks the Weyl invariance of the action.

In order to remedy this problem, our starting point will
be the Einstein–AdS action enhanced by the Gauss–Bonnet
density with a fixed coupling constant

Iren = 1

16πGN

∫

M
d4x

√|g|
(
R + 6

�2 + �2

4
E4

)
, (4.1)

where

E4 = 1

4
δμ1...μ4
ν1...ν4

Rν1ν2
μ1μ2

Rν3ν4
μ3μ4

= R2 − 4Rμ
ν Rν

μ + Rμν
λρ Rλρ

μν.

(4.2)

The latter corresponds to the topologically renormalized
Einstein–AdS action, which is equivalent to the action
obtained considering the standard holographic renormaliza-
tion counterterms for generic asymptotically locally AdS
(AlAdS) manifolds in 4D [69]. The latter can be written in a
MacDowell–Mansouri form [69,70] as5

IMM[gμν] = �2

4

∫

M
d4x

√−gδμ1μ2μ3μ4
ν1ν2ν3ν4

×
(
Rν1ν2

μ1μ2
+ 1

�2 δν1ν2
μ1μ2

) (
Rν3ν4

μ3μ4
+ 1

�2 δν3ν4
μ3μ4

)
. (4.3)

The field equations are still of second order since the ini-
tial action has been enhanced by a topological invariant. Of
course, for D > 4, the Gauss–Bonnet density is no longer
topological and the corresponding EOMs are of fourth order.6

Then the uplifted version of this action in the Weyl frame in
arbitrary D dimensions obtains the form

IMM[φ, gμν] = �2

4

∫

M
dDx

√−gφ
D
� δμ1μ2μ3μ4

ν1ν2ν3ν4

×
(

φ− D
� Sν1ν2

μ1μ2
+ 1

�2 δν1ν2
μ1μ2

)(
φ− D

� Sν3ν4
μ3μ4

+ 1

�2 δν3ν4
μ3μ4

)
.

(4.4)

Following the notation of Ref. [51], we define

�
μν
ρλ = 1

φ2

(
Sμν
ρλ + φD/�

�2 δ
μν
ρλ

)
, (4.5)

and therefore we can write the action as

IMM[φ, gμν] = �2

4

∫

M
dDx

√−gφ

(
4− D

�

)

δμ1μ2μ3μ4
ν1ν2ν3ν4

�ν1ν2
μ1μ2

�ν3ν4
μ3μ4

. (4.6)

In the case of D = 4, the action reduces to

IMM[φ, gμν] = �2

4

∫

M
d4x

√−gδμ1μ2μ3μ4
ν1ν2ν3ν4

�ν1ν2
μ1μ2

�ν3ν4
μ3μ4

(4.7)

which is the renormalized scalar–tensor action with Weyl
symmetry considered in [51].

5 For completeness, one should consider the additional Euler charac-
teristic contribution accompanying the above action, however we omit
it for simplicity.
6 In D dimensions this action is divergent and additional counterterms
have to be added in order to render it finite.
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The action of Eq. (4.7) defines the same theory as
Eq. (2.29) when D = 4, as it leads to the same EOM.
However, there is an interesting issue regarding the relation
between the two actions in the context of renormalization
by bulk local scale invariance, previously discussed in Refs.
[27,49,50]. In particular, both actions differ by topological
and boundary terms, which ensure that Eq. (4.7) is finite for
arbitrary field configurations that are solutions of the theory.
As explained in Ref. [51], the action of Eq. (2.29), is divergent
for field configurations of constant φ in AlAdS spaces, where
the divergence is proportional to the volume of the manifold.
These configurations can be understood as singular points of
the Weyl symmetry, in the sense that for constant φ, the local
scale symmetry is broken. On the other hand, the action of
Eq. (4.7) is both finite and Weyl invariant even for these solu-
tions, which provides more evidence on the relation between
bulk Weyl symmetry and holographic renormalization.

Furthermore, the difference between the actions of Eqs. (4.7)
and (2.29) can be traced back to the parent actions, defined
in the Einstein frame. In particular, Eqs. (2.24) and (4.3)
are equivalent up to the addition of the 4D Euler density
that cancels the divergences and renders the Einstein–AdS
action finite. This relation suggests that only the Weyl uplift
from renormalized gravitational actions provides scalar–
tensor theories of gravity whose on-shell actions are finite
for all possible configurations of the fields of the theory.

5 Summary

In this work we have developed a method for constructing
Weyl invariant scalar–tensor theories starting from purely
metric theories, as discussed in Sect. 2. The procedure con-
sists in replacing the metric by a rank-(0, 2) tensor, dubbed the

conformal invariant metric and defined as φ
2
� gμν , and then

evaluating the Riemannian curvature and covariant derivative
operator appearing in the original action on this new object
instead of the metric.

Through this algorithm, we manage to re-derive the Weyl-
invariant scalar–tensor theory of Eq. (2.9) and its renormal-
ized version of Eq. (4.6), both of which have the same equa-
tions of motion and contain Einstein–AdS gravity as part
of its solution space (see Sect. 2.1). We provide the generic
Lagrangian that describes the conformal scalar couplings to
an arbitrary higher-curvature gravity theory. The resulting
formula successfully reproduced the scalar conformal cou-
plings to Lovelock gravity, which were introduced in Ref.
[48], as discussed in Sect. 3.1. Furthermore, we derive the
field equation of the metric and scalar fields. In particular, the
EOM of the metric fields can be determined by expressing
the original field equations in the Weyl frame. Interestingly
enough, we show that the field equations of the scalar field

are determined by the trace of the EOM of the metric. This
result is in agreement with the tracelessness of the energy-
momentum tensor in the presence of conformal symmetry. A
concrete application of this prescription, has been presented
in Sect. 3.2, where we provide the scalar conformal couplings
of quasitopological gravity and Einsteinian cubic gravity.

It becomes evident from our analysis, that the holographic
renormalization of this class of scalar–tensor theories passes
through the requirement of exhibiting Weyl invariance for
all configurations allowed by the field equations. This fea-
ture becomes manifest in the 4D conformally coupled scalar
theory to the Einstein–Hilbert action. A formal proof of this
principle to higher dimensions and higher-curvature theories
of gravity will follow in future work.

In forthcoming research, it would be possible to imple-
ment the renormalization of higher-dimensional Einstein–
AdS gravity and of Lovelock gravity by restoring on-shell
Weyl invariance, and then to construct the conformal scalar
couplings to these theories. This could be done in analogy
to the Einstein–AdS case in four dimensions presented in
Sect. 4.
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A Equation of motion for ECG theory

In Sect. 3.2 we presented the Weyl uplift of ECG. Before the
uplift, the explicit form of the EOM is given by

εij = 1

4κ
(R + 2�)δij − 4δij R

c
a R

abRbc

+ 12RabR
ia Rb

j + 6δij R
abRcd Racbd − 12RabRacbd R

ic d
j

− 1

2
δij R

mn
ab Rabcd Rcdmn − 12RbcRa

j R
i
bac

+ 12Rc
a R

abRi
bjc − 6δij R

m n
a c Rabcd Rbmdn

− 3Rbcdm Riabc Rdm
ja − 12RbcRia R jbac

+ 36Radcm Riabc R d m
j b − 12Ria∇a∇bR

b
j

− 6R abc
j ∇a∇d R

id
bc + 24∇a Ri

j∇bR
b
a

− 12∇a R
ia∇bR

b
j + 12Ri

j∇b∇a R
ab − 12Ra

j∇b∇a R
ib

+ 12Rab∇b∇a R
i
j − 12Ra

j∇b∇bRi
a − 12Ria∇b∇bR ja

− 12δij R
ab∇b∇c R

c
a + 12Ri

a∇b∇ j R
b
a

+ 12Rab∇b∇ j R
i
a − 12∇a R jb∇bRia − 24∇bR ja∇bRia

− 12δij∇a R
ab∇c R

c
b − 12δij R

ab∇c∇bR
c
a

+ 12Ri
ajb∇c∇c Rab + 12Rab∇c∇c Ri

a jb

+ 36Riabc∇c∇d R
d

jba + 12Rab∇c∇ j R
i
abc

− 12δij∇bRac∇c Rab + 24∇c R
i
a jb∇c Rab

+ 12Ri
abc∇c∇ j R

ab + 24δij∇c Rab∇d Racbd

− 36∇c Ria b
j ∇d R

d
acb − 36∇c Ria b

j ∇d R
d
a bc

− 36∇bR
iabc∇d R jcad − 6∇a R

iabc∇d R
d
j bc

− 6Riabc∇d∇a R
d
j bc − 36Rabcd∇d∇bR

i
ajc

+ 12δij R
ab∇d∇c R

c d
a b − 36Ria b

j ∇d∇c R
c d
a b

+ 36R abc
j ∇d∇c R

i d
ba − 6∇a R jdbc∇d Riabc

+ 36∇c R jbad∇d Riabc + 12δij Racbd∇d∇c Rab

+ 12∇bRa
j∇ i Rab + 12∇c R jabc∇ i Rab

+ 12∇bR
b
a∇ i Ra

j + 12∇c Rab∇ i R jabc

+ 12Ra
j∇ i∇bR

b
a + 12Rab∇ i∇bR ja

+ 12Rab∇ i∇c R
c

jab + 12R jabc∇ i∇c Rab

+ 12∇bRia∇ j Rab + 12∇c R
i
abc∇ j R

ab

+ 12∇bR
b
a∇ j R

ia + 12∇c Rab∇ j R
i
abc . (A.1)

B Computation of the double uplifted covariant deriva-
tive term

In the computation of the EOM for the Weyl uplift of Higher
Curvature Gravity, which is given in Eq. (3.10), the term
∇̂α∇̂λ P̂

μα
νβ has to be computed. We do so in this section.

By considering the uplift of the covariant derivative, as
defined in Eqs. (2.16)–(2.18), we have that

∇̂λ P̂
μα
νβ = ∇λ P̂

μα
νβ

+�
μ
λσ P̂

σα
νβ + �α

λσ P̂
μσ
νβ − �σ

λν P̂
μα
σβ − �σ

λβ P̂
μα
νσ︸ ︷︷ ︸

Aμα
λνβ

. (B.1)

Then, by defining a new tensor Aμα
λνβ in terms of the parts of

Eq. (B.1) that depend on the modification to the connection
�σ

λβ , we can compute the second uplifted covariant derivative
as

∇̂α∇̂λ P̂
μα
νβ = ∇α∇λ P̂

μα
νβ + �μ

ασ A
σα
λνβ + �α

ασ A
μσ
λνβ

−�σ
αλA

μα
σνβ − �σ

αν A
μα
λσβ − �σ

αβ A
μα
λνσ . (B.2)

Finally, replacing the definition of Aμσ
λνβ , we obtain

∇̂α∇̂λ P̂
μα
νβ = ∇α∇λ P̂

μα
νβ + �μ

ασ �σ
λρ P̂

ρα
νβ

+�μ
ασ �α

λρ P̂
σρ
νβ

−�μ
ασ �

ρ
λν P̂

σα
ρβ − �μ

ασ �
ρ
λβ P̂

σα
νρ

+�α
ασ �

μ
λρ P̂

ρσ
νβ + �α

ασ �σ
λρ P̂

μρ
νβ

−�α
ασ �

ρ
λν P̂

μσ
ρβ − �α

ασ �
ρ
λβ P̂

μσ
νρ

+�σ
αλ�

ρ
σν P̂

μα
ρβ + �σ

αλ�
ρ
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μ
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αλ�
α
σρ P̂
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+�σ
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ρ
λσ P̂

μα
ρβ + �σ

αν�
ρ
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μα
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−�σ
αν�

μ
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ρα
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αν�
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+�σ
αβ�

ρ
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αβ�
ρ
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μα
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−�σ
αβ�

μ
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ρα
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αβ�α
λρ P̂

μρ
νσ , (B.3)

which is the final result. One then needs to replace �σ
αβ and

P̂μρ
νσ as given in the main text in Eqs. (2.15) and (3.7) respec-

tively, in terms of the metric and scalar field of the scalar–
tensor theory.
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