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Abstract We investigate the propagating degrees of free-
dom of f (Q)-gravity in a 4-dimensional space-time under
the imposition of the coincident gauge by performing the
Dirac–Bergmann analysis. In this work, we start with a top-
down reconstruction of the metric-affine gauge theory of
gravity based only on the concept of a vector bundle. Then,
the so-called geometrical trinity of gravity is introduced and
the role of the coincident GR is clarified. After that, we
reveal relationships between the boundary terms in the vari-
ational principle and the symplectic structure of the theory
in order to confirm the validity of the analysis for our studied
theories. Then, as examples, we revisit the analysis of GR
and its f (

◦
R)-extensions. Finally, after reviewing the Dirac–

Bergmann analysis of the coincident GR and that of f (T )-
gravity, we perform the analysis of coincident f (Q)-gravity.
Under the imposition of appropriate spatial boundary condi-
tions, we find that, as a generic case, the theory has five pri-
mary, three secondary, and two tertiary constraint densities
and all these constraint densities are classified into second-
class constraint density; the number six is the propagating
degrees of freedom of the theory and there are no longer any
remaining gauge degrees of freedom. We also discuss the
condition of providing seven pDoF as a generic case. The
violation of diffeomorphism invariance of coincident f (Q)-
gravity make it possible to emerge such several sectors.

1 Introduction

General Relativity (GR) is the most successful theory to
describe the wide range of gravitational phenomena in terms
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of pseudo-Riemannian geometry based on Einstein’s equiv-
alence principle and the general covariance. However, from
the physical point of view, there is no reason to restrict our
theories to this particular geometry. In fact, Einstein himself
reconstructed GR in an alternative way using another geom-
etry based purely on torsion instead of curvature, labeled as
Teleparallel gravity [1]. For a detailed review on teleparal-
lel gravity, see [2]. In modern perspectives, it is known that
GR has its equivalent formulation of the so-called geomet-
rical trinity of gravity, in which gravitation is treated with
the torsion (Teleparallel Equivalent to GR: TEGR) and/or
the non-metricity (Symmetric Teleparallel Equivalent to GR:
STEGR) instead of the curvature up to boundary terms [3–
5]. These two formalisms assume that general curvature
is vanishing. Furthermore, a non-linear extension of these
equivalent formulations gives the emergences of their spe-
cific properties such as new propagating Degrees of Freedom
(pDoF), breaking diffeomorphism and/or local Lorentz sym-
metry (i.e., change of gauge Degrees of Freedom: gDoF),
and departures in these formulations themselves [2,6,7]. In
particular, the so-called

◦
R2-inflation model in cosmology,

which is a class of f (
◦
R)-gravity, is one of the most suitable

theories to explain inflation in the current observations [8,9].
That model is a good candidate for a consistent effective
quantum gravity theory from the viewpoint of renormaliza-
tion [10,11]. In order to investigate the pDoF of possible
extensions of GR, TEGR, or STEGR, the Dirac–Bergmann
analysis can be used [12–17].

In terms of the torsional sector (as in TEGR or their
extensions), one can always formulate those theories in the
so-called Weitzenböck gauge [18] where the spin connec-
tion vanishes. In this context, the Dirac–Bergmann analy-
sis of TEGR had already been completed and the structure
as a constraint system had also been revealed out [19–21].
As expected, in a 4-dimensional spacetime, TEGR has two
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pDoF, which is the same pDoF as GR, and the gauge sym-
metric structure, in other words, the Poisson Brackets alge-
bra (PB-algebra) is also similar that the one of GR: the
gDoF for the diffeomorphism symmetry is four [21,22].
For the non-linear extension of TEGR, i.e., the so-called
“ f (T )-gravity”, the Dirac–Bergmann analysis had been per-
formed [23–26]. In that case, the situation is different than
f (

◦
R)-gravity [27]. Furthermore, there were some contro-

versies on the computation of the pDoF for that theory
(see for example [23,25,26]). The authors in [23] and [19],
on one hand, state that f (T )-gravity has n extra pDoF in
a (n + 1)-dimensional spacetime. On the other hand, the
authors in [25] concluded that the extra pDoF is one in any
spacetime dimension. One can check the details in [28].
Other important viewpoints of these theories are that cos-
mological perturbations around flat and non-flat Friedmann–
Lemaître–Robertson–Walker (FLRW) spacetimes have sug-
gested the fact that this theory is infinitely strongly cou-
pled for this spacetime [29,30]. This means that f (T )-
gravity cannot be used as a theory for cosmology as in the
standard way, i.e., using linear perturbation theory, since
the new degrees of freedom are infinitely strongly cou-
pled to the background and then linear perturbation the-
ory breaks down. To unveil such a perspective, we have
to know the exact pDoF of the theory, and the Dirac–
Bergmann analysis plays a crucial role in achieving this pur-
pose.

Recently, STEGR, the other sector of the geometrical
trinity constructed from nonmetricity, has attained attention.
This theory was initially constructed in [3], and further stud-
ied in [31–33] by introducing the notion of the “coincident
gauge” as an extra gauge freedom that one can always choose
such that the connection is vanishing. Since this theory is
equivalent to GR, it also has the same number of pDoF.
Further, one can consider a non-linear extension of STEGR,
such as the so-called “ f (Q)-gravity”. The Dirac–Bergmann
analysis for that theory in the coincident gauge was per-
formed in [34,35], where the authors argued that the pDoF
is eight in 4-dimensional spacetime. On the other hand, in
the paper [36], the authors claimed that the Dirac–Bergman
analysis breaks down for f (Q)-gravity, meaning that one
cannot use this method to count the pDoF. Furthermore, the
authors showed that the possible pDoF is up to seven. In
our study, we pursue a possibility of pDoF being consis-
tent with this range by using the Dirac–Bergmann analysis.
In our opinion, this is a debatable point due to the tech-
nical point that one can assume that the spatial boundary
terms in both the action and the PB-algebras can always be
neglected by imposing appropriate spatial boundary condi-
tions if it is necessary. This means that the second term of
Eq (3.20) in [36] does not give rise to any problematic terms
at least theories that we will treat in the current paper. In
addition, in the coincident f (Q)-gravity, since the diffeo-

morphism invariance are at least partly broken, it would be
possible to generically exist a different pDoF for each class
of coordinate systems, or equivalently, each class of ADM-
foliations. Here, remark that the coincident f (Q)-gravity
contains derivative terms up to first-order in the metric and
dynamically totally different from higher-order derivative
theories based on Riemannian geometry. For details, see Refs
[4,5].

The construction of this paper is as follows: In Sect. 2,
we introduce the gauge theory of gravity together with basic
mathematical concepts to construct the metric-affine gauge
theory of gravity and then give a short review of the geo-
metrical trinity of gravity. In the context of the presented
formulation, we also explain the coincident GR theory. In
order to apply the Dirac–Bergmann analysis to field theo-
ries, one needs careful manipulations of boundary terms. In
Sect. 3, we unveil that Gibbons–York–Hawking type bound-
ary terms well-known in GR [37–40] can be neglected with-
out any change in the symplectic structure of a given sys-
tem when performing the analysis. We also provide a pre-
scription to circumvent the problematic situation concern-
ing the PDEs of Lagrange multipliers which is mentioned
in a series of works [26,36,41]. Then we revisit the anal-
ysis of GR and f (

◦
R)-gravity to demonstrate how to work

the statements declared in this section. In Sect. 4, we review
the Dirac–Bergmann analysis of STEGR in the coincident
gauge. In Sect. 5, after giving a brief review on f (T )-gravity
to show a possibility for emerging several sectors and con-
sidering the role of the prescription, the analysis of coin-
cident f (Q)-gravity is performed. We get the pDoF = 6
and gDoF = 0 in the generic case. Finally, in Sect. 6, we
summarize this work with a discussion on the condition of
providing seven pDoF as a generic sector and give future
perspectives.

Throughout this paper, we use units with κ = c4/16πG N

:= 1. In the Dirac–Bergmann analysis, we denote “≈” as
the weak equality [12,13] and “:≈” as the imposition in the
meaning of the weak equality. For quantities computed from
the Levi–Civita connection, we use an over circle on top
whereas, for a general connection, tildes are introduced. Also,
Greek indices denote spacetime indices whereas small Latin
ones, the tangent space indices. Capital Latin letters are intro-
duced to distinguish the spatial indices in the ADM-foliation
[42,43].

2 Metric-affine gauge theory of gravity with
teleparallelism and Coincident GR

In this section, we introduce the gauge approach for gravity
and introduce the basic mathematical ingredients for that.
Then, we introduce the metric-affine gauge theory of gravity
and then give a short review of the geometrical trinity of
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gravity. In the context of the presented formulation, we also
explain the so-called coincident GR.

2.1 Gauge theories of gravity

First of all, we introduce the fundamental mathematical
objects to formulate gauge theories of gravity. Frame field (or
vielbein) is a bundle isomorphism between the tangent bun-
dle (TM,M, π) of a (n + 1)-dimensional space-time man-
ifold M and an internal space (M × R

n+1,M, ρ), where
π and ρ are diffeomorphisms from TM to M and from
M × R

n+1 to M, respectively [44,45]. That is, for an open
set U ⊂ M, e : M × R

n+1 → TM maps a basis of
M × R

n+1
∣
∣
U � R

n+1, i.e., ξi , to a linear combination of a
basis of TM|U � TpM (p ∈ U ), where “�” denotes the
isomorphic relation between two objects. The basis of TpM
can be generically taken arbitrarily, but we use the standard
coordinate basis, i.e., ∂μ, to a chart of an atlas of M. Explic-
itly, on an open set U , we can express this relation as follows:

ei := e(ξi ) = ei
μ∂μ. (1)

The frame field e has its inverse in a local region of M,
although it is not true in a global region in general. The
construction of e leads to the fact that if we take a local
region as an open set of the open cover of M then e always
has its inverse under the restriction to the local region. Let us
take the open set U as such local region. Then we can define
the inverse map of e, i.e., e−1 : TM|U → M × R

n+1
∣
∣
U ,

and the explicit formula as follows:

ei := (e−1)∗(ξ i ) = ei
μdxμ, (2)

where we denote (e−1)∗ as the pull-back operator of e−1.
This inverse e−1 is called as co-frame field of e on the open
region U . The dual structure derives the relation between
ei

μ and ei
μ: eμ

i ei
ν = δ

μ
ν and ei

μe j
μ = δ

j
i . In terms of

these quantities, the components of the metric tensor g =
gμνdxμ ⊗ dxν on M is related to that on M × R

1,n , i.e.,
g = gi jξ

i ⊗ ξ j , as follows:

ei
μe j

νgμν = gi j (3)

or, if e is restricted to the local region in which it has its
inverse, we also have

gμν = ei
μe j

νgi j . (4)

That is, the invertibility of the frame field connects the metric
tensor on the space-time to that on the internal space in a one-
to-one manner.

In order to introduce the concept of covariant derivative
into space-time and internal space, we define the connection
as usual. For the spacetime, the affine connection is denoted
as 	̃ρ

μν . For the internal space, we introduce the spin con-

nection as follows:

Dμei := ω j
iμe j (5)

where we used the same notation to the affine connection
[45]. In particular, since M × R

n+1
∣
∣
U � TM|U holds in

the local region U , we can add 	̃ and ω together, and we
get the covariant derivative of co-frame field components as
follows:

Dμei
ν = ∂μei

ν − 	̃ρ
μνei

ρ + ωi
jμe j

ν . (6)

This relation plays a crucial role to give the attribute of an
internal gauge symmetry to gravity theories at each space-
time point. In fact, for a Lie group G, the co-frame field
transformation ei

μ → e′i
μ = �i

j e j
μ (�i

j ∈ G) leads to

Dμe′i
ν = �i

jDμe j
ν (7)

where the spin connection transforms as follows:

ωi
jμ → ω′i

jμ = (�−1)i
k∂μ�k

j + (�−1)i
k�

l
jω

k
lμ. (8)

This is nothing but the gauge transformation law of the spin
connection in the usual manner. Remark that the same argu-
ments hold even for the frame field components as long as we
consider the local region in which the frame field is invertible.

Finally, notice that we have an important relation between
the affine connection and the spin connection, i.e., the “frame
field (or vielbein) postulate”:

Dμei
ν = 0. (9)

This relation always holds as an identity in the local region
which makes the addition of the affine connection and the
spin connection well-defined [46]. The postulate also allows
to express the affine connection in terms of the co-frame field
components and the spin connection as follows:

	̃ρ
μν = ei

ρ∂μei
ν + ωi

jμei
ρe j

ν (10)

by using the derivative formula Eq. (6). This formula does
not depend on the gauges by virtue of the relation Eqs. (7)
and (8).

Armed with Eqs. (4) and (10), a gravity theory is reformu-
lated in terms of the (co-)frame field and the spin connection.
Let us consider the Einstein–Palatini action:

SEP[gμν, 	̃
ρ

μν] :=
∫

M
dn+1x

√−g R̃ (11)

where g is the determinant of the metric tensor gμν and R̃
is the Ricci scalar. In this action, gravity is described by the
independent variables: gμν and 	̃ρ

μν . Utilizing Eqs. (4) and
(10), the variables are replaced by the co-frame fields and the
spin connection, as follows:

ŜEP[ei
μ, ωi

jμ] :=
∫

M
dn+1x det(e−1) R̂ (12)
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where det(e−1) is the determinant of the co-frame field com-
ponents1 and the hat “^” denotes the quantities that are
described by the co-frame fields and the spin connection.
The gauge group is set as G = T 1,n

� SO(1, n), where
T 1,n denotes the translation group in a (n + 1)-dimensional
Minkowskian spacetime. This action is also called the “first-
order formulation of GR”. The spin connection for this inter-
nal symmetry is called the Levi–Civita (or Lorentz) connec-
tion [44,45]. The theory has now the gauge symmetry of
T 1,n

� SO(1, n) at each space-time point. Remark that the
procedure is applicable to any theory of gravity constructed
from gauge invariants.

2.2 Metric-affine gauge theory of gravity

GR describes gravity in terms of geometrical quantities of
(pseudo-)Riemannian geometry based on the equivalence
principle. In this geometry, only the Riemannian curvature
tensor plays the main role to describe gravity. That is, it
assumes that the torsion and the non-metricity vanishes in
advance. However, there are other possibilities to take these
two geometrical quantities into account. This generalized
geometry is called metric-affine geometry [47].

First of all, we introduce the fundamental quantities to
formulate the geometry. The covariant derivative is defined
as follows:

∇̃μ Aν = ∂μ Aν + 	̃ν
ρμ Aρ, (13)

where 	̃ν
ρμ denotes the affine connection and Aν are the

contra-variant vector components. The important point here
is that in the above definition, it does generically not allow to
commute with the lower two indices of the affine connection:
the order has a specific meaning. That is, it gives the torsion
tensor of the geometry:

T ρ
μν = 	̃ρ

μν − 	̃ρ
νμ := 2	̃ρ [μν]. (14)

In order to manipulate the indices, the covariant derivative of
the metric tensor is important; if it vanishes then the metric
tensor can freely move inside and outside of the covariant
derivative, but if it is not the case then this manipulation does
not hold. The non-metricity tensor of the geometry governs
this manipulation:

Qρμν := ∇̃ρgμν. (15)

Using these quantities, the affine connection is decomposed
into as follows:

	̃ρ
μν = ◦

	ρ
μν + K ρ

μν + Lρ
μν (16)

1 We can identify the internal space index “i” and the space-time index
“μ” in a local region by virtue of M × R

1,n
∣
∣
U � T M |U .

where
◦
	ρ

μν is the Christoffel symbols, K ρ
μν is the contor-

tion tensor:

K ρ
μν = 1

2
T ρ

μν + T ρ

(μ ν) (17)

and Lρ
μν is the disformation tensor:

Lρ
μν = 1

2
Qρ

μν − Q ρ

(μ ν). (18)

The curvature tensor is introduced in terms of the affine con-
nection 	̃ρ

μν as usual:

R̃σ
μνρ = 2∂[ν	̃σ

ρ]μ + 2	̃σ [ν|λ|	̃λ
ρ]μ. (19)

Here, remark again that the position of the indices in the
affine connection is crucial, unlike the ordinary Rieman-
nian curvature tensor. If the affine connection is decomposed
as 	̃ρ

μν = ◦
	ρ

μν + Nρ
μν for a distortion tensor Nρ

μν , a
straightforward computation derives the following formula:

R̃σ
μνρ = ◦

Rσ
μνρ + 2

◦∇[ν Nσ
ρ]μ + 2Nσ [ν|λ|Nλ

ρ]μ, (20)

where
◦
Rσ

μνρ is the (pseudo-)Riemannian curvature ten-

sor and
◦∇ν denotes the covariant derivative defined by the

Christoffel symbols.
Using the curvature tensor Eq. (19), the Einstein–Palatini

action Eq. (11) is now described by the metric-affine geom-
etry and there are different types of geometry, depending on
whether or not the torsion, the non-metricity, and the curva-
ture tensor vanishes, respectively. As a special case, impos-
ing conditions that the torsion and the non-metricity tensor
vanish, the Einstein–Hilbert action [48,49] is recovered:

SEH[gμν] :=
∫

M
dn+1x

√−g
◦
R. (21)

One can also construct more general theories in this frame-
work belonging to the general linear gauge group: T n+1

�

GL(n+1, R) [47], where T n+1 denotes the translation group
in a (n + 1)-dimensional Euclidean space. Theories con-
structed from scalars that are invariant under that group are
called “metric-affine gauge theory of gravity”.

2.3 Teleparallelism and the geometrical trinity of gravity

The metric-affine gauge theory of gravity has intriguing
branches that are equivalent to GR up to surface terms. In
order to derive these branches, the so-called “teleparallel
condition” (or “teleparallelism”) is imposed as follows:2

R̃σ
μνρ := 0 = Rσ

μνρ. (22)

2 Note that quantities without any symbol on top refer to Teleparallel
ones.
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Under this condition, the affine connection can be resolved
at least in a local region as follows:

	ρ
μν = ei

ρ∂μei
ν . (23)

One can check this statement by substituting Eq. (23) into Eq.
(22). Note that, in a local region, for any vector bundles, the
so-called standard flat connection, that is ωi

jμ = 0, exists
[44,45], and the Eq. (10) implies the existence of the solution.
This condition is sometimes called the “Weitzenböch gauge”
[18,26,32].

In addition to the teleparallel condition, since the metric-
affine gauge theory of gravity has three independent geo-
metrical quantities: curvature, torsion, and non-metricity, it
is possible to impose further conditions. The imposition of
vanishing non-metricity leads to the so-called “Teleparallel
Equivalent to GR” (TEGR) [4] and the affine connection is
provided by the solution of the following equation:3

2ei
ρ∂βei

(μgν)ρ = ∂βgμν. (24)

Using the formula Eqs. (20) and (22), we can show the fol-
lowing relation:

R̃ = ◦
R + T − ◦∇μT μ = 0, (25)

where

T := −1

4
TαμνT αμν − 1

2
TαμνT μαν + T αTα, (26)

and Tα := T μ
μα . Neglecting the boundary term, there-

fore, the Einstein–Palatini action Eq. (11) leads to the TEGR
action:

STEGR[gμν] := −
∫

M
dn+1x

√−g T, (27)

and this action is equivalent to the Einstein–Hilbert action Eq.
(21) excepting the geometry and neglecting boundary terms.
Applying the procedure in Sect. 2.1,

√−g and T are just
replaced by det(e−1) and T̂ , respectively, and the variables
describing the system are the (co-)frame field

In the same manner, the imposition of vanishing torsion
leads to the so-called “Symmetric Teleparallel Equivalent
to GR” (STEGR) [4] and the affine connection is solved as
follows:

	ρ
μν = ∂xρ

∂ζ i
∂μ∂νζ

i , (28)

3 This Eq. (24) has a solution as follows: gμν = ei
μe j

νci j , where ci j
is an arbitrary non-singular symmetric constant tensor. This solution is
a special case of Eq. (4). Therefore, if we chose the gauge for gi j as
a constant tensor ci j then the condition of vanishing non-metricity is
satisfied.

where ζ i are arbitrary functions4 defined on a local region
M × R

1,n
∣
∣
U � T M |U .5 Using the formula Eq. (19), we get

the following equation:

R̃ = ◦
R − Q + ◦∇μ(Qμ − Q̃μ) = 0, (29)

where

Q := −1

4
Qμνα Qμνα + 1

2
Qμνα Qνμα

+1

4
Qα Qα − 1

2
Qα Q̃α, (30)

Qα := Qαμ
μ, and Q̃α := Qμ

μα . The Einstein–Palatini
action Eq. (11) leads to the STEGR action as follows:

SSTEGR[gμν] :=
∫

M
dn+1x

√−g Q. (31)

Applying the procedure in Sect. 2.1,
√−g and Q are just

replaced by det(e−1) and Q̂, respectively, and the variables
describing the system are the (co-)frame field.

So far we obtain three specific gravity theories: GR,
TEGR, and STEGR. These three gravity theories are equiva-
lent up to boundary terms and called the “geometrical trinity
of gravity” [4]. In this paper, we focus on the STEGR branch
and its extensions.

2.4 Coincident GR

In the STEGR branch, the connection is easily solved
as in Eq. (28). Again, noticing that the local relation of
M × R

1,n
∣
∣
U � TM|U , we can impose further gauge con-

dition on STEGR. Since the functions ζ i are defined on the
local region U , it can be expressed by the coordinate system,
i.e., xμ, for U ⊂ M: ζ i = ζ i (x). Therefore, in this local
region, ζ i are expanded in terms of xμ up to first order terms
as follows:

ζ i = Mi
μxμ + Ai , (32)

where Mi
μ ∈ GL(n + 1, R)6 and Ai are arbitrary constant

(n +1)-vector components. This is just an affine transforma-
tion in the internal space. Then the connection given in Eq.
(28) becomes as follows:

	ρ
μν = 0. (33)

Under imposing this new gauge condition, or the “coincident
gauge condition”, i.e., Eq. (32), it reveals that STEGR has a
more specific branch. This branch is called “Coincident GR”
(CGR) [31].

4 These functions are none others than the so-called Stückelberg fields
[32].
5 See footnote 1. This local property plays an essential role to formulate
the coincident GR.
6 This group is not a Lie group: a global symmetry to the internal space.
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The Eq. (33) implies the equivalence to GR without
boundary terms. That is, the decomposition Eq. (16) with
Eq. (33) leads to the following relation:

Lρ
μν = − ◦

	ρ
μν. (34)

Neglecting boundary terms, therefore, Eq. (31) under the
coincident gauge derives the following action7:

SCGR =
∫

M
dn+1x

√−g 2Lρ [ρ|λ|Lλ
ν]μ

=
∫

M
dn+1x

√−g 2
◦
	ρ

λ[ρ
◦
	λ

μ]ν . (35)

This is none other than the Einstein–Hilbert action without
the boundary term [49,52]. From this perspective, we would
expect that CGR is equivalent to GR as a constraint system;
the Poisson Bracket algebra (PB-algebra) and the propagat-
ing Degrees of Freedom (pDoF) would be coincident.

3 Hamiltonian analysis of GR and f (R̊)-gravity

In order to apply the Dirac–Bergmann analysis (See Appe-
ndix A in detail) to field theories, it needs careful manip-
ulations of boundary terms. In this section, we reveal that
Gibbons–York–Hawking type boundary terms well-known
in GR [37–40] can be neglected without any change in the
symplectic structure of a given system when performing the
analysis. We also provide a prescription to circumvent the
problematic situation concerning the PDEs of Lagrange mul-
tipliers which is mentioned in a series of works [26,36,41].
Finally, we revisit the analysis of GR and f (

◦
R)-gravity to

demonstrate how to work the statements declared in this sec-
tion.

3.1 A role of surface terms in Dirac–Bergmann analysis

Symplectic structure plays the most fundamental role in ana-
lytical mechanics since once the structure and a total Hamil-
tonian are given, then, the dynamics are uniquely determined.
This statement is verified from the following two facts; (i)
The definition of the Poisson bracket: { f, g} := �(X f , Xg),
where X f and Xg are the Hamiltonian vector fields with
respect to some functions f and g, respectively, and � is a
symplectic form of the system; (ii) The time development of a
quantity F of the system is, of course, given by Ḟ = {F, HT }.
Therefore, under a given total Hamiltonian, the symplectic
structure governs everything in the system.

7 Remark that this action was first derived by A. Einstein in 1916 [49],
which was based on the well-posedness of the variational principle
under the Dirichlet boundary conditions, although there are some con-
troversies even in nowadays [50,51]. Therefore, it is a revisiting of his
work from the viewpoint of a modern perspective, that is, the gauge
theory of gravity.

To clarify a relation between the symplectic structure
and surface terms, let us consider the symplectic potential:
ω := pi dqi + dW , where W = W (qi ) is an arbitrary func-
tion. This quantity is just the integral of the symplectic form
� and has arbitrariness of W . In fact, one can easily verify
that dω = �. Then, notice that the first terms of ω, piδqi ,
are none other than the surface term of the first variation of
the Lagrangian in Eq. (A2). This relation, therefore, implies
that the Lagrangian has also arbitrariness of surface terms:
L → L ′ = L+dW/dt for the common W , and the first-order
variation of L ′ becomes δL ′ := [EoM]i δqi + d(p′

iδqi )/dt ,
where p′

i := pi + ∂W/∂qi . Since ω′ := p′
iδqi = ω, all

arguments are consistent, and � does not depend on the dif-
ference of symplectic potentials. Therefore, we conclude an
important proposition; Surface terms do change canonical
momentum variables but do not change the symplectic struc-
ture.

So far, we consider first-order derivative systems, but
when treating gravity theories including GR, we need a the-
ory of degenerate second-order derivative systems from the
perspective of the well-posedness of the variational princi-
ple, and it is inevitable to intervene surface terms. To clarify
this statement, let us consider the following Lagrangian:

L = L(q̈i , q̇i , qi ), (36)

where i ∈ {1, 2, . . . , n}. The first-order variation of this
Lagrangian is calculated as follows:

δL =
[

∂L

∂qi
− d

dt

∂L

∂ q̇i
+ d2

dt2

∂L

∂ q̈i

]

δqi

+ d

dt

[(
∂L

∂ q̇i
− d

dt

∂L

∂ q̈i

)

δqi +
(

∂L

∂ q̈i

)

δq̇ i
]

:= [EoM]i δqi + d

dt

[

p(1)
i δqi + p(2)

i δq̇i
]

. (37)

p(1)
i and p(2)

i are canonical momentum variables of the sys-
tem. The Hessian matrix is defined as follows:

K (2)
i j := ∂p(2)

i

∂ q̈i
= ∂2L

∂ q̈i∂ q̈ j
,

K (1)
i j := ∂p(1)

i

∂ q̇ j
= ∂2L

∂ q̇i∂ q̇ j
− d

dt

∂2L

∂ q̈i∂ q̇ j
. (38)

Let us assume that the ranks of these matrices are 0 and
n−r (1), respectively.8,9 Then the number of n+r (1) primary
constraints appears. These constraints are derived in the same

8 When the rank of the first Hesse matrix does not vanish, it may give
rise to third- and/or fourth-order derivative equations of motion. Under
the imposition of appropriate conditions, such systems can also describe
dynamics without the Ostrogradski instability [53,54] just like DHOST
[55–57] but these topics are out of scope of the current paper.
9 Precisely speaking, in order to make the equations of motion up to
second-order time derivative, the rank of the matrix Ei j := ∂p(2)

i /∂q̇ j −
∂p(2)

j /∂q̇ i have also to be zero.
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manner to the first-order theory as follows: φ
(1)

α(2) := p(2)

α(2) −
fα(2) (qi

(1), qi
(2), p(1)

i , p(2)
i ) :≈ 0 (α(2) ∈ {1, 2, . . . , n}) and

φ
(1)

n+α(1) := p(1)

α(1) − gα(1) (qi
(1), qi

(2), p(1)
i , p(2)

i ) :≈ 0 (α(1) ∈
{1, 2, . . . , r (1)}), where qi

(1) := qi , qi
(2) := q̇i [58–60]. Let

us denote the phase subspace which is restricted by these
primary constraints as C(1). Since the variational principle
is not well-posed until appropriate boundary conditions are
imposed, the equations of motion cannot be derived in a con-
sistent manner to the degeneracy of the system. This indicates
that it needs careful consideration for the application of the
Dirac–Bergmann analysis.

The symplectic structure of the system is given as follows:
� = dqi

(2) ∧ dp(2)
i + dqi

(1) ∧ dp(1)
i . Therefore, the symplec-

tic potential becomes ω = p(2)
i dqi

(2) + p(1)
i dqi

(1) + dW ,

where W = W (qi
(1), qi

(2)) is arbitrary function. The same
consideration to the first-order theory leads to new canon-
ical momentum variables: p′(2)

i := p(2)
i + ∂W/∂qi

(2) and

p′(1)
i := p(1)

i +∂W/∂qi
(1) without any changing the symplec-

tic structure. Since the Hessian matrices are not changed by
this manipulation, K ′(2)

i j = ∂2L ′/∂q̇i
(2)∂ q̇ j

(2) = K (2)
i j , where

L → L ′ = L + dW/dt , so does the rank of the matrix.
K (1) has the same property. These properties imply that it
exists a surface term W in C(1) such that φ

′(1)

α′(2) := p′(2)

α′(2) :≈ 0

(α′(2) ∈ {1, 2, . . . , r ′(2) ≤ n}) and φ
′(1)

r ′(2)+α′(1) := p′(1)

α′(1) :≈ 0

(α′(1) ∈ {1, 2, . . . , r ′(1) ≤ r (1)}). Armed with these facts, to
make the variational principle well-posed, it is necessary to
impose boundary conditions that are consistent with the pri-
mary constraints: δqa′(2)

(2) = 0 (a′(2) ∈ {1, 2, . . . , n − r ′(2)})
and δqa′(1)

(1) = 0 (a′(1) ∈ {1, 2, . . . , n − r ′(1)}). In particular,

for the case of r ′(2) = n,10 the boundary conditions become
δqa′(1)

(1) = 0, and then the absence of the Ostrogradski insta-
bility is guaranteed [51,53,54]. Then the Dirac–Bergmann
analysis becomes applicable.11 The essential message here is
that the well-posedness does not affect the symplectic struc-
ture. Therefore, we conclude an important proposition; The
Dirac–Bergmann analysis is applicable also in second-order
derivative systems without depending on the well-posedness
of the variational principle. This statement means that, when

10 The case can be realised if the rank of Ei j is zero with appropriate
boundary (counter) terms like Gibbons–York–Hawking term [37–40,
50,51]. Remark that the manipulation does not change the symplectic
structure, i.e., the time evolutin of the system, as mentioned in the main
manuscript.
11 Note that the surface term W is none other than the so-called counter-
term that appears in higher-order derivative systems just like Gibbons–
York–Hawking counter-terms in GR [37–40]. Recently, a different sort
of counter-term was proposed [50], which is based on the requirement
of the imposition of boundary conditions for the well-posed variational
principle that originated from the consistency with the full result of the
Dirac–Bergmann analysis. That is the new sort of counter-term demands
consistency with C(K ) rather than C(1).

we use the Dirac–Bergmann analysis, all surface terms can
be neglected freely.

There is a remark on when applying the Dirac–Bergmann
analysis to field theories. Departing from theories of point
particle systems, field theories generically have spatial
boundary terms. Since spatial boundary terms have no rela-
tion to the symplectic structure, there is no concern with
the problem of the well-posedness of the variational princi-
ple. It implies that spatial boundary conditions can be taken
arbitrarily. Precisely speaking, spatial boundary terms are
concerned only with the continuum limit of boundaries in
field theories [61]; it does not affect the dynamics (time evo-
lution). Recently, the authors in [36] stated that the exis-
tence of such spatial boundary terms might break the Dirac–
Bergmann analysis but it is not the case when we hold the fol-
lowing prescription, or more generically, speaking, when tak-
ing into account that the spatial boundary terms can always
be neglected by imposing appropriate spatial boundary con-
ditions in the variational principle and it never affects the
dynamics (time evolution).

This fact leads to a convenient prescription when comput-
ing PB-algebras explicitly since the PB-algebras are defined
on a hypersurface that has the common spatial boundary as
that of the variational principle in the ADM-foliation [42,43];

For some field A(x) on a (n + 1)-dimensional spacetime,
the term “

√
h A(x)∂

(x)
I δ(n)(�x − �y)”, where I runs from 1 to

the dimension of the hypersurface n, in PB-algebras can be
neglected by setting properly spatial boundary conditions of
A(x) in the variational principle, where his the determinant
of the metric of a n-dimensional hypersurface.

That is, the problematic term “
√

h A(x)∂
(x)
I δ(n)(�x − �y)” in

the PB-algebras can be neglected since integrating by parts
it on �t and integrating all terms again on �t then we obtain
only spatial boundary terms on ∂�t ; these terms can be van-
ished by the imposition of appropriate spatial boundary con-
ditions if it is necessary. In this paper, we assume these propo-
sitions and the prescription that are introduced above and then
this analysis works, and then, we can derive the final result of
the pDoF. However, we emphasize that this is our argument
against the paper [36] and this is of course a debatable point
to consider.

3.2 Revisiting to Hamiltonian analysis of GR and
f (R̊)-gravity

Based on the previous subsection, let us count the pDoF of
GR and f (

◦
R)-gravity as examples. First of all, we review the

Dirac–Bergmann analysis of GR. We use notations and set-
ups that are fixed in this subsection throughout the subsequent
sections of the paper.
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Let M and gμν be (n + 1)-dimensional spacetime and
its metric tensor, respectively. Then ADM-foliation [42–44]
of M is a diffeomorphism σ : M → R × Sn such that it
decomposes M as a disjoint union of hypersurfaces �t :=
{p ∈ M|σ ∗τ(p) := t}, which is deffeomorphic to {t} ×
Sn , i.e., M = �t∈I�t , where Sn denotes a n-dimensional
hypersurface,I is a time-interval ofM, t is a time-coordinate
of M: t ∈ I, τ is a time-coordinate of R ×Sn , and σ ∗ is the
pullback operator of the diffeomorphism σ . Then the metric
of the spacetime is decomposed as follows:

ds2 = −N 2dt2 + hI J

(

dx I + N I dx I
) (

dx J + N I dx J
)

,

(39)

where I, J ∈ {1, 2, . . . , n}, N := N (x) and N I := N I (x)

are a lapse function and a shift vector, respectively. Then
the normal vector nμ to a leaf �t is given by nμ =
−N−1(−1, N I ). nμ satisfies the normalization condition:
nμnμ = −1.

To reconstruct GR on the ADM-foliated spacetime R×Sn ,
one needs to introduce the quantities of the first fundamental
form (or, the so-called projection map) and the second fun-
damental form (or, the so-called extrinsic curvature), which
are defined as follows:

Pμν := gμν + nμnν, (40)

and

Kμν := 1

2
Ln Pμν, (41)

respectively, where Ln is the Lie derivative operator with
respect to the normal vector nμ. Using these quantities, the
Gauss equation holds:

(n)
◦
RL

I J K = P L
σ Pμ

I Pν
J PK

ρ
◦
Rσ

μνρ − 2K L [I K J ]K , (42)

where K I J is the so-called extrinsic curvature and it is given
as follows:

K I J = − 1

2N

(

2
◦

D[I NJ ] − ḣ I J

)

, (43)

where
◦

DI is the covariant derivative of the Christoffel sym-
bols on a leaf �t . Contracting indices in the Gauss equation,
we get the following identity

(n)
◦
R = ◦

R +
(

2
◦
Rμνnμnν + K I J K I J − K 2

)

. (44)

Therefore, applying these equations the Einstein–Hilbert
action in Eq. (21) is decomposed as follows:

SEH =
∫

I
dt
∫

�t

dxn N
√

h
(

(n)
◦
R − K 2 + K I J K I J

)

−2
∫

M
dn+1x

√−g
◦∇α

(

nμ
◦∇μnα − nα

◦∇μnμ
)

.

(45)

As considered in Sect. 3.1, the boundary terms can be
neglected.12 Therefore, the ADM-foliated Einstein–Hilbert
action becomes as follows:

SEH =
∫

I
dt
∫

�t

dxn N
√

h
(

(n)
◦
R − K 2 + K I J K I J

)

:=
∫

I
dt
∫

�t

dxnLEH. (46)

Remark that density variables and also PB-algebras are
defined on a leaf �t (t ∈ I).13

Let us perform Dirac–Bergmann analysis (See Appendix
A). The canonical momentum variables are calculated as fol-
lows:

π0 := δLEH

δ Ṅ
= 0, πI := δLEH

δ Ṅ I
= 0,

πI J := δLEH

δḣ I J
= √

h (K hI J − K I J ) . (47)

Therefore, the Hessian matrix has its rank of n(n+1)/2. This
indicates that there are (n + 1) primary constraint densities
as follows:

φ
(1)
0 := π0 :≈ 0, φ

(1)
I := πI :≈ 0. (48)

These constraint densities restrict the whole phase space to
the subspace C(1). The total Hamiltonian density is given as
follows:

HT = NC(GR)
0 + N IC(GR)

I + λμφ(1)
μ := H0 + λμφ(1)

μ ,

(49)

where λμ are Lagrange multipliers, and C(GR)
μ are defined as

follows:

C(GR)
0 := −√

h(n)
◦
R + 1√

h

(

π I J πI J − 1

n − 1
π2
)

,

C(GR)
I := −2

◦
D J πI J , (50)

where we neglected the spatial boundary term 2π I J NJ on
∂�t (t ∈ I). π is the trace of πI J . The fundamental PB-
algebras are given as follows:

{N (x), π0(y)} = δ(3)(�x − �y),

{N I (x), πJ (y)} = δ I
J δ(3)(�x − �y),

{hI J (x), πK L(y)} = 2δ
(I
K δ

J )
L δ(3)(�x − �y). (51)

The consistency conditions for the primary constraint densi-
ties φ

(1)
μ , i.e., φ̇

(1)
μ = {φ(1)

μ ,HT } :≈ 0, give four secondary

12 Based on Sect. 3.1, the first term in the boundary terms can be van-
ished by setting properly spatial boundary conditions, and the second
term can be canceled out by adding the Gibbon-York-Hawking counter-
term: − ∫

�t
dxn

√
h(2K ) (t ∈ I).

13 These ingredients can be generically defined on a hypersurface such
that it is homotopic to �t with the common spatial boundary: ∂�t .
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constraint densities as follows:

φ
(2)
0 := C(GR)

0 :≈ 0 , φ
(2)
I := C(GR)

I :≈ 0. (52)

These constraint densities further restrict C(1) to the new
subspace C(2). Notice that φ

(1)
μ and φ

(2)
μ do not contain the

lapse function and the shift vector. Therefore, all these con-
straint densities are commutative with respect to the Poisson
bracket. In such case, to investigate the consistency condi-
tions for the secondary constraint densities φ

(2)
μ , it is conve-

nient to consider the smeared variables of φ
(2)
μ :

CS(N ) :=
∫

�t

dx3 NC(GR)
0 ,

CV ( �N ) :=
∫

�t

dx3 N IC(GR)
I , (53)

where �N := N I ∂I . Then we can show that

{F(hI J , πI J ), CV ( �N )} = L �N F(hI J , πI J ) (54)

for arbitrary function F(hI J , πI J ), therefore, the following
algebras hold:

{CV ( �N1), CV ( �N2)} = CV (L �N1
�N2),

{CV ( �N ), CS(N )} = CS(L �N N ). (55)

Neglecting spatial boundary terms, the following algebra
holds:

{CS(N1), CS(N2)} = CV (N1∂
I N2 − N2∂

I N1). (56)

Using these smeared PB-algebras, it can show that the con-
sistency conditions for the secondary constraint densities are
satisfied without any additional conditions and there are no
tertiary constraint densities. Therefore, the analysis stops
here and there are eight first-class constraint densities. This
indicates that GR has

pDoF =
[

2 × (n + 1)(n + 2)

2
− 2 × 0 − 2 × {(n + 1) + (n + 1)}

]

× 1

2
= 1

2
(n + 1)(n − 2). (57)

Notice that the multipliers remain arbitrary. This implies the
existence of

gDoF = n + 1. (58)

In fact, GR has the diffeomorphism invariance. In particular,
in the (3+1)-dimensional spacetime, GR has two pDoF and
four gDoF.

If we refrain from utilizing smeared variables and instead
express our results in terms of density variables, we can arrive
at the following algebraic expressions:

{φ(2)
I (x), φ

(2)
J (y)} =

(

φ
(2)
J (x)∂

(x)
I − φ

(2)
I (y)∂

(y)
J

)

δ(n)(�x − �y),

×{φ(2)
I (x), φ

(2)
0 (y)} = φ

(2)
0 (x)∂

(x)
I δ(n)(�x − �y)

(59)

instead of Eq. (55), and

{φ(2)
0 (x), φ

(2)
0 (y)} =

(

hI J (x)φ
(2)
J (x) + hI J (y)φ

(2)
J (y)

)

×∂
(x)
I δ(n)(�x − �y) (60)

instead of Eq. (56). Here, the problematic term “
√

h A(x)

∂
(x)
I δ(n)(�x − �y)” appears both in Eqs. (59) and (60). Fortu-

nately, the coefficients of these PBs are composed only of the
secondary constraint densities. Therefore, without applying
the prescription given in Sect. 3.1, these PBs are weakly equal
to zero on C(2). The consistency conditions for φ

(2)
μ ≈ 0 has

a similar property, although it is not trivial and extra calcula-
tions are mandatory differing from the case using the smeared
variables. That is, it is just convenient to use smeared vari-
ables for calculating the consistency conditions when exist-
ing only first-class constraints. If there are second-class con-
straints, the smeared variables just make all calculations com-
plicated due to the absence of a closed algebra on the entire
phase space. There is no reason to use the smeared variables
if there are second-class constraints. For instance, the authors
in [26] do not use the smeared variables but density variables
in their analysis. In fact, it is hard to get insight into whether
or not second-class constraints exist in complicated theories
such as f (T )-gravity in advance.

GR can be extended into a non-linear manner as follows
[6]:

S
f (

◦
R)

:=
∫

M
dn+1x

√−g f (
◦
R), (61)

where f ′(
◦
R) = d f (

◦
R)/d

◦
R and f ′′ �= 0. Introducing an

auxiliary field ϕ, Eq (61) is decomposed as follows:

S
f (

◦
R)

=
∫

M
dn+1x

√−g
[

f ′(ϕ)
◦

R + f (ϕ) − ϕ f ′(ϕ)
]

.

(62)

Using the Gauss equation Eq. (44) to decompose
◦
R, this

action becomes as follows:

S
f (

◦
R)

=
∫

I
dt
∫

�t

dn x N
√

h
[

f ′ ((n)
◦
R − K 2 + K I J K I J − ϕ

)

+ f
]

−2
∫

M
dn+1x

√−g
[

f ′ ◦∇μ

(

nν
◦∇νnμ − nμ

◦∇νnν
)]

. (63)

Comparing to Eq. (45), the boundary terms cannot be
neglected due to the existence of the non-linearity of f ′. Inte-
grating by parts and then neglecting the boundary terms,14

Equation (63) becomes as follows [27]:

14 Based on Sect. 3.1 the boundary term that cannot be vanished by
spatial boundary conditions is canceled out by introducing the Gibbons–
York–Hawking term [62]: − ∫

�t
dxn

√
h(2 f ′K ) (t ∈ I).
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S
f (

◦
R)

=
∫

I
dt
∫

�t

dn x N
√

h

×
[

f ′ ((n)
◦
R − K 2 + K I J K I J − ϕ

)

+ f
]

+
∫

I
dt
∫

�t

dn x N
√

h

[
2K

N

(

N I ◦
DI f ′ − f ′′ϕ̇

)

+2
◦

DI f ′ ◦
DI lnN

]

. (64)

The canonical momentum variables are calculated as follows
[27]:

π0 := 0, πI := 0, πI J := √
h

[

f ′ (K hI J − K I J )

−hI J

N

(

N K ◦
DK f ′ − f ′′ϕ̇

)]

, πϕ := −2K
√

h f ′′.

(65)

In the case of f ′ = constant , as expected, Eq. (65) becomes
Eq. (47). Therefore, the Hessian matrix has its rank of
n(n + 1)/2 + 1. The primary constraint densities are given
as follows:

φ
(1)
0 := π0 :≈ 0 , φ

(1)
I := πI :≈ 0, (66)

and these constraint densities identify the subspace C(1). The
total Hamiltonian density is calculated as follows:

HT = NC f (
◦
R)

0 + N IC f (
◦
R)

I + λμφ(1)
μ

:= H0 + λμφ(1)
μ (67)

where λμ are Lagrange multipliers, and C f (
◦
R)

μ are defined as
follows:

C f (
◦
R)

0 := −√
h
[

f + f ′ ((n)
◦
R − ϕ

)]

+ 1√
h f ′

(

π I J πI J − 1

n − 1
π2
)

+ 2
√

h
◦

DI
◦

DI f ′ − 1

n
√

h f ′′ ππϕ + n − 1

n
√

h f ′

(
f ′

f ′′

)2

π2
ϕ ,

C f (
◦
R)

I := πϕ

◦
DI ϕ − 2

◦
D J πI J . (68)

In the case of f ′ = constant , Eq. (68) coincides with Eq.
(50). The consistency conditions for the primary constraint
densities φ

(1)
μ are gives four secondary constraint densities

as follows:

φ
(2)
0 := C f (

◦
R)

0 :≈ 0, φ
(2)
I := C f (

◦
R)

I :≈ 0, (69)

under the same fundamental PB-algebras Eq. (51) and

{ϕ(x), πϕ(y)} = δ(3)(�x − �y). (70)

These constraint densities restrict C(1) to the new subspace
C(2). We can show that the consistency conditions for these
secondary constraint densities are automatically satisfied in

the same manner as the GR case. That is, the smeared algebras
which are given in Eqs. (55) and (56) hold just replacing

C(GR)
μ by C f (

◦
R)

μ in Eq. (53).15 Therefore, f (
◦
R)-gravity has

pDoF = 1

2
(n + 1)(n − 2) + 1, and gDoF = n + 1.

(71)

In particular, in the (3 + 1)-dimensional spacetime, f (
◦
R)-

gravity has three pDoF and four gDoF.
When comparing f (

◦
R)-gravity with GR there is a notable

property; both the theories have the common PB-algebras.
Since the PB-algebras construct the generator of gauge trans-
formation by combining as G := ζ

μ
s φ

(s)
μ (s ∈ {1, 2};μ ∈

{1, 2, . . . , n + 1}) for arbitrary functions ζ
μ
s that are defined

in the whole phase space, the property indicates that f (
◦
R)-

gravity departs only of the pDoF from GR [63,64]. That is,
f (

◦
R)-gravity is a natural extension of GR as unchanging

the gauge symmetry. This result is consistent with the fact
that f (

◦
R)-gravity is equivalent to the scalar-tensor theories

[65,66].

4 Hamiltonian analysis of coincident GR

In this section, as the final preparation for the main pur-
pose of the current paper, we review the ADM-foliation of
STEGR in the coincident gauge denoted by CGR and its
Dirac–Bergmann analysis while remarking on the consider-
ation given in Sect. 3.1.

4.1 ADM-foliation of coincident GR

The action of CGR is already derived in Sect. 2.4 as Eq. (35).
The action can be rewritten as follows:

SCG R =
∫

M
dn+1x

√−g
1

4
Mαβσρμν Qαβσ Qρμν, (72)

where Mαβσρμν is set as follows:

Mαβσρμν := gαρgβσ gμν − gαρgβμgσν

+2gανgβμgσρ − 2gαβgμνgσρ. (73)

Remark that Qαβγ = ∇αgβγ is now in the coincident gauge:
Qαβγ = ∂αgβγ . Applying the ADM-foliated metric Eq. (39)
and, after performing very long but straightforward algebraic
calculations, the above action can be rewritten as follows:16

[68]

15 Equation (54) is generalised into {F(hI J , πI J , ϕ, πϕ), CV ( �N )} =
L �N F(hI J , πI J , ϕ, πϕ). The consideration in terms of density variables

is viable also for the f (
◦
R)-gravity case.

16 We used Cadabra to derive this result [67].
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SCG R =
∫

I
dt
∫

�t

dn x
√

h
[

N
(

(n)Q + K I J K I J − K 2
)

+B1 + B2 + B3

]

, (74)

where (n)Q, B1, B2, and B3 are set as follows:

(n) Q := 1

4

[

− h ADhB E hC F + 2h AE hB DhC F + h AE hB DhC F

+ h ADhBC hE F + 2h ABhC DhE F
]

Q ABC Q DE F , (75)

B1 = hI J hK L (Q J K L − QK J L )∂I N ,

B2 = K ∂I N I + Ṅ
∂I N I

N 2 − (∂I N I )(N J ∂J N )

N 2 ,

B3 = (N I ∂J N )(∂I N J )

N 2

− ∂I N J

2N

(

2∂J N I + N I hM N Q J M N

)

+ Ṅ K 1

2N 2 (NhI J QK I J − 2∂K N ) . (76)

The boundary terms B1, B2, and B3 are calculated, neglect-
ing spatial boundary terms based on the consideration in
Sect. 3.1, respectively, as follows:

B1 = −N
√

h
◦

DI (
(n)Q

I − (n) Q̃
I
) ,

B2 = ∂μN J ∂J (
√

hnμ) , B3 = −∂I N I ∂μ(
√

hnμ). (77)

Therefore, the action becomes as follows:

SCG R =
∫

I
dt
∫

�t

dn x

×
[

N
√

h
{

(n) Q + K I J K I J − K 2 − ◦
DI (

(n) Q
I − (n) Q̃

I
)
}

−∂I N I ∂μ(
√

hnμ) + ∂μN J ∂J (
√

hnμ)
]

. (78)

This is none other than the ADM-foliation of CGR [68].
Notice that the derivation of Eq (78) neglected only spa-
tial boundary terms. Integrating the second term in Eq.
(78) by parts: −∂I N I ∂μ(

√
hnμ) = −∂I [N I ∂μ(

√
hnμ)] +

∂μ[N I ∂I (
√

hnμ)]−(∂μN I )(∂I
√

hnμ), the third term is can-
celed out with the third term in Eq. (78). The remnant terms
are only boundary terms; these terms can be neglected based
on the consideration in Sect. 3.1. Therefore, we get the final
result:

SCG R =
∫

I
dt
∫

�t

dn x N
√

h

×
[
(n)Q+K I J K I J −K 2− ◦

DI (
(n)Q

I −(n) Q̃
I
)
]

.

(79)

Note that the above derivation does not need the Gauss equa-
tion unlike the GR and f (

◦
R)-gravity cases. We just manip-

ulated complicated algebraic calculations. Remark, finally,
that this neglection of the boundary terms needs more care-
ful consideration when extending the theory in a non-linear
manner like the f (

◦
R)-gravity case.

4.2 Hamiltonian analysis of coincident GR

For the action Eq. (79), we perform the Dirac–Bergmann
analysis. The canonical momentum variables are calculated
as follows:

π0 = 0, πI = 0, πI J = √
h(K hI J − K I J ), (80)

and therefore, the primary constraint densities are given as
follows:

φ
(1)
0 := π0 :≈ 0, φ

(1)
I := πI :≈ 0. (81)

The rank of the Hessian matrix is n(n+1)/2. These constraint
densities restrict the whole phase space to the subspace C(1).
The total Hamiltonian density is derived as follows:

HT := NC(CGR)
0 + N IC(CGR)

I + λμφ(1)
μ , (82)

where C(CGR)
0 and C(CGR)

I are set as follows:

C(CGR)
0 := −√

h
[
(n)Q − ◦

DI (
(n)QI − (n) Q̃ I )

]

+ 1√
h

(

π I J πI J − 1

n − 1
π2
)

,

C(CGR)
I := −2

◦
D J πI J . (83)

The fundamental PB-algebras are the same as those of GR:
Eq. (51). Therefore, the consistency conditions for the pri-
mary constraint densities Eq. (81) lead to (n + 1) secondary
constraint densities:

φ
(2)
0 := C(CGR)

0 :≈ 0, φ
(2)
I := C(CGR)

I :≈ 0, (84)

and these constraint densities restrict C(1) to the new sub-
space C(2). We can show that the smeared PB-algebras of
Eq. (84) satisfy the common algebras that are those of GR
given in Eqs. (55) and (56) after tedious calculations along
with neglecting properly spatial boundary terms [68], and
it indicates that CGR has the same gauge symmetry as GR
and f (

◦
R)-gravity. That is, the analysis stops here. Therefore,

CGR has

pDoF = 1

2
(n + 1)(n − 2), and gDoF = n + 1. (85)

In particular, (3 + 1)-dimensional spacetime, CGR has two
pDoF and four gDoF. That is, CGR is completely equivalent
to GR from both viewpoints of dynamics and gauge symme-
try, as expected.

5 Hamiltonian analysis of coincident f (Q)-gravity

In this section, after reviewing the controversy in f (T )-
gravity and providing our perspective of it and the role of
the prescription proposed in Sect. 3.1, we perform the anal-
ysis of coincident f (Q)-gravity. It reveals that, as a generic
case, the theory has five primary, three secondary, and two
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tertiary constraint densities, and all these constraint densities
are classified into second-class density; the pDoF and gDoF
of the theory are six and zero, respectively.

5.1 A lesson from the Dirac–Bergmann analysis of
f (T )-gravity

As mentioned in Sect. 1, there was a controversy on the pDoF
of f (T )-gravity due to the existence of second-class con-
straint densities. It implies that some of multipliers are deter-
mined, but, here, a problematic situation occurs. That is, a set
of Partial Differential Equations (PDEs) of Lagrange multi-
pliers, which has been not expected in the Dirac–Bergmann
analysis in point particle systems and at least in GR, fGR,
and CGR, appears. In addition, the existence is a feature for
violating the diffeomorphism and/or local Lorentz symme-
try. It implies that the system has several sectors of solu-
tions and each sector generically has different pDoF. In
this case, the Dirac–Bergmann analysis gives rise to differ-
ent results depending on assumptions. In order to see these
issues, focusing in particular on the determination of the
multipliers, let us briefly review the case of f (T )-gravity
in four-dimensional spacetime. Since the coincident f (Q)-
gravity has also second-class constraint densities, this quick
survey gives an insight into the use of the prescription given
in Sect. 3.1.

As mentioned in Sect. 1, there are three works; (i) Li et
al. [23]: pDoF is five; (ii) Ferraro and Guzmán [25]: pDoF
is three; (iii) Blagojevic and Nester [26]: pDoF is five as a
generic case. In these works, in order to count out the pDoF,
the Dirac–Bergmann analysis is commonly applied. How-
ever, the methods to derive constraint densities and deter-
mine Lagrange multipliers are different. In (i) Li et al. [23]
and (ii) Ferraro and Guzmán [25], on one hand, the rank of
the Dirac matrix is investigated to find constraint densities
and determine Lagrange multipliers. On the other hand, in
(iii) Blagojevic and Nester [26], Castellani’s algorithm [69]
is applied to find first-class constraint densities. For deriving
second-class constraint densities and determining Lagrange
multipliers, an original method is applied, as briefly reviewed
later. The important point here is that these approaches lead
to the common first-class constraint densities including its
PB-algebras under the imposition of the constraint densities,
and the PB-algebras are nothing but that of general relativity,
which are already given in Eqs. (59) and (60). That is, f (T )-
gravity is a diffeomorphism invariant theory, as expected.

Next, let us see a different point among these works. This
is, the emergence of the second-class constraint densities and
the determination of the multipliers. This difference leads to
the two different results in the pDoF of f (T )-gravity as a
generic case. The first survey is (i) Li et al. [23]: pDoF is five.
In their work, the primary second-class constraint densities

are derived as follows:

	ab :≈ 0, π :≈ 0, (86)

where a , b ∈ {0 , 1 , 2 , 3}, 	ab and π are canonical momen-
tum variables with respect to the vielbein and auxiliary field,
respectively. The auxiliary field is necessary for decompos-
ing the Lagrangian of f (T )-gravity in the same manner as
the case of f (

◦
R)-gravity. The PBs among 	ab and π do not

vanish under the imposition of the constraint densities. The
concrete forms of the algebras are given in [23]. Then the
consistency conditions for Eq. (86) are derived as follows:

M� :≈ 0, (87)

where � is a column vector with eight components and the
Dirac matrix M is given as follows:

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 y1 y2 y3 y4 y5 y6 x0

−y1 0 0 0 A11 A12 A13 x1

−y2 0 0 0 A21 A22 A23 x2

−y3 0 0 0 A31 A32 A33 x3

−y4 −A11 −A21 −A32 0 B12 B13 x4

−y5 −A12 −A22 −A32 −B12 0 B23 x5

−y6 −A13 −A23 −A33 −B13 −B23 0 x6

−x0 −x1 −x2 −x3 −x4 −x5 −x6 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(88)

where Ai j and Bi j are proportional to ∂kϕ (i , j , k ∈
{1 , 2 , 3}), where ϕ is an auxiliary field. The concrete forms
of �, Ai j , Bi j , and other variables, x0, x1, . . . , x6, ; , y0, y1,

. . . , y6, are not important in this survey. The explicit formu-
lae are given in [23]. Remark, here, that, since the first-class
constraint densities are commutative with the second-class
constraint densities by its definition under the imposition of
all the constraint densities, it is enough to consider the con-
sistency conditions for the second-class constraint densities
[23]. In order to exist a nontrivial solution of Eq. (87), the
determinant of M has to vanish, and it gives rise to a new
constraint density as follows:

π1 = √
det M :≈ 0. (89)

π1 is proportional to (∂iϕ)3 [23]. Then the matrix M has its
rank of six. This means that six out of seven multipliers are
determined. The consistency condition for π1 determines the
remaining multiplier. Then, we can show that the extended
matrix of M taking into account the PBs of π1 with the other
constraint densities has its rank of eight by performing the
elementary transformation of matrices [23]. Therefore, eight
first-class and eight second-class constraints exist, and then
the pDoF is (34 − 8 × 2 − 8)/2 = 5.

An important point here is that the PB of π and π1 becomes
the following form:

{π(x), π1(y)} ≈∝ (∂iϕ)3δ(3)(�x − �y)

+ ∝ (∂iϕ)2∂iδ
(3)(�x − �y), (90)
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schematically, where we denoted “ ∝ . . . ” as a term which
is proportional to “ . . . ”. Notice that the problematic term
“
√

h A(x)∂
(x)
I δ(n)(�x − �y)” appears. Even if the prescription

given in Sect. 3.1 is applied and the problematic term is
neglected under the imposition of the spatial boundary con-
dition: Ni (t , spatial boundary) := 0, π1 still determines the
remaining one multiplier with respect to the second constraint
in Eq. (86) by virtue of the first term in Eq. (90); the proce-
dure also stops here, and this case is also the same pDoF as
five. We will discuss this point later.

The second survey is (ii) Ferraro and Guzmán [25]: pDoF
is three. This number contradicts to the result of Li et al. [23],
but we will discuss the reason for this point later. In their
work [23], the primary second-class constraint densities are
derived as follows:

G(1)
ab :≈ 0, G(1)

π :≈ 0 (91)

with respect to the vielbein and auxiliary field, respectively,
where a, b ∈ {0, 1, 2, 3}. These constraint densities are the
same as those of Li et al. [23] excepting the notations. The
Dirac matrix is also equivalent to that of Li et al. [23] except-
ing the notations and the inclusion of the first-class constraint
densities (but it is not mandatory since the first-class con-
straint densities are commutative with the other constraint
densities). Differing from the method to count the rank of the
Dirac matrix, i.e., the fundamental transformation of matri-
ces, which is used in Li et al. [23], the authors utilized the
method of using null eigenvectors to find new secondary con-
straint densities. However, this difference is not crucial since
these methods are mathematically equivalent. The difference
point between these works is the composition of the primary
constraint densities. That is, the authors reconstructed the
primary constraint densities G(1)

ab excepting for G(1)
01 as fol-

lows:

G̃(1)
02 =F01G(1)

02 − F02G(1)
01 ,

G̃(1)
03 =F02G(1)

03 − F03G(1)
01 ,

...

G̃(1)
23 =F01G(1)

23 − F23G(1)
01 ,

(92)

where Fab (a , b ∈ {0 , 1 , 2 , 3}) are composed of the vielbein
and those spatial derivatives. The explicit forms are given in
[25]. As shown in [25], the PBs between G(1)

π and G̃(1)
ab vanish

excepting for G̃(1)
01 := G(1)

01 . That is, before reconstructing

G(1)
ab , the PBs between G(1)

ab and G(1)
π are not commutative,

but now so are in those of G̃(1)
ab and G(1)

π .17 In addition, the

17 This result can be understood by considering the following instance.
Let us consider a set of second-class constraints: p1 ≈ 0, p2 + q1 ≈ 0,
and q1 ≈ 0. If the third constraint is applied to the second one then the
latter one becomes p2 ≈ 0; we obtained a new set of constraints: p1 ≈ 0,
p2 ≈ 0, and q1 ≈ 0. In this set, the second constraint is classified

authors performed further reconstruction as follows:

G̃(2)
0 = F01G(2)

0 − FϕG(1)
01 , (93)

where G(2)
0 is the secondary first-class constraint density

with respect to one of the Hamiltonian constraint density
G(1)

0 in the sector of diffeomorphism symmetry. Fϕ is com-
posed of the torsion, auxiliary field, and vielbein. The explicit
forms are given in [25]. Then the PB between G̃(2)

0 and G(1)
π

becomes commutative under the imposition of G(1)
0 ≈ 0.

Therefore, the authors concluded that only G(1)
π and G̃(1)

01
are classified into second-class constraint densities; pDoF is
(34 − (8 + 5) × 2 − 2)/2 = 3.

Here, let us discuss the relation between (i) Li et al. [23]
and (ii) Ferraro and Guzmán [25]. The difference of the pDoF
in these works (and (iii) Blagojevic and Nester [26]) is noting
but the controversy in the analysis of f (T )-gravity. The point
to resolve this situation is that the proportionality of ∂kϕ in
Ai j and Bi j . That is, if we assume that the configuration ϕ

is independent from the space coordinates, i.e., ϕ = ϕ(t),
then the terms Ai j and Bi j vanish. In this case, the rank of
M becomes two, and only two multipliers are determined.
Then the determinant of M given in Eq. (89) is automati-
cally satisfied; π1 is no longer a constraint density. Therefore,
under the restriction of the configuration ϕ to ϕ = ϕ(t), there
are thirteen first-class constraint densities and two secondary
constraint densities, and this situation precisely corresponds
to the result of (ii) Ferraro and Guzmán [25]. That is, (ii)
Ferraro and Guzmán [25] is a sector of (i) Li et al. [23] with
the specific configuration of ϕ = ϕ(t).

The final survey is the work (iii) Blagojevic and Nester
[26]: pDoF is five as a generic case. This work provides the
most detailed results: there are five sectors, i.e., (s1) pDoF
is five as a generic case; (s2) pDoF is N/A (a detailed inves-
tigation is necessary); (s3) pDoF is four as a special case;
(s4) pDoF is two as a generic case; (s5) pDoF is two as a
special case. All these sectors have different composition of
constraint densities. Of course, (i) Li et al. [23] belongs to
the sector (s1). We will discuss the case of (ii) Ferraro and
Guzmán [25] later. In their work [26], the primary second-
class constraint densities are derived as follows:

πϕ :≈ 0, Ci j :≈ 0, (94)

schematically, where i, j ∈ {0, 1, 2, 3}. These constraint
densities are the same as (i) Li et al. [23] and (ii) Ferraro
and Guzmán [25] excepting the notations. The consistency
conditions for these constraint densities, χ = π̇ϕ :≈ 0 and

Footnote 17 continued
into first-class while remaining the first and third ones second-class
constraints. This is a special feature of second-class constraints. In the
case of first-class constraints, since these constraints form a Lie algebra
of the gauge symmetry of a given system, there is no such feature.
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χi j = Ċi j :≈ 0, determine some of the multipliers. Accord-
ing to the authors, the latter conditions are split into two parts
with respect to the time and space direction of the ADM-
foliation, and then the analysis is classified into two main
sectors whether or not ϕī := ∂īϕ = ∂iϕ − ni n j∂ jϕ �= 0
holds. In the main sector of ϕī �= 0, the ADM-foliated con-
sistency conditions lead to a new secondary constraint den-
sity denoted as χ :≈ 0. Taking into account the consistency
condition for χ , the authors decompose the seven multipliers
such that the determination of a specific multiplier, denoted
as u, also determines all the other multipliers. The authors
derive an equation as follows:

u(x)D(x, x ′) = G(x ′), (95)

where D(x , x ′) and G(x ′) are composed only of the phase
space variables and the spatial derivatives of these vari-
ables. In particular, D(x, x ′) contains the spatial deriva-
tive of δ-function. This implies that the problematic term
“
√

h A(x)∂
(x)
I δ(n)(�x − �y)” appears. Therefore, Eq. (95) leads

to the following equation:

Aγ ∂γ u + αu = G, (96)

schematically, where γ ∈ {1, 2, 3}. Based on this result,
the authors classify this case into the following three pos-
sible sectors; (s1) If the PDE (96) is solvable then pDoF is
(34 − 8 × 2 − 8)/2 = 5; (s2) If both Aγ and α vanish then
there gives rise to further constraint densities (but any specific
result are not derived due to the difficulty of the computations
of PBs); (s3) If the consistency condition for χ is automati-
cally satisfied then pDoF is (34 − (8 + 2) × 2 − 6) = 4. In
particular, in Sector (s1), notice that even if the prescription
given in Sect. 3.1 is applied and the problematic terms are
neglected under the imposition of the spatial boundary con-
dition: Ni (t, spatial boundary) := 0, Eq. (96) determines the
multiplier u by an algebraic equation. In other words, the pre-
scription guarantees the solvability of Eq. (96). We will dis-
cuss this point later. In the main sector of ϕī = 0, the authors
lead to the following two sectors: (s4) If ϕ = constant
then the system in turn results in a system of TEGR with
a cosmological constant term, that is, pDoF = 2; (s5) Seven
new constraint densities appear and all of them are classi-
fied into second-class constraint densities, that is, pDoF is
(34 − 8 × 2 − 14)/2 = 2.

Here, let us discuss the relation between (ii) Ferraro and
Guzmán [25] and (iii) Blagojevic and Nester [26]. Since (ii)
Ferraro and Guzmán [25] is equivalent to (i) Li et al. [23] with
the specific configuration ϕ = ϕ(t), (ii) Ferraro and Guzmán
[25] is classified into the main sector of ϕī = 0 in (iii) Blago-
jevic and Nester [26]. However, both Sectors (s4) and (s5)
are not the case of (ii) Ferraro and Guzmán [25] due to the
difference in the constraint structures. In order to resolve this
situation, let us reconsider (ii) Ferraro and Guzmán [25]. The
point is that G̃(1)

01 = G(1)
01 contains a term being proportional

to ϕ [25]. This term prevent to make the PB between G(1)
π and

G̃(1)
01 commutative. That is, if the auxiliary field φ becomes

a constant then G(1)
π and G̃(1)

01 turn into first-class constraint
densities, and then pDoF becomes (34− (8+7)×2)/2 = 2.
This is nothing but Sector (s4) in (iii) Blagojevic and Nester
[26]. Remark that in this sector the local Lorentz invariance
is restored; all the constraint densities are now first-class con-
straint densities. Therefore, (ii) Ferraro and Guzmán [25] is
noting but a generic case of Sector (s4) in (iii) Blagojevic and
Nester [26]. In fact, the author assume an additional condi-
tion ϕ̇ ≈ 0; this means of course that ϕ is a constant. This
implies that one out of three degrees of freedom in (ii) Fer-
raro and Guzmán [25] should be some sort of ghost degrees
of freedom. (It propagates/dynamical but is unphysical.)

Finally, let us consider the role of the prescription (See 3.1)
in the analysis of f (T )-gravity. The point to grasp the truth
of the role is that f (T )-gravity is a diffeomorphism invari-
ant theory. That is, this means that the theory does not
depend on a coordinate choice, or equivalently, an ADM-
foliation. An ADM-foliation is determined from the normal
vector, denoted as nμ, of leafs. (See Sect. 3.2.) Explicitly,
it was expressed as nμ = −N−1(−1, N I ), where N and
N I are a lapse function and a shift vector. The inverse, nμ,
is nμ = −N (1, NI ) with the satisfaction of N I NI = 0.
Therefore, the theory is invariant in any choice of a lapse
function and a shift vector, and the application of the pre-
scription, which demands the spatial boundary condition of
vanishing shift vector at least on the spatial boundary, does
not change the theory anything. That is, for a diffeomor-
phism invariant theory, without any loss of generality, the
prescription can apply to the Dirac–Bergmann analysis. This
is the reason why the ignorance of the problematic term
“
√

h A(x)∂
(x)
I δ(n)(�x − �y)” by imposing the spatial boundary

condition NI (t , spatial boundary) := 0 did not change the
result of the analysis in (90) and (95) respectively. Whereas,
in the case of the coincident f (Q)-gravity, however, the sit-
uation gets changed; Hu et al. [34] unveiled that Eqs. (59)
and (60), which are the algebra of diffeomorphism invariance
of a gravity theory, are at least partly violated. This means that
the prescription cannot apply in a generic manner, differing
from the case of f (T )-gravity. Nevertheless, the prescrip-
tion has an advantage by virtue of the following reason: the
circumventing of the PDEs of Lagrange multipliers. In fact,
in the work of Hu et al. [34], this point was overlooked and
indicated by D’Ambrosio et al. [36] with the statement that
the pDoF should be up to seven. In our perspective, since
the coincident f (Q)-gravity is not diffeomorphism invari-
ant, therefore, it has several sectors just being analogous to
the violation of the Lorentz invariance in f (T )-gravity, and
each sector generically has a different pDoF one another. In
other words, Hu et al. [34] unveiled the pDoF of a possible
generic sector in the coincident f (Q)-gravity, that is, pDoF is
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eight, although the issue of the solvability of the PDEs of the
multiplier remains. In our work, in order to circumvent this
problem, we perform the Dirac–Bergmann analysis under
the imposition of the prescription, meaning that we apply the
spatial boundary condition NI (t , spatial boundary) := 0 not
only to the variational principle but also to the PB-algebras.
That is, we will investigate the other main sector, which is
different from the main sector investigated by Hu et al. [34],
and then we will obtain six pDoF as a generic case. Now, let
us move on to the main thesis of the current paper.

5.2 ADM-foliation of coincident f (Q)-gravity

We performed the Dirac–Bergmann analysis of GR, CGR,
and f (

◦
R)-gravity in a (n + 1)-dimensional spacetime. As

we will see, however, the existence of the second-class con-
straint densities makes it difficult to understand whether the
consistency conditions determine the multipliers or derive
new constraint densities since the size of the Dirac matrix
becomes bigger. Therefore, in this section, for simplicity, we
perform the analysis for the coincident f (Q)-gravity in a
(3+1)-dimensional spacetime and then estimate the general
case of the dimension of (n + 1). A general proof would be
completed by applying the mathematical induction.

In the same manner as the case of f (
◦
R)-gravity, the CGR

can be extended non-linearly into as follows:

S f (Q) =
∫

M
d4x

√−g f (Q), (97)

where f is an arbitrary function of the nonmetricity scalar.
By introducing an auxiliary variable we obtain:

S f (Q) =
∫

M
d4x

√−g
[

f ′Q + f − ϕ f ′] , (98)

where f is an arbitrary function of the auxiliary variable ϕ

and f ′′ := d2 f/dϕ2 �= 0. From Sect. 4.1, using the ADM-
foliation of Q given in Eqs. (78), (98) can be decomposed as
follows:

S f (Q) =
∫

I
dt
∫

�t

d3x

×
[

N
√

h f ′ {(3) Q + K I J K I J − K 2 − ◦
DI

(
(3) Q

I − (3) Q
I
)}

+N
√

h
(

f − ϕ f ′)

+ f ′ {∂μ N I ∂I

(√
hnμ

)

− ∂I N I ∂μ

(√
hnμ

)}

+√
h f ′ ◦

DI

{

N
(

(3) Q
I − (3) Q

I
)}]

. (99)

Remark that this foliation takes all boundary terms into
account. Integrating by parts and neglecting the spatial
boundary terms by imposing appropriate spatial boundary
conditions on ∂�t , we get

S f (Q) =
∫

I
dt
∫

�t

d3x

×
[

N
√

h
{

f ′ ((3)Q + K I J K I J − K 2
)

− ◦
DI

{

f ′ ((3)Q
I − (3)Q

I
)}}

+ f − ϕ f ′}

+ f ′ {∂μN I ∂I

(√
hnμ

)

−∂I N I ∂μ

(√
hnμ

)}]

. (100)

Further, integrating by parts the first term of and the second
term of the boundary term with respect to the spatial deriva-
tive and the spacetime derivative, respectively, and neglect-
ing each the boundary term on ∂�t and ∂M, respectively,
we obtain the following formula:

S f (Q) =
∫

I
dt
∫

�t

d3x

×
[

N
√

h
{

f ′ ((3)Q + K I J K I J − K 2
)

− ◦
DI

{

f ′ ((3)Q
I − (3)Q

I
)}}

+ f − ϕ f ′}

+
√

h

N

(

N I ∂J N J − N J ∂J N I
)

∂I f ′

−
√

h

N

(

∂I f ′) Ṅ I +
√

h

N
f ′′ (∂I N I

)

ϕ̇

]

. (101)

That is, the non-linearity of f changes the constraint structure
of CGR. This action was first derived in [34] by a different
method that resembles the GR case. The canonical momen-
tum variables are computed as follows:

π0 := δS f (Q)(x)

δ Ṅ (y)
= 0,

πI := δS f (Q)(x)

δ Ṅ I (y)
= −

√
h

N
f ′′∂I ϕδ(3)(�x − �y),

πI J := δS f (Q)(x)

δḣ I J (y)
= √

h f ′ (K I J − K hI J ) δ(3)(�x − �y),

πϕ := δS f (Q)(x)

δϕ̇(y)
=

√
h

N
f ′′∂I N I δ(3)(�x − �y).

(102)

The canonical momentum variables with respect to the shift
vectors depart from the ordinary CGR case; it depends on the
lapse function, the 3-metric hI J , and the non-linearity part by
f ′′. The canonical momentum with respect to the auxiliary
variable ϕ generates a constraint density, which is different
from the case of f (

◦
R)-gravity. That is, in coincident f (Q)-

gravity, the auxiliary variable ϕ does not have any physical
feature unlike f (

◦
R)-gravity.
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5.3 Primary constraint densities and total Hamiltonian
density

The Hessian matrix of the system has the size of 11 × 11
- components only being non-vanishing components with
respect to the canonical momenta πI J . All other compo-
nents of the matrix vanish. Therefore, the rank of the Hessian
matrix is six, and it implies that the system has five primary
constraint densities given as follows:

φ
(1)
0 := π0 :≈ 0,

φ
(1)
I := πI +

√
h

N
f ′′∂I ϕ :≈ 0,

φ(1)
ϕ := πϕ −

√
h

N
f ′′∂I N I :≈ 0.

(103)

These constraint densities restrict the whole phase space to
the subspace C(1). The PB-algebras among these primary
constraint densities are computed as follows:

{φ(1)
0 (x), φ

(1)
I (y)} = 1

N 2

√
h f ′′∂I ϕδ(3)(�x − �y)

:= AI δ
(3)(�x − �y),

{φ(1)
0 (x), φ(1)

ϕ (y)} = − 1

N 2

√
h f ′′∂I N I δ(3)(�x − �y)

:= Bδ(3)(�x − �y),

{φ(1)
I (x), φ(1)

ϕ (y)} = 1

N

√
h f ′′′∂I ϕδ(3)(�x − �y)

:= CI δ
(3)(�x − �y),

(104)

where we neglected all spatial boundary terms respecting the
discussion in Sect. 3.1. Therefore, these five primary con-
straint densities are classified into second-class constraint
densities.

Explicitly, the problematic term occurs in the third PB
given in Eq. (104) as follows:

{φ(1)
I (x), φ(1)

ϕ (y)} := CI δ
(3)(�x − �y)

+
[(√

h(x)

N (x)
f ′′(x)

)

∂
(x)
i +

(√
h(y)

N (y)
f ′′(y)

)

∂
(y)
i

]

δ(3)(x − y).

(105)

Taking into account that φ(1)
I (x) and φ

(1)
ϕ (y) are density vari-

ables, in order to reveal the meaning of the above equations
in mathematically correct manner, we have to integrate it out
with respect to d3x and d3 y on a leaf �t . Then, the first term
in Eq. (105) turns into the smeared one, and the second terms
becomes generically as follows:

∫

�t

∫

�t

[(√
h

N
f ′′
)∣
∣
∣
∣
∣
x

∂
(x)
I δ(3)(x − y)

]

dx3dy3

=
∫

�t

∫

�t

[

∂
(x)
I

(√
h

N
f ′′δ(3)(x

−y)

)

− ∂
(x)
I

(√
h

N
f ′′
)

δ(3)(x − y)

]

dx3dy3

= − NI
√

h f ′′ (1 − D(x � y))

∣
∣
∣
∂�t

, (106)

where we assumed nμ = (−N , N NI ) with N I NI = 0 and
D(x � y) denotes the Lebesgue integration of the second
term. If the naive replacement of “x” in the spatial derivative
by “y” is possible then D(x � y) = 1, and Eq. (106) van-
ishes without any additional condition. However, if it is not
the case, then we fix the shift vectors NI = 0 as the spatial
boundary condition then the problematic term is removed
from the analysis. In fact, the action integral Eq. (101) con-
tains only the first-order time derivative of NI , and it indicates
that NI cannot be any physical variable; it affects only the
constraint structure of the system. Otherwise, it would also be
possible to impose f ′′ = 0 on ∂�t . (If ϕ2 ∈ f ′′ then we mod-
ify the term ϕ2 as αϕ2 with α → 0 on ∂�t ). Hereinafter, we
use this prescription to set well-defined PBs, which is formu-
lated in detail in Sect. 3.1. Where, “well-defined” means that,
integrated over the PBs with respect to all space variables,
the PBs are composed only of the terms that are proportional
to δ-function.

The Legendre transformation of the coincident f (Q)-
gravity is calculated as follows:

H0 := NC f (Q)
0 + N IC f (Q)

I , (107)

where C f (Q)
0 and C f (Q)

I are defined as follows:

C f (Q)
0 := − √

h
[

f ′(3)Q − ◦
DI

{

f ′ ((3)Q
I − (3)Q

I
)}

+ f − ϕ f ′ − 1

h f ′

(

π I I πI J − 1

2
π2
)]

,

C f (Q)
I := − 2

◦
D J πI J −

√
h

N
f ′′ (∂J N J ∂I ϕ − ∂I N J ∂J ϕ

)

.

(108)

Therefore, the total Hamiltonian density of the system is
introduced as follows:

HT := H0 + λ0φ
(1)
0 +

3
∑

I=1

λI φ
(1)
I + λϕφ(1)

ϕ . (109)

The PB-algebras among the primary constraint densities and
the density H0 are given in Appendix B.

5.4 Consistency conditions for primary constraint densities
and the emergence of secondary constraint densities

The consistency conditions for the primary constraint densi-
ties φ

(1)
α are given as follows:

φ̇(1)
α := {φ(1)

α ,HT } ≈ {φ(1)
α ,H0} + λβ{φ(1)

α , φ
(1)
β } :≈ 0,

(110)
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where α, β run in the range of α, β ∈ {0, 1, 2, 3, ϕ}. The
appearance of the same indices in the formula means apply-
ing Einstein’s summation convention. Since all these primary
constraint densities are classified into second-class constraint
density, it is necessary to investigate the rank of the Dirac
matrix D(1)

αβ δ(3)(�x − �y) := {φ(1)
α , φ

(1)
β }:

D(1) :=

⎡

⎢
⎢
⎢
⎢
⎣

0 A1 A2 A3 B
−A1 0 0 0 C1

−A2 0 0 0 C2

−A3 0 0 0 C3

−B −C1 −C2 −C3 0

⎤

⎥
⎥
⎥
⎥
⎦

, (111)

where AI , CI , and B are defined by Eq. (104). Applying the
fundamental matrix transformations to Eq. (111), we get the
following matrix:

D′(1) := P(1) D(1)Q(1) =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 B
0 0 A12 A13 0
0 −A12 0 A23 0
0 −A13 −A23 0 0

−B 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

,

(112)

where we set AI J := 2A[I CJ ]. P(1) and Q(1) are set as
follows:

P(1) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0

−C1
B 1 0 0 − A1

B

−C2
B 0 1 0 − A2

B

−C3
B 0 0 1 − A3

B

0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Q(1) :=

⎡

⎢
⎢
⎢
⎢
⎣

1 −C1
B −C2

B −C3
B 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 − A1

B − A2
B − A3

B 1

⎤

⎥
⎥
⎥
⎥
⎦

. (113)

The straightforward computations lead to AI J = 0. There-
fore, The Dirac matrix D(1) has a rank of two. This indicates
that two multipliers are determined and then three secondary
constrain densities appear. Using these fundamental matrices
P(1) and Q(1), and the Dirac matrix D(1), the consistency
conditions Eq. (110) becomes as follows:

P(1)
αβ {φ(1)

β ,H0} + D′(1)
αβ λ

(1)
β δ(3)(�x − �y) :≈ 0, (114)

where we set

λ(1)
α := Q(1)−1

αβ λβ. (115)

For α = ϕ and α = 0, the corresponding multipliers λ
(1)
ϕ and

λ
(1)
0 are determined as follows:

λ(1)
ϕ = − 1

B
{φ(1)

0 ,H0} ,

λ
(1)
0 = 1

B
{φ(1)

ϕ ,H0}. (116)

The explicit formulae of these multipliers are derived by
using the formulae given in Appendix B. The multipliers λ

(1)
I

remain arbitrary. Converting λ
(1)
α into the original multipliers

λα , we get

λ0 = 1

B
{φ(1)

ϕ ,H0} − CI

B
λ

(1)
I ,

λϕ = − 1

B
{φ(1)

0 ,H0} − AI

B
λ

(1)
I ,

λI = λ
(1)
I .

(117)

The secondary constraint densities are derived in the cor-
respondence to the undetermined multipliers λI = λ

(1)
I

(I ∈ {1, 2, 3}):

φ
(2)
I := P(1)

Iα {φ(1)
α ,H0} = −CI

B
{φ(1)

0 ,H0}

+{φ(1)
I ,H0} − AI

B
{φ(1)

ϕ ,H0} :≈ 0. (118)

The explicit formulae of these secondary constraint densities
can be derived by using the formulae given in Appendix B and
it reveals that all the secondary constraint densities are clas-
sified into second-class constraint density. These constraint
densities restrict C(1) to the new subspace C(2).

Utilizing Eq. (117), the multipliers λ0 and λϕ in the total
Hamiltonian density Eq. (109) are replaced by λI :

HT = H(2)
0 + λI �

(2)
I , (119)

where H(2)
0 and �

(2)
I are set as follows:

H(2)
0 := H0 − 1

B
{φ(1)

0 ,H0}φ(1)
ϕ + 1

B
{φ(1)

ϕ ,H0}φ(1)
0

�
(2)
I := φ

(1)
I − AI

B
φ(1)

ϕ − CI

B
φ

(1)
0 ≈ 0.

(120)

In the next section, we calculate the tertiary constraint den-
sities.

5.5 Consistency conditions for secondary constraint
densities and the emergence of tertiary constraint
densities

The consistency conditions for the secondary constraint den-
sities φ

(2)
I are given as follows:

φ̇
(2)
I = {φ(2)

I ,H(2)
0 } + λJ {φ(2)

I ,�
(2)
J } :≈ 0. (121)

The existence of tertiary constraint densities depends on the
rank of the matrix D(2)

I J δ(3)(�x − �y) := {φ(2)
I ,�

(2)
J }. Using the

formulae in Appendix B, we get the following result:

D(2)
I J = ∂I ϕ(α∂J ϕ + �J ), (122)
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where �I := β J
I ∂J ϕ and the explicit formulae of α and β I

J
are given in Appendix C. In matrix form, D(2) is expressed
as follows:

D(2) =
⎡

⎣

ϕ1(αϕ1 + �1) ϕ1(αϕ2 + �2) ϕ1(αϕ3 + �3)

ϕ2(αϕ1 + �1) ϕ2(αϕ2 + �2) ϕ2(αϕ3 + �3)

ϕ3(αϕ1 + �1) ϕ3(αϕ2 + �2) ϕ3(αϕ3 + �3)

⎤

⎦ ,

(123)

where ϕI := ∂I ϕ. Applying the fundamental matrix trans-
formations to Eq. (123), we get

D′(2) := P(2)D(2)Q(2) =
⎡

⎣

ϕ1(αϕ1 + �1) 0 0
0 0 0
0 0 0

⎤

⎦ , (124)

where P(2) and Q(2) are set as follows:

P(2) :=
⎡

⎣

1 0 0
−ϕ2 ϕ1 0
−ϕ3 0 ϕ1

⎤

⎦ ,

Q(2) :=
⎡

⎣

1 −αϕ2+�2
αϕ1+�1

−αϕ3+�3
αϕ1+�1

0 1 0
0 0 1

⎤

⎦ . (125)

Therefore, the matrix D(2) has its rank of one. This indi-
cates that one multiplier is determined and then two tertiary
constraint densities appear. The consistency conditions in
Eq. (121) can be rewritten as follows:

P(2)
I J {φ(2)

J ,H(2)
0 } + D′(2)

I J λ
(2)
J δ(3)(�x − �y) :≈ 0, (126)

where λ
(2)
I is set as follows:

λ
(2)
I = Q(2)−1

I J λJ . (127)

Therefore, the multiplier to the x-component, λ
(2)
1 , is deter-

mined as follows:

λ
(2)
1 = − 1

ϕ1(αϕ1 + �1)
P(2)

1I {φ(2)
I ,H(2)

0 }

= − 1

ϕ1(αϕ1 + �1)
{φ(2)

1 ,H(2)
0 }, (128)

where we used P(2) in Eq. (125). The explicit formula of Eq.
(128) can be derived by using Eq. (118), the first formula
in Eq. (120), and the formulae given in Appendix B. The
multipliers λ

(2)

I ′ (I ′ ∈ {2, 3}) remain arbitrary. Converting

λ
(2)
I into the original multipliers λI , we get

λ1 = − 1

ϕ1(αϕ1 + �1)
{φ(2)

1 ,H(2)
0 }

− αϕ2 + �2

αϕ1 + �1
λ

(2)
2 − αϕ3 + �3

αϕ1 + �1
λ

(2)
3 ,

λI ′ = λ
(2)

I ′ .

(129)

The tertiary constraint densities are derived in the correspon-
dence to the undetermined multipliers λI ′ = λ

(2)

I ′ :

φ
(3)

I ′ := P(2)

I ′ J {φ(2)
J ,H(2)

0 } :≈ 0, (130)

that is,

φ
(3)
2 := − ϕ2{φ(2)

1 ,H(2)
0 } + ϕ1{φ(2)

2 ,H(2)
0 } :≈ 0,

φ
(3)
3 := − ϕ3{φ(2)

1 ,H(2)} + ϕ1{φ(2)
3 ,H(2)

0 } :≈ 0.
(131)

The explicit formulae can be derived by using Eq. (118),
the first formula in Eq. (120), and the formulae given in
Appendix B and it reveals that all the tertiary constraint
densities are classified into second-class constraint densities.
These constraint densities restrict C(2) to the new subspace
C(3).

Utilizing Eq. (130), the total Hamiltonian density Eq.
(119) is rewritten as follows:

HT := H(3)
0 + λI ′�(3)

I ′ , (132)

where H(3)
0 and �

(3)

I ′ s are set as follows:

H(3)
0 := H(2)

0 − 1

ϕ1(αϕ1 + �1)
{φ(2)

1 ,H(2)
0 }�(2)

1 ,

�
(3)

I ′ := �
(2)

I ′ − αϕI ′ + �I ′

αϕ1 + �1
�

(2)
1 .

(133)

In the next section, we determine the remaining multipliers
and identify the pDoF of the theory.

There is a remark: There may be a case that αϕ1+�1 in Eq.
(124) vanishes, and three tertiary constraint densities appear.
Since the total number of second-class constraint densities is
always even, at least one more secondary constraint density
exists as a quaternary or more higher order constraint density,
and then the pDoF is up to (22 − 5 − 3 − 3 − 1)/2 = 5.
In this case, however, there is no easy way to confirm how
many constraint densities emerge due to its complexity of
computations. This sort of complicated situation also appears
in the analysis of f (T )-gravity: the sector (s2) in [26].

5.6 Consistency conditions for tertiary constraint densities
and pDoF of coincident f (Q)-gravity

The consistency conditions for the tertiary constraint densi-
ties φ

(3)

I ′ are given as follows:

φ̇
(3)

I ′ = {φ(3)

I ′ ,H(3)
0 } + λJ ′ {φ(3)

I ′ ,�
(3)

J ′ } :≈ 0. (134)

The existence of quaternary constraints depends on the rank
of the matrix D(3)

I ′ J ′δ(3)(�x − �y) := {φ(3)

I ′ ,�
(3)

J ′ }. It is easy to
confirm that the rank of D(3) is two (full-rank; its determinant
does not vanish) since the spatial boundary terms no longer
vanish without accidental cases due to that the primed indices
run the range only of 2, 3, although it is very tedious to lead
to the explicit formula of D(3) and its determinant. There-
fore, the remaining multipliers are determined and then the
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procedure stops here excepting accidental cases. Since there
are five primary, three secondary, and two tertiary constraint
densities and all the constraint densities are classified into
second-class constraint densities, therefore, the pDoF and
the gDoF of coincident f (Q)-gravity are

pDoF = 1

2
× (22 − 5 − 3 − 2) = 6,

and gDoF = 0. (135)

There is a remark: If the rank of D(3) is one then one of the
remaining multipliers are determined and a quaternary con-
straint density appears. We already have five primary, three
secondary, and two tertiary constraint densities, and all these
constraint densities are classified into second-class constraint
densities. It indicates that at least one more second-class con-
straint density has to exist as a higher order constraint density
since the total number of second-class constraint densities is
always an even number. Therefore, this accidental case has
(b) pDoF ≤ (22−5−3−2−1−1))/2 = 5 and gDoF = 0.
If the rank of D(3) is zero then at least two quaternary con-
straint densities appear. If these constraint densities deter-
mine all the remaining multipliers, this accidental case has
(c) pDoF ≤ (22 − 5 − 3 − 2 − 0 − 2)/2 = 5 and gDoF = 0.
In these cases, however, there is no easy way to confirm how
many constraint densities emerge due to the complexity of
computations. This sort of complicated situation also appears
in the analysis of f (T )-gravity: the sector (s2) in [26].

For simplicity, so far, we considered that the spacetime
manifold has 3 + 1 dimensions, however, it would be possi-
ble to extend this result for any spacetime dimension. This
analysis would also give an implication of pDoF and gDoF.
Let M be a (n + 1)-dimensional spacetime manifold. To do
this, we have to consider the two cases depending on n is
odd or even. If n is an odd number then we might get n + 2
primary, n secondary, and n − 1 tertiary constraint densi-
ties and all these constraint densities would be classified into
second-class constraint densities. Therefore, when n is an
odd number, we have

pDoF = 1

2
(n2 + 3), and gDoF = 0, (136)

respectively. If n is an even number then we might get n + 2
primary, n secondary, n − 1 tertiary, and 1 quaternary con-
straint densities and all these constraint densities would be
classified into second-class constraint densities. Therefore,
for a n + 1 dimensions when n is an even number, we have

pDoF = 1

2
n2 + 1, and gDoF = 0. (137)

These pDoFs are just an estimation based on the result of
the analysis in the case of a (3 + 1)-dimensional spacetime.
However, it would be possible to strictly prove these results
by applying mathematical induction.

6 Conclusions

In this paper, we revise the metric-affine gauge theory of grav-
ity by introducing the mathematical framework of the gauge
approach for gravity and clarifying the positioning of the
coincident GR from viewpoints of gauge fixing conditions.
Then we proposed the prescription for the Dirac–Bergmann
analysis to circumvent the PDEs of Lagrange multipliers.
After that, we investigated the pDoF and the gDoF of GR,
f (

◦
R)-gravity, and CGR, and we showed that the analysis

did not need the prescription to count out each pDoF. The
case of f (T )-gravity, however, the Dirac–Bergmann analy-
sis need the prescription to guarantee the solvability of the
consistency conditions on the sectors of the local Lorentz
symmetry. In particular, we unveiled that the violation of
a symmetry could provide several main sectors of a given
theory, and we clarified the restriction of the prescription.
Based on these preparations, the analysis of the coincident
f (Q)-gravity is performed. We unveiled that, as a generic
case, the coincident f (Q)-gravity has six propagating and
zero gauge degrees of freedom; five primary, three secondary,
and two tertiary constraint densities exist, and all these con-
straint densities are classified into second-class constraint
densities. The six propagating modes should be interpreted
as one tensor (two DoF for graviton) + one vector (two DoF)
+ two scalars (two DoF). This means that one scalar does not
appear in our analysis since we neglected the boundary terms
[70–72]. The emergence of the ten second-class constraints
can be interpreted as ascribing to the violation of the closed
algebra composed of the eight first-class constraints of GR,
which forms the generator of the diffeomorphis invariance
of the theory, and the elimination of the auxiliary degrees of
freedom ϕ (and its canonical momentum variable πϕ). As
accidental cases, there were the three sectors; (a) The pDoF
is up to five: five primary, three secondary, three tertiary,
and at least one higher-order constraint densities exist and
all these constraint densities are classified into second-class;
(b) The pDoF is up to five: five primary, three secondary,
two tertiary, one quaternary, and at least one higher-order
constraint densities exist and all these constraint densities
are classified into second-class; (c) The pDoF is up to five:
five primary, three secondary, two tertiary, and at least two
higher-order constraint densities exist and all these constraint
densities are classified into second-class. These results are
consistent with the upper bound of pDoF, i.e., seven, which
is claimed in [36]. We also estimated the pDoF and gDoF of
a (n + 1)-dimensional spacetime; pDoF = (n2 + 3)/2 if n is
odd number and pDoF = n2/2 + 1 if n is even number, and
both the cases have gDoF = 0. However, we must emphasize
that one should further investigate the pDoF of the coinci-
dent f (Q)-gravity, by using a new method that is proposed
recently in [36,73–75], for instance. It would be also interest-
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ing in not choosing the coincident gauge and performing the
same analysis. This could clarify the assumption made here
which is that the spatial boundary terms can be neglected by
choosing appropriate boundary conditions implying that the
Dirac–Bergmann algorithm can be used.

In the previous work in [34], the authors derived the
result that pDoF is eight without assuming any conditions
in advance. This result would be the most generic case of the
analysis in the coincident f (Q)-gravity but suffered from
the solvability of the PDEs of the multipliers, which was first
indicated by [36], it should, therefore, be regarded as a spec-
ulation. In our work, in order to circumvent this problem, we
sacrificed the generality of the analysis, and then focused on
a specific sector that does not suffer from the problem. Then,
we obtained one generic sector and three specific sectors, of
course, differing from the result in [34]. However, after once
proving the solvability, the speculation would turn into a truth
of the coincident f (Q)-gravity. Further investigation on this
point is of course for a significant future work under taking
into account the following remark: If the Lebesgue measure
in Eq. (106) is unity, i .e ., D(x � y) = 1, then the terms like
“
√

h A(x)∂
(x)
I δ(3)(x − y)” in Eq. (105) automatically vanish

when integrating over on a leaf. In this case, another sce-
nario is possible: the case of the absence of the prescription.
Then the PB-algebras in the second term in Eq. (121) con-
tain the spatial boundary terms, and then the matrix given in
Eq. (122) could generically be non-singular (full-rank). This
means that the tertiary constraint densities do not appear and
the procedure stops here with the PDEs of the Lagrange mul-
tipliers: this is the resemble situation to the fTEGR case as
already explained in Sect. 5.1. The same issue would arise
also in Eqs. (110) and (111). Therefore, if all of these PDEs
are solvable, the pDoF becomes seven. If this scenario is real-
ized then five primary constraints and three secondary con-
straint densities appear and all these constraint densities are
classified into second-class constraint densities. The emer-
gence of these eight second-class constraint densities can be
interpreted as ascribing to the violation of the closed alge-
bra composed of the eight first-class constraint densities of
GR. In this case, the auxiliary variable could propagate but
be unphysical degrees of freedom. This perspective would
be consistent with the recent works of the cosmological per-
turbation [70–72]. As mentioned in Sect. 1, we emphasize
again that it is important for cosmology to unveil the exact
pDoF of our theory of each branch to know the existence of
infinitely strongly coupling. If the theory is infinitely strongly
coupled to each background then the standard way of linear
perturbation for cosmology breaks down.

GR, CGR, and f (
◦
R)-gravity have only first-class con-

straint densities and these constraint densities satisfy the
common Poisson bracket algebras (PB-algebras) but so do
not for coincident f (Q)-gravity. This indicates that f (

◦
R)-

gravity is a natural extension of GR; just one extra pDoF
is added and the gauge symmetry does not change but
coincident f (Q)-gravity is a departure of gravity which is
described by GR; not only four extra pDoF are added but
also the gauge symmetry of GR is lost. The result also indi-
cates that only the imposition of the coincident gauge condi-
tion does not break the diffeomorphism symmetry since CGR
has yet the common PB-algebras to GR until the non-linear
extension is taken into account; it seems that the boundary
terms have something to do with its breaking when combin-
ing the coincident gauge condition. However, this statement
itself should be proven and investigated together with the
well-posedness of the variational principle [50,51] in more
detail and these are also for a future work.

The method of extension of GR is not restricted to
the geometrical alternations and the non-linearization; non-
localization gives a great insight into the understanding of
quantum aspects of gravity [76,77]. In particular, it is shown
that the

◦
R2-inflation model, which is a special class of f (

◦
R)-

gravity, in the non-local extension is a possible candidate for
a consistent effective quantum gravity theory from the view-
point of UV-completion [10,11,78]. It would be expected
to build the resemble scenario for f (T )- and (coincident)
f (Q)-gravity theories. In this regard, it would play a cru-
cial role to distinguish these extended theories each other
from viewpoints of constraint systems, as shown throughout
the current paper in the local theories. For non-local f (

◦
R)-

gravity, the Dirac–Bergmann analysis was performed in [79].
However, the analysis for generic non-local theories has not
yet been established regardless of the fact that it is expected
that the analysis clarifies the differences among various non-
localized theories of gravity. Constructing a general theory
of the Dirac–Bergmann analysis or its alternative theory if it
is necessary for non-local theories would also be for a sig-
nificant future work.
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A. A reconstruction of Dirac–Bergmann analysis and
degrees of freedom

Let us consider a first-order derivative point particle system:

L = L(q̇i , qi ), (A1)

where qi := qi (t) are position variable, q̇i := q̇i (t) are
velocity variable, and t is time variable. The index i run
from 1 to n. Then, the canonical momentum variables, denote
pi (t), are introduced through the first-order variation of the
Lagrangian as follows:

δL =
[

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]

δqi + d

dt

[(
∂L

∂q̇i

)

δqi
]

:= [EoM]i δqi + d

dt

[

piδqi
]

, (A2)

where [EoM]i denoted the equations of motion. The Lagran-
gian can be related to a Hamiltonian by performing the Leg-
endre transformation as usual but in general, this correspon-
dence does not determine uniquely. That is, the rank of the
Hessian matrix

Ki j := ∂pi

∂q̇i
= ∂2L

∂q̇i∂q̇ j
(A3)

governs the uniqueness of the Legendre transformation. If
the rank is equal to n then the Hamiltonian is uniquely deter-
mined from the Lagrangian. However, if the rank is less than n
it is not the case: the system becomes a singular/degenerate
system. In such a system, to reveal the time-development
of the system, it needs a method to determine the unique
Hamiltonian from the Lagrangian. This is nothing but the
Dirac–Bergmann procedure [12–17].

Let us consider a case that the rank of the Hessian matrix is
n−r (r ≥ 1). Then the number of n−r velocity variables can
be expressed by the same number of momentum variables by
virtue of the implicit function theorem; there exists a set of
functions Fa such that q̇a = Fa(qi , pa) (a ∈ {1, 2, . . . , n −
r}), and the existence of the number of r zero-eigenvalue
vectors leads to the following relation [58,59]:

∂

∂q̇α

∂L

∂q̇β

∣
∣
∣
∣
q̇a=Fa(qi ,pa)

= 0, (A4)

where α and β run form n − r + 1 to n. This relation implies
that the Lagrangian linearly includes the velocity variables

q̇α , therefore the Legendre transformation becomes as fol-
lows:

H = H0 + q̇αφ(1)
α , (A5)

where φ
(1)
α are set as φ

(1)
α := pα − fα(qi , pi ) for some func-

tions fα(qi , pi ). In the Lagrange formulation, φ(1)
α vanish as

identity. However, in the Hamiltonian formulation, one needs
to impose that those quantities vanish:

φ(1)
α = pα − fα(qi , pi ) := 0. (A6)

These conditions are called primary constraint and restrict
the whole phase space to a phase subspace denoted by
C(1) := {p ∈ T ∗P|φ(1)

α = 0}, in which the time evolu-
tion has to proceed, where P is the configuration space of
the system and T ∗P is the whole phase space corresponding
to the configuration space. To ensure this property, Eq. (A6)
has to satisfy the so-called consistency conditions:

φ̇(1)
α = {φ(1)

α , HT } ≈ {φ(1)
α , H0} + D(1)

αβ λβ :≈ 0, (A7)

where HT and D(1)
αβ are called total Hamiltonian and Dirac

matrix, respectively, which are given as follows:

HT := H0 + λαφ(1)
α , D(1)

αβ := {φ(1)
α , φ

(1)
β }, (A8)

and “≈” means that the equation is satisfied restricted to
the phase subspace C(1). In the above equation, the velocity
variables q̇α are replaced by Lagrange multipliers λα . This
manipulation is possible since q̇α are undetermined due to
the degeneracy of the Hessian matrix.

Depending on the rank of the Dirac matrix D(1), a
part of the multipliers are determined, but others remain
arbitrary. Let us assume the rank as r − r1. Then, per-
forming the fundamental matrix transformations to D(1),
there exists non-singular matrices P(1) and Q(1) such that
D′(1) := P(1) D(1)Q(1). Note that it is free to choose the
shape of D′(1) for ease of analysis. In this appendix, we
take the shape of D′(1) as the standard form: D′(1) =
diag(τ

(1)
1 , τ

(1)
2 , . . . , τ

(1)
r−r1

, 0, . . . , 0). Therefore, the multipli-
ers of the same number to the rank are determined and the
consistency conditions Eq. (A7) becomes as follows:

P(1)β

α{φ(1)
β , H0} + D′(1)

αβ λ′β :≈ 0, (A9)

where λ′(1)α = Q(1)−1α

βλβ . For the indices a(1) ∈
{1, 2, . . . , r − r1}, on one hand, the multipliers are deter-

mined as λ′
a(1) = −τ (1)

a(1) P(1)β

a(1){φ(1)
β , H0}. Notice that

we do not sum over with respect to a(1). For the indices
α(1) ∈ {r − r1 + 1, r − r1 + 2, . . . , r}, on the other hand,
new constraints, secondary constraints, appear:

φ
(2)

α(1) := P(1)β

α(1){φ(1)
β , H0} :≈ 0. (A10)
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Then, the total Hamiltonian is arranged as follows:

H (1)
T := H (1)

0 + λα(1)

�
(1)

α(1) , (A11)

where H (1)
0 and �

(1)

α(1) are defined as follows:

H (1)
0 := H0 + λa(1)

φ
(1)

a(1) , �
(1)

α(1)

:= φ
(1)
β Q(1)β

α(1) . (A12)

Repeating the same procedure for the secondary con-
straints under the redefined total Hamiltonian Eq. (A11),
and if it gives rise to new constraints then repeat over the
same process until all the multipliers are determined or the
new constraint does not appear. Let us assume the pro-
cess stops by K -steps. Then we obtain the final results; the

constraints φ
(1)
α , φ

(2)

α(1) , . . . , φ
(K )

α(K−1) appear, the multipliers

λa(1)
, λa(2)

, . . . , λa(K )
are determined, the redefined total

Hamiltonian H (K )
T := H (K )

0 + λα(K )
�

(K )

α(K ) is derived, where

H (K )
0 := H (K−1)

0 + λα(K )
φ

(1)

α(K ) and �
(K )

α(K ) := φ
(K )
β Q(K )β

α(K ) ,
and the dynamics of the system is restricted to the phase
subspace C(K ) := {p ∈ T ∗P|φ(s)

αs−1 = 0} for all s ∈
{1, 2, . . . , K }, where α0 := α. The multipliers λα(K )

remain
arbitrary and the existence of such multipliers then implies
that this system has the number of λα(K )

gauge Degrees of
Freedom (gDoF) [63,64,81,82]. In such a case, the dynamics
of the system does not uniquely determine without fixing the
gDoF [83].

The Dirac–Bergmann analysis reveals all constraints of
the system. These constraints are classified into two classes:
first-class and second-class. The former is defined as a set of
constraints that are commutative with all other constraints in
the phase subspace C(K ) with respect to the Poisson bracket.
Otherwise, the constraints are classified into second-class
and the total number of second-class constraints is always
even. Armed with this classification, an important theorem
holds [51,84–87]:

For a symplectic form of the system: � = dqi ∧ dpi

(i ∈ {1, 2, . . . , n}), it exists a canonical coordinate system
such that � = d QI ∧ d PI + d�α ∧ d�α + d�a ∧ d�a

(I ∈ {1, 2, . . . , n − 2u − v}; α ∈ {1, 2, . . . , 2u}; a ∈
{1, 2, . . . , v}),where �α and �αs are composed only of all
the 2u second-class constraints, �a are composed only of all
the v first-class constraints.

Since �α , �α , and �a satisfy those consistency condi-
tions, restricting � to C(K ), we obtain � ≈ d QI ∧ d PI .
Therefore, the pDoF is the half number of the dimension of
the phase subspace C(K ), that is, pDoF = (2n − 2u − 2 ×
v)/2 = n − u − v. This number is the main concept of this
paper. The point is that to derive pDoF we just perform the
Dirac–Bergmann analysis and count the total number of each

class of constraints although it is generically difficult to find
the explicit forms of �α , �α , and �a .

The extension of these frameworks to field theories is
achieved straightforwardly through the usual manipulations;
just replacing the variables that describe the system by fields
in terms of density variables although it needs a careful
manipulation for spatial boundary terms as mentioned in
Sect. 3.1.

B. PB-algebras of coincident f (Q)-gravity in (n + 1)-
dimensional spacetime

In the below calculations, all spatial boundary terms are
neglected according to the prescription as discussed in
Sect. 3.1. The assumed spatial boundary conditions are
NI (t, ∂�t ) := 0 for each leaf �t .

The PB-algebras among the primary constraint densities
φ

(1)
A (A ∈ {0, I, ϕ}; I ∈ {1, 2, . . . , n}) and the density H0:

{φ(1)
0 (x),H0(y)}

=
[

−C f (Q)
0 −

√
h

N

N I

N
f ′′ (∂J N J ∂I ϕ − ∂I N J ∂J ϕ

)
]

× δ(n)(�x − �y),

{φ(1)
I (x),H0(y)}
=
[

−C f (Q)
I + 1

n − 1

f ′′

f ′ π∂I ϕ

]

δ(n)(�x − �y),

{φ(1)
ϕ (x),H0(y)}
=
[

−H′
0 − 1

n − 1

f ′′

f ′ π∂I N I
]

δ(n)(�x − �y),

(B1)

where H′
0 is defined by

H′
0 := N

√
h

[

− f ′′
{

(n)Q − ϕ + 1

h

(
1

f ′

)2

×
(

π I J πI J − 1

n − 1
π2
)}

+ ◦
DI

{

f ′′ ((n)Q
I − (n) Q̃

I
)}

− 1

N

N I

N
f ′′′ (∂J N J ∂I ϕ − ∂I N J ∂J ϕ

)
]

, (B2)

and C f (Q)
0 is computed as follows:

C f (Q)
0 := −√

h

[

f ′(n)Q − ◦
DI

{

f ′ ((n)Q
I − (n) Q̃

I
)}

+ f − ϕ f ′ − 1

h f ′

(

π I J πI J − 1

n − 1
π2
)]

.

(B3)

C f (Q)
I does not change from Eq (108) excepting the range

of summations. The PB-algebras among two of the primary
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constraint densities φ
(1)
A (A ∈ {0, I, ϕ}; I ∈ {1, 2, . . . , n})

and the density H0:

{{φ(1)
0 ,H0}(x), φ

(1)
0 (y)} =

√
h

N

N I

N

× 2

N
f ′′ (∂J N J ∂I ϕ − ∂I N J ∂J ϕ

)

δ(n)(�x − �y) ,

{{φ(1)
0 ,H0}(x), φ

(1)
I (y)}

= 1

n − 1

1

N

f ′′

f ′ π∂I ϕδ(n)(�x − �y) ,

{{φ(1)
0 ,H0}(x), φ(1)

ϕ (y)}

=
[√

h f ′′
{

(n) Q − ϕ + 1

h

(
1

f ′

)2 (

π I J πI J − 1

n − 1
π2
)}

− 1

n − 1

1

N

f ′′

f ′ π∂I N I −
√

h

N

N I

N
f ′′′ (∂J N J ∂I ϕ

−∂I N J ∂J ϕ
)
]

δ(n)(�x − �y) . (B4)

{{φ(1)
I ,H0}(x), φ

(1)
0 (y)}

= − 1

N

√
h

N
f ′′ (∂J N J ∂I ϕ − ∂I N J ∂J ϕ

)

δ(n)(�x − �y) ,

{{φ(1)
I ,H0}(x), φ

(1)
J (y)}

= n

2(n − 1)

h

N

( f ′′)2

f ′ ∂I ϕ∂J ϕδ(n)(�x − �y) ,

{{φ(1)
I ,H0}(x), φ(1)

ϕ (y)}

=
[√

h

N
f ′′′ (∂J N J ∂I ϕ − ∂I N J ∂J ϕ

)

+ 1

n − 1

1

f ′ π∂I ϕ

(

f ′′′ − f ′′

f ′

)

− n

2(n − 1)

√
h

N

( f ′′)2

f ′ ∂J N J ∂I ϕ

]

× δ(n)(�x − �y) . (B5)

{{φ(1)
ϕ ,H0}(x), φ

(1)
0 (y)}

=
[√

h f ′′
{

(n) Q − ϕ + 1

h

(
1

f ′

)2 (

π I J πI J − 1

n − 1
π2
)

− f ′′′

f ′′ ∂I ϕ
(

(n) Q
I − (n) Q̃

I
)}

− 2
√

h

n − 1

f ′′

f ′ π∂I N I

+ 1

n − 1

f ′′

f ′
1

N
π∂I N I −

√
h

N

N I

N
f ′′′

(

∂J N J ∂I ϕ − ∂I N J ∂J ϕ
)]

δ(n)(�x − �y),

{{φ(1)
ϕ ,H0}(x), φ

(1)
I (y)}

=
[

− n

2(n − 1)

√
h

N

( f ′′)2

f ′ ∂J N J ∂I ϕ − 1

n − 1

f ′′′

( f ′)2 ∂I ϕ

+
√

h

N
f ′′′ (∂J N J ∂I ϕ − ∂I N J ∂J ϕ

)

+ 1

n − 1

π

f ′

(

f ′′′ − f ′′

f ′

)

∂I ϕ

]

δ(n)(�x − �y),

{{φ(1)
ϕ ,H0}(x), φ(1)

ϕ (y)}

=
[

−H′′
0 + 1

n − 1

(
f ′′

f ′

)2

π∂I N I

− 1

n − 1

1

f ′

(

f ′′′′ − f ′′

f ′

)

∂I N I

+ n

2(n − 1)

√
h

( f ′′)2

f ′ ∂I N I ∂J N J

]

× δ(n)(�x − �y) , (B6)

where H′′
0 is defined as follows:

H′′
0 := N

√
h

[

− f ′′′ ((n)Q − ϕ
)

+ f ′′

− 1

h

1

N

(
1

f ′

)2 (

1 − 2

f ′

)(

π I J πI J − 1

n − 1
π2
)

+ ◦
Di

{

f ′′′ ((n)Q
I − (n) Q̃

I
)}

− 1

N

N I

N
f ′′′′ (∂J N J ∂I ϕ − ∂I N J ∂J ϕ

)]

.

(B7)

The PB-algebras among the primary constraint densities φ
(1)
A

(A ∈ {0, I, ϕ}; I ∈ {1, 2, . . . , n}), AI /B, CI /B, and the
density H0:
{

{φ(1)
A ,H0}(x),

(
AI

B

)

(y)

}

= 0 ,

{

{φ(1)
A ,H0}(x),

(
CI

B

)

(y)

}

= 0. (B8)

The PB-algebras among the primary constraint densities φ
(1)
A

(A ∈ {0, I, ϕ}; I ∈ {1, 2, . . . , n}), AI /B, and CI /B:
{(

AI

B

)

(x), φ
(1)
0 (y)

}

= 0 ,

{(
CI

B

)

(x), φ
(1)
0 (y)

}

= − 1

f ′′
1

∂I N I
f ′′′∂I ϕδ(n)(�x − �y). (B9)

{(
AI

B

)

(x), φ
(1)
J (y)

}

= 0 ,

{(
CI

B

)

(x), φ
(1)
J (y)

}

= 0.

(B10)
{(

AI

B

)

(x), φ(1)
ϕ (y)

}

= 0 ,

{(
CI

B

)

(x), φ(1)
ϕ (y)

}

= N
1

∂I N I

1

f ′′

[
( f ′′′)2

f ′′ − f ′′′′
]

×∂I ϕδ(n)(�x − �y). (B11)

C. The explicit formulae of α and β I
J

α := 1

2

n

n − 1

h

N

( f ′′)2

f ′ + 1

n − 1

1

N
× f ′′′

f ′
1

∂I N I
π

+ 1

∂K N K

[√
h

N
∂K N K + 1

n − 1

1

f ′ π
(

f ′′′ − f ′′′

f ′

)
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− n

2(n − 1)

√
h

N

( f ′′)2

f ′ ∂K N K

]

+ 1

∂K N K

[

− n

2(n − 1)

√
h

N

( f ′′)2

f ′ ∂K N K − 1

n − 1

f ′′

( f ′)2

+
√

h

N
f ′′′∂K N K − 1

n − 1

1

f ′

(

f ′′′′ − f ′′

f ′

)

∂K N K

]

− f ′′′

∂K N K

[√
h

N
∂K N K

]

+
(

1

∂K N K

)2

N
f ′′′′

f ′′ {φ(1)
0 ,H0}

+
(

1

∂K N K

)2 ( f ′′′

f ′′

)2

{{φ(1)
0 ,H0}, φ(1)

0 }

+
(

1

∂K N K

)2 f ′′′

f ′′ N {{φ(1)
0 ,H0}, φ(1)

ϕ }

+
(

1

∂K N K

)2 f ′′′

f ′′ N {{φ(1)
ϕ ,H0}, φ(1)

0 }

+
(

1

∂K N K

)2

{{φ(1)
ϕ ,H0}, φ(1)

ϕ } (C1)

β I
J := − 1

∂K N K

√
h

N
f ′′′∂J N I . (C2)
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