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Abstract In gravitational collapses, the horizon and singu-
larity’s realisation in the finite future of the proper time used
co-moving observer happens in the future of infinitely far
away future of the normal time used outside probe. To the
latter the horizon and singularity defined in the singularity
theorem are physical realities only in the sense of uncertainty
principle and ensemble interpretation. We provide two exact
time dependent solution families to the Einstein equation and
show that they form a pair of complementary description
for the microscopic state of black holes by showing that the
Bekenstein–Hawking entropy formula follows properly from
their canonical wave function’s degeneracy. We also develop
an eXact One Body method for general relativity two-body
dynamics whose conservative part calls no post newtonian
approximation as input and applies to the full three stages of
black hole binary merger events. By this method, we analyt-
ically calculate the gravitational wave forms following from
such merger processes. In the case black holes carry exact
and apriori horizon and singularity our wave forms agree
with those following from conventional effective one body
method but exhibit more consistent late time behaviour. In the
case black holes carry only asymptotic horizon and extended
inner structure thus experiencing banana shape deformation
as the merger occurs, our wave forms exhibit all features
especially the late time quasi-normal mode type oscillation
seen in real observations.
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1 Introduction

The existence of Bekenstein–Hawking entropy [1–6] is a
strong hint that black holes are inner-structured [7–25]. The
current observational data [26–28] on gravitational waves
arising from Black Hole Binary (BHB) merger events may
brought us information about such inner-structures already.
The purpose of this work is to provide a thorough under-
standing of such inner-structures in the framework of stan-
dard general relativity and canonical quantum mechanics.
At the same time an exact one body method will be devel-
oped to calculate the gravitational wave form of BHB merger
process so that the effects of their inner-structures on obser-
vational signals can be seen directly. Both these two points
seem to be impossible purposes. We will show that the first
impossible arises from our wrong taking of the horizon and
singularity as physical realities independent of probe and
physical interactions. The second impossible arises from our
wrong choosing of the effective background geometry which
is aimed to account for the relative motion between the two
bodies as static. This choice not only makes exact solutions
to the problem impossible, but also the known effective one
body method inconsistent at the principle level.

By physical reality, we refer to measurement outputs
of any single type of physical quantity. In contrasts, we
will use physical law to refer to relations bridging at least

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-024-12683-z&domain=pdf
mailto:dfzeng@bjut.edu.cn


  370 Page 2 of 33 Eur. Phys. J. C           (2024) 84:370 

two types of physical realities. Physical reality is invariant
under general coordinate transformation but observer depen-
dent. Physical law is not only general coordinate invari-
ant but also observer independent. Taking Einstein Equation
Rμν − 1

2gμνR = 8πGTμν as an example, both sides of it are
physical realities. We will give concrete examples to show
how the physical law’s observer independence is confused
with the physical reality’s observer dependence thus lead-
ing to the wrong belief of horizon and singularity’s probe
independence in Sect. 7. But to understand the analysis there
firmly we need five sections to build the right description for
the microscopic state of black holes. In a sense, all sections
of this work are original and innovative. However, for those
who only want to know why our two purposes are possible,
they can jump to Sects. 7 and 9 directly. We also have a short
version of this long paper which is submitted as a letter for
reviewing. The following is a highlight of the key point of
each sections of this work.

Due to Penrose and Hawking’s singularity theorem [29–
32], the inner-structure of black holes is very seldomly
believed to have relevance with exact solutions to the four
dimensional Einstein equation. Most of the string theory [33–
48] and loop quantum gravity researchers [49–59] believe
that in the framework of general relativity, as long as falling
across the horizon, the fate of all matters is hitting on the
singularity and becoming a part of it. So the only form of
matter’s existence inside the horizon is a singular point char-
acterised by mass, charge and spin parameters exclusively.
So the most general microscopic structure allowed by general
relativity is those exhibited in the Kerr–Newman metric.

However, just as any existence question in philosophies
do, the form of matter’s existence in physics is also related
with the definition of time. In general relativity, this is espe-
cially so. Because of time delay effects caused by gravitation,
the outside fixed position observers cannot see the horizon’s
formation in a to be black hole collapsing star in any finite
future quantifiable with their physical time definition. These
observers are not required to be human being or any bio-
wisdom. They can be any outside probe or detectors with
fixed position or approximately fixed position. For example,
either participant involved in a merger event of BHB system
works as probes of its inspiral partner. These probes will not
see the horizon’s formation in their partners’ evolution in any
finite future quantifiable with their physical time definition.
So to them, the form of matter’s existence inside their merger
partners is just that of the frozen star [60–64]. But the reason
for being frozen here is the infinite gravitational time delay
due to the horizon to form, instead of any exclusive force such
as that arising from the neutron degeneration pressure or any
other unknown physics [65–67]. We will provide exact met-
ric and Penrose–Carter diagram description for this frozen
star in Sect. 2 of this work.

By the freely falling observer’s time definition, materi-
als consisting of a to be black hole collapsing star would
indeed contract into the mathematical surface defined by
r = 2GM in the finite future. However, both the materi-
als being observed and the observer themselves experience
not any exotics as that surface is being walked through, all
of them are freely falling. As local observer and observ-
able, the spacetime region around them are completely flat-
ten. The non-zero curvature is physically relevant only to the
global viewpoint holden investigators. This is also the case
even when the r = 0 point is concerned. The observer and
observables coming from the east world of the central point
just normally walk over that point and get to the west world
afterwards. Tidal forces affect only non-local or finite sized
observer and observables. However, general relativity is a
time-reverse invariant theory. No matter how strongly is an
extended object tidally stretched as it walking to the r = 0
point, its shape and inner structure will be retrieved when
it walking away from that point just as the world is time
reversed [68–72]. Penrose and Hawking’s singularity theo-
rem [29–32] only requires that all matter contents falling into
the horizon get onto the singularity (an equal time hyper sur-
face) in finite proper time. It does not prohibit them from
walking across that epoch. Exact metric description and PC-
diagram representation for this picture will be provided in
Sect. 3.

With Sect. 5 supplemented as a working example, Sect. 4
discusses the quantisation of inner-structures described by
the exact metric families of Sects. 2 and 3. We will decom-
pose the matter content of spherically symmetric black holes
into many concentric shells characterised by each shell’s
mass and radial quantum number and write the wave func-
tional of the whole system as direct product of all composi-
tional shells. By considering all possible shell decomposition
schemes allowed by the total mass summation rule and the
radial quantum number assigning schemes allowed by the
asymptotic horizon condition, we analytically show that the
degeneracy of the system’s wave functional is exactly that
required by the Bekenstein Hawking entropy formula, except
some logarithmic type correction. Numerically determining
this correction is possible but challenging as the mass of the
black hole becomes large. In contrast with the Euclidean path
integration method based on saddle point approximation [73–
75] and string theory calculation [76–89], our microscopic
state definition and number counting here are purely gen-
eral relativity based and resort not any hyper physical con-
cepts such as supersymmetry or extra spatial dimension. But
our black holes will exhibit similar observational features
as string theory fuzz balls [90,91] if their shadow images
are taken [92,93] or gravitational wave echos [94–101] are
measured.

The black hole complementarity principle [102–106]
believes that both the outside fixed position observer and
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the freely falling observer’s description of a collapsing star’s
evolution are equally valid. We will elaborate in Sect. 6 that,
for the outside fixed position observers, the uncertainty prin-
ciple or quantum fluctuation’s ubiquity implies that paral-
lel universe or ensemble description of the initial status of
materials consisting of the black hole is necessary. While for
the freely falling co-moving observers, this necessity can be
interpreted as the ergodicity of the system’s evolution on the
proper time axis. So when the initial status’ uncertainty or
the evolution dynamics’ ergodicity is considered, not only
are the two types of observer’s description both valid, but
also are they complete. The fire wall paradoxes [107–109]
will be analysed in this section to show that the truly rational
resolution to the information missing puzzle [110–120] is to
give up the popular vacuum fluctuation and partial escaping
mechanism for Hawking radiation instead of the idea of black
hole complementarity. This section mainly consists of logic
reasoning instead of mathematical derivation. So we put it in
the middle part of the paper to avoid preaching. Mathemati-
cal derivations underlying can be found in our earlier works
[17,18].

Through three concrete examples, Sect. 7 will analyse how
the belief that gravitational collapse will cause the formation
of observer independent horizon and singularity makes the
wrong of (A) taking the horizon and singularity of global
viewpoint holders as the horizon and singularity detectible to
local viewpoint holders and (B) taking the physics law’s gen-
eral coordinate invariance as the physical reality’s observer
or probe independence. The physical reality’s observer or
probe independence is not the fact at all. Our three examples
are, (i) the frequency of light signals emitted from the surface
of a collapsing star and measured by an outside fixed position
observer and a freely falling observer; (ii) the pressure of a
dust type test mass shell freely falling towards the horizon of
a pre-existing Schwarzschild black hole measured by a far
away fixed position observer and a freely falling observer co-
moving with the shell itself and (iii) the horizon of two cos-
mological sized super giants separated double hubble radius
away in our real universe. This section is the conceptual part
of this work but we burry it here because it is so bold that
some people may think it non-sense at all.

Section 8 will show that when the horizon is taken as a
probe dependent physical reality, the black holes involved
in the binary merger event will experience a kind of banana
shape deformation under the inhomogeneous back reaction
of gravitational wave radiation. We will illustrate such a
deformation’s occurrence in the newtonian gravitation the-
ory and argue that the physical picture would be similar in
the fully general relativistic treatments of the system’s evo-
lution. We then provide a static mechanical analysis for the
banana shape deformation of black holes and show that the
radiation activity of such BHBs will be suppressed by a fac-
tor of sin 4GMz/a(t)

4GMz/a(t) when they inspiral and merge. Here z

is the system’s stretching factor relative to the diameter of
the undeformed Schwarzschild horizon. z is time dependent
whose concrete form reflects the black hole’s deformation
sensitivity or susceptibility under the back reaction of grav-
itational wave radiation.

Section 9 will propose an exact one body (XOB) method
to calculate the relative motion orbit of general relativ-
ity two-body systems. This method will avoid the self-
contradicting ingredients of conventional effective one body
(EOB) method [121–123]. The conservative part of XOB
hamiltonian involves no post-newtonian approximation [124–
128] as inputs. Taking the most simple quadrupole radia-
tion of gravitational waves as the source of dissipation, this
method will allow us to trace the relative motion of binary
systems even when they evolves to the ring-down stage. By
this method we will calculate the relative motion orbit and
gravitational wave forms for binary systems consisting of
standard Schwarzschild black holes to make comparisons
with the results of conventional EOB method. Our results
will coincide with that of EOB at early times but behaves
more rationally as the very late time stage is arrived. By
looking the black hole as an arc of fixed length, this method
will yield gravitational wave forms highly similar with those
obtained in numeric relativity method [129–136] and black
hole perturbation theories [137–142].

Section 10 will compare the relative motion orbits and
gravitational wave forms following from our XOB method
for three different time variation modes z(t) of banana shape
deformation. These three modes describe black holes with
three typical shape deformation sensitivity or susceptibili-
ties under the inhomogeneous back reaction of gravitational
wave radiation. By exhibiting the resultant gravitational wave
forms’ difference, we will show that the inner structure and
the shape deformation sensitivity of black holes are observ-
able experimentally instead of purely theoretical arguments.
By assuming that gravitational wave carries no energy away,
we will derive a universal upper bound for the late time quasi-
normal mode’s frequency as functions of the symmetric mass
ratio of the binary system irrespective of their inner structure
details. While by setting the conservative part of the XOB
hamiltonian to the minimal possible value, we will get a lower
bound for such quasi normal frequency. We will use the cur-
rently available data to test this two bounds quantitatively.

Section 11 is the conclusion of the whole paper.

2 The outside fixed position observer’s description

The physical reality’s probe dependence is a very widely
accepted concept in high energy physics. For example, the
hadron structures measured in the deep inelastic scatter-
ing experiments depends on the probe electron’s momentum
transfer explicitly. One purpose of this work is to show that,
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the horizon and singularity’s observer dependence is just a
counterpart of this concept in general relativity and black
hole physics.

By the word outside fixed position observer, we refer to all
outside probe or detectors that are affected by the gravitation
emanating from the to be black hole collapsing stars. These
observers can only probe or detect physics related with the
collapsing stars during their life time, i.e. existing duration
of the probe themselves. Typical examples of these observers
include, either member of a BHB system which are experi-
encing merger process, and/or all imaging light signals that
are emitted from the background accretion disk and enter
the detector of the event horizon telescope on earth. These
observer or probe’s positions are not truly fixed, but during
their whole existing duration and in the spherical coordinate
system of the being probed black holes, their radial posi-
tions are only slowly varying functions of the time coordi-
nate which is understood as physic time by the infinitely far
away investigators.

To these observers, the general form of spacetime metric
of the collapsing star can be written as

ds2
full = −h·B−1dt2 + h−1dr2 + r2d�2, h = 1 − 2GM

r
(2.1)

B−1 = 1 + h−2Ṁ2/M ′2, M[t, r ]outside.matt.
occup.region ≡ Mtot (2.2)

M[t, r ] t→∞−−−−−−→
r<2GMtot

r

2G
− small deviation (2.3)

The function form of B is determined by the normalisation
of matter sources’ four velocity uμ = dxμ

dτ
= {1, ṁ

m′ } · dt
dτ

.
We choose the scaling of t so that hdt2 = dτ 2, where τ is the
proper time measured by observers fixed on the collapsing
matter, up to a regular r -dependent scale factor. In the case of
gravity dominating over all other interactions, neglecting the
pressure is a rational doing. In this case, the Einstein equation
Rμν − 1

2gμνR = 8πGρuμuν will tell us

ṁṁ′
m′2 −

[
2m

r(r − 2m)
+ m′′

m′
]
ṁ2

m′2 − (r − 2m)m′
r2 = 0 (2.4)

m̈

m′ −
[

3m

r(r − 2m)
+ m′′

m′
]
ṁ2

m′2 − (r − 2m)(m + 2rm′)
r3 = 0

(2.5)

where we used short notationsm = GM[t, r ]. Equation (2.4)
follows from the condition that G0

0G
1
1 − G0

1G
1
0 = 0. Equa-

tion (2.5) follows from the condition of Gθ
θ = Gφ

φ = 0
supplemented by (2.4).

Equation (2.4) can be written into the form of a first order
differential equation and integrated formally

y′(t, r) − p(t, r)y(t, r) = q(t, r), y ≡ ṁ2 (2.6)

p ≡ 2m′′

m′ + 4m/r

(r − 2m)
, q ≡ 2(r − 2m)m′3

r2 (2.7)

y = e
∫ r

r1
p(t,z)dz ·c(t) +

∫ r

r2

e
∫ r
x p(t,z)dzq(t, x)dx (2.8)

where c(t) is an arbitrarily tunable function of t-coordinate,
while r1 and r2 are two arbitrary reference point. Taking
m/r

m′−1/2 as a slowly varying function of r , the integration∫
p(t, z)dz in (2.8) can be done approximately so that

∫
p(t, x)≈

[
logm′2(x − 2m)

4m/x
1−2m′

x

]
(2.9)

ṁ2

m′2 ≈ (r − 2m)

4m/r
1−2m′

r ·
[
c(t) +

∫ r

r2

(x − 2m)
1− 4m/x

1−2m′
x 2m′dx

x2

]
.

(2.10)

This means that given initial mass function m(0, r), we can
always tune the form of c(t) so that on the boundary of
the matter occupation region ṁ

m′ |m.o.r
bndry = dr

dt |m.o.r
bndry matches

with the geodesic motion of test particles freely released
in the Schwarzschild metric caused by the total mass of
the collapsing star. But according to Eq. (2.4), the initial
value of ṁ2(0, r) is completely determined by the form of
m(0, r) thus allows no artificial tuning to implement a given
ṁ
m′ (0, rm.o.r

bndry). This is because we neglect all pressure effects
as well as the external force/potentials exerted on the matter
contents so that their initial speed equals zero. In our numer-
ical examples, we will simply set c(t) = 0 and take r2 as
a small parameter to assure integral convergence and accu-
racy. In this case equation (2.10) implies that as m → r

2 ,
ṁ2

m′2 ∼ (r − 2m) → 0. In this limit, Eq. (2.4) leads to

ṁ ∼
(

1 − 2m

r

)−1/2

,m′ ∼
(

1 − 2m

r

)−1

. (2.11)

This explains the origin of asymptotic expression (2.3),
which is in fact a result regardless of the matter source’s equa-
tion of state. The Ricci scalar of spacetime metric (2.1)–(2.2)
when simplified using Eqs. (2.4) and (2.5) has the following
form

R = 2(r − 2m)2m′3

r2[(r − 2m)2m′2 + r2ṁ2] . (2.12)

This is regular as t → ∞, because the asymptotic behaviour
of (2.11). Divergence happens only when we try to go beyond
the Future of infinitely Far away Future (FiFF), that is, when
we use alternative time coordinate which covers range out-
side that t does.

Equations (2.4)–(2.5) allows us to express all the higher
order time derivatives of m in terms of its spatial derivatives,
e.g.
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m̈ =
[

3m

r(r − 2m)
+ m′′

m′

]
ṁ2

m′ + (r − 2m)(m + 2rm′)m′

r3

(2.13)

...
m=ṁ3

[
m′′′

m′3 + 9mm′′

r(r − 2m)m′3 + 4r2m′ − 6rm + 24m2

r2(r − 2m)2m′2

]

+ṁ

[
2[6m2 − rm(1 − 8m′) + 3r2m′2]

r4

+3(r − 2m)(m + 3rm′)m′′

r3m′

]

+ (r − 2m)2m′3(2m + 3rm′)
r5ṁ

. (2.14)

These expressions tell us that, as t → ∞ the n-th order time
derivative of m are proportional to (r − 2m)−n ∼ ∞. This
makes numeric integration of equations (2.4) or (2.8) more
and more difficult as we approach the configurationm(t, r) ≈
r
2 . However, the basic feature of dr

dt |fix.mss.pt = ṁ
m′ ∼ (r −

2m)
1
2 → 0 is very robust. This causes the outside probes

not being able to probe m(t, r)’ evolution into profiles of r −
2m < 0 in any finite t time. Physically this is just the fact that,
as outside observer or probes, they cannot see the formation
of horizons in any finite t durations. Of course, if the proper
time description is adopted, the co-moving observers can see
the matter’s collapse into the horizon in finite durations, just
as was illustrated in Ref. [13]. However, since those observers
or detectors are freely falling, they will experience not any
exotics as they pass through the horizon surface.

Consider two simple initial mass function (i) m(0, r <

1) = 1
4r

3, (ii) m(0, r < 1) = 1
4r

1 and m(0, 1 < r) = 1
4 .

The former has central sparser initial mass density profile
ρ ∼ (1 − r2

4 )−1, the latter has a central denser and singular
profile ρ ∼ r−1 but no horizon apriori. For these two initial
mass functions the t = 0 integration (2.8) can be done exactly
and analytically

(i) ṁ2(0, r) = r4c(t)

(2 − r2)
+ 9r4

128

[
(2 − r2

2 )3

2 − r2 − (2 − r2)2
]

(2.15)

(ii) ṁ2(0, r) = r2c(t) + r2

128

[
1

r2
2

− 1

r2

]
. (2.16)

Figure 1 displays their latter time evolution following from
Eqs. (2.4)–(2.5). From the figure we can easily see that dif-
ferent radius concentric shells need different t-duration to
reach their corresponding horizon size. The duration differ-
ence 	 is finite. This means that to the outside fixed position
observer, the horizon of a collapsing star is not a single equal-
r surface of r = 2GMtot, but the collection of all concentric
spheres of different sizes {ri = 2GMi }, where Mi means the
mass of matter materials inside the sphere of radius ri and
i varies continuously on classical levels. Each one of these
horizons is never reached but only infinitely closely reach-

Fig. 1 The t-time evolution of the mass function of two collapsing
stars. The upper has central sparser initial configuration, the downer
has a central denser one. Different colour curve families denote mass
functions’ evolution inside different concentric spheres of equal radius

Fig. 2 The red line is the asymptotic mass function of all collapsing
stars after infinite t-time evolution. t is the time of the outside fixed
position observers. The other three curves are the mass function of
collapsing stars after finite t-time evolution. The matter materials live
in the region 0 < r < 2GMtot + ε

able by the corresponding shells at different t-time epochs
depending on the initial mass function of the star. As outside
observer or probes, one can use the initial mass function to
represent the microscopic state of the collapsing star with
approximate horizon of radius rh = 2GMtot + ε. Figure 2
gives an illustration for three typical examples, while Fig. 3
is their Penrose–Carter diagram representation.

The physical black holes formed through gravitational col-
lapses are defined by their asymptotic horizon. The asymp-
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Fig. 3 The Penrose–Carter diagram of the three inner mass profiles of
Fig. 2. The horizon and singularity will be realised only when ∞ < t .
The two blue hyperbolas in the leftmost sub-figure correspond to the
r = 2GMtot and the equal-r sphere which are very close to the M =
r/2G line of Fig. 2. The two green hyperbolas in the middle and the
three magenta hyperbolas in the rightmost are similar

totic horizon is only mathematical surface which is infinitely
approachable but never reached in any finite physical time.
It provides us a boundary to look the physical black holes
as statistic systems and introduce parameters such as inter-
nal energy and entropy to describe their macroscopic fea-
tures. Just as all normal statistic systems do, the microscopic
state of the physical black holes can be simply attributed
to the mechanical motion of their matter contents. At here,
this motion is the freely falling of concentric matter shells
consisting of the collapsing star under randomly specified
initial radius and radial speed. The randomness of initial
conditions arises from the uncertainty principle. We will dis-
cuss the quantisation of this mechanical motion and show
that its wave functionals are indeed degenerated in the num-
ber of ways required by the area law formula of Bekenstein
Hawking entropy. But before this doing, let us consider this
motion’s description from the inside co-moving observer’s
aspect.

3 The inside co-moving observer’s description

By the term inside co-moving observer, we refer to all local
detectors or probes which are freely falling together with
the matter materials consisting of the collapsing star and use
proper time as time coordinate to describe physical evolu-
tions accessible to them. As local probes, these observers are
not necessarily point particles. As long as their size is much
smaller than the space-time region’s scale they are detect-
ing, things will be okay. Their detection are just interactions
between them and the to be detected spacetime region itself.
The interaction between different parts of the system is also a
detection which has the potential of putting the microscopic
state of the whole system onto an ergodic evolution orbit. To
these observers, the most general metric ansatz [16,17] for an

isotropic but inhomogeneous collapsing star can be written
as

ds2
in = −dτ 2 +

[
1 − ( 2GM

�3

) 1
2 M

′�
2M τ

]2
d�2

a[τ, �] + a[τ, �]2�2d�2
2

(3.1)

ds2
out = −dτ 2 + r2/3

s d�2

[ 3
2 (� − τ)

2
3 ]

+
[

3

2
(� − τ)

2
3

]2

r
2
3
s d�2

2

(3.2)

where as was done in the previous section, we have neglected
pressures so that inner structures of the system are charac-
terised by a single function M[�] exclusively. This is rea-
sonable when gravitation dominates all non-gravitational
interactions; τ and � are so called Lemaitre coordinate and
rs ≡ 2GMtot. By the conventional Boyer–Lindquist coordi-
nate, ds2

out can be equivalently written as

ds2
out = −hdt2 + h−1dr2 + r2d�2, h = 1 − 2GMtot

r
.

(3.3)

The advantage of Lemaitre coordinate is that, we can more
directly see the smoothness of the inside–outside metric’s
connection. The advantage of Boyer–Lindquist coordinate is
that, we can more easily understand what we are describing is
a simple neutral and spherically symmetric black hole in stan-
dard general relativity. Since we neglect all exclusive pres-
sures, the concrete form of a[τ, �] can be obtained exactly
from the dust sourced Einstein equation Rμν − 1

2gμν =
8πG{ρ, 0, 0, 0}

a[τ, �] =
[

1 − 3

2

(
2GM[�]

�3

) 1
2

τ

] 2
3

, (3.4)

M[�max��] = Mtota[τ ∈ |
p �

4
0 , �] =

(
1 − 4τ

p�

) 2
3

,

a[τ |
p �

2
p �

4

, �] = −a

[
p �

2
− τ, �

]
(3.5)

a[τ |
p �

p �

2

, �] = −a[p� − τ, �],

a[τ |p �+
p � , �] = a[τ − p�, �] (3.6)

p� ≡ 8

3

(
�3

2GM[�]
) 1

2

. (3.7)

Since the value of a(τ, �) is negatively allowed, the sign of
the coefficient of the d�2 term in (3.1) must be defined in
such a way that the whole term is positively definite.

For each given �, the behavior of a[τ, �] involved in (3.1)
or (3.4) is just the oscillation driven by a square inverse force
or linearly inverse potential,
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Fig. 4 The upper part is the potential and phase diagram of oscillators
driven by a linearly inverse potential or square inverse force, the lower
part is its oscillation function

mẍ + k

x2 = 0 or
1

2
mẋ2 − k

x
= ε < 0. (3.8)

The full period of this oscillation is T = k
√
m√

2(−ε)3/2
π
2 . Dur-

ing each first quarter period, the oscillation equation can be
integrated implicitly

t (x) = k
√
m arcsin[(1 + xε

k )
1
2 ]√

2(−ε)3/2
−

√
mx(k + xε)√

2ε
(3.9)

and the full oscillation function can be written as

{t, x} ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{0 + t (x),+x}, 0 < t � T
4

{ T2 − t (x),−x}, T
4 < t � T

2

{ T2 + t (x),−x}, T
2 < t � 3T

4

{T − t (x),+x}, 3T
4 < t � T .

(3.10)

Figure 4 displays the potential, phase diagram and x vs.t
curve of this oscillation in details. By the standard Boyer–
Lindquist to Lemaitre coordinate transformation [143]

dt +
√
rs
x

(
1 − rs

x

)−1

dx ≡ dτ (3.11)

dt +
√

x

rs

(
1 − rs

x

)−1

dx ≡ d� (3.12)

x =
[

3

2
(� − τ)

] 2
3

r
1
3
s (3.13)

the oscillation function (3.9)–(3.10) will become the function
(3.4)–(3.7) with fixed � routinely.

The mass function M[�] involved in (3.1) and (3.4)–(3.7)
are completely arbitrary at the classic level. Its physics mean-
ing is the initial mass function of the collapsing star on the
co-moving coordinate {�, θ, φ} grid. Figure 5 displays the τ -
time evolution of three representative collapsing stars char-

Fig. 5 The evolution of three representative dust stars as the τ -time
varies. The magenta arrows denote the co-moving grid’s contraction
as a whole. The left has uniform initial mass density. The cyan dot
displays the matters’ fixing on the co-moving grid. The middle has
a central-sparser initial mass density ρ[0, �] ∼ dM[�]

4π�2d�
= �1. The

matters’ migration on the co-moving grid, marked by cyan arrows, is
from the superficial to central region so that the co-moving �-coordinate
covers smaller and smaller regions. The right has a central-denser initial
mass density ρ[0, �] ∼ �−1. The matters migration on the co-moving
grid in this case is from the central to the outer region, marked by cyan-
arrows

acterised by different M[�]. In the left most uniform initial
density case, the evolution of the system is completely deter-
mined by the contraction and expansion of the co-moving
grid as a whole. But in the other two cases, the co-moving
grid’s contraction and the matter’s migration on the grid are
asynchronous. In the central sparser case of the middle col-
umn, the matters’ migration on the co-moving grid is from
the superficial layers to the central ones, so that the mat-
ters are distributed on smaller and smaller co-moving grids.
While in the central-denser case of right most column, the
matters’ migration on the co-moving grid is from the cen-
tral region to the superficial layers, so that they cover larger
and larger co-moving grids. In both latter cases, the matters’
migration on the co-moving grid is towards a more and more
homogeneous configuration until they reach an exactly uni-
form distribution and over-cross each other. At the over-cross
epoch, the physical mass density dM/(a3�2d�) is divergent,
but the density dM/�2d� on the co-moving grid is finite.
After that epoch, the mass-energy distribution will retrieve
its initial configuration but with the anti-podal point inter-
changed. So the matters’ gathering onto the central point and
causing divergence there is not the terminal of their motion
inside the horizon but a normal epoch of a periodical over-
cross oscillation. Of course this oscillation happens outside
the domain of time definition of the outside observers. To
them this oscillation especially the matter shells’ expansion
away from the gravitational central happens only in a quan-
tum parallel universe or statistic ensemble spacetime which
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is causally disconnected with the one they themselves live
in and is understandable only as the results of the quantum
fluctuation implied by the uncertainty principle.

Relative to other mono-directional collapsing star solu-
tions to the sourceful Einstein equation such as Oppenheimer
–Snyder [144,145], Yodzis–Seifert–Muller [146,147] and
Vaidya [148–153] in the history, the most important feature
of our oscillation solutions family above is its not taking the
dusts’ collapse to a[τ, �] = 0 and hitting on the singularity as
the terminal of their motion inside the horizon. Instead it takes
such event only as an intermediate epoch of the dusts’ motion
inside the horizon. The next step and following on motion
is their passing through each other and periodic oscillation
across the central point. Their motion over cross the cen-
tral point is an analogue of two classic wave’s superposition
and independent propagation when encountering each other.
This over cross oscillation mechanism is firstly noted and
quantised with a functional Schrodinger equation to resolve
the Schwarzschild singularity in Ref. [13] and then quan-
tised with the method of shell-decomposition in Refs. [14,15]
to interpret the origin of Bekenstein–Hawking entropy and
resolve the black hole information missing puzzle caused
by hawking radiation. While in Ref. [16], exact solutions for
the simple AdS2+1-Schwarzschild dust star are provided and
the corresponding Bekenstein–Hawking entropy formula is
analytically proved by the integer number partition formula.

The existence of our solutions family (3.1)–(3.7) does not
contradict with the singularity theorem of Penrose and Hawk-
ing [29–31], because all matter materials described in this
solution family indeed fall onto the central point and cause a
spatial-like singularity in finite proper time as expected. To
the co-moving observer, such a singularity is nothing but an
equal-τ hyper-surface. Just like the horizon can be trivially
traversed, the spatial-singularity which occupies only a future
point on the co-moving observer’s world line is also trivially
traversable in almost no τ -time, after which all kinematic
parameters of the system get their τ -time reversed value
routinely. Tidal forces affects only the finite sized objects.
However, just as we pointed out in the introduction section,
such effects are time inverse symmetric. So even when the
finite sized objects are involved in a physical collapsing pro-
cess, the status information encoded in such objects will be
retrieved as the singularity is traversed. This means that we
can define the microscopic state of the black hole with the
initial status of its consisting matter materials. For an exactly
spherically symmetric Schwarzschild black hole, the only
possible initial status information is its matter contents’ lay-
ering structure and each layer’s radial contraction speed.

To the outside fixed position observer or physical probes,
the asymptotic horizon provides an ideal excuse for them
to say that the system has to be considered as an ensemble
of many parallel universe, each contains a collapsing star
with equal mass but different initial radial mass profile. To

Fig. 6 To a co-moving local observer which uses proper time τ to
describe physic evolutions, the Schwarzschild singularity caused by
gravitational collapse is trivially traversable as the horizon is. So its
world line in the τ, ρ plane A,B,C,D· · · ,A′,B′,C′,D′ is periodic. The
Schwarzschild singularity represents not any terminal of physic evolu-
tion. But the definition domain of proper time τ covers that of the outside
fixed position observers’ time t infinite times. During the infinitely long
τ -time evolution, the shell structure a freely falling co-moving observer
see would not be exactly periodic due to the many-body essence of the
interactions among the different shells. This would cause ergodicity of
the shell structure’s evolution

the freely falling co-moving observers, this excuse cannot be
used. However, the fact that the domain of proper time τ ’s
definition covers that of the coordinate time t many times
brings us another interpretation, ergodicity. That is, during
the infinitely long τ -time evolution, the point representing
the microscopic state of the black hole will walk through
each point of the phase space that represents all possible
microscopic states of the collapsing star. See Fig. 6 for refer-
ences. To display oscillations inside the horizon more conve-
niently, we extended the rule of conventional Penrose Carter
diagram so that the east world and west world of the space-
time are equally displayed in the {τ, ρ} plane. We introduced
this diagram method firstly in Ref. [17]. We will show in
the following that the microscopic state definition based on
the ergodicity of co-moving observers and that based on the
uncertainty principle of the outside fixed position observers
are equivalent to each other.

In both Figs. 3 and 6, the horizon represented by red
straight lines and the singularity represented by red zigzags
are physical realities only to the investigators which can see
the Future of infinitely Far away Future (FiFF), we will call
the viewpoint of such observers as global or God-type. While
the viewpoint adopted by true physical probes will be called
local. Both the outside fixed position observer and the freely
falling co-moving observers are local. To them the horizon
and singularity are only mathematical realities instead of
physical ones, because they have not any physical ways to
detect such realities’ existence. We will come back to this
topic in Sect. 7.
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4 Quantisation

As the definition function of black hole microscopic states,
both the initial mass profile M[t0, r ] in (2.3) and the co-
moving mass profile M[�] in (3.1)–(3.7) at the classic level
are arbitrary thus un-countable. However, at the quantum
level, things are rather different. We have two methods to
quantise this system canonically. The first is to use the hamil-
tonian formulation of general relativity to build a Wheeler–
DeWitt like functional Schrodinger equation which takes the
instantaneous mass function m(t, r) as independent variable
and the radial mass-energy density profile ρ[t, r ] as eigen-
values.[
i2h̄2δ2

δm(r)2 + r232πGNρ

m′h2 + 0

]
�[m(r)] = 0 (4.1)

where h ≡ 1 − 2m(r)
r and m(r) is the value of m(t, r) at any

given time t . The 3 + 1 decomposition or foliation of the
spacetime itself defines the relation between m(t, r) and the
instantaneous energy density ρ(t, r) through the so called
hamiltonian constraint

h− 1
2 r2

[
− 2m′

r2 + 8πGNρ
(
h−2 ṁ

2

m′2 + 0
)] = 0. (4.2)

In the classic hamiltonian constraint, m is functions of t and
r simultaneously. While in its quantum version and eigen-
state, m can be understood as the function of r only. This
quantisation method is a generalisation of the minimal super
space quantum cosmology. We firstly proposed this method
in Ref. [13] but with an error happens in the functional
Schrodinger equation corrected in [17]. In their counterparts
of Refs. [13,17], the zero term positions of (4.1) and (4.2)
are occupied by terms of ρ2 and 1 respectively. This dif-
ference is due to the time coordinate adopted in this work to
define the hamiltonian constraint is the outside fixed position
observers’ time t instead of the proper time τ of the inside
co-moving observers.

To directly discretise the independent variable m(r) and
resolve the functional Schrodinger equation (4.1) is very dif-
ficult, see Ref. [13] for our earlier attempts. Beginning from
Ref. [14] and throughout Refs. [15–18], we proposed a new
discretisation stratagem. In this new stratagem, we decom-
pose the whole collapsing star into many concentric shells
{mi } and quantise each of them canonically. The shell decom-
position here is non-apriori. All schemes allowed by the fol-
lowing two conditions would be considered,

m1 + m2 + · · · + mk = Mtot (4.3)
GMimi

(2 − 2γ 2
i )

1
2 h̄

= ni = 1, 2, 3, . . . . (4.4)

The former follows from the total mass sum rule, while the
latter follows from the square integrability of shellmi ’s wave
function; Mi ≡ ∑

i ′�i mi ′ ; γi or ni is the radial quantum

number of shell mi ’s wave function and classically they are
determined by the shell’s initial radius. Quantum mechani-
cally the mass function of the whole collapsing star can be
written as

M[r ] =
∑
i

mi |ψi (r)|2 (4.5)

since ψi (r) here is the eigenfunction of the hamiltonian
whose conjugating time is that of the outside fixed posi-
tion observers, this quantum mass function corresponds to
the asymptotic function M[∞, r ] of Eq. (2.3). This can also
be taken as the initial mass function on the co-moving grid
since the initial time epoch on the co-moving grid is arbitrar-
ily choosable.

Obviously, the mass function’s quantum definition (4.5)
tells us that it is the combination of the shell decomposition
and initial radius assigning scheme that defines the micro-
scopic state of the collapsing star, neither one of them alone
is enough to do that work. So our number counting of the
microscopic state of the system should be made on

#partition{mi } ⊗exitation{ni } (4.6)

the partition here is order-concerned, e.g. {mi } = {1, 0.7, 0.3}
and {m′

i } = {1, 0.3, 0.7} are two different partitions of
Mtot = 2. Two attentions must be payed with the number
counting. The first is, the global maximal value position of
each shell’s wave function modular xψi

max must happen out-
side r ih = 2G

∑i
i ′=0 mi ′ but not too far away from it. r ih is the

classic horizon defined by the mass the shell mi wraps. “not
too far” means that the global maximal value position of the
outmost shell’s wave function should take the lowest value
which lies outside the classic horizon rh = 2GMtot. The
second is, any radial excitation scheme should not make the
global maximal value of shell mi ’s wave function |ψ2

i | hap-
pens outside that of the shell mi+1, for all i . The position of
these maximal values corresponds to the classic asymptotic
radius of the shells. This implies that the radial excitation
number {ni } cannot be set arbitrarily. It can be numerically
shown that given shell mass decomposition {mi }, the num-
ber of possible {ni }-values’ assigning schemes which satisfy
these two requirements grows at most polynomially as the
total mass Mtot increases. This polynomial non-uniqueness
is the origin of logarithmic corrections to the area law for-
mula in our microscopic state definition for black holes.

From the viewpoint of the outside fixed position observers,
the classic motion of each shell mi is freely falling in an
effective Schwarzschild geometry determined by the total
mass of shells inside mi (including mi itself)

ds2 = −hidt
2 + h−1

i dr2 + r2d�2 (4.7)

hi = 1 − 2GMi

r
, Mi =

i∑
i ′=1

mi ′ . (4.8)
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Using x and xμ(λ) ≡ {t (λ), x(λ), 0, 0} to denote the radius
of shellmi and the world line of a representative point’s mov-
ing on it, the standard geodesic equation and four velocity
normalisation of the representative point tell us

ẗ + �(i)t
μν ẋμ ẋν = 0 ⇒ hi ṫ = γi = const (4.9)

−hi ṫ
2 + h−1

i ẋ2 = −1 (4.10)

where �
(i)σ
μν and γi are the usual Christoffel symbol corre-

sponding to the effective metric (4.7) and an integration con-
stant of the geodesic equations respectively. γi = 0 corre-
sponds to the case the shell is released from rini = 2GMi

and ṙini = 0; γi = 1 corresponds cases the shell is released
from rini = ∞ and ṙini = 0. The former implies that the
surface r = rini happens to be a horizon. The latter implies
that the masses inside r = rini is far from forming horizon.
From the two equations of (4.9) and (4.10), we can easily
derive out

γ 2
i − ẋ2 − hi = 0. (4.11)

Multiplying both sides of this equation with the shell mass
mi and manipulate the resultant equation routinely, we will
get

mi ẋ
2 − GMimi

x
− mi (γ

2
i − 1) = 0. (4.12)

This is nothing but the hamiltonian constraint of the shell’s
motion.

Now replace the classic momentum mẋ into its operator
form i h̄∂x and introduce a wave function ψi (x) to denote the
probability amplitude the shell mi be measured on the status
of radius equals to x , we will get quantum versions of the
Hamiltonian constraint (4.12)[

− h̄2

2mi
∂2
x − GMimi

x
− mi (γ

2
i − 1)

]
ψi (x) = 0. (4.13)

This quantises the motion of shell mi canonically. All other
shells can be quantised similarly. Directly multiplying their
wave-functions together, we will get the wave functional of
the whole collapsing star as follows

�[M(r)] = ψ0 ⊗ ψ1 ⊗ ψ2 . . . ,
∑
i

mi = Mtot. (4.14)

Equation (4.13) is almost the standard eigenstate Schrodinger
equation with a coulomb like potential except the normali-
sation condition∫ ∞

0
|ψi |2dx = 1 (4.15)

which involves no angular space factor 4πx2 because ψi (x)
is the probability amplitude of the spherical shell as a whole
to lie on the state of radius taking x value instead of the prob-
ability amplitude a point particle to be measured at position

(x, θ, φ). The eigenfunction and eigenvalue of (4.13) can be
written down as

ψi = Nie
−x̄ x̄ L1

ni−1(2x̄), x̄ ≡ mi x(2 2γ 2
i )

1
2 /h̄ (4.16)

mi (γ
2
i − 1) ≡ Ei = − (GMimi )

2mi

2n2
i h̄

2 (4.17)

where ni = 1, 2, 3 . . . takes positive integer values and
L1
ni−1(2x) is the associated Laguerre polynomial [154]; Ni

is the normalisation factor following from (4.15). Equa-
tion (4.17) explains the origin of our microscopic state num-
ber counting constraint (4.4).

Although the radial quantisation condition (4.17) or (4.4)
for each component shell provides a countability for the
microscopic state of the system, the number of state counted
basing on Eqs. (4.3)–(4.4) is still infinite. This is because
both the two conditions do not impose discreteness on the
masses {mi } of the component shells, but only on the quo-
tients { GMimi

(2−2γ 2
i )1/2h̄

} and γi are not required to be zero exactly.

As a regularisation for this countable infinite, we introduce
the following standard of partitions’ distinguishability

two parti tions of equal number of shells {mi }&
{m′

i } are indistinguishable on precision ε i f

	mi ≡ |mi − m′
i | � min

{
ε

GMi
,

ε

GM ′
i

}
f or all i;

two parti tions of unequal shell numbers

are always distinguishable. (4.18)

By this standard, we can quantitatively state that to precision
ε = 1, the finest way of decomposing the collapsing star into
concentric shells is that defined by the condition that for all i ,

GMimi
(2−2γ 2

i )1/2h̄
= 1 and γi = 0. We will call this decomposition

scheme as fundamental. By this fundamental scheme, the
number of shells the collapsing star can be partitioned into

is k ≈ GM2
tot

2
√

2
. This is because

GMi (Mi − Mi−1) = √
2 ⇒ (4.19)

Mi
i large−−−−→
enough

(
2
√

2i

G

) 1
2

, imax
fixMtot

≈ GM2
tot

2
√

2
≡ k. (4.20)

For the fundamental shell decomposition scheme above,
to assure that the global maximal value of each shell mi ’s
wave function modular square happens outside the classic
horizon r ih ≡ 2GMi , the lowest level radial quantum num-
ber assigning scheme is to set ni = 2 for all i . This is because
in this case, the global maximal value of |ψ2

ni (x)| happens

on x
ψni
max = 3+√

5
GMim2

i
= 2.618GMi . If we set any of the ni s

to 3, then the corresponding x
ψni
max = 6.525GMi will go out-

side its nearest outer neighbour. If we set all of the ni s to 3,
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then the corresponding wave functional of the whole system
would have a too fat non-zero tail outside the classic hori-
zon rh = 2GMtot. The object described by the correspond-
ing wave functional would have matter contents distributed
in a spherical region of radius r = 6.525GMtot instead of
being localised inside the classic horizon. So we will not take
such highly excited quantum state as the microscopic state
of black holes defined by the classic horizon rh = 2GMtot.
We will call the microscopic state defined by the fundamen-
tal shell decomposition and pure 2 radial quantum number
as the fundamental state of the classic black hole. For latter
usages, we introduce the following diagram to represent this
fundamental state

Mk mk, nk = 2

Mk− mk− , nk− = 2

Mi · · · · · · mi , ni = 2

M1 m1, n1 = 2

M0 m0, n0 = 2 (4.21)

where k− ≡ k − 1 and GMimi = √
2 for all i . By this

representation, the most general radial excitation scheme can
be written as

Mk −→mk, nk = 2

Mk− −→mk− , nk−�2

Mi · · · · · · −→mi , ni�2

M1 −→m1, n1�2

M0 −→m0, n0�2 (4.22)

However, by the explicit form of each shell’s wave func-
tion (4.16), it can be easily shown that one cannot find any
radial quantum numbers’ combination {ni } which is differ-
ent from that of the fundamental state (4.21) and for all i ,
the position of |ψ2

i |’s maximal value does not go outside that
of the shell mi+1’s |ψ2

i+1|. This means that the fundamental
state of the system is unique.

By choosing two or more inner shells and merging them
into some new single shell, we have ways to excite the inner
structure of the fundamental state without changing the total
ADM-mass/energy of the system. The most simple choice is
selecting two neighbouring shells and merging them into a
single one. For example, merging the outmost two shells and
set nk−≈4

Mk− mk− , nk−≈4

Mi · · · · · · −→mi , ni�2

M1 −→m1, n1�2

M0 −→m0, n0�2 (4.23)

or more generally, merging some two or more internal shells,

Mk− mk− , nk− = 2

Mi · · · · · · mi , ni≈4

M1 −→m1, n2�2

M0 −→m0, n1�2 (4.24)

nk− ≡ GMk− (mk−+mk )

(2−2γ 2
k− )1/2h̄

≈4 or ni ≡ GMi (mi+mi+ )

(2−2γ 2
i )1/2h̄

≈4 means

that as the two shells are merged, nk− and ni can be set to
4 if we tune the value of γk− or γi to some value which is
larger than their value in the fundamental state. This is ratio-
nal because when we merge two shells, the resultant single
shell must be put onto a state whose radial quantum number
is roughly the summation of the merger-before members’
quantum number to assure the global maximal value of the
resultant shell’s wave function happen outside the horizon
r i

′
h = 2GMi ′ , recalling the radial quantising condition (4.4).

Before the two shells’ recombination, all ni equals to 2. The
radial quantum number of shells inside the recombined shell
can now be set to values greater than 2 because as the latter
takes now a larger radial quantum number, the formers have
the possibility to be excited to higher radial quantum number
level and still keep their global maximal value inside the that
of the latter. This means that a given recombined shell decom-
position scheme could have more than one radial excitation
ways.

The most general shell decomposition and radial excita-
tion scheme can be generated from the fundamental state
by shell recombination and radial quantum numbers’ reas-
signing. The resultant microscopic state of the system will
have equal total mass as but different inner profiles from the
fundamental one. They can be represented as

M� m� , n� = nmin
�

Mi · · · · · · −→ mi , ni�2

M1 −→m1, n1�2

M0 −→m0, n0�2 (4.25)

where nmin
� takes the minimal possible value so that |ψ2

� |’s
global maximal value happens outside the horizon rh =
2GMtot. The number of shell recombination ways from the
fundamental state is the number of ordered partition of inte-

ger k = GM2
tot

2
√

2
, which is 2k−1 exactly, including the funda-

mental state itself [155,156]. So the total number of micro-
scopic state of the system can be written as

W = #partition{mi } ⊗exitation{ni } = 2k−1 · X (k) (4.26)

where X (k) is a correction factor which arises from the non-
uniqueness of the radial quantum number assigning scheme
in the specified shell decomposition scheme. In the case
of neglecting the requirement that |ψ2

i |’s global maximal
value happens inside that of |ψ2

i+1|, Ref. [17] proves that
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X (k), which is named F(k) there, grows exponentially as k
increases. However, when this requirement is considered, it
can be verified that F(k)’s growing trend is at most polyno-
mial way. See the next section for a concrete working exam-
ple.

So by the distinguishability definition of (4.18) and the
result (4.26), we can now claim that to precision ε, the num-
ber of all distinguishable ways of decomposing a collapsing
star with asymptotic horizon into concentric shells {mi } and
setting each shell’s radial quantum number {ni } is

W = exp

{
c(ε)

[
A

4G
+ ln X (A)

]}
, A = 4π(2GMtot)

2

(4.27)

where Mtot is only required to be mildly larger than G− 1
2 ≡

Mpl. Since the decomposition precision parameter ε linearly
affects the number of shells of the fundamental decomposi-
tion, c(ε) is a linear function of ε. This means that we can
easily get the logarithmically corrected Bekenstein–Hawking
formula with c(ε) = 1 by simply setting ε ≈ 1

8
√

2π
. To get

the explicit formula of the logarithmic correction X (A), we
need quantitatively work out the relation between the num-
ber of radial quantum number assigning scheme {ni } and the
collapsing star’s total mass Mtot for specified shell decom-
position {mi } under the constraint that for all i , the global
maximal value of |ψ2

i | happens not outside that of |ψ2
i+1|,

and the global maximal value of all |ψ2
i | happens outside

the classic horizon of r ih = 2GMi , with ni−outmost takes the
minimal allowed value. This may be a challenging work but
operable in principle.

Equation (4.17) or (4.4) implies that the outmost shell has
a minimal allowed mass

GMtotmoutmost

(2 − 2γ 2
outmost)

1/2
= nmin

outmost = 2 ⇒ (4.28)

moutmost = 2(2 − 2γ 2
outmost)

1
2

GMtot
. (4.29)

Since the shell with γoutmost = 0 has the maximal probability
be found on the horizon and that with γoutmost = 1 has the
maximal probability be found on the infinity r region. Exact
horizon boundary condition implies that γoutmost = 0. This
means that

mmin
outmost = 2

√
2

GMtot
. (4.30)

This is also the typical mass of most of the outer layered
shells. This explains why we have chances to get the area
law entropy by counting the bulk motion degrees of freedom
of the black hole matter contents. Because the number of
such shells reads

N ∼ Mtot

(GMtot)−1 ∝ GM2. (4.31)

Fig. 7 The modular square of the ground state wave function of an
M = 3Mpl black hole

Note that for all macroscopic black holes, the value of
mmin

outmost is far less than the standard model particles which
consists of the collapsing star. So what the Bekenstein–
Hawking entropy reflects is not the random motion degrees of
freedom of these particles, but the collection motion modes
of them which we call as compositional shells. This fact was
pointed out and emphasised in our series of previous works
[13–18].

Equation (4.30) also tells us that mmin
outmost has the same

order as the hawking temperature of a mass Mtot black hole.
This means that this shell can be easily radiated away as
hawking radiations. Figure 7 displays the wave function mod-
ular square of the fundamental microscopic state of a 3Mpl

black hole caused by a dust ball’s gravitational collapse.
From the figure we easily see that the outmost shell has very
large probability be found outside the horizon. Of course this
outmost shell’s appearance outside the horizon itself is not
hawking radiation. The true hawking radiation arises from
the microscopic state’s change of the system and can be
described as the spontaneous radiation of usual atoms with
explicitly hermitian hamiltonian, which is named gravitation
induced spontaneous radiation in [18], see Refs. [14,15,17]
for more earlier and detailed investigations.

The physical picture and calculations up to here provide
a general relativity based quantum mechanical interpretation
for the Bekenstein–Hawking entropy and area law formula.
This interpretation contrasts with the common belief that
Bekenstein–Hawking entropy has pure geometric origin, i.e.
the fundamental degrees of freedom of black holes is carried
by their horizon, each planck unit of area element carries one
bit of information. However, our calculation shows that such
fundamental degrees of freedom may completely be carried
by the bulk motion modes of the matter contents. As long as
we find the right carrier the area law formula flows logically
and naturally. Since in a collapsing star consists of dust only,
no other forces except gravitation is involved, the matter’s
motion and fluctuation is an exact and faithful reflection of
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geodesic features of the spacetime underground. As results,
the quantisation of these matters’ motion is also the quanti-
sation of spacetime itself. In a sense what we provide in this
work is a quantum gravitation theory indeed. Since it focuses
on the origin of Bekenstein Hawking entropy exclusively, we
consider it a mini-version of some underlying full quantum
gravitational theories.

5 A working example for the quantisation

Let us consider the inner structure’s quantisation of an Mtot =
3Mpl black hole as a concrete example for the microscopic
state definition ideas above. For this black hole, to preci-
sion ε = 1, its matter contents can be divided into 4 distin-
guishable concentric shells at most, under the condition that
ni = 2, γi = 0 for all i . The fundamental state of the whole
system is defined by the following shell mass assigning and
radial quantum level number’s setting scheme,

{mi } = {1.25118, 0.718127, 0.559288, 0.471405} (5.1)

{Mi } = {1.25118, 1.96931, 2.5286, 3} (5.2){
GMimi√

2

}
= {1, 1, 1, 1} (5.3)

{(1 − γ 2
i )

1
2 } = {0.5, 0.5, 0.5, 0.5} (5.4)

{ni } = {2, 2, 2, 2} (5.5)

{ψi } ∝ {e−x̄ x̄LaguerreL1
0(2x̄)} (5.6)

{xψi
max} = {2.67, 5.16, 6.62, 7.85}. (5.7)

Note that in the wave function of (5.6), x̄ ≡ mi (2−2γ 2
i )

1
2 x .

By the representation method of (4.21), this ground state can
be represented as

M3 m3, n3 = 2

M2 m2, n2 = 2

M1 m1, n1 = 2

M0 m0, n0 = 2 (5.8)

Figure 7 displays the modular square of the wave func-
tion of each compositional shell. In the figure, three things
are worthy of noticing. The first is, positions of the global
maximal value of each component shell’s wave function are
ordered from inside to outside. The second is, the global max-
imal value of all shellmi ’s wave function happens outside r ih .
This is nothing but the requirement that classically each shell
lies outside the horizon r ih = 2G

∑i
i ′=0 mi ′ determined by

the matter energy they wrap. The third is, the probability of
each shell’s being found outside the global horizon defined
by rh = 2GMtot is rather remarkable. Keeping the condition
xψi

max < xψi+1
max ,∀i and exciting all shells mi to their higher

level quantum state uniformly by setting ni = 3 or more
larger is possible, but that would make the probability of

these shell’s being found outside the global horizon becomes
too larger than the ground state characterised by ni = 2,∀i .

Now if we let some but not all of the internal shells
such as m0 to be excited, we will find that even only let
n0 = 3, the global maximal value of ψ0(x) would hap-
pen outside that of ψ1(x). So under the requirement that all
other shell’s quantisation conditions are kept invariant, i.e.
GMimi√

2
= 2(i �= 0 and 1), the only possible way of exciting

m0 is letting it be bounded withm1 as a single shell. Similarly,
if we want to excite other one or more shells independently,
the best way is also to let them be bounded with their clos-
est outer neighbour into a single shell. For the M = 3Mpl

black hole whose fundamental state is defined by the four
ni = 2(i = 0, 1, 2, 3) shells, we have only 7 = 24−1 − 1
possible ways to recombine those shells. Let us consider them
one by one.

Recombination A, {m0+m1 ≡ m′
0,m2 ≡ m′

1,m3 ≡ m′
2},

remember in the wave function (5.14), x̄ ≡ m′
i (2 − 2γ 2

i )
1
2 x .

This is the same as (5.6) and will be similar in the other
recombination schemes.

{m′
i } = {1.96931, 0.559288, 0.471405} (5.9)

{M ′
i } = {1.96931, 2.5286, 3.} (5.10){

GM ′
im

′
i√

2

}
= {2.74228, 1, 1} (5.11)

{(1 − γ ′2
i )

1
2 } = {�0, 0.5, 0.5}, 0��0�1 (5.12)

{n′
i } = {2.74228/�0, 2, 2} (5.13)

{ψ ′
i } ∝ {e−x̄ x̄LaguerreL1

ni−1(2x̄)} (5.14)

{xψ ′
i

max} = {3.94�x
ψ ′

0
max�6.62, 6.62, 7.85}. (5.15)

To satisfy the constraint 2GM ′
0 = 3.94�x

ψ ′
0

max�6.62, we
find that n′

0 = 5 are allowed, other values are not. So
this shell recombination scheme contributes only one micro-
scopic state to the system. By the representation method of
(4.21), this state can be represented as

M ′
2 m′

2, n2 = 2

M ′
1 m′

1, n1 = 2

M ′
0 −→ m′

0, n0 = 5 (5.16)

Recombination B, {m0 ≡ m′
0,m1+m2 ≡ m′

1,m3 ≡ m′
2},

still remember that x̄ ≡ m′
i (2 − 2γ 2

i )
1
2 x

{m′
i } = {1.25118, 1.27742, 0.471405} (5.17)

{M ′
i } = {1.25118, 2.5286, 3} (5.18){

GM ′
im

′
i√

2

}
= {1.10694, 2.284, 1} (5.19)

{
(1 − γ ′2

i )
1
2

}
= {0.55347, �1, 0.5}, 0��1�1 (5.20)

{n′
i } = {2, 2.28406/�1, 2} (5.21)

{ψ ′
i } ∝ {e−x̄ x̄LaguerreL1

ni−1(2x̄)} (5.22)
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{xψ ′
i

max} = {2.67, 5.06�x
ψ ′

1
max�7.85, 7.85}. (5.23)

To satisfy the condition 2GM ′
2 = 5.06 < x

ψ ′
1

max < 7.85, we
find that n′

1 = 4 are allowed, other values are not. This means
that the shell recombination scheme B also contributes only
one microscopic state to the system. The diagram represen-
tation of this state can be plotted as follows

M ′
2 m′

2, n2 = 2

M ′
1 −→ m′

1, n1 = 4

M ′
0 m′

0, n0 = 2 (5.24)

Recombination C, {m0 ≡ m′
0,m1 ≡ m′

1,m2 +m3 ≡ m′
2}

{m′
i } = {1.25118, 0.718127, 1.03069} (5.25)

{M ′
i } = {1.25118, 1.96931, 3} (5.26){

GM ′
im

′
i√

2

}
= {1.10694, 1, 2.18643} (5.27)

{(1 − γ ′2
i )

1
2 } = {0.55347, 0.5, �2}, 0��2�1 (5.28)

{n′
i } = {2, 2, 2.18643/�2} (5.29)

{ψ ′
i } ∝ {e−x̄ x̄LaguerreL1

ni−1(2x̄)} (5.30)

{xψ ′
i

max} = {2.67, 5.16, 6�x
ψ ′

2
max}. (5.31)

To satisfy the condition 2GM ′
2 = 6�x

ψ ′
2

max, we find that
n′

2 = 4 is the lowest requirement. Other greater than 4 values
for n′

2 could also satisfy this constraint. But the correspond-
ing wave function will have a very fat non-zero tail outside
the global horizon thus contradict with the definition of black
holes in general relativity. We will exclude such state as the
microscopic state of black holes characterised by the classic
horizon rh = 2GMtot. This means that the shell recombina-
tion scheme C also contributes only one microscopic state to
the system. The diagram representation of this state can be
plotted as follows

M ′
2 −→ m′

2, n2 = 4

M ′
1 m′

1, n1 = 2

M ′
0 m′

0, n0 = 2 (5.32)

Recombination D, {m0 + m1 + m2 ≡ m′
0,m3 ≡ m′

1}
{m′

i } = {2.5286, 0.4714} (5.33)

{M ′
i } = {2.5286, 3} (5.34){

GM ′
im

′
i√

2

}
= {4.5211, 1} (5.35)

{
(1 − γ ′2

i )
1
2

}
= {�0, 0.5}, 0��0�1 (5.36)

{n′
i } = {4.5211/�0, 2} (5.37)

{ψ ′
i } ∝ {e−x̄ x̄LaguerreL1

ni−1(2x̄)} (5.38)

{xψ ′
i

max} = {5.06�x
ψ ′

0
max�7.85, 7.85}. (5.39)

To satisfy the condition 2GM ′
0 = 5.06�x

ψ ′
0

max�7.85, we find
that n′

0 = 7, 8 are both allowed. Other values are not. So
this recombination contributes 2 microscopic states to the
system. The diagram representation of these two states can
be plotted as follows

M ′
1 m′

1, n1 = 2

M ′
0 −→ m′

0, n0 = 7, 8 (5.40)

Recombination E, {m0 + m1 ≡ m′
0,m2 + m3 ≡ m′

1}
{m′

i } = {1.96931, 1.03069} (5.41)

{M ′
i } = {1.96931, 3} (5.42){

GM ′
im

′
i√

2

}
= {2.742, 2.186} (5.43)

{
(1 − γ ′2

i )
1
2

}
= {�0, �1}, 0 � �0, �1 � 1 (5.44)

{n′
i } = {2.742/�0, 2.186/�1} (5.45)

{ψ ′
i } ∝ {e−x̄ x̄LaguerreL1

ni−1(2x̄)} (5.46)

{xψ ′
i

max} = {3.94�x
ψ ′

0
max, 6�x

ψ ′
1

max}. (5.47)

To satisfy the constraints 2GM ′
0 = 3.94�x

ψ ′
0

max, 2GM ′
1 =

6�x
ψ ′

1
max and x

ψ ′
0

max < x
ψ ′

1
max, we find that n′

0 = 5, n′
1 = 4 are

allowed. Other values for n′
0 and n′

1 which satisfy this three
constraints are also possible, but all of them have the problem
of giving the corresponding wave function a too fat nonzero
tail outside the horizon thus contradicting the definition of
black holes characterised by their classic horizon. So such
highly excited state will not be considered as microscopic
states of the class black holes. The diagram representation of
this state can be plotted as follows

M ′
1 −→ m′

1, n1 = 4

M ′
0 −→ m′

0, n0 = 6 (5.48)

Recombination F, {m0 ≡ m′
0,m1 + m2 + m3 ≡ m′

1}
{m′

i } = {1.25118, 1.74882} (5.49)

{M ′
i } = {1.25118, 3} (5.50){

GM ′
im

′
i√

2

}
= {1.10694, 3.70981} (5.51)

{
(1 − γ ′2

i )
1
2

}
= {0.55347, �1}, 0 � �1 � 1 (5.52)

{n′
i } = {2, 3.70981/�1} (5.53)

{ψ ′
i } ∝ {e−x̄ x̄LaguerreL1

ni−1(2x̄)} (5.54)

{xψ ′
i

max} = {2.67, 6�x
ψ ′

1
max}. (5.55)

To satisfy the condition 2GM ′
1 = 6�x

ψ ′
1

max, we find that n′
1 =

6 is the lowest level required. Other greater than 6 levels for
n′

1 which satisfy this condition are also possible, but have the
problem of giving the corresponding wave function a too fat
tail outside the classic horizon. So they will still not be taken
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as microscopic states of the class black holes. The diagram
representation of this state can be plotted as follows

M ′
1 −→ m′

1, n1 = 6

M ′
0 m′

0, n0 = 2 (5.56)

Recombination G, {m0 + m1 + m2 + m3 ≡ m′
0}

{m′
i } = {3}, {M ′

i } = {3} (5.57){
GM ′

im
′
i√

2

}
= {6.36396} (5.58)

{
(1 − γ ′2

i )
1
2

}
= {�0}, 0 � �1 � 1 (5.59)

{n′
i } = {6.36396/�0} (5.60)

{ψ ′
i } ∝ {e−x̄ x̄LaguerreL1

ni−1(2x̄)} (5.61)

{xψ ′
i

max} = {6�x
ψ ′

0
max}. (5.62)

To satisfy the condition 2GM ′
0 = 6�x

ψ ′
1

max, we find that n′
0 =

10 is the lowest level required. Other greater than 10 levels
for n′

0 satisfying this condition are also possible, but have the
problem of giving the corresponding wave function too fat
nonzero tails outside the classic horizon. So they still can not
be taken as microscopic states of the classic black holes. The
diagram representation of this state can be plotted as follows

M ′
0 −→ m′

0, n0 = 10 (5.63)

From the calculations above, we can see that to preci-
sion ε = 1, an M = 3Mpl black hole can be divided into
4 distinguishable concentric shells at most under the condi-
tion that ni = 2 and γi = 0 for all i . Letting all this four
shells lie on the quantum state of ni = 2 yields the fun-
damental state of the system. In this fundamental state, the
global maximal value of each shells’ wave function modu-
lar square happens outside the classic horizon determined by
the masses the shell wraps r ih = 2GMi , Mi = ∑i

i ′=0 mi .
To excite each shell independently and preserve the order
of the excited shells is equivalent to recombine shells from
the fundamental state and tuning the resultant shell’s radial
quantum number. Including the fundamental state itself, we
have 24−1 = 8 ways to do such recombinations. Except the
recombination scheme D, the number of ways to excite all
shells in all the other recombinations is unique. General-
ising to the large mass case, this is our conclusion proved
analytically in the previous section, the matter contents of a
spherically symmetric black hole of mass M(mildly larger
than Mpl) with asymptotic horizon r = 2GM can be divided

into k = GM2

2
√

2
distinguishable concentric shells to precision

ε = 1. These fundamental shells can be recombined and
excited at 2k−1X (k) number of ways. X (k) is at most a poly-
nomial function of k.

6 Black hole complementarity principle

By our proof and calculations above, one can easily under-
stand that in the co-moving observer’s description, the gravi-
tational collapse passes through the horizon and Schwarzschild
singularity fluently in finite and seeable proper time. The
resultant black hole owns a quasi-periodically oscillatory
matter core and multiply possible mass profiles which are
ergodically accessed by evolutions of the system. While in
the domain of outside fixed position observers’ time defini-
tion, a collapsing star can infinitely approach but will never
contract into the horizon defined by its total mass; the sys-
tem forms only an asymptotically implementable horizon and
asymptotically linear mass function, the microscopic state of
the system is characterised by its mass function’s deviation
from the exact linear profile M[r ] = r

2G . The gap between
this two observers’ description is filled up as long as we
note that, the horizon and singularity encountered by the co-
moving observer happen only in the Future of infinitely Far
away Future (FiFF) by the outside fixed position observers’
physical time definition. They are physical realities only in
the parallel universe or ensemble spacetime of these outside
fixed position observer or detectors.

This fact naturally brings us to the idea of black hole com-
plementarity principle [102–106], which conjectures that
both the co-moving observer and the outside fixed posi-
tion observer’s description of a collapsing star’s evolution
are equally true. What we have done in this work supple-
ments that, when the ergodicity feature of the co-moving
observer and its observables’ interaction dynamics and the
parallel universe or ensemble interpretation for the uncer-
tainty ingredients contained in the outside fixed position
observers’ measurements are considered, the two types of
observer’s description of the black hole microscopic state
will not only be equally true, but also be equally complete.
In another word, the two observers’ description are equiv-
alent. By the extended Penrose–Carter diagram, we display
this equivalence in Fig. 8.

In the quantisation stratagem of Refs. [14–17] we assumed
γ 2
i < 0 for each single shell when do the microscopic state

number counting for black holes caused by gravitational col-
lapse. Technically, this stratagem is nothing but the require-
ment that classically all shells consisting of the collapsing
star oscillate inside the horizon defined by r < r ih ≡ 2GMi

so that for these shells both ṫ and ẋ take imaginary values but
the four velocity normalisation condition hṫ2 − h−1ṙ2 = 1
holds just as the shell is moving outside the horizon r ih . While
in our proofs of this work, Sect. 4, this stratagem is given
up and the same area law is obtained successfully. Physi-
cally this means that we do not need any shell mi to move
inside its horizon r ih = 2GMi , we only need to consider
their motion of falling towards there. The fact that the two
proofs lead to the same area law entropy formula implies
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Fig. 8 Equivalence between two types of observers’ microscopic state
definition for black holes. Relative to Fig. 3, the right hand part of this
figure adopts the extended rule of conventional Penrose Carter diagram
so that the east world and west world of the spacetime are simultaneously
displayed in the {τ, ρ} plane

that, there is an equivalence between the two pictures of (i)
the motion of matter materials consisting of a black hole is
their oscillation over-crossing the central point and (ii) the
motion of matter materials consisting of a black hole is its
compositional shells’ falling towards their own’s horizon.
In the latter picture, the quantum fluctuation implied by the
uncertainty principle has the power of causing various shells
to escape away from their asymptotical horizon thus making
their inside horizon space looks like something just be dug
out from the whole spacetime and anti-podal point identified
[157–167].

Although our proof or illustration of the equivalence rela-
tion between the two observers’ definition of the black hole
microscopic states is based on the physical black holes with
non-singular inner mass distribution. We emphasise here that,
even for the mathematical black holes defined as the exact
solutions to the vacuum Einstein equation thus characterised
by the apriori horizon and singularity. Similar complemen-
tarity principle must also be possible to play functions for the
two types observers’ microscopic state definition. Because as
long as such microscopic states are physical, they must be
observable in principle. For such microscopic states, the idea
of black hole complementarity principle is challenged by the
firewall paradoxes in recent years [107,108].

By definition, the black hole in the fire wall paradox is
nothing but a horizon wrapped singularity and between the
horizon and the singularity is a vacuum region with wrongly
signatured space-time metric. By the fire wall paradox’s rea-
soning, hawking particle arise from the particle pair produc-
tion and partial escaping from the vacuum fluctuation around
the horizon. The escapers have nothing to do with the micro-
scopic state of the black hole [168,169]. At late times any
given escaper is entangled with both its partner falling into
the horizon and the early successfully escaped colleagues

Fig. 9 The vacuum fluctuation and partial escaping mechanism for
hawking radiation is a policy of deficit financing. The cost of the out-
side Gieger counter’s recording hawking particles is the vacuum def-
inition standard’s lowering, an analog of the currency releasing stan-
dard’s lowering in conventional financial systems. An event of particle
pair’s annihilation would uplift this vacuum standard, analog of the
currency releasing standard’s up-tuning or currency withdrawal. The
potential curve V [φ]’s change from dash to solid style denotes the vac-
uum definition standard’s change. For a black hole caused by gravita-
tional collapse, the horizon is only an asymptotically realisable but not
a truly implemented physical surface so matter particles of the system
can be found outside of it. The time separation 	t between the Gieger
counter’s recording particle and the ingoing particle’s annihilation with
matter particles consisting of the collapsing star is very short so that
	t ·	E ≈ h̄

2 is holden very well

as a whole. This two side entanglement would break the
monodromy of the quantum entanglement thus calls for pro-
tections from mechanisms such as firewalls. Obviously, for
black holes caused by gravitational collapse, exact horizon
and singularity never form to the outside observer or detec-
tors. To them the black holes are inner-structured and char-
acterised by their radial mass profiles. Referring Fig. 9, late
time hawking particles can be recorded only when the in-
going member of the early produced pairs get annihilated
with matter particles consisting of the collapsing star because
otherwise we will have vacuum decay inevitably. Effectively,
this makes each hawking particle looks like arising from the
microscopic state change of the black hole instead of com-
pletely random fluctuation of the vacuums around it. Refer-
ences [14,15,17] provide an explicitly hermitian hamiltonian
description for this radiation mechanism which is named as
gravity induced spontaneous radiation in [18].

For black holes defined as exact solutions to the vacuum
Einstein equation so carry absolute horizon and singularity
apriori, hawking particles cannot be produced continuously
as the results of particle pair production and partial escap-
ing from the vacuum fluctuation around the horizon. This
is because the hawking radiation recorded by the outside
fixed position observers comes from the vacuum definition
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Fig. 10 For black holes defined as exact solutions to the vacuum Ein-
stein equation, the horizon is absolute and apriori. The in-going par-
ticles arising from vacuum pair production needs infinite t-time to go
across the horizon and annihilate with matters inside to uplift the stan-
dard of vacuum definition. During this period, if the outside fixed posi-
tion Gieger counter records hawking particles continuously, the vacuum
definition standard would be observed to be lowered remarkably. This
would cause vacuum decay. Particles would be observable everywhere,
just like currency inflations in the conventional financial system. So
the deficit financing policy interpretation for hawking radiation’s pro-
duction in these black holes does not work at all. That is, the outside
fixed position observer could not see the black hole’s evaporation as the
result of vacuum fluctuation caused particle pair production and partial
escaping

standard’s lowering. The particle pairs’ annihilation takes
the responsibility of uplifting this standard back thus retriev-
ing it to the initial one. To those observers, each member of
the particle pairs falling towards the horizon needs infinite
time to get across the horizon and reach the central point
which accumulates all matter contents of the black hole to
annihilate with particles there so that the vacuum definition
standard can be uplifted back, see Fig. 10 for intuitions. If
an outside fixed position observer records hawking particles
continuously in his/her detector, then his/her vacuum defini-
tion standard would be lowered continuously without com-
pensation. As results, he/she would see infinite number of
particles everywhere because of vacuum decay. So, for black
holes defined as exact solutions to the vacuum Einstein equa-
tion, the situation imagined in the firewall paradoxes where
the black hole radiated half of its mass will not appear at all.
In fact the fraction of this black hole’s mass change due to
hawking radiation is strictly constrained by the uncertainty
principle 	M ·	t ≈ h̄

2 .
So the complementarity principle is right enough to be

taken as a basis for understanding the black hole inner-
structures and their microscopic state definition. What the
firewall paradox challenges is not the complementarity prin-
ciple, but the underlying mechanism of hawking particle’s

generation mechanism. The right mechanisms such as grav-
ity induced spontaneous radiation [14,15,17,18] or ’t Hooft’s
firewall transformation [157–167] must contain some ingre-
dients which couple the hawking particle’s observational
feature such as interaction amplitude with the microscopic
state change of the radiating black holes, so that the infor-
mation encoded in the initial state of the black hole can be
transferred into observational features of the hawking parti-
cles. See Refs. [14,15,17,18] for more concrete and detailed
implementation of this idea.

7 The physical reality’s observer dependence

Why is the singularity theorem chosen by so many people
as the basis for understanding the inner-structure and micro-
scopic state of black holes in general relativity? Why is it not
the complementarity principle interpretation? Pushing aside
the establishing time reason, the other one important rea-
son for this status may be people’s mistaking of the global
viewpoint as local viewpoints and negligence of the physical
reality’s observer dependence, under the name of the physic
law’s general coordinate invariance.

It is well known that in a black hole formed through grav-
itational collapse, the outside fixed position observers will
not see the formation of horizon and singularity in their any
finite future. These observers can be any outside test parti-
cle or probes whose motion is affected by the gravitational
field of the to be black hole collapsing star, such as the other
partner in a binary merger event and the light rays skimming
over the surface of a single black hole to be imaged. Dur-
ing the whole lifetime of these test particle’s existence, their
motion is affected by the gravitational field quotient by the
mass-energy of the collapsing star being measured. So they
see no black holes defined by the horizon and singularity at
all, they see just a to be black hole collapsing star.

Due to the co-moving observers existence and the singu-
larity theorem’s being proven, many people believe that the
fate of all massive enough collapsing stars in the nature is
the horizon wrapped singularity definitely. The logic behind
this belief is, the physics laws are invariant under the general
coordinate transformation. In that the singularity and horizon
form in the finite future of the collapsing matter themselves’
time definition, their effects on the motion of the outside
fixed position observers must also happen in the form of
horizon and singularity naturally. The outside fixed position
observers cannot see such objects’ appearance only because
they adopt a bad coordinate system or time definition.

However, this popular belief makes two mistakes rather
hiddenly, (i) taking the global viewpoint of the horizon’s exis-
tence as the viewpoint of local observers and (ii) taking the
physics law’s general coordinate invariance as the physical
reality’s observer irrelevance. The physics law here refers
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Table 1 Two types of observer’s measurement of a light signal emit-
ted from the surface of a freely collapsing star whose outside geometry
is exactly Schwarzschild type. The upper is in the standard Boyer–
Lindquist coordinate, the lower is in the Eddington–Finkelstein coor-
dinate. As a physical reality, the light signal’s frequency is invariant
under general coordinate transformation but observer dependent. h0 is
the value of h at the light signal’s starting point. hfx is the value of h at
the point the fixed position observer sits on. kμ is the wave number of the
light signal, whose components are determined by k̇0 + �0

μνk
μkν = 0

and k·k = 0. uμ
fx is the four velocity of the fixed position observer far

away, uμ
fr is the four velocity of the freely falling observer outside the

star. The components of uμ are determined by u̇0 + �0
μνu

μuν = 0 and
u·u = −1

ds2=−hdt2+h−1dr2+ · · · , h = 1− 2GM
r

kμ = (
ω0h

1/2
0

h , ω0h
1/2
0 , 0, 0)

uμ
fx = (h−1/2

fx , 0, 0, 0) uμ
fr = (

√
h0
h ,

√
h0 − h, 0, 0)

ωfx = −ufx·k = ω0h
1/2
0

h1/2
fx

ωfr = −ufr·k = ω0[h0−(h2
0−h0h)1/2]
h

ds2= − hdv2+2dvdr+ · · · , h = 1− 2GM
r

k̄μ=(
2ω0h

1/2
0

h , ω0h
1/2
0 , 0, 0)

ūμ
fx = (h−1/2

fx , 0, 0, 0) ūμ
fr = (

√
h0+√

h0−h
h ,

√
h0 − h, 0, 0)

ω̄fx = −ūfx·k̄ = ω0h
1/2
0

h1/2
fx

ω̄fr = −ūfr·k̄ = ω0[h0−(h2
0−h0h)1/2]
h

to relations like Gμν = 8πGNTμν which bridges observ-
ables following from at least two types of physical measure-
ment. The physical reality refers to the output of any single
type of physic quantity or physical feature’s measurements.
These are two totally different concepts, the invariance of
the physics laws under the general coordinate transformation
does not imply the physical reality’s observer irrelevance in
any sense. In fact, the physical reality’s observer irrelevance
is not a fact at all. Let us elaborate this point through three
examples.

The first is a concrete measurement example. Consider
two observer’s measuring of a same light signal’s frequency
emitted from an atom fixed on a freely collapsing star whose
outside geometry is written in two different coordinate sys-
tem. The first observer is a fixed position one, the second
is a freely falling one. Table 1 lists these two observer’s
definition and measurement mathematics. From the table,
we easily see that, the frequencies measured by the two
observers ωfx and ωfr are obviously unequal, although they
are invariant before and after the coordinate is transformed
from the Boyer–Lindquist to the Eddington–Finkelstein type,
ωfx = ω̄fx, ωfr = ω̄fr. In this example, the frequency of the
light signal, and even the redshift’s dependence on the radial
coordinate r is what we called physical realities. These real-
ities are obviously observer dependent, because their value
follows from the inner product of the observer’s four velocity
and the tensor representing the observable itself.

The second is still a concrete measurement example. But
this time let us consider two observers’ measurement of a

Table 2 Two types of observers’ measurement of the pressure of a dust
type mass m test spherical shell freely falling towards the horizon of a
pre-existing Schwarzschild black hole of mass M . The upper is in the
Boyer-Lindquist coordinate, the downer is in the Lemaitre coordinate.
As a physical reality, the test mass shell’s pressure is invariant under the
general coordinate transformation, but observer dependent. Tμν is the
energy momentum tensor of the test mass shell; uμ

fx and uμ
fr are the four

velocity of the fixed position observer and the freely falling observer
respectively. T̄μν , ūμ

fx and ūμ
fr are their counter parts in the Lemaitre

coordinate system

ds2 = −hdt2 + h−1dr2 + · · · , h = 1 − 2GM
r ,2GM ≡ rs

Tμν =
[

ρ ṫ ṫ ρ ṫ ẋ
ρ ṫ ẋ ρ ẋ2

]
, T θθ = 0, T φφ = 0

hṫ ≡ γ, ẋ2 = γ 2 − h, ρ = mδ(r−x)
4πx2 ,m�M

uμ
fx = (h−1/2

fx , 0, 0, 0) uμ
co = (ṫ, ẋ, 0, 0)

pfx = Tμν ufx
μ ufx

ν +gfx
μν

3
= ρ

3 (h−1
fx ṫ2 − hfx ṫ2 + h−1

fx ẋ2)

= ρ
3

(h−1
fx −hfx)γ 2

h(x)2 + γ 2−h
hfx

x→rs−−−→ ∞

pco = Tμν uco
μ uco

ν +gco
μν

3

= ρuμ
couν

co
uco

μ uco
ν +gco

μν

3≡ 0

ds̄2 = −dτ 2 + r2/3
s d�2

[ 3
2 (�−τ)]2/3 + · · · , r = [ 3

2 (� − τ)
] 2

3 (2GM)
1
3

T̄μν =
[
ρ(ṫ + ẋ)2 ρ(ṫ+ẋ)

h
rs ṫ+r ẋ√

rsr

symm ρ

h2
r
rs

( rsr ṫ + ṙ)2

]
, T̄ θθ = T̄ φφ = 0

ūμ
fx = (h−1/2

fx ,
(rs/rfx)1/2

h3/2
fx

, 0, 0)

p̄fx = T̄μν ūfx
μ ūfx

ν +ḡfx
μν

3

= ρ
3

(h−1
fx −hfx)γ 2

h(x)2 + γ 2−h
hfx

x→rs−−−→ ∞

ūμ
co = (ṫ + ẋ, rs ṫ+r ẋ

h
√
rsr

, 0, 0)

p̄co = T̄μν ūco
μ ūco

ν +ūco
μν

3≡ 0

same test shell’s pressure when it is freely falling towards
the horizon of a pre-existing Schwarzschild black hole char-
acterised by the exact horizon and central singularity. The
first observer is a fixed position observer which is sitting far
away from the horizon of the black hole. The second is a
freely falling observer co-moving with the test shell. We dis-
play these two observers’ four velocity and measurements
of the test mass shell’s pressure in Table 2. In this exam-
ple, the pressure of the test mass shell is our physical reality.
From the table, we can easily see that this physical reality
is also observer dependent pfx �= pco, although coordinate
invariant, pfx = p̄fx and pco = p̄co. pfx has the property
of approaching to infinite as the shell falls infinitely close
to the horizon. So to the far away fixed position observers,
the asymptotic mathematical horizon’s existence makes the
black hole look like an incompressible but finitely sized
objects. pco has the property of being zero constantly, which
means that to the co-moving observer, the horizon exhibits
no observational effects of pressure exotics.

The third is a conceptual example. Let us consider the
thought experiment cartooned in Fig. 11 which contains a
paradox we called F2FCD, see the figure and captions care-
fully. This paradox magnifies the error of the common belief
that the horizon and singularity are observer independent
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Fig. 11 The Face to Face Communication Difficulty (F2FCD). In an
spatial flat and homogeneous Friedman–Robertson universe, Alice and
Bob are a couple who date frequently. Behind each of them is their
ex-boy/girl friend Robert and Walker respectively, two spherical giants

of radius H−1
0 and average mass density

3H2
0

8πGN
, H0 denotes just the

Hubble constant of the current universe. Although divorced for almost
1.37 × 1010 years already, the gravitation between them and their own
ex-friend still makes Alice and Bob recede from each other everyday.
From Alice and Bob, this is nothing but the usual freely falling. Charle,
their common friend or a global observer, also thinks this is nothing but
the conventional big bang. The question is, why is it possible Alice and
Bob get known to each other and begin to date? Because each of them
lives inside the horizon caused by her or his ex-friend but outside that
of the other’s

physical realities to all black holes. Charle’s confusion arises
from two factors. (I) believing that in Alice’s freely falling
reference frame, Robert has a horizon and similarly in Bob
and Walker’s case. This is an error of taking the global view-
point of Charle himself as the viewpoint of local observers
such as Alice and Bob. (II) believing that the horizon-carrying
feature of Robert to Alice is also the case to Bob and vice
versa. This is an error of taking the physic laws’ general
coordinate invariance as the physical reality’s observer irrel-
evance. In fact, as an outside observer, in any finite time of
his own, Bob can not see or detect Robert’s horizon at all.
So he can get known with Alice without any difficulty. This
F2FCD paradox is firstly introduced in Ref. [15] to necessi-
tate the horizon’s fuzziness to resolve the information miss-
ing puzzle. But its value may be more right here to help
understanding the physical reality’s observer dependence.

As long as we know that the horizon-carrying is not a
physical reality of black holes regardless of observers, we can
easily understand that the microscopic state picture of black
holes is observer dependent. By our exposition in Sects. 2,
3 and 4, to the outside fixed position observer, the matter
contents of physical black holes live inside a spatial region
which is infinitely close to that wrapped by the mathematic
surface rh = 2GMtot. But they live there just like some
in-compressible and static fluid. Because inside that region,
matter materials inside each sphere of smaller radius has
the same feature. This is nothing but the concept of the old

frozen star [60–64], see Refs. [65–67] for recent investiga-
tions. Except that the in-compressibility now is understood
as a result of the infinite gravitational time delaying instead
of any physical exclusive forces. To the co-moving observer,
these matter materials just freely falling towards the central
point, over cross each other there and then oscillate periodi-
cally. But these inside horizon motion and oscillation happen
in the future of infinitely far away future by the outside fixed
position observers’ physic time definition. They are physi-
cal realities only in the sense of parallel universe or statistic
ensembles. Just as we showed above and in our earlier works
[13–18], quantisation of these matter materials’ fluctuation
on the frozen star background or oscillations across the cen-
tral point both lead to the right area law featured Bekenstein
Hawking entropy, thus form equivalent and complementarity
definitions for the microscopic state of black holes.

8 Banana shape deformation

It is very important to emphasise that the observers referred
to in this work are not limited to human beings but are proxies
of any probe or detectors, especially those living outside the
matter occupation region of the being probed objects. They
can be the imaging photons skimming over a single black
hole or the other partner involved in a BHB merger event.
These test objects’ motion is determined by the gravitational
field produced by the matter contents of the being tested black
holes which never fully collapse and cause singularity in any
finite future by the time definition of the outside fixed posi-
tion observers. These being probed objects carry approximate
horizon which is formed so long that during the short duration
of the imaging process or binary merger process the imag-
ing photon’s perturbation or the inspiral partner’s tidal force
has no chances to cause disintegration. Because longer for-
mation time means smaller matter occupation region radius
thus more remarkable time delaying from the matter occu-
pation region’s boundary to the test particle’s position, so
that more time consuming for their matter contents to be
affected by the imaging photon or merger partner’s gravita-
tion, and vice versa. In the BHB meger events, this provides
us chances to treat dynamics of the binary system with the
adiabatic approximation. By this approximation, we look the
motion of the binary system as a combination of each partici-
pant’s mass central’s motion and their different parts’ relative
motion. The latter arises from the inhomogeneous radiation
back reaction force and will cause banana shape deformation
of Fig. 12.

The key reason for the banana shape deformation is the
inhomogeneity of the gravitational wave radiation’s back
reaction. Referring to Fig. 12, let us consider the newtonian
motion of a representative point such as xi on the participant
B and its counter partner on participant A as an illustration for
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Fig. 12 When two black holes caused by gravitational collapse merge,
both participants are outside observers of the other. So none of them
can see the other’s horizon as physical realities, instead each of them
will receive light signal and thus gravitation from the matter contents
of the other. The inhomogeneous back reaction of gravitational wave
radiation would cause non-uniform orbit decay thus leading to banana
shape-deformation in their matter contents’ spatial distribution. The
resulting black holes’ quadrupole can be written as that of the two arc
shape strings

this phenomena. By the standard quadrupole formula for the
back reaction force arising from the system’s inspiral motion
and gravitational wave radiation,

F reac
i = G

c5
mi

{
− 2

5
xi
d5Qi

dt5
+ O

[ 1

c2

]}
(8.1)

d5Qi

dt5
= ω5mi x

2
i (8.2)

we can write down the dynamic equation controlling the
inspiral orbit’s decay of these two representative point and
get solutions

d

dt

(
− Gm2

i

2xi

)
= F reac

i ωxi ⇒ (8.3)

xi = x0
i (1 − t/t0)

1
4 , t0 = (x0

i )
4c5

20G3m3
i

. (8.4)

The synchronicity of different compositional points’ inspiral

motion
Gm2

i
4x2

i
= miω

2xi implies that Gmi
4x3

i
= ω2 is a com-

monly approximate constant for different point i . So as the
inspiral motion progresses on those points with larger initial
xi will reduce their orbit radius more remarkably

	x = x0
i − x0

i (1 − t/t0)
1/4, t0 = c5

1280ω6(x0
i )

5
. (8.5)

In the case all points inspiral at the same angular frequency,
this will cause the compression of the system along the xi
direction, the net effect is a banana shape deformation. Anal-
ysis above uses newtonian mechanics only. The true case in
general relativity would be much more complicated and can
only be simulated numerically. But the qualitative physical
picture will be the same.

Obviously, when the two participating black holes expe-
rience banana shape deformation as in Fig. 12, the radiation

Fig. 13 When two black holes defined as exact solutions to the vacuum
Einstein equation merge, both participants have absolute and apriori
horizon. None of them can see the other’s inside horizon structure. The
back reaction force of the gravitational wave radiation can only affect the
orbit of each other as a whole. None of them will experience inner-mass
distribution’s spatial change. Only their horizons will experience droplet
shape deformation and merge into a single one finally. Considering
the inhomogeneity of the time delaying effect, the true horizon shape
deformation [133] would be two comma like way of

activity of the binary system will decrease inevitably, because
in this case the rotational symmetry of the system enhances
and the radiation relevant quadrupole of the system decreases
correspondingly. The extremal case is when the two ends of
the banana shape deformed black holes contact each other.
In such cases the gravitational wave radiation will stop com-
pletely as the result of rotational symmetry’s retrieving. For
physical black holes originating from gravitational collapse,
non-singular inner-mass profile will make this banana shape
deformation inevitable and will become very important as the
two participants inspiral to the merger and ring down stages.
From Eq. (8.5), we can see that this effect is of O[G0], so
it is non-perturbative and not accounted for in the higher
multipole moments appearing as the response of the partic-
ipating black holes to the tidal force caused by their part-
ners and written into the tidal love numbers perturbatively.
The tidal love numbers are well known to be zero for non-
spinning black holes defined as exact solutions to the vac-
uum Einstein equation [170–173]. See Fig. 13 for intuitive
pictures.

Since both of the merger participants are outside observers
of their inspiral partner, neither of them would see the other’s
horizon. Both of them would see the other as some frozen
star occupying invariant spatial volume. So their compression
along xi direction implies stretching along the vinsp direction
inevitably. In a sense, the spatial volume contained in a spher-
ically symmetric Schwarzschild horizon is the minimal vol-
ume we can compress matter materials into. This can be seen
from the following fact that a spherically symmetrical col-
lapsing star with linear radial mass profile M(r) ≈ r

2G imple-
ment the lowest possible self gravitating potential energy
without causing physical horizons’ formation

Esph = −
∫ a

0

GM(r)ρsph(r)4πr2dr

r

[
M(r) = r

2G

]

(8.6)
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Fig. 14 The ratio of self gravitational potential energy of ellipsoid and
banana shape deformed star over that of the Schwarzschild black hole
with equal surface potential −GM/a = − 1

2 and x-directional size. The
y, z-directional size are set to b = c = aη. The right is for banana shape
deformation; ψ is the bending angle opened by the arc of the banana
relative to the radius of inspiral motion

= −GM2
tot

a
, a = 2GMtot. (8.7)

Note that M(r) ≈ r
2G implies ρsph(r) ≈ 1

8πGr2 necessarily.
Compressing this star and tuning its mass value so that the
surface of the resultant ellipsoid has equal newtonian poten-
tial [174] as the spherically symmetric star −GM

a = − 1
2 , the

self gravitational potential of the resultant object will become

Eell = −
∫ 1

0

GM(λ)F(k, ϕ)ρell(λ)dv

λ
√
a2 − c2

= −GM2F(k, ϕ)√
a2 − c2

(8.8)

k ≡
√
a2 − b2

√
a2 − c2

, ϕ ≡ arcsin

√
1 − c2

a2 (8.9)

where F(k, ϕ) is the elliptic integral of the first kind and
dv = abcλ2dλ sin θdθdφ. In this calculation, the star is
considered as many ellipsoid shape of shells with equal axis
length ratio {aλ, bλ, cλ} and radial mass function M(λ) =
M · λ or ρell(λ) = M

4πabcλ2 . By our convention, the star is
compressed along y and z direction but kept invariant along
the x-direction. Letting the surface potential of the resultant
ellipsoid take the same value as that of the Schwarzschild
black hole GMF(k,ϕ)√

a2−c2 = GM
a = 1

2 with the same x-directional

size, we will find that Mell < Msph and Eell/Esph < 1. See
Fig. 14 for concrete numerics. Conversely, it is very natural
to understand that if we keep the total mass invariant when
compressing the star along one direction, then the star must
be stretched along the other so that the horizon formation
condition GMF(k,ϕ)√

a2−c2 = 1
2 will not be realised as any outside

fixed position test body cannot detect it in the finite future by
their physical time definition.

Considering the banana shape deformation, we will get
similar conclusion. In the case the ellipsoid star are parame-
terised as,

x = aλ sin θ cos φ, y = bλ sin θ sin φ, z = cλ cos θ (8.10)

λ ∈ (0, 1), θ ∈ (0, π), φ ∈ (0, 2π) (8.11)

the banana shape deformation can be written as

x = (
�
2 + aλ sin θ cos φ

) · cos

(
bλ sin θ sin φ

�
2 +aλ sin θ cos φ

)
(8.12)

y = (
�
2 + aλ sin θ cos φ

) · sin

(
bλ sin θ sin φ

�
2 +aλ sin θ cos φ

)
(8.13)

z = cλ cos θ (8.14)

see Fig. 14 for the geometric meaning of various symbols in
this expression. Similar with the ellipsoid shape deformation
case, still looking the banana as many concentric banana-peel
whose own volume has the form 4πabnnbbnncbnnλ

2dλ and
wrap mass M · λ inside, then the self-gravitational potential
energy of the system can be calculated approximately as

Ebnn = −
∫ 1

0

Gm(λ)ρbnn(λ)dvbnn

λ
√
a2 − c2

Fbnn(k, ϕ) (8.15)

≈ − GM2√
a2

bnn − c2
bnn

F(kbnn, ϕbnn) (8.16)

kbnn ≡
√
a2

bnn − b2
bnn√

a2
bnn − c2

bnn

, ϕ ≡ arcsin

√
1 − c2

bnn

a2
bnn

(8.17)

abnn = a sin ψ/2

ψ/2
, bbnn = b, cbnn = c (8.18)

where ψ is the bending angle of the banana, referring to
Fig. 14 for physical pictures; subscripts bnn means banana
shape deformation. In the case of ψ � π , Eq. (8.16) provides
rather good approximation to the underlying exact result. For
large ψ , Eq. (8.16) is not a good approximation, but still
catches the qualitative feature of banana shape deformation
costing extra energy relative to the ellipsoid deformation.

Referring to Fig. 15, when we consider a banana shape
deformed BHB system’s rotation and gravitational wave radi-
ation, the time dependent quadrupole will become

Qxx =
1,2∑
i=

∫ α
2 +0/π+ωt

− α
2 +0/π+ωt

Mi

αai
(ai cos θ)2aidθ (8.19)

= (
M1a

2
1 + M2a

2
2

) sinα cos2ωt + α

2α
∼ μa2 sinα cos 2ωt

2α

Qyy =
1,2∑
i=

∫
Mi

αai
(ai sin θ)2aidθ∼ − μa2 sinα cos 2ωt

2α

where μ ≡ M1M2
M and a1,2 = M2,1a

M , M = M1 + M2. To
assure the shape deformed black holes open equal angles
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Fig. 15 The radiation active quadrupole of a banana shape deformed
BHB system is suppressed by a factor of ζ = sin α

α
. 4GMi and 4GMi zi

are the deformation before and after diameter/length of the black holes
respectively

α1 = 4GM1z1
a1

= 4GM2z2
a2

= α2 ≡ α with respect to their
inspiral central, the elongation factor zi is required to satisfy
z1M1
M2

= z2M2
M1

≡ z. As results, the radiation active/relevant
quadrupole of the system can be written as

Qradiation
active = ζ · μa2, ζ = sinα

α
= sin4GMz/a

4GMz/a
. (8.20)

Just as we pointed out previously, during the inspiral and
merger process the banana shape deformed black hole would
be elongated under the inhomogeneous radiation back reac-
tion force, so z is a growing function of the time coordinate t .
In this work, we will not try to determine the function form of
z(t) dynamically but will choose to parameterise it as various
power functions of a(t)

z[a(t)] = 0, 1, a(t)−1, a(t)−2, . . . . (8.21)

As time passes by, a(t) would decrease due to the relative
motion orbit decay caused by gravitational wave radiation.
So a(t)−n(0 < n)s are increasing functions of time. z = 0
corresponds to the case the black hole has point like singular
structure. z = 1 corresponds to the case the black hole has
extended inner structure but such structure experiences only
banana shape bending without elongation as the system inspi-
rals and emits gravitational wave radiation. Black holes with
z∝a(t)−1 will experience more banana shape elongation dur-
ing the early inspiral stage than those with z∝a(t)−2 so are
more soft than the latter. It is necessary to note that although
the black holes with non-singular inner-structure experience
banana shape deformation, the protection provided by their
asymptotic horizon would prevent them from tidal disruption
during the most duration of their binary merger process, from
the early inspiral to the very late ring-down stage. However,
to show this inner structure truly exists and happens there,
we need to develop new theoretical tools to calculate their
observational signal analytically.

9 An exact one body method

The full process of a BHB system’s evolution can be divided
into three stages, i.e. inspiral, merger and ring-down. The
post newtonian approximation and effective one body (EOB)
method can be used to describe evolutions of the system
during the first and early part of the second stage. Numeric
relativity can be used to model the system’s evolution during
the whole process but is usually applied only for the second
stage due to computational resource constraint. The practical
signal wave form used in observations are compositions of
the three method’s output, with the joining condition tuned
carefully by hand.

Even one day, our computational resource gets rich
enough to calculate the gravitational wave form of the merger
process with numeric method exclusively, the popular belief
that Schwarzschild black hole has singular inner-mass distri-
bution is still not a conclusion extractable from such calcu-
lations. The reason is, Kerr black holes have extended inner
structure embodied in their singular ring. If such a struc-
ture follows from the merger events of two Schwarzschild
black holes, then the inner mass distribution of the parent
Schwarzschild black hole must not be point-like singular.
Instead it must be extended and will experience stretching
and bending during the binary merger process. Signals of
such structures would be hidden behind the boundary data
[133–136] of numeric relativity, what we see in the inner-
motion irrelevant gravitational wave form is only an illusion.
To understand the existence of such an inner-structures obser-
vationally, what we should do is not to escalate the precision
of the currently existing numeric relativity’s simulation by
finding more precise initial data basing on higher order post
newtonian expansions or something else. What we should do
is to develop some more self consistent and full process appli-
cable analytical description or gravitational wave form gener-
ating techniques which directly translate the inner-structure
of black holes to the gravitational wave forms measurable
from the real BHBs’ merger events.

The basic idea of conventional EOB method [121–123]
is to map the general relativity two bodies’ motion onto
those of a total mass particle’s shifting and a reduced mass
particle’s inspiral. Due to the non-linearity of general rel-
ativity, the gravitational field controlling the reduced mass
particle’s inspiral is not a Schwarzschild metric sourced by
the total mass particle, but an effective and corrected but
still static and Schwarzschild-like one. This effective met-
ric must be constructed by requiring that the reduced mass
particle’s motion in it given by the world line action coin-
cide with the two particle’s relative motion in the original
general relativity two-body problem obtainable through post
newtonian approximation. For the inspiral and early merger
stage, this method can yield gravitational wave forms coin-
cide with those following from numeric relativities very pre-
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Fig. 16 The relative motion orbit of general relativity two particle sys-
tem and the corresponding gravitational wave form following from
the conventional EOB method. This method yields manifestly oppo-
site variation trends for the system’s inspiral frequency defined through
ω ≡ φ̇ and ω∼pφ/μa2 as the system evolves to the very late stage

cisely. However, as the late merger and ring-down stage is
coming, this method’s inconsistence manifests. Most mani-
festly, the relative inspiral motion’s frequency following from
ω ≡ φ̇ and ω∼pφ/μa2 exhibits opposite trends of varia-
tion as the time passes by, see Fig. 16 for illustrations. This
means that this method cannot be used to tell us whether the
two Schwarzschild black holes involved in the binary merger
process own inner-structure and experience shape deforma-
tion or not.

The conventional EOB method’s inconsistency arises
from its decomposition of the essentially time depen-
dent radiation geometry into “a static background gravita-
tion + dissipative test particle”. Since the energy of the back-
ground geometry is fixed and the test particle contributes
no energy to the system, this doing is not self-consistent
because the test particle’s motion in a fixed background is
well known to be conservative so no radiation caused dissi-
pation is allowed at all. To avoid this inconsistency, we come
back to the original general relativity two-body action

S = −
1,2∑
i=

∫
dτ

√
−||gμν(Xi )Ẋ

μ
i Ẋ

ν
i || −

∫
Fdissdτ (9.1)

and write the time dependent radiation geometry as the
combination of three independent static patches1 with time-
dependent application region, see Fig. 17 for intuitive pic-
tures. On the motion plane, the two patches’ accommodating
the two merger participants and rotating synchronously with
them can be written as,

g1
μν = diag

{
1 − 2GE2

a1
,

(
1 − 2GE2

a1

)−1
, a2

1 , a2
1 sin2θ1

}

(9.2)

1 To determine the binary system’s inspiral motion, what we need is
only the space-time metric on the motion plane instead of the whole
space. So exactly speaking, the metric expressions (9.2)–(9.3) are valid
only on the motion plane.

Fig. 17 The spacetime is dynamically partitioned into three regions,
red, green and their inter-connection region. Each region has its own
static geometry whose application region rotates synchronously with
the merger participants. For our purposes, we only need to know the
metric functions’ form in the red and green region and in the equatorial
plane

g2
μν = diag

{
1 − 2GE1

a2
,

(
1 − 2GE1

a2

)−1
, a2

a , a2
2 sin2θ2

}

(9.3)

Xμ
1 =

{
τ, a1(τ ),

π

2
, φ1(τ )

}
, Xμ

2 =
{
τ, a2(τ ),

π

2
, φ2(τ )

}
.

(9.4)

By this application-region wise metric, the action of the gen-
eral relativistic two-body system becomes

S = −M1

∫
dτ

√
1 − 2GE2

a1
−

(
1 − 2GE2

a1

)−1
ȧ2

1 − a2
1 φ̇2

1

−M2

∫
dτ

√
1 − 2GE1

a2
−

(
1 − 2GE1

a2

)−1
ȧ2

2 − a2
2 φ̇2

1

+Sdiss. (9.5)

Since the orbit decay caused by gravitational wave radiation
is always slow relative to the rotation of the system, we can
always neglect the variation of the two participants’ radial
coordinate in a single circular orbit motion period thus setting
ȧ1 = ȧ2 = 0. So for the circular orbit motion, the variation
principle for a1 and a2 will yield that

ω2
1 ≡ φ̇2

1 = GE2

a3
1

, ω2
2 ≡ φ̇2

2 = GE1

a3
2

. (9.6)

For the non-circular orbit motion, as long as we understand
a1 and a2 as the length of the semi-major axis of the two
participants’ approximately periodic elliptic orbit, Eq. (9.6)
will still be valid. At the same time, to assure the unshifting
of the two merger participants’ central of mass position, we
impose

a1 = M2

M
a, a2 = M1

M
a, M = M1 + M2. (9.7)
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As results, the synchronicity of the two participants’ inspiral
motion implies that

ω1 = ω2 ⇒ E2 = M3
1

M2 , E1 = M3
2

M2 . (9.8)

It can be easily verified that, by this choice of E1 and E2,
Eq. (9.6) will lead to a general relativistic version of Keppler’s
third law for the reduced mass particle’s motion in the total
mass particle’s gravitational field.

Equations (9.7) and (9.8) transform the two-body problem
(9.5) into a single body one

L = −M1

[
1 − 2GM

a
−

(
1 − 2GM

a

)−1 M2
2

M2 ȧ
2 − M2

2

M2 a
2ω2

] 1
2

−M2

[
1 − 2GM

a
−

(
1 − 2GM

a

)−1 M2
1

M2 ȧ
2 − M2

1

M2 a
2ω2

] 1
2

+ Ldiss. (9.9)

Although destined to be descriptions for the relative motion
of the two bodies, this lagrangian differs from that of the
reduced mass particle in the background Schwarzschild field
of the total mass particle, even in the equal mass and exactly

circular orbit case, because
M2

2
M2 or

M2
1

M2 is always less than 1.
The logic of the one body-lisation method (9.9) is to cap-
ture the non-linearity of general relativity gravitation non-
perturbatively through the non-perturbative central fixing
condition (9.7) and the relative motions’ synchronicity condi-
tion (9.8). In contrasts, the logic of conventional EOB method
of [121–123] is to capture the non-linearity of general rela-
tivity gravitation through the perturbative match of the rela-
tive motion hamiltonian with that of a test body’s motion in
the background of a static and corrected Schwarzschild-like
field. Since our one body-lisation conditions (9.7)–(9.8) are
exact and call no post-newtonian approximation as input, we
name our method as an eXact One Body (XOB) method.

For those who can’t help from evaluating how far is our
one body-lisation idea to the conventional EOB method, the
post Newton expansion of the hamiltonian following from
the conservative part of (9.9) is as follows

H ≡ 1

μ

[
ȧ

δL

δȧ
+ ω

δL

δω
− L

]
,

μ ≡ M1M2

M1 + M2
, M ≡ M1 + M2 (9.10)

H0 = 1

ν
+ p2

2
− 1

q
, p ≡ ȧ, q ≡ a

GM
, ν ≡ μ

M
(9.11)

H2 = (1 − 3ν)

[
3p4

8
+ 3p2

2q
− 1

2q2

]
(9.12)

H4 = (1 − 5ν + 5ν2)

[
3p6

16
+ 21p4

8q
+ 15p2

4q2 − 1

2q3

]

(9.13)

H6 = (1 − 7ν + 14ν2 − 7ν3)

[
35p8

128
+ 55p6

16q

+189p4

16q2 + 35p2

4q3 − 5

8q4

]
. (9.14)

Except H0, all the higher order terms do not coincide with
the input of the conventional EOB method [121–123]. How-
ever, just as we pointed out above and illustrated in Fig. 16,
including the dissipation term in the hamiltonian of the con-
ventional EOB method is not self-consistent. The inspiral
frequency ω ≡ φ̇ and ω∼pφ/μa2 following from such a
method exhibit manifestly opposite variation trends at the
late time of the merger process. In contrast, adding dissipa-
tion term in our hamiltonian (9.10) is self consistent, because
the frequency ω it involves plays the role of the merger partic-
ipants’ inspiral speed and the resultant spacetime’s rotational
speed simultaneously. So the whole system allows for radia-
tion caused dissipation consistently.

For the reason above, we will not take the higher order post
Newton expansion of (9.12)–(9.14) differs from the input of
Ref. [121–123] as a negative diagnosis for our idea’s ratio-
nality. Instead we will take the direct gravitational wave form
output of our method as justifications for its validity. Taking
the most simple quadrupole radiation power [144,175] as the
source of dissipation, we will get evolution equations for a(t)

dH

da

da

dt
= Fdiss = −32

5
Gμ2a4ω6. (9.15)

From this equation we can solve the function a(t) and cal-
culate the gravitational wave through

hi j ∝ Gμa2ω2 cos 2
∫

ωdt. (9.16)

We compare in Fig. 18 the relative motion orbit and gravita-
tional wave forms following from conventional EOB method
and our XOB method. From the figure, we can easily see that
the two orbits and wave forms highly agree with each other till
the inner most circular orbit (ISCO) epoch of EOB. However,
XOB exhibits much rational or self-consistent behaviour
after that epoch. For example by XOB, the late time inspiral
speed defined through ω = φ̇ and ω ∼ pφ/μa2(pφ ≡ δL

δω
)

are both growing functions of time. While the variation trends
of those predicted by EOB are contrary with each other.

Two impressive features of the gravitational wave forms
following from XOB displayed in Fig. 18 are (i) the decay of
the gravitational wave forms is invisible from the time inter-
val displayed and (ii) the asymptotic frequency ω∼pφ/μa2

of the inspiral motion is logarithmically divergent. Both fea-
tures imply that the binary system has infinite energy to be
carried away by the gravitational wave radiation. This is pro-
vided by the infinite decreasable space of the gravitational
potential energy between the two point particle type partici-
pating black holes. In the language of newtonian mechanics,
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Fig. 18 The relative motion orbit and gravitational wave form of an
equal mass BHB system following from the standard EOB method and
our XOB method. Both members of the binary system are not inner-
structured and experience not any shape deformation during the merger
process. The dotted magenta line marks the ISCO radius defined by the
EOB method. The dashed red line is the horizon radius of the total mass
black hole rh = 2GMtot

this is just the reflection of ε = −GM1M2
a

a→0−−−→ −∞. While

in the language of general relativity, ε∝ −GM1M2
2 /(Ma)√

1−3GM2
2 /(Ma)

+

(M1↔M2)
a→a f−−−→ −∞, where a f = max{ 3GM2

1
M ,

3GM2
2

M } is
the asymptotical separation the two black holes can get close
to, see Eq. (10.3) of next section for references. In the case
of M1 = M2, this asymptotic value a f = 3GM

4 is less than
the mathematic horizon radius rh = 2GM .

From Fig. 18, careful readers may see that XOB method
has the power of tracing relative motions of the binary system
and apply the quadrupole formula (9.16) for the gravitational
wave forms even when a f < 2GMtot, i.e. when the two par-
ticipating black holes enter the horizon determined by their
total mass. This is rational because to each of them, their
partner’s horizon is only 2GMi which is less than a f . So all
of them are outside observers of the other during the whole
inspiral, merger and ring-down process. The horizon defined
by rh = 2GMtot is never implemented at all. So, tracing rel-
ative motions of the binary system inside its mathematical
horizon does not violate any physical law such as causality
at all. In a sense, this is a conceptual revolution. If one can-
not understand this properly, he/she will have difficulties to
understand why the outside fixed position observers can see
the gravitational wave forms reflecting the relative motion of
the two black holes inside the horizon defined by their total
mass rh ≡ 2GMtot. This will be even more clear when we
consider the non-singular inner structure and banana shape
deformation of the participating black holes. In such cases,
XOB’s ability to trace the system’s evolution inside the math-
ematic horizon will bring us the full gravitational wave forms
with well behaved late time quasi-normal mode feature and
decodable information about the inner-structure of the par-
ticipating black holes.

By our XOB method, during the BHB merger process
the event of exiting from the innermost stable circular orbit
(ISCO) does not happen on the epoch defined by the EOB
method a = 5.718GMtot. Because, by XOB method even

after that epoch, the relative motion orbit of the system is
stable and the system’s evolution after the horizon entrance
r < 2GMtot is still traceable analytically until the system
enters the ring down phase. However, for comparing and
referring convenience, we will preserve this nomenclature
and take 5.718GMtot as aI SCO , and mark it out in most of the
relative motion orbit and gravitational wave form pictures
below.

10 The full gravitational wave forms

Consider the non-singular inner-structure of black holes and
their radiation activity’s suppression caused by banana shape
deformation, we have to write the relative motion orbit decay
equation as

da

dt
= −32

5
Gμ2a4ω6ζ 2 ·

(
dH

da

)−1

, ζ = sin 4GMz/a

4GMz/a
(10.1)

where ζ is the radiation activity factor of the binary system
and z grows with time slowly, see Eq. (8.20) and comments
there for their definition and concrete expressions. Focusing
on the circular orbit or understanding a only as the semi-
major axis length of the quasi-periodic elliptic orbit,

H [a, ν, ω] = M2(1 − 2GM2
1

Ma )√
1 − 2GM2

1
Ma − M2

1 ω2a2

M2

+ M1(1 − 2GM2
2

Ma )√
1 − 2GM2

2
Ma − M2

2 ω2a2

M2

. (10.2)

During each single quasi periodic evolution period the rota-
tional speed of the system ω2 = GM

a3 will be approximately
constant and the hamiltonian H will become the function of
a and ν exclusively.

H [a, ν]ω2≈
GM/a3 = M2(1 − 2GM2

1
Ma )√

1 − 3GM2
1

Ma

+ M1(1 − 2GM2
2

Ma )√
1 − 3GM2

2
Ma

.

(10.3)

In the special case of M1 = M2 or ν = 1/4

dH

da
|ν=1/4
ω2≈GM/a3 = GM2(2 − 3GM/a)

2a2(4 − 3GM/a)3/2 . (10.4)

In the general case of ν < 1/4, the function form of dH
da

will be more complicated. But its basic feature of containing
a zero point somewhere inside the region 3

2 � GM
a � 6 is

very robust, referring to Fig. 19 for illustration. Denoting this
value of a as

a0
H ′ ≡ a : dH [a, ν]

da
= 0. (10.5)
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Fig. 19 The zero point of dH [a, ν]/da happens between 3
2 < a < 6.

The lower bound happens on ν = 1/4, the upper bound on ν = 0. For
the ν = 1/4 system, as long as the asymptotic value of z satisfies the
condition 3π

8 < zt→∞, the maximal zero point of ζ , i.e. a0
ζ will lie

outside that of dH/da, i.e. a0
H ′

By Eq. (10.1), the zero value of dH/da will manifest as a
divergent point on da

dt . However such a divergence will not
bring us disconnection on the variation of a(t). So it can be
cured by hand in the numeric integration of Eq. (10.1). For
latter uses, we define another two extra special values of a
through

a∞
H ≡ a : H [a, ν] = ∞ (10.6)

a0
ζ ≡ max

{
a : ζ(t) ≡ sin 4GMz/a

4GMz/a
= 0

}
(10.7)

where a∞
H is the point on which H itself diverges and a0

ζ is

the maximal zero point of ζ . In the special case of ν = 1
4 ,

according to Eq. (10.3), we can easily see that a∞
H = 3GM

4 .
On the evolution line of a(t), whether the divergence implied
by dH

da = 0 will be implemented depends on the relative
relation between a0

H ′ and a0
ζ , see Fig. 19 for references.

Since ζ = sin 4GMz/a
4GMz/a , the concrete value of a0

ζ depends
on the form of z(t) inevitably. The standard Schwarzschild
black hole is defined by the exact horizon and singularity.
By the language of Newtonian mechanics, its matter distri-
bution is singular and experiences no stretching or bending.
By our definitions of banana shape deformation, such black
holes have z ≡ 0 and the corresponding radiation activity
factor ζ ≡ 1. In the case the two members have equal mass,
Eq. (10.1) allows us to trace their merger evolution down to

a(t)
t→∞−−−→ a∞

H = 3
4GM and get

ω ≡ φ̇
t→∞−−−→ [ GM

(3GM/4)3

] 1
2 = (4

3

) 3
2 (GM)−1 (10.8)

H
t→∞−−−→ −2M/3√

0
→ −∞. (10.9)

The former equals to half of the real part of the late time quasi-
normal mode’s frequency ωre

022. The latter has the explana-

Fig. 20 The relative motion orbit and gravitational wave form of
binary systems consisting of equal mass members following from
XOB method. The participating black holes in the upper row have
point like singular inner-structure thus are described by the stan-
dard Schwarzschild metric exactly. Their shape deformation parameter
z ≡ 0. The participants in the lower row have extended inner-structure
but fixed length of 4GM . So the shape deformation parameter z ≡ 1.
This inner-structure will experience bending but no elongation as the
merger progresses. The dotted magenta line marks the ISCO radius
defined by the EOB method. The dashed purple line is the mathematic
horizon radius rh = 2GMtot

tion of the final black hole’s total mass or energy. Its diver-
gence and negativity is a reflection of the irrationality of
the point particle type inner-structure picture for black holes.
The upper part of Fig. 20 displays the full three stage gravita-
tional wave forms correspondingly. To make the wave forms
readable, we reduced the late time frequency and amplitude
of the gravitational wave by a factor of 0.3. The decay fea-
ture of late time gravitational wave forms is non-visible in
the time interval displayed. The logarithmic type divergence
feature of ω′ ≡ pφ/μa3 is due to the point particle type inner
structure of the black holes involved. So this figure tells us
that, if black holes have point like singular structure, then we
will not see quasi-normal mode type late time feature on the
gravitational wave form of their binary merger event.

Now let us consider the extended inner-structure and non-
singular matter distribution of black holes. As first step, we
let the black hole have fixed length which equals to the
diameter of the corresponding Schwarzschild horizon so that
4GMz = 4GM , or z ≡ 1 constantly. Although the length
is fixed, we let the extended black hole be bendable as the
inspiral and merger progresses, so that the radiation activity
factor varies with time in the most simple but still non-trivial
way ζ = sin 4GM/a

4GM/a , see Eq. (8.20) for the derivation this
expression. When this radiation activity factor comes in, the
asymptotic value of a(t) is no longer the singular point a∞

H
of the hamiltonian, but a0

ζ . In the case the two participating

black holes have equal mass, a∞
H = 3GM

4 , a0
ζ = 4GM

π
. As
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results

ω ≡ φ̇
t→∞−−−→

[
GM

(4GM/π)3

] 1
2 =

(
π

4

) 3
2

(GM)−1 (10.10)

H
t→∞−−−→ M/2(4 − π

2 )√
4 − 3π

4

→ 0.9473M. (10.11)

The former still corresponds to half of the real part of the late
time quasi-normal mode’s frequency ωre

022. The latter equals
to the final black hole’s total mass or energy. Combining
with the full process gravitational wave form displayed in
the lower part of Fig. 20, we easily see that, relative to those
following from the exact horizon wrapped point particle type
inner-structure picture, the gravitational wave form following
from inner-structure pictures characterised by the extended
inner-mass distribution with fixed length but banana shape
bendable and wrapped only by approximate or asymptotic
horizons are much more reasonable, due to its late time quasi-
normal mode type oscillation.

In the practical BHB merger process, the degree of the
participating black holes’ banana shape deformation varies
with time. Just as we pointed out in Sect. 8, when such banana
shape deformation happens, the participating black holes will
be elongated along the inspiral direction. So during the whole
merger process, we expect their length varies from zero to
some final length value πa f . Substituting the value of this

final length and the corresponding ω f = (GM
a3
f

)1/2 into the

hamiltonian (9.10), we should get an energy less than the
total mass of the initial black holes

H [af , ν,

(
GM

a3
f

) 1
2 ] < M. (10.12)

This is because the gravitational wave radiation dissipates
energy of the system inevitably. From this inequality, we
can solve out the lower limit of alow

f,lim and a corresponding
frequency ω f , which equals to half of the real part of the
merged black hole’s quasi-normal mode’s frequency

ωre
022 ≡ 2φ̇ < 2

[
GM

alow3
f,lim

] 1
2 ≡ ωre022

uplim. (10.13)

On the other hand, from the hamiltonian expression (10.3)
we note that given ν and M , H is a lower bounded function
of a, i.e. H ν,M

min < H ν,M (a). So we cannot set the mass of
the final merged black hole to arbitrarily small value. Setting

H [a, ν, (GM
a3 )

1
2 ] to this minimal value H ν,M

min , we will get an

upper limit for the value aupp
f,lim and a corresponding lower

limit on the value of ωre
022

ωre022
lolim ≡

(
GM

aupp3
f,lim

) 1
2

< 2φ̇ ≡ ωre
022. (10.14)

Fig. 21 The upper panel is the hamiltonian H [a, ν]’s dependence on
a for four typical values of ν. During the merger process of two black
holes, the relative obit radius a decreases continuously. Setting a =
alow

f,lim will leads to an upper bound on the real part of quasi normal

frequency ωre
022; setting a = aupp

f,lim will give a lower bound on ωre
022

However, since we have not any physical principle to prohibit
a black hole be banana shape deformed and elongated longer
than 2πaupp

f,lim, so that the corresponding lower limit ωre022
lolim

can only be considered a qualitative estimation for the value
of ωre

022.
The upper part of Fig. 21 displays H [a, ν] and alow

f,lim’s
dependence on a. The lower part of the figure displays
ωre022

lolim ’s dependence on the symmetric mass ratio ν. Also
displayed on the downer part of the figure is the currently
available observational data of [26–28]. From the figure, we
can easily see that, our definite prediction for ωre022

uplim is per-
fectly satisfied by the observational data except one point.
While ωre022

lolim gives rather precise estimation for the typical
value of ωre

022. By this estimation, when ν = 1
4 , the value of

aupp
f,lim = 3

2GM . This means that the two participating black

holes are elongated to πaupp
f,lim = 3π

2 GM as the merger fin-

ishes. When ν = 0, the value of aupp
f,lim = 6GM . That is, the

final black hole in this case should be considered a rotating
ring of perimeter 6πGM .

In principle, by tracing up the matter distributions’ evo-
lution under the radiation back reaction force’s driving, it
is possible to determine the function form of z(t) theoreti-
cally. However, such a work is very difficult to accomplish in
practice. So we will illustrate the observational feature of the
black hole deformability’s difference by comparing the grav-
itational wave forms following from two shape deformation
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Fig. 22 The relative motion orbit and gravitational wave form of BHB
systems consisting of equal mass members with inner structure and
experience banana shape deformation. The banana shape deforma-
tion parameter in the upper black holes varies with time at the way
z∝a f a(t)−1, the lower varies at the way z∝a2

f a(t)−2. The the gravita-
tional wave amplitude in the lower figure not only grows more suddenly,
but also decays more suddenly around the a ≈ 2GM region. The dotted
magenta line marks the ISCO radius defined by the conventional EOB
method. The dashed red line is the horizon radius of the total mass black
hole rh = 2GMtot

modes of

z1(t) = πa f

4GM
· a f

a(t)
, z2(t) = πa f

4GM
·
[
a f

a(t)

]2

. (10.15)

The corresponding radiation activity factors read

ζ1 = sin[πa2
f a

−2]
πa2

f a
−2

, ζ2 = sin[πa3
f a

−3]
πa3

f a
−3

. (10.16)

The black holes characterised by z1(t) experience the banana
shape deformation more intensively at the early stages of the
merger process, while those characterised by z2(t) experi-
ence the shape deformation more intensively at the late stages
of the merger process.

Figure 22 displays the relative motion orbit and the corre-
sponding gravitational wave forms of these two types of black
holes. From the figure, we can see that the z∼a(t)−1 black
holes experience banana shape deformation more mildly
and more intensively during the early stages of the inspiral
motion, so their relative motion orbit radius evolves to the
asymptotic value a0

f in longer time durations. Numerically

this is t1
isco = 222, t1

h = 302 while t2
isco = 220, t2

h = 293.
We will call this type of black holes softer than those char-
acterised by z∼a(t)−2. The most general form of the banana
shape deformation function can be written as

z(t) = k0 + k1· a f

a(t)
+ k2·

a2
f

a(t)2 + · · · (10.17)

Except a f , all other parameters ki in this function are dimen-
sionless. For these dimensionless parameters, we conjecture
that they are independent of the black hole sizes. By carefully
measuring of the late time gravitational wave form following
from BHB merger events of different total mass and symmet-
ric mass ratios, we have chances to determine these param-
eters observationally. So wether black holes in the nature
have inner-structures and how hard such inner-structures are
questions answerable observationally.

11 Conclusion

In one sentence, our conclusion can be stated that black holes
in the nature have microscopic states understandable in stan-
dard general relativity and inner-structures measurable from
the gravitational wave forms produced in the BHB merger
event, which is calculable analytically with our exact one
body method. Expansions of this sentence are as follows.

We provided two exact time dependent solution fami-
lies to the Einstein equation sourced by dust fluids and
showed how such solution families form basis of black hole
microscopic state both from the viewpoint of outside fixed
position observers and from the viewpoint of inside co-
moving observers. By the canonic quantisation scheme, we
proved that the degeneration degree of such solution fami-
lies have right exponential-area law feature as required by the
Bekenstein–Hawking entropy formula except some polyno-
mial corrections. Singularity theorem judges impossible to
understand black hole microscopic state in general relativ-
ity only because, in applying such a theorem, the horizon
and singularity’s observer dependence is neglected under the
name of physical reality’s general coordinate invariant.

A time dependent collapsing star solution indeed contains
a future singularity and an asymptotically realisable horizon.
But such a singularity and horizon would not become reali-
ties in any finite future of the outside fixed position observer
by their physic time definition. They will be realised in the
finite future only to the freely falling co-moving observers
which use the proper time of the collapsing matter them-
selves as time definition. In another word, the horizon and
singularity are physical realities only to the super investi-
gators who adopt the global viewpoint or have the ability to
see the future of infinitely far away future of the outside fixed
position observers. To physical probe or detectors such as the
participants of BHB merger events or freely falling observers
co-moving with the matter contents of a collapsing star, the
horizon and singularity of their being observing objects are
either non-implementable in any finite future or although
reachable in finite future but non-detectable experimentally.
The belief that black holes in the real world carry exact hori-
zon and singularity makes two mistakes of (A) taking the
horizon and singularity of the global viewpoint holders as
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the horizon and singularity of the local viewpoint holders
and (B) taking the physical law’s general coordinate invari-
ance as the physical reality’s observer irrelevance, which is
not the case at all.

Since either participant involved in a BHB’s merger event
can only see their merger partner’s regular inner-structures
characterised by the approximately linear mass function and
asymptotically implementable horizon, both of them will
experience banana shape deformation under the inhomo-
geneous back reaction of gravitational wave radiation. We
introduced the concept of radiation activity ζ to quantify this
deformation caused suppression of the system’s ability to
emit gravitational waves and derived out that ζ = sin 4GMz/a

4GMz/a ,
where z is the elongation factor of the banana shape deformed
black holes relative to their shape deformation before diam-
eter. ζ will be multiplied on the quadrupole of the binary
system when the quadrupole formula is used to calculate the
gravitational wave radiation of the system.

We then proposed an exact one body-lisation method to
transform the general relativity two-body problem into a sin-
gle body one. This method gives up the static spherically
symmetric background of EOB and the conservative part
of the system’s action calls no post newtonian approxima-
tion as input. It puts the two merger participants in a three
partitioned spacetime which rotates synchronously with the
merger participants. The metric of the spacetime region that
accommodate the merger participants can be determined non-
perturbatively by requiring that the two participant’s inspiral
motion is synchronous and central fixed. This method avoids
the intrinsic inconsistence of the conventional EOB and pro-
vides descriptions for the relative motion of BHB systems
throughout the full inspiral, merger and ring-down stages.
Taking the quadrupole radiation as the source of dissipation,
and neglecting the inner-structure of black holes by look-
ing them as point particles wrapped by exact horizons, we
calculated the relative motion orbits and the gravitational
wave forms following from the BHB merger process and get
results which are highly consistent with those from conven-
tional EOB but behave more rationally at the very late time
stages.

When considering the extended inner-structure of black
holes, even the most simple fixed length banana shape
deformable model, the gravitational wave forms following
from our XOB method are almost the same as those follow-
ing from the combination of EOB+NR+BHPT methods and
measured in real observations. We derived out an exact upper
bound on the real part of the final black holes’ quasi-normal
modes ωre022

upbnd irrespective of the black hole inner-structure
details as a concrete prediction of XOB method. We also
derived out a not so strong lower bound ωre022

lobnd for the late
time quasi normal modes which can be used as an estimation
for the typical value of ωre

022. Putting the currently available
data on the theoretical prediction range we see very good

agreement between the two. We compared gravitational wave
forms following from merger events of BHBs whose partic-
ipants are characterised by different shape deformation sus-
ceptibilities and point out that the differences between them
may probably be measurable in the current and future obser-
vations. So the question on what inner structures the physic
black hole has is answerable observationally.

Our work indicate that, general relativity and quantum
mechanics are more consistent with each other than they are
usually imagined, at least for the purpose of understanding
physics happening around the black hole centrals. This is an
optimistic message for their unification. Some possible work-
ing directions for future investigations would be, to find more
concrete observational evidences for the black hole inner-
structures we proposed here through other channel such as
black hole images and gravitational wave echos, to revise
our XOB method and add spins to black holes involved so
that it can be applied to more practical BHB merger events,
especially those with extremal mass ratio, to revise our con-
cepts of banana shape deformation factors so that it can be
applied to more general compact objects binary systems such
as neutron star binaries or neutron star + black hole systems.
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