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Abstract We continue our study of gaugings the maxi-
mal N = (2, 2) supergravity in six dimensions with gauge
groups obtained from decomposing the embedding ten-
sor under R

+ × SO(4, 4) subgroup of the global sym-
metry SO(5, 5). Supersymmetry requires the embedding
tensor to transform in 144c representation of SO(5, 5).

Under R
+ × SO(4, 4) subgroup, this leads to the embed-

ding tensor in (8±3, 8±1, 56±1) representations. Gaugings
in 8±3 representations lead to a translational gauge group
R

8 while gaugings in 8±1 representations give rise to gauge
groups related to the scaling symmetry R

+. On the other
hand, the embedding tensor in 56±1 representations gives
CSO(4− p, p, 1) ∼ SO(4− p, p)�R

4 ⊂ SO(4, 4) gauge
groups with p = 0, 1, 2. More interesting gauge groups
can be obtained by turning on more than one representa-
tion of the embedding tensor subject to the quadratic con-
straints. In particular, we consider gaugings in both 56−1

and 8+3 representations giving rise to larger SO(5 − p, p)
and SO(4 − p, p + 1) gauge groups for p = 0, 1, 2. In this
case, we also give a number of half-supersymmetric domain
wall solutions preserving different residual symmetries. The
solutions for gaugings obtained only from 56−1 representa-
tion are also included in these results when the 8+3 part is
accordingly turned off.

1 Introduction

Supersymmetric domain walls are solutions to gauged super-
gravities that play many important roles in various aspects of
string/M-theory. These solutions have provided a useful tool
for studying different aspects of the AdS/CFT correspon-

a e-mail: danai.nuchino@hotmail.com
b e-mail: parinya.ka@hotmail.com (corresponding author)

dence since the beginning of the original proposal in [1],
see also [2,3]. They are also vital in the so-called DW/QFT
correspondence [4–6], a generalization of the AdS/CFT cor-
respondence to non-conformal field theories. In particular,
these solutions give holographic descriptions to RG flows
in strongly coupled dual field theories in various space-time
dimensions. Domain walls also appear in the study of cosmol-
ogy via the domain wall/cosmology correspondence, see for
example [7–9]. A systematic classification of supersymmet-
ric domain walls from maximal gauged supergravity in vari-
ous space-time dimensions has been performed in [10], and
many domain wall solutions in gauged supergravities have
been found in different space-time dimensions, see [11–28]
for an incomplete list.

In this paper, we are interested in domain wall solutions
from maximal N = (2, 2) six-dimensional gauged super-
gravity. The ungauged N = (2, 2) supergravity has been
constructed in [29], and the first N = (2, 2) six-dimensional
gauged supergravity with SO(5) gauge group has been found
in [30] by performing an S1 reduction of the maximal SO(5)

gauged supergravity in seven dimensions [31]. The most gen-
eral N = (2, 2) gauged supergravity has been constructed in
[32] using the embedding tensor formalism. The embedding
tensor transforms in 144c representation of SO(5, 5) global
symmetry as required by supersymmetry, and some possible
gaugings classified under GL(5) and SO(4, 4) subgroups
of SO(5, 5) have also been identified in [32]. Many gaug-
ings arising from GL(5) decomposition together with a large
number of supersymmetric domain wall solutions have been
constructed recently in [17,18].

In this work, we will continue the study of the maxi-
mal N = (2, 2) gauged supergravity and the corresponding
supersymmetric domain walls by considering gaugings aris-
ing from decomposing the embedding tensor under R

+ ×
SO(4, 4) ⊂ SO(5, 5). Under R

+ × SO(4, 4), the embed-
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ding tensor in 144c representation of SO(5, 5) decomposes
into 8±1, 8±3, and 56±1 representations of R

+ × SO(4, 4).

We will determine explicit solutions of the embedding ten-
sor giving rise to consistent gauge groups of the N = (2, 2)

gauged supergravity and look for possible supersymmetric
domain wall solutions.

According to the DW/QFT correspondence, the aforemen-
tioned domain wall solutions should be dual to maximally
supersymmetric Yang–Mills theory in five dimensions. The
latter plays an important role in defining the N = (2, 0)

superconformal field theory in six dimensions compacti-
fied on S1 and also describing nonperturbative dynamics of
N = 1, 2, class S, theories in four dimensions, see for exam-
ple [33–39]. We expect domain wall solutions studied here
could be useful in this context as well.

The paper is organized as follows. In Sect. 2, we briefly
review the construction of six-dimensional maximal gauged
supergravity in the embedding tensor formalism. Possible
gauge groups arising from decomposing the embedding ten-
sor under SO(4, 4) are determined in Sect. 3. In Sect. 4, we
find supersymmetric domain wall solutions from gaugings in
56−1 and 8+3 representations. Conclusions and discussions
are given in Sect. 5. Relevant branching rules for SO(5, 5)

representations under SO(4, 4) are given in the appendix.

2 N = (2, 2) gauged supergravity in six dimensions

We first give a brief review of six-dimensional N = (2, 2)

gauged supergravity in the embedding tensor formalism con-
structed in [32]. We will only collect relevant formulae for
determining possible gauge groups and finding supersym-
metric domain wall solutions. For more details, we refer the
reader to the original construction in [32].

The supergravity multiplet of the maximal N = (2, 2)

supersymmetry in six dimensions consists of the following
component fields
(
eμ̂
μ, Bμνm, AA

μ, VA
αα̇, ψ+μα,ψ−μα̇, χ+aα̇, χ−ȧα

)
. (2.1)

In our convention, curved and flat space-time indices are
respectively denoted byμ, ν, . . .=0, 1, . . . , 5 and μ̂, ν̂, . . .=
0, 1, . . . , 5. Lower and upper m, n, . . . = 1, . . . , 5 indices
label fundamental and anti-fundamental representations of
GL(5) ⊂ SO(5, 5), respectively. Indices A, B, . . . =
1, . . . , 16 refer to Majorana–Weyl spinors of the SO(5, 5)

duality symmetry.
The electric two-form potentials Bμνm, appearing in the

ungauged Lagrangian, transform as 5 under GL(5) while the
vector fields AA

μ transform as 16c under SO(5, 5). Together

with the magnetic duals Bμν
m transforming in 5 represen-

tation of GL(5), the electric two-forms Bμνm transform
in a vector representation 10 of the full global symme-

try group SO(5, 5) denoted by BμνM = (Bμνm, Bμν
m).

Therefore, only the subgroup GL(5) ⊂ SO(5, 5) is a man-
ifest off-shell symmetry of the theory. Indices M, N , . . .

denote fundamental or vector representation of SO(5, 5).

Finally, there are 25 scalar fields parametrizing the coset
space SO(5, 5)/SO(5) × SO(5).

Fermionic fields, transforming under the local SO(5) ×
SO(5) symmetry, are symplectic Majorana–Weyl (SMW)
spinors. Indices α, β, . . . and α̇, β̇, . . . are respectively two
sets of SO(5) spinor indices in SO(5) × SO(5). Similarly,
vector indices of the two SO(5) factors are denoted by
a, b, . . . and ȧ, ḃ, . . . . We will use ± to indicate the space-
time chiralities of the spinors. Under the local SO(5)×SO(5)

symmetry, the two sets of gravitini ψ+μα and ψ−μα̇ trans-
form as (4, 1) and (1, 4) while the spin- 1

2 fields χ+aα̇ and
χ−ȧα transform as (5, 4) and (4, 5), respectively.

In chiral spinor representation, the SO(5, 5)/SO(5) ×
SO(5) coset is described by a coset representative VA

αβ̇

transforming under the global SO(5, 5) and local SO(5) ×
SO(5) symmetries by left and right multiplications, respec-

tively. The inverse elements (V−1)αβ̇

A
will be denoted by

V A
αβ̇ satisfying the relations

VA
αβ̇V B

αβ̇ = δBA and VA
αβ̇V A

γ δ̇ = δα
γ δ

β̇

δ̇
. (2.2)

On the other hand, in vector representation, the coset repre-
sentative is given by a 10 × 10 matrix VM

A = (VM
a,VM

ȧ)

with A = (a, ȧ) and related to the coset representative in
chiral spinor representation by the following relations

VM
a = 1

16
V Aαα̇(	M )AB(γ a)αα̇

ββ̇V B
ββ̇ , (2.3)

VM
ȧ = − 1

16
V Aαα̇(	M )AB(γ ȧ)αα̇

ββ̇
V B

ββ̇ . (2.4)

In these equations, (	M )AB and (	A)αα̇
ββ̇ = ((γa)αα̇

ββ̇ ,

(γȧ)αα̇
ββ̇ ) are respectively SO(5, 5) gamma matrices in non-

diagonal ηMN and diagonal ηAB bases. The inverse of VM
A

will be denoted by VMA satisfying the following relations

VMaVM
b = δab, VMȧVM

ḃ = δȧḃ, VMaVM
ȧ = 0 (2.5)

and

VM
aVNa − VM

ȧVNȧ = δNM . (2.6)

In these equations, we have explicitly raised the SO(5) ×
SO(5) vector index A = (a, ȧ) resulting in a minus sign in
Eq. (2.6).

The most general gaugings of six-dimensional N = (2, 2)

supergravity are described by the embedding tensor in 144c
representation of SO(5, 5). This can be written in terms of
a vector-spinor of SO(5, 5), θ AM , subject to the linear con-
straint (LC)

(	M )AB θ BM = 0. (2.7)

123



Eur. Phys. J. C           (2024) 84:333 Page 3 of 17   333 

The gauge covariant derivative is then given by

Dμ = ∂μ − gAA
μ A

MN tMN (2.8)

with g being a gauge coupling constant and A
MN defined

by

A
MN = −θ B[M (	N ])BA ≡

(
	[MθN ])

A
. (2.9)

As usual, the embedding tensor identifies generators
XA = A

MN tMN of the gauge group G0 ⊂ SO(5, 5)

with particular linear combinations of the SO(5, 5) gener-
ators tMN . Consistency also requires the gauge generators to
form a closed subalgebra of SO(5, 5) implying the quadratic
constraint (QC)

[XA, XB] = −(XA)B
C XC . (2.10)

In terms of θ AM , this constraint reduces to the following two
conditions

θ AMθ BNηMN = 0, (2.11)

θ AMθ B[N (	P])AB = 0. (2.12)

Any θ AM ∈ 144c satisfying these quadratic constraints
defines a consistent gauging.

In this work, we are only interested in classifying possible
gauge groups and finding supersymmetric domain wall solu-
tions involving only the metric and scalar fields. We have
explicitly checked that the truncation of vector and tensor
fields is consistent in all the domain wall solutions given
in Sect. 4. This follows from the fact that the corresponding
Yang–Mills currents vanish for all of the solutions considered
here. With all vector and tensor fields set to zero, the bosonic
Lagrangian of the maximal N = (2, 2) gauged supergravity
is given by

e−1L = 1

4
R − 1

16
Paȧ

μ Pμ
aȧ − V (2.13)

while the supersymmetry transformations of fermionic fields
read

δψ+μα = Dμε+α + g

4
γ̂μTα

β̇ε−β̇ , (2.14)

δψ−μα̇ = Dμε−α̇ − g

4
γ̂μT

β
α̇ε+β, (2.15)

δχ+aα̇ = 1

4
Pμ
aȧ γ̂μ(γ ȧ)α̇

β̇
ε−β̇ + 2g(Ta)

β
α̇ε+β

−g

2
T α

α̇(γa)α
βε+β, (2.16)

δχ−ȧα = 1

4
Pμ
aȧ γ̂μ(γ a)α

β
ε+β + 2g(Tȧ)α

β̇ε−β̇

+g

2
Tα

α̇(γȧ)α̇
β̇ε−β̇ . (2.17)

The covariant derivatives of supersymmetry parameters are
defined as

Dμε+α = ∂με+α + 1

4
ωμ

νργ̂νρε+α + 1

4
Qab

μ (γab)α
βε+β,

(2.18)

Dμε−α̇ = ∂με−α̇ + 1

4
ωμ

νργ̂νρε−α̇ + 1

4
Qȧḃ

μ (γȧḃ)α̇
β̇ ε−β̇

(2.19)

with γ̂μ = eμ̂
μγ̂μ̂. γ̂μ̂ are space-time gamma matrices, and for

simplicity, we will suppress all space-time spinor indices.
The scalar vielbein Paȧ

μ and SO(5) × SO(5) composite

connections, Qab
μ and Qȧḃ

μ , are given by

Paȧ
μ = 1

4
(γ a)

αβ
(γ ȧ)

α̇β̇
V A

αα̇∂μVAββ̇ , (2.20)

Qab
μ = 1

8
(γ ab)

αβ
�α̇β̇V A

αα̇∂μVAββ̇ , (2.21)

Qȧḃ
μ = 1

8
�αβ(γ ȧḃ)

α̇β̇
V A

αα̇∂μVAββ̇ . (2.22)

In these equations, �αβ and �α̇β̇ are the USp(4) ∼ SO(5)

symplectic forms that satisfy the following relations

�βα = −�αβ, �αβ = (�αβ)∗, �αβ�βγ = −δγ
α (2.23)

and similarly for �α̇β̇ . The scalar potential is given by

V = g2

2
θ AMθ BNVM

aVN
b
[
VA

αα̇(γa)α
β(γb)β

γ VBγ α̇

]

= −g2

2

[
T αα̇Tαα̇ − 2(T a)αα̇(Ta)αα̇

]
(2.24)

with the T-tensors defined by

(T a)αα̇ = VM
aθ AMVA

αα̇, (T ȧ)αα̇ = −VM
ȧθ AMVA

αα̇,

(2.25)

and

T αα̇ ≡ (T a)βα̇(γa)β
α = −(T ȧ)αβ̇ (γȧ)β̇

α̇ . (2.26)

We also note useful identities involving various components
of the T-tensors

DμT
a = 1

4
Pbḃ

μ

(
γ bT aγ ḃ − 2δabT ḃ

)
, (2.27)

DμT
ȧ = 1

4
Pbḃ

μ

(
γ bT ȧγ ḃ − 2δȧḃT b

)
, (2.28)

DμT = 1

2
Paȧ

μ

(
T aγ ȧ − γ aT ȧ − 1

2
γ aT γ ȧ

)
. (2.29)

3 Gaugings of six-dimensional N = (2, 2) supergravity
under SO(4, 4)

In this section, we will determine explicit forms of the
embedding tensor for a number of possible gauge groups
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leading to consistent N = (2, 2) gauged supergravities in
six dimensions. To find gauge groups by decomposing the
embedding tensor under R

+ × SO(4, 4) ⊂ SO(5, 5), we
decompose the SO(5, 5) vector index as M = (−, I,+)

with I = 1, 2, . . . , 8 being the SO(4, 4) vector index. The
SO(5, 5) generators tMN are decomposed accordingly as
tMN = (t−+ = d, t+I = pI , t−I = k I , t I J = τ I J ) with d
and τ I J being R

+ and SO(4, 4) generators, respectively.
Similarly, the SO(5, 5) spinor index A will also be split as

A = (m, ṁ)withm = 1, 2, . . . , 8 and ṁ = 1̇, 2̇, . . . , 8̇ being
SO(4, 4) spinor indices, see more detail in the appendix. As
given in the appendix, the embedding tensor transforming in
144c representation of SO(5, 5) will split into the following
representations under R

+ × SO(4, 4)

144c︸︷︷︸
θ AM

→ 56−1︸︷︷︸
ϑmI

3

⊕ 56+1︸︷︷︸
ϑ ṁ I

4

⊕ 8−1︸︷︷︸
θ ṁ+

6

⊕ 8+1︸︷︷︸
θm−

1

⊕ 8+3︸︷︷︸
θ ṁ−

2

⊕ 8−3︸︷︷︸
θm+

5

.

(3.1)

For convenience, we also recall the identification of various
components of the embedding tensor of the form

θ AM=
(

θm−
1 θmI

3 θm+
5

θ ṁ−
2 θ ṁ I

4 θ ṁ+
6

)
. (3.2)

The components θm−
1 , θ ṁ I

4 , and θm+
5 correspond to 8+1,

56+1, and 8−3 representations while θ ṁ−
2 , θmI

3 , and θ ṁ+
6 are

respectively 8+3, 56−1, and 8−1 ones. The linear combina-
tions ϑmI

3 and ϑ ṁ I
4 in terms of (θmI

3 , θ ṁ+
6 ) and (θn−

1 , θ ṁ I
4 , ),

as required by the LC, are defined in (A.43). For later con-
venience, we also repeat these relations here

ϑmI
3 = θmI

3 +
√

2

8
(γ I )mṅθ

ṅ+
6

and ϑ ṁ I
4 = θ ṁ I

4 −
√

2

8
(γ I )ṁnθ

n−
1 . (3.3)

In this section, we will determine explicit forms of the
embedding tensor by imposing the quadratic constraint on
the embedding tensor. With the above decomposition, the
first condition of QC given in (2.11) reduces to

θ A+θ B− + θ AI θ BJηI J + θ A−θ B+ = 0 (3.4)

with ηI J being the SO(4, 4) invariant tensor defined in (A.3).
On the other hand, the second condition (2.12) splits into

θmMθn−
1 cmn + θ ṁMθ ṅ+

6 cṁṅ = 0, (3.5)

θmMθ ṅ−
2 (γ I )mṅ + θ ṁMθn−

1 (γ I )ṁn − √
2θ ṁMθ ṅ I4 cṁṅ = 0, (3.6)

θmMθ ṅ+
6 (γ I )mṅ + θ ṁMθn+

5 (γ I )ṁn + √
2θmMθnI3 cmn = 0, (3.7)

θmMθ
ṅ[I
4 (γ J ])mṅ + θ ṁMθ

n[I
3 (γ J ])ṁn = 0. (3.8)

In these equations, cmn and cṁṅ are elements of the
SO(4, 4) charge conjugation matrix defined in (A.32), and
(γ I )mṅ = (γ I )ṅm are chirally decomposed SO(4, 4) gamma
matrices given in (A.34).

Some possible gauge groups under SO(4, 4) have also
been discussed in [40], and it has been pointed out that turning
on only θm−

1 or θ ṁ+
6 components leads to gaugings of the

scaling symmetry R
+. Furthermore, with θ ṁ I

4 = 0 or θmI
3 =

0, we find from the LC given in (A.44) that θm−
1 or θ ṁ+

6
need to be zero, respectively. Accordingly, we conclude that
gaugings with only 8+1 or 8−1 components non-vanishing
are not consistent.

3.1 Gaugings in 8+3 representation

We begin with gauge groups arising from the embedding
tensor in 8+3 representation. In this case, we set all θ ’s com-
ponents to be zero except

θ ṁ−
2 = vṁ (3.9)

for a spinor vṁ . The θ AM matrix of the form

θ AM =
(

vṁ

)
(3.10)

makes the embedding tensor satisfy all the LC and QC. We
have used the notation that all vanishing elements are left as
blank spaces.

For A = (m, ṁ), the corresponding gauge generators split
into XA = (Xm, Xṁ). With the above embedding tensor, the
last eight generators vanish, Xṁ = 0, while the first eight
generators are given in terms of k I as

Xm = (γ I )mṅv
ṅk I . (3.11)

They are all linearly independent and commute with each
other [Xm, Xn] = 0. Thus, the resulting gauge group is an
eight-dimensional translational group R

8 associated with the
k I generators.

3.2 Gaugings in 8−3 representation

As in the previous case, we set all θ ’s components to be zero
except

θm+
5 = wm (3.12)

for any spinor wm . All the LC and QC are satisfied by this
embedding tensor. In this case, there are also eight non-
vanishing gauge generators, but given in terms of the pI
generators, i.e.

Xṁ = (γ I )ṁnw
n pI . (3.13)

As in the previous case, they are all linearly independent
and commute with each other, [Xṁ, Xṅ] = 0. This implies
again that the resulting gauge group is an eight-dimensional
translational group R

8 associated with the pI generators.
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3.3 Gaugings in 56−1 representation

We now move to gaugings in 56−1 representation by choos-
ing only θmI

3 to be non-vanishing. The embedding tensor
takes the form

θ AM =
(

θmI
3

)
(3.14)

subject to the LC

(γI )ṁnθ
nI
3 = 0 (3.15)

which is the same as the second condition in (A.45). For van-
ishing θ ṁ+

6 component from 8−1 representation, the embed-
ding tensor is simply given by θmI

3 . As in [40], all 56 compo-
nents in θmI

3 can be parametrized by an antisymmetric tensor
fṁṅ ṗ = f[ṁṅ ṗ] by writing θmI

3 as

θmI
3 = 1

48
fṁṅ ṗ(γ

I J )ṁṅ(γJ )
m ṗ (3.16)

with (γ I J )ṁṅ = (γ [I )ṁ p(γ J ])p
ṅ
.

The LC given in (3.15) is now identically satisfied, and the
corresponding gauge generators are split into the following
two sets

Xm = 1

24
√

2
fṁṅ ṗ(γ

I J )ṁṅ(γJ )m
ṗ pI , (3.17)

Xṁ = 1

48
fṅ ṗq̇(γ

I K )ṅ ṗ(γK )qq̇(γ J )qṁτ I J . (3.18)

The first set contains eight nilpotent generators that commute
with each other, [Xm, Xn] = 0, so they generate a transla-
tional subgroup associated with pI generators. The other set
gives another subgroup embedded in the SO(4, 4) factor.
According to [40], the QCs in terms of the antisymmetric
tensor fṁṅ ṗ can be written as

fṁṅ ṗ f
ṁṅ ṗ = 0 and fṙ [ṁṅ f ṗq̇]ṙ = 0. (3.19)

We will discuss some possible solutions to these conditions.

3.3.1 CSO(4, 0, 1) ∼ SO(4) � R
4 gauge group

We first consider a simple solution of the form

fṁṅ ṗ = (κ1εi jk, κ2εrst ) (3.20)

for i, j, . . . = 1̇, 2̇, 3̇ and r, s, . . . = 5̇, 6̇, 7̇. To solve the first
condition in (3.19), we need to impose the relation κ1 = ±κ2.

We will choose κ1 = κ2 = κ ∈ R for definiteness.
With this form of the embedding tensor, we find that the

gauge generators X 4̇ and X 8̇ vanish. Commutation relations
between Xi and Xr lead directly to SO(3) × SO(3) algebra
[
Xi , X j

] = −κεi jk Xk, [Xr , Xs] = κεrst Xt ,

[Xi , Xr ] = 0. (3.21)

The remaining eight generators correspond to translational
generators, but in this case, there are four constraints among
them

X5 = X1, X6 = −X2, X7 = −X3, X8 = −X4.

(3.22)

Therefore, there are only four linearly independent transla-
tional generators.

To make the form of the resulting gauge group explicit, we
redefine the gauge generators as follows. We first introduce
the SO(4) ∼ SO(3) × SO(3) generators Mμ̃ν̃ = −Mν̃μ̃ for
μ̃, ν̃ = 1, 2, 3, 4. These satisfy the standard SO(4) algebra
of the form
[
Mμ̃ν̃ , Mρ̃σ̃

] = 2κ
(
δμ̃[ρ̃Mσ̃ ]ν̃ − δν̃[ρ̃Mσ̃ ]μ̃

)
. (3.23)

In terms of Xi and Xr generators, we find, for μ̃ = (i, 4),

Mi j = εi jk Ak and M4i = −Mi4 = Bi (3.24)

with

A1 = X 1̇ − X 5̇, A2 = X 2̇ − X 6̇, A3 = X 3̇ − X 7̇,

B1 = X 1̇ + X 5̇, B2 = X 2̇ + X 6̇, B3 = X 3̇ + X 7̇. (3.25)

Furthermore, we redefine the four independent translational
generators as

K1 = X4, K2 = −X3, K3 = X2, K4 = X1 (3.26)

and obtain the following commutation relations
[
Kμ̃, Mν̃ρ̃

] = 2κδμ̃[ν̃ δσ̃
ρ̃]Kσ̃ . (3.27)

This implies that the gauge group takes the form of

SO(4) � R
4 ∼ CSO(4, 0, 1). (3.28)

3.3.2 CSO(3, 1, 1) ∼ SO(3, 1) � R
4 gauge group

There is another solution to the conditions (3.19) with the
antisymmetric tensor fṁṅ ṗ of the form

fṁṅ ṗ = κ(εi jr , εirs) (3.29)

for i, j, . . . = 1̇, 2̇, 3̇ and r, s, . . . = 5̇, 6̇, 7̇. As in the pre-
vious case, there are eight nilpotent generators Xm subject
to four constraints given in (3.22) together with six non-
vanishing gauge generators Xi and Xr . The latter satisfy the
following commutation relations
[
Xi , X j

] = κεi jr Xr , [Xr , Xs] = −κεrsi Xi ,

[Xi , Xr ] = κεirk(δks Xs − Xk) (3.30)

with δir = diag(1, 1, 1). These relations correspond to an
SO(3, 1) algebra which can be explicitly seen by defining

Mi j = εi jk(δkr Xr − Xk) and

M4i = −Mi4 = − 1√
3
(δir Xr + Xi ). (3.31)
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These generators satisfy the SO(3, 1) algebra
[
Mμ̃ν̃ , Mρ̃σ̃

] = 2κ
(
ημ̃[ρ̃Mσ̃ ]ν̃ − ην̃[ρ̃Mσ̃ ]μ̃

)
(3.32)

with ημ̃ν̃ = diag(1, 1, 1,−1) for μ̃, ν̃ = 1, 2, 3, 4.

Redefining the four linearly independent translational
generators as

K1 = X4, K2 = −X3, K3 = X2, K4 = X1√
3
, (3.33)

we find the commutation relations with the SO(3, 1) gener-
ators
[
Kμ̃, Mν̃ρ̃

] = 2κημ̃[ν̃ δσ̃
ρ̃]Kσ̃ . (3.34)

Accordingly, the resulting gauge group is given by

SO(3, 1) � R
4 ∼ CSO(3, 1, 1). (3.35)

3.3.3 CSO(2, 2, 1) ∼ SO(2, 2) � R
4 gauge group

As a final example for solutions to (3.19), we consider the
embedding tensor of the form

fṁṅ ṗ = κ(εī j̄ k̄, εr̄ s̄ t̄ ) (3.36)

with ī, j̄, . . . = 1̇, 6̇, 7̇ and r̄ , s̄, . . . = 2̇, 3̇, 5̇ being two sets
of indices that can be raised and lowered by ηī j̄ = ηī j̄ =
diag(−1, 1, 1) andηr̄ s̄ = ηr̄ s̄ = diag(1, 1,−1), respectively.
There are again eight nilpotent generators Xm subject to four
constraints given in (3.22). We will choose the independent
generators to be

K1 = −X3, K2 = X2, K3 = X4, K4 = X1. (3.37)

Commutation relations between the remaining six non-
vanishing gauge generators Xī and Xr̄ are given by
[
Xī , X j̄

]
= κεī j̄ k̄η

k̄l̄ Xl̄ , [Xr̄ , Xs̄] = κεr̄ s̄ t̄η
t̄ ū Xū,

[
Xī , Xr̄

] = 0. (3.38)

These lead to SO(2, 1) × SO(2, 1) ∼ SO(2, 2) algebra. As
in the previous cases, we can also redefine the generators as

Mi4 = −M4i = δi j G
j + Hi

and Mi j = εi jkη
kl (δlmG

m − Hl) (3.39)

for i, j, . . . = 1, 2, 3 and ηi j = ηi j = diag(1, 1,−1)

together with

G1 = X 6̇, G2 = X 7̇, G3 = X 1̇,

H1 = X 2̇, H2 = X 3̇, H3 = X 5̇. (3.40)

These generators satisfy the algebra of the form given in
(3.32) but with ημ̃ν̃ = diag(1, 1,−1,−1).

Finally, the commutation relations between these SO(2, 2)

generators and the four nilpotent generators given in (3.37)

are the same as in (3.34) for ημ̃ν̃ = diag(1, 1,−1,−1). Con-
sequently, the resulting gauge group is given by

SO(2, 2) � R
4 ∼ CSO(2, 2, 1). (3.41)

In summary, the embedding tensor in 56−1 representation
can lead to CSO(4 − p, p, 1) ∼ SO(4 − p, p) � R

4 gauge
group for p = 0, 1, 2.

3.4 Gaugings in 56+1 representation

Similar to the previous case, gaugings in 56+1 representation
can be obtained by turning on only θ ṁ I

4 component with the
same parametrization as in (3.16)

θ ṁ I
4 = 1

48
fmnp(γ

I J )mn(γJ )
ṁ p (3.42)

where (γ I J )mn = (γ [I )m ṗ(γ J ]) ṗ
n
. The LC requires fmnp =

f[mnp] and the QCs reduce to

fmnp f
mnp = 0 and fr [mn f pq]r = 0. (3.43)

We can repeat the same analysis as in the case of gaug-
ings from 56−1 representation by solving these QCs and find
the same CSO(4 − p, p, 1) ∼ SO(4 − p, p) � R

4 gauge
group for p = 0, 1, 2. However, the gauge generators for
the two sets of nilpotent and SO(4 − p, p) generators are
interchanged as

Xm = 1

48
fnpq(γ

I K )np(γK )q̇q(γ J )mq̇τ I J , (3.44)

Xṁ = 1

24
√

2
fmnp(γ

I J )mn(γJ )ṁ
pk I (3.45)

with the nilpotent generators given in terms of the k I instead
of pI .

3.5 Gaugings in 56−1 and 8+3 representations

As an example for gaugings from an embedding tensor with
more than one representation, we consider gaugings with
both 56−1 and 8+3 representations. The embedding tensor
takes the form

θ AM =
(

θmI
3

θ ṁ−
2

)
. (3.46)

Only θmI
3 is constrained by the LC given in equation (3.15).

By a similar analysis as in the previous cases, we can solve
this condition by parametrizing θmI

3 as in Eq. (3.16). Denot-
ing θ ṁ−

2 = vṁ, we find that the QCs lead to the following
four conditions, in accordance with the analysis of [40],

fṁṅ ṗ f
ṁṅ ṗ = 0, fṙ [ṁṅ f ṗq̇]ṙ = 0, fṁṅ ṗv

ṗ = 0,

f[ṁṅ ṗvq̇]|SD = 0 (3.47)

in which |SD means the self-dual part of a four-form.
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The first two conditions are independent of vṁ, and can
be solved by the antisymmetric tensor fṁṅ ṗ given in the case
of gaugings from 56−1 representation. We then consider the
following three possibilities:

fṁṅ ṗ = κ(εi jk, εrst )

for i, j, . . . = 1̇, 2̇, 3̇ and r, s, . . . = 5̇, 6̇, 7̇, (3.48)

fṁṅ ṗ = κ(εi jr , εirs)

for i, j, . . . = 1̇, 2̇, 3̇ and r, s, . . . = 5̇, 6̇, 7̇, (3.49)

fṁṅ ṗ = κ(εī j̄ k̄, εr̄ s̄ t̄ )

for ī, j̄, . . . = 1̇, 6̇, 7̇ and r̄ , s̄, . . . = 2̇, 3̇, 5̇ (3.50)

for a real constant κ. The last two conditions in (3.47) can be
solved by taking vṁ with the only non-vanishing components
given by

v4̇ = v8̇ = λ (3.51)

for a real constant λ. With all these, the resulting gauge gen-
erators are given by

Xm = (γ I )mṅv
ṅk I + 1

24
√

2
fṁṅ ṗ(γ

I J )ṁṅ(γJ )m
ṗ pI ,(3.52)

Xṁ = 1

48
fṅ ṗq̇(γ

I K )ṅ ṗ(γK )qq̇(γ J )qṁτ I J . (3.53)

It turns out that by a suitable redefinition of Xṁ generators,
these generators can be shown to satisfy SO(4−p, p) algebra
[
Mμ̃ν̃ , Mρ̃σ̃

] = 2κ
(
ημ̃[ρ̃Mσ̃ ]ν̃ − ην̃[ρ̃Mσ̃ ]μ̃

)
(3.54)

with ημ̃ν̃ = diag(1, 1, 1, 1) for fṁṅ ṗ in (3.48), ημ̃ν̃ =
diag(1, 1, 1,−1) for fṁṅ ṗ in (3.49), and ημ̃ν̃ = diag(1, 1,

−1,−1) for fṁṅ ṗ in (3.50). In addition, there are four con-
straints among Xm generators, given by (3.22), implying that
only four generators are linearly independent. Choosing these
four generators as in Sect. 3.3, we find the following com-
mutation relations
[
Kμ̃, Mν̃ρ̃

] = 2κημ̃[ν̃ δσ̃
ρ̃]Kσ̃ , (3.55)

[
Kμ̃, K ν̃

] = −λ
√

2Mμ̃ν̃ . (3.56)

It should be noted that in this case with non-vanishing λ,

generators Kμ̃ do not commute with each other but close onto
the SO(4−p, p)part. These generators enlarge SO(4−p, p)
to a larger gauge group. In particular, by setting λ = ± κ

4
√

2
and defining the generators

M0μ̃ = −Mμ̃0 = 2Kμ̃, (3.57)

we obtain the algebra, with μ = (0, μ̃) = 0, 1, 2, 3, 4,

[
Mμν, Mρσ

]
= 2κ

(
ημ[ρMσ ]ν − ην[ρMσ ]μ

)
(3.58)

for ημν = diag(±1, ημ̃ν̃ ). The two sign choices correspond
to SO(5− p, p) or SO(4− p, p+1) gauge groups. In partic-
ular, the SO(4) group with ημ̃ν̃ = δμ̃ν̃ is enlarged to SO(5)

or SO(4, 1)I. Similarly, the SO(3, 1) group with ημ̃ν̃ =
diag(1, 1, 1,−1) is enlarged to SO(4, 1)II or SO(3, 2)I

while the SO(2, 2) group, with ημ̃ν̃ = diag(1, 1,−1,−1),

becomes SO(3, 2)II. We have used subscripts I and II to dis-
tinguish the gauge groups arising from different SO(4−p, p)
groups obtained from the embedding tensor in 56−1 repre-
sentation. We also note that the analysis for gaugings from
56+1 and 8−3 representations can be carried out in the same
way leading to the same gauge groups with the role of Xm

and Xṁ interchanged.
We end this section by some comments on the SO(5 −

p, p) and CSO(4 − p, p, 1) gauge groups identified in this
section. The same gauge groups also arise in the classi-
fication of gauge groups under GL(5) ⊂ SO(5, 5) that
has been extensively studied in [17]. In that case, both the
SO(5 − p, p) and CSO(4 − p, p, 1) gauge groups are
embedded entirely in GL(5) and are described by purely
magnetic gaugings in which only components of the embed-
ding tensor that couple the magnetic two-form fields Bμν

m

are non-vanishing. Unlike the electric two-form fields Bμνm,

these fields are also accompanied by the three-form fields.
On the other hand, the CSO(4 − p, p, 1) and SO(5 − p, p)
gauge groups are embedded respectively in SO(4, 4) and
SO(4, 4)�R

8 with the R
8 factor generated by pI or k I gen-

erators. As can be seen from the structure of the deformed
p-form hierarchy given in [32], the embedding tensor com-
ponents 56±1 couple both electric and magnetic two-form
fields Bμνm and Bμν

m . Accordingly, the resulting gauged
supergravities are not equivalent due to the different field
contents among the tensor fields. In particular, gaugings
obtained in [17] are known to arise from an S1 reduction of
CSO(p, q, 5− p−q) gauged supergravities in seven dimen-
sions. However, higher dimensional origins of the gauge
groups considered here are not clear at this stage.

4 Supersymmetric domain wall solutions

In this section, we find supersymmetric domain walls which
are half-supersymmetric vacuum solutions of the maximal
gauged supergravities considered in the previous section. We
take the space-time metric to be the standard domain wall
ansatz

ds2
6 = e2A(r)ημ̄ν̄dx

μ̄dx ν̄ + dr2 (4.1)

where μ̄, ν̄, . . . are space-time indices of five-dimensional
Minkowski space, and A(r) is a warp factor depending only
on the radial coordinate r.

Following [17,18], the coset representative of SO(5, 5)/

SO(5) × SO(5), parametrized by 25 scalar fields, can
be obtained by the following non-compact generators of
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SO(5, 5) in diagonal basis

t̂aḃ = Ma
M

Mḃ
N tMN (4.2)

where MA
M = (Ma

M , Mȧ
M ) is the inverse of the transfor-

mation matrix M given in (A.24). These non-compact gen-
erators are symmetric such that ( t̂aḃ)

T = t̂aḃ. Recall that
an SO(5, 5) vector index in non-diagonal basis is decom-
posed as M = (−, I,+) under SO(4, 4), we further decom-
pose vector indices of both SO(5) factors as a = (0, i) and
ȧ = (i̇, #), with i = 1, 2, 3, 4 and i̇ = 1̇, 2̇, 3̇, 4̇. This leads
to the following decomposition of the non-compact genera-
tors

t̂aḃ = ( t̂0i̇ , t̂0#, t̂ i j̇ , t̂ i#). (4.3)

Under the SO(4, 4) branching rule for SO(5, 5) adjoint
representation given in (A.15), these non-compact generators
read

t̂0i̇ = 1√
2

Mi̇
I ( pI + k I ), t̂0# = −d,

t̂ i# = 1√
2

Mi
I ( pI − k I ), t̂ i j̇ = Mi

I
M j̇

Jτ I J . (4.4)

Under the compact SO(5) × SO(5) ⊂ SO(5, 5), the 25
scalars transform as (5, 5). The split of indices a and ȧ given
above implies the branching 5 → 1+4 of SO(5) → SO(4).

Therefore, under SO(4) × SO(4) ⊂ SO(5) × SO(5), the
scalars transform as

(5, 5)︸ ︷︷ ︸
t̂aḃ

→ (1, 1)︸ ︷︷ ︸
d

⊕ (1, 4)︸ ︷︷ ︸
t̂0i̇

⊕ (4, 1)︸ ︷︷ ︸
t̂ i#

⊕ (4, 4)︸ ︷︷ ︸
t i j̇

. (4.5)

It is convenient to denote all 25 scalar fields collectively
as

�I = {ϕ, ζ1̇, . . . , ζ4̇, ξ1, . . . , ξ4, φ1, . . . , φ16} (4.6)

with I = 1, . . . , 25. The scalar ϕ is the dilaton correspond-
ing to the R

+ ∼ SO(1, 1) generator d. The two sets of
four scalars {ζ1̇, . . . , ζ4̇} and {ξ1, . . . , ξ4} respectively cor-
respond to the generators t̂0i̇ and t̂ i#. The remaining six-
teen scalar fields {φ1, . . . , φ16} parametrize the submanifold
SO(4, 4)/SO(4)× SO(4) of the SO(5, 5)/SO(5)× SO(5)

coset.
With this form of the scalar fields, we can rewrite the

kinetic terms of the scalar fields in (2.13) and obtain the
following form of the bosonic Lagrangian

e−1L = 1

4
R − GIJ∂μ�I∂μ�J − V (4.7)

with GIJ = 1
16 P

aȧ
I

PaȧJ being a symmetric scalar metric.
The vielbein Paȧ

I
on the scalar manifold is related to Paȧ

μ via

Paȧ
μ = Paȧ

I
∂μ�I.

We will find supersymmetric domain wall solutions from
first-order Bogomol’nyi–Prasad–Sommerfield (BPS) equa-
tions derived from the supersymmetry transformations of

fermionic fields. The procedure is essentially the same as
that given in [17,18], so we will mainly state the final results.
The variations of the gravitini in (2.14) and (2.15), δψ+μ̄α

and δψ−μ̄α̇ respectively gives

A′γ̂rε+α + 1

2
�αβT

βα̇ε−α̇ = 0, (4.8)

A′γ̂rε−α̇ − 1

2
�α̇β̇T

αβ̇ε+α = 0. (4.9)

Throughout the paper, we use the notation ′ to denote an r -
derivative. Multiply Eq. (4.8) by A′γ̂r and use Eq. (4.9) or
vice-versa, we find the following consistency conditions

A′2δα
β = −1

4
�αγ T

γ α̇�α̇β̇T
ββ̇ = W2δα

β, (4.10)

A′2δα̇
β̇ = −1

4
�α̇γ̇ T

αγ̇ �αβT
ββ̇ = W2δα̇

β̇ (4.11)

in which we have introduced the “superpotential” W. We
then obtain the BPS equations for the warp factor

A′ = ±W. (4.12)

With this result, Eqs. (4.8) and (4.9) lead to the following
(not independent) projectors on the Killing spinors

γ̂rε+α = −1

2
�αβ

T ββ̇

A′ ε−β̇ , γ̂rε−α̇ = 1

2
�α̇β̇

T αβ̇

A′ ε+α.

(4.13)

Using these projectors in the variations δχ+aα̇ and δχ−ȧα

together with some identities involving the T-tensors, in par-
ticular (2.29), we may rewrite the BPS equations for scalar
fields in the form

�I′ = ∓2GIJ
∂W
∂�J

(4.14)

in which GIJ is the inverse of the scalar metric GIJ. The
remaining variations δψ+rα and δψ−r α̇ determine the r
dependence of the Killing spinors.

In addition, we also note that the scalar potential can be
written in terms of W as

V = 2GIJ
∂W
∂�I

∂W
∂�J

− 5W2. (4.15)

It is also straightforward to show that the BPS equations
of the form (4.12) and (4.14) satisfy the second-order field
equations derived from the bosonic Lagrangian (4.7) with
the scalar potential given by (4.15), see [41–46] for more
detail. Finally, since we have imposed only one independent
projector on the Killing spinors, all solutions found in this
work are half-supersymmetric.

4.1 SO(4) symmetric domain walls

To deal with the 25-dimensional scalar manifold, we will fol-
low the approach introduced in [47] by considering domain
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wall solutions that are invariant under a particular subgroup
of the gauge groups. These solutions involve only a subset
of all 25 scalars. We also restrict ourselves to only gauge
groups obtained from the embedding tensor in 56−1 and 8+3

representations.
We first consider supersymmetric domain walls with an

unbroken symmetry SO(4). Only SO(5), SO(4, 1)I, and
CSO(4, 0, 1) gauge groups contain a common SO(4) sub-
group which in turn lies within SO(4, 4). We collectively
describe them in a single framework by using fṁṅ ṗ given in

(3.48) together with v4̇ = v8̇ = − σκ

4
√

2
with σ = 1,−1, and

0, corresponding to SO(5), SO(4, 1)I, and CSO(4, 0, 1)

gauge groups, respectively. The residual SO(4) symmetry is
embedded diagonally in SO(4, 4) via the maximal compact
subgroup SO(4) × SO(4). From the decomposition of the
scalars given in (4.5), we find two SO(4) singlets according
to the following decomposition

(5, 5) → (1 ⊗ 1) ⊕ (1 ⊗ 4) ⊕ (4 ⊗ 1) ⊕ (4 ⊗ 4)

∼ 1 ⊕ 4 ⊕ 4 ⊕ 1 ⊕ 6 ⊕ 9. (4.16)

The first singlet corresponds to the R
+ generator d while the

second one, arising from 4⊗ 4, is given by the non-compact
generator

Y = t̂11̇ − t̂22̇ − t̂33̇ − t̂44̇ (4.17)

from the SO(4, 4)/SO(4) × SO(4) coset.
Using the coset representative of the form

V = eϕd+φY , (4.18)

we find the superpotential and the scalar potential of the form

W = gκ

16
√

2
e−3ϕ−4φ

(
4e4(ϕ+φ) + σ

)
, (4.19)

V = −g2κ2

64
e−6ϕ−8φ

(
8e8(ϕ+φ) + 8σe4(ϕ+φ) − σ 2

)
.(4.20)

It can be checked that the scalar potential can be written
in terms of the superpotential according to (4.15) using
the scalar matrix GIJ = diag( 1

2 , 1
8 ) for �I = {ϕ, φ} and

I = 1, 2. The general analysis given above leads to the BPS
equation for the warp factor

A′ = ± gκ

16
√

2
e−3ϕ−4φ

(
4e4(ϕ+φ) + σ

)
(4.21)

together with the BPS equations for the scalar fields

ϕ′ = ∓ gκ

16
√

2
e−3ϕ−4φ

(
4e4(ϕ+φ) − 3σ

)

and φ′ = ± σgκ

16
√

2
e−3ϕ−4φ. (4.22)

For σ = 1,−1 corresponding to SO(5) and SO(4, 1)I

gauge groups, the solutions for the warp factor A and dilaton

ϕ can be given in terms of φ as

A = C1 + 3φ − 1

4
ln
[
e−4(4φ+C2) + σ

]
, (4.23)

ϕ = −φ − 1

4
ln
[
e−4(4φ+C2) + σ

]
(4.24)

in which C1 and C2 are integration constants. To obtain the
solution for φ, we change the radial coordinate r to ρ defined
by dρ

dr = e−3ϕ−4φ. The solution of φ is then readily found to
be

φ = ± gσκρ

16
√

2
+ C3 (4.25)

in which ± directly corresponds to the upper/lower signs in
the BPS equations. Thus, the two sign choices in the BPS
equations can be absorbed by flipping the sign of the radial
coordinate. We will neglect these sign choices by choosing
the upper sign of the BPS equations from now on. Moreover,
the integration constants C1 and C3 can also be removed by
rescaling the coordinates x μ̄ and shifting the radial coordi-
nate ρ.

For σ = 0 corresponding to CSO(4, 0, 1) gauge group,
the superpotential and scalar potential are independent of φ

W = gκ

4
√

2
eϕ and V = −g2κ2

8
e2ϕ, (4.26)

and the BPS equations reduce to

A′ = −ϕ′ = gκ

4
√

2
eϕ and φ′ = 0. (4.27)

All of these equations can be readily solved to obtain the
solution

A = −ϕ = ln

(
gκr

4
√

2
− C

)
and φ = 0. (4.28)

In this case, we can consistently truncate out the SO(4)

invariant scalar φ since the scalar potential is independent
of φ.

For SO(4, 1)II gauge group, the SO(4) compact subgroup
is not embedded in SO(4, 4) since it involves M0ĩ generators
obtained from the gauge generators Xm . However, a similar
analysis can be carried out by using fṁṅ ṗ given in (3.49)

together with v4̇ = v8̇ = κ

4
√

2
. In this case, there are again

two SO(4) singlet scalars corresponding to the non-compact
generators

Y1 = t̂11̇ and Y2 = d − t̂22̇ − t̂33̇ − t̂44̇. (4.29)

Using the coset representative

V = eφ1Y1+φ2Y1 , (4.30)

we find the same form of the domain wall solution as given
in (4.23)–(4.25) with σ = −3, ϕ = −φ1, and φ = −φ2.
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4.2 SO(3) symmetric domain walls

We next consider supersymmetric domain walls preserv-
ing a smaller residual symmetry SO(3) generated by Mi j

for i, j, . . . = 1, 2, 3 from the SO(4 − p, p) genera-
tors Mμ̃ν̃ . There are many gauge groups containing the
SO(3) ⊂ SO(4, 4). These are given by SO(5), SO(4, 1)I,

and CSO(4, 0, 1) with fṁṅ ṗ given in (3.48) and v4̇ =
v8̇ = − σκ

4
√

2
together with SO(4, 1)II, SO(3, 2)I, and

CSO(3, 1, 1) with fṁṅ ṗ given in (3.49) and v4̇ = v8̇ = σκ

4
√

2
.

By further decomposing the residual symmetry of the pre-
vious section according to SO(4) → SO(3) with the branch-
ing 4 → 1 + 3, we find the following transformation of all
25 scalars

(5, 5) → (1 ⊕ 1 ⊕ 3) ⊗ (1 ⊕ 1 ⊕ 3)

∼ 4(1) ⊕ 4(3) ⊕ (1 ⊕ 3 ⊕ 5) (4.31)

with the last three representations arising from the product
3⊗3. There are then five scalars invariant under the residual
symmetry SO(3). One of them is again the dilaton corre-
sponding to the R

+ generator. The other four singlets are
associated with the following non-compact generators

Y1 = t̂11̇, Y2 = t̂22̇ + t̂33̇ + t̂44̇,

Y3 = t̂01̇, Y4 = t̂1#. (4.32)

We can use the coset representative of the form

V = eϕd+φ1Y1+φ2Y2+ζY3+ξY4 . (4.33)

It turns out that consistency between the resulting BPS
equations and the second-order field equations requires ξ =
ζ. With this condition, the superpotential and scalar potential
become

W = gκ

16
√

2
e−(3ϕ+φ1+φ2)

[
3e4ϕ + e4φ2 cosh 4ζ

(
ve4(ϕ+φ1) + σ

) ]
,

(4.34)

V = 1

64
e−2(3ϕ+φ1+φ2)g2κ2

[[
e4φ2 cosh 4ζ

(
ve4(ϕ+φ1) + σ

)

−3e4ϕ
]2

−12e8ϕ − 4vσe4(ϕ+φ1+2φ2)
]
. (4.35)

We have used the parameter v = 2u − 1 with u = ±1
together with σ = ±1, 0 to identify the gauge groups; SO(5)

(u = σ = 1), SO(4, 1)I (u = −σ = 1), CSO(4, 0, 1)

(u = 1, σ = 0), SO(4, 1)II (u = −σ = −1), SO(3, 2)I

(u = σ = −1), and CSO(3, 1, 1) (u = −1, σ = 0).

Using

GIJ = 1

8

⎛
⎜⎜⎝

(3 + cosh 8ζ )sech24ζ −2 tanh2 4ζ 0 0
−2 tanh2 4ζ (3 + cosh 8ζ )sech24ζ 0 0

0 0 4
3 0

0 0 0 2

⎞
⎟⎟⎠

(4.36)

for �I = {ϕ, φ1, φ2, ζ } with I = 1, 2, 3, 4, we can rewrite
the scalar potential in terms of the superpotential as in (4.15).

With all these, we arrive at the BPS equations

A′ = gκ

16
√

2
e−(3ϕ+φ1+φ2)

[
3e4ϕ + e4φ2 cosh 4ζ

(
ve4(ϕ+φ1) + σ

)]
,

(4.37)

ϕ′ = − 1

32
√

2
e−3ϕ−φ1−φ2gκ

[
6e4ϕ

−e4φ2 sech4ζ
[
ve4(ϕ+φ1)(cosh 8ζ − 3) + σ(cosh 8ζ + 5)

]]
,

(4.38)

φ′
1 = 1

32
√

2
e−3ϕ−φ1−φ2gκ

[
6e4ϕ

−e4φ2 sech4ζ
[
ve4(ϕ+φ1)(cosh 8ζ + 5) + σ(cosh 8ζ − 3)

]]
,

(4.39)

φ′
2 = gκ

16
√

2
e−(3ϕ+φ1+φ2)

[
e4ϕ − e4φ2 cosh 4ζ

(
ve4(ϕ+φ1) + σ

)]
,

(4.40)

ζ ′ = − gκ

8
√

2
e−3ϕ−φ1+3φ2 sinh 4ζ

(
ve4(ϕ+φ1) + σ

)
. (4.41)

From these equations, the solutions for scalar fields φ2, φ1,

ϕ, and the warp factor A can be obtained as functions of ζ.

These are given by

φ2 = 1

16
ln

⎡
⎣ sinh 8ζ

√
vσ + C2

1 − C2
1 sech24ζ − C2v2σ 2 sinh2 4ζ

2vσ

⎤
⎦ ,

(4.42)

φ1 = 1

4
ln

⎡
⎣
√
C2

1 + vσ − C2
1 sech24ζ − C1 tanh 4ζ

v

⎤
⎦

− 1

4
ln sinh 4ζ + 3φ2, (4.43)

ϕ = 1

4
ln

⎡
⎣
√
C2

1 + vσ − C2
1 sech24ζ − C1 tanh 4ζ

v

⎤
⎦

+ 1

4
ln sinh 4ζ − 3φ2, (4.44)

A = 3φ2 − 1

2
ln sinh 4ζ (4.45)

in which we have chosen the integration constants for ϕ and
A to be zero for simplicity. To obtain the solution for ζ,

we change r to a new radial coordinate ρ defined by dρ
dr =

e−4ζ−ϕ−φ1+3φ2(ve4(ϕ+φ1) + σ). The solution for ζ is then
given by

e4ζ = tanh

(
gκρ

4
√

2
− C3

)
. (4.46)
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It should be noted that for the case of SO(3, 2)II gauge
group, the SO(3) subgroup lies outside SO(4, 4). A similar
solution with v = σ = −1 can be found by using fṁṅ ṗ

given in (3.50) together with v4̇ = v8̇ = κ

4
√

2
, and the coset

representative

V = e−ϕ t̂11̇−φ1 t̂44̇+φ2(d+ t̂22̇+ t̂33̇)+ζ( t̂14̇− t̂41̇) (4.47)

with the five SO(3) singlets corresponding to the non-
compact generators t̂11̇, t̂44̇, d + t̂22̇ + t̂33̇, t̂14̇, and t̂41̇.

We also note the relation between scalar fields corresponding
to t̂14̇ and t̂41̇ generators arising from consistency between
the BPS equations and the field equations as in the above
analysis.

4.3 SO(2) × SO(2) symmetric domain walls

We now move to domain wall solutions with SO(2) ×
SO(2) symmetry. Gauge groups containing an SO(2) ×
SO(2) subgroup, embedded entirely in SO(4, 4), are SO(5),

SO(4, 1)I,CSO(4, 0, 1) with fṁṅ ṗ given in (3.48) and v4̇ =
v8̇ = − σκ

4
√

2
together with SO(3, 2)II and CSO(2, 2, 1) with

fṁṅ ṗ given in (3.50) and v4̇ = v8̇ = σκ

4
√

2
. In order to incorpo-

rate the two sets of gauge groups within a single framework,
we will choose the SO(2) × SO(2) generators to be X 1̇ and
X 5̇.

The residual symmetry SO(2) × SO(2) is embedded in
SO(4) as 4 → (1, 2) + (2, 1) with 2 denoting the funda-
mental or vector representation of SO(2). As in the previous
cases, decomposing the transformation of all 25 scalar fields
under SO(2) × SO(2) gives

(5, 5) → [(1, 1) ⊕ (1, 2) ⊕ (2, 1)] ⊗ [(1, 1) ⊕ (1, 2) ⊕ (2, 1)]
∼ 5(1, 1) ⊕ 3(1, 2) ⊕ 3(2, 1) ⊕ 2(2, 2). (4.48)

Accordingly, there are five singles corresponding to the
R

+ generator d and the following four non-compact gener-
ators

Y1 = t̂11̇ − t̂44̇, Y2 = t̂22̇ + t̂33̇, Y3 = t̂14̇ + t̂41̇,

Y4 = t̂23̇ − t̂32̇. (4.49)

leading to the coset representative of the form

V = eϕd+φ1Y1+φ2Y2+φ3Y3+φ4Y4 . (4.50)

In this case, consistency between the BPS equations and
field equations requires vanishing φ3 and φ4. With φ3 =
φ4 = 0, the superpotential is given by

W = gκ

16
√

2
eϕ−2(φ1+φ2)

(
2e4(φ1+φ2) + 2u + uσe4(φ2−ϕ)

)
,

(4.51)

and the scalar potential takes the form

V = −ug2κ2

64
e−6ϕ−4φ1

[
8e8ϕ+4φ1 + 4σe4ϕ(e4(φ1+φ2) + u)

−uσ 2e4φ2
]
. (4.52)

The parameters u = ±1 and σ = ±1, 0 correspond to
different gauge groups; SO(5) (u = σ = 1), SO(4, 1)I

(u = −σ = 1), CSO(4, 0, 1) (u = 1, σ = 0), SO(3, 2)II

(u = −σ = −1 or u = σ = −1), and CSO(2, 2, 1)

(u = −1, σ = 0).
The resulting BPS equations read

A′ = gκ

16
√

2
eϕ−2(φ1+φ2)

(
2e4(φ1+φ2) + 2u + uσe4(φ2−ϕ)

)
,

(4.53)

ϕ′ = − gκ

16
√

2
eϕ−2(φ1+φ2)

(
2e4(φ1+φ2) + 2u − 3uσe4(φ2−ϕ)

)
,

(4.54)

φ′
1 = − gκ

16
√

2
eϕ−2(φ1+φ2)

(
2e4(φ1+φ2) − 2u − uσe4(φ2−ϕ)

)
,

(4.55)

φ′
2 = − gκ

16
√

2
eϕ−2(φ1+φ2)

(
2e4(φ1+φ2) − 2u + uσe4(φ2−ϕ)

)
.

(4.56)

Defining a new radial coordinate ρ by dρ
dr = eϕ−2(φ1+φ2),

we find a domain wall solution

φ2 = C1 + 1

16
ln
[
eC3 + σe

ugκρ√
2

]
+ 1

8
ln
[
1 − e

u(C2− gκρ√
2

)
]
,

(4.57)

φ1 = −φ2 − 1

4
ln
[
u(1 − e

u(C2− gκρ√
2

)
)
]
,

(4.58)

ϕ = φ2 + 1

4
ln
[
e
C3− ugκρ√

2 + σ
]
,

(4.59)

A = −5φ2 − 1

2
ln
[
u(1 − e

u(C2− gκρ√
2

)
)
]

− 1

4
ln
[
e
C3− ugκρ√

2 + σ
]

(4.60)

with the integration constantsC1,C2, andC3. For simplicity,
we have chosen an integration constant for A to be zero. As in
the previous cases, by suitably redefining u and v parameters
together with SO(2) × SO(2) singlet scalars, we can find
a similar solution for SO(3, 2)I gauge group in which the
SO(2)×SO(2) residual symmetry lies outside the SO(4, 4).

4.4 SO(2)diag symmetric domain walls

We finally consider supersymmetric domain walls preserv-
ing an SO(2)diag ⊂ SO(2) × SO(2) symmetry. By taking
the product among the various representations in (4.48) to
implement the SO(2)diag subgroup, we find

(5, 5) → 9(1) ⊕ 8(2) (4.61)
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leading to nine singlet scalars. Among these singlets, five of
them correspond to the SO(2)× SO(2) singlets given in the
previous section. The additional four singlets correspond to
the following non-compact generators

Y5 = t̂12̇ − t̂43̇, Y6 = t̂21̇ + t̂34̇,

Y7 = t̂13̇ + t̂42̇, Y8 = t̂24̇ − t̂31̇. (4.62)

The coset representative can be written as

V = eϕd+φ1Y1+φ2Y2+φ3Y3+φ4Y4+φ5Y5+φ6Y6+φ7Y7+φ8Y8 .

(4.63)

It turns out that the resulting T-tensor, superpotential, and
scalar potential are highly complicated. Accordingly, we will
look for some subtruncations to simplify the analysis but
still obtain interesting results. One possibility is to impose
the conditions φ3 = φ4 = 0 together with φ8 = φ7 and
φ6 = −φ5. We have checked that these indeed lead to a
consistent subtruncation.

The truncated coset representative is now given by

V = eϕd+φ1Y1+φ2Y2+φ̃3(Y5−Y6)+φ̃4(Y7+Y8) (4.64)

giving rise to the superpotential and scalar potential

W = gκ

16
√

2
eϕ−2(φ1+φ2)

[
uσe4(φ2−ϕ)

+(2e4(φ1+φ2) + 2u) cosh 4φ̃3 cosh 4φ̃4+
]
, (4.65)

V = − 1

64
e−6ϕ−4φ1ug2κ2

[
8e8ϕ4φ1 − uσ 2e4φ2

+4σe4ϕ(e4(φ1+φ2) + u) cosh 4φ̃3 cosh 4φ̃4

]
. (4.66)

The latter can be written in terms of the former according to
(4.15) using

GIJ = 1

8

⎛
⎜⎜⎜⎜⎜⎝

4 0 0 0 0

0 sech24φ̃3 sech24φ̃4 + 1 sech24φ̃3 sech24φ̃4 − 1 0 0

0 sech24φ̃3 sech24φ̃4 − 1 sech24φ̃3 sech24φ̃4 + 1 0 0

0 0 0 sech24φ̃4 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

(4.67)

for �I = {ϕ, φ1, φ2, φ̃3, φ̃4} with I, J, . . . = 1, 2, 3, 4, 5.

In this case, various gauge groups are identified by the
parameters u = ±1 and σ = ±1, 0 as SO(5) (u = σ =
1), SO(4, 1)I (u = −σ = 1), CSO(4, 0, 1) (u = 1, σ =
0), SO(3, 2)II (u = −σ = −1 or u = σ = −1), and
CSO(2, 2, 1) (u = −1, σ = 0). With all these, we find the

BPS equations

A′ = gκ

16
√

2
eϕ−2(φ1+φ2)

[
(2e4(φ1+φ2) + 2u)

cosh 4φ̃3 cosh 4φ̃4 + uσe4(φ2−ϕ)
]
, (4.68)

ϕ′ = − gκ

16
√

2
eϕ−2(φ1+φ2)

[
(2e4(φ1+φ2) + 2u)

cosh 4φ̃3 cosh 4φ̃4 − 3uσe4(φ2−ϕ)
]
, (4.69)

φ′
1 = − gκ

16
√

2
eϕ−2(φ1+φ2)

[
(2e4(φ1+φ2) − 2u)

sech4φ̃3 sech4φ̃4 − uσe4(φ2−ϕ)
]
, (4.70)

φ′
2 = − gκ

16
√

2
eϕ−2(φ1+φ2)

[
(2e4(φ1+φ2) − 2u)

sech4φ̃3 sech4φ̃4 + uσe4(φ2−ϕ)
]
, (4.71)

φ̃′
3 = − gκ

16
√

2
eϕ−2(φ1+φ2)(2e4(φ1+φ2) + 2u)

sinh 4φ̃3 sech4φ̃4, (4.72)

φ̃′
4 = − gκ

16
√

2
eϕ−2(φ1+φ2)(2e4(φ1+φ2) + 2u)

cosh 4φ̃3 sinh 4φ̃4. (4.73)

Changing the radial coordinate to ρ defined by dρ
dr =

eϕ−2(φ1+φ2), we can solve these equations to find a domain
wall solution

φ̃3 = 1

4
sinh−1

⎡
⎣ 4C5

√
u√

C6
0g

2κ2
(
C6 + 2uσg3κ3ρ4

)2 − 16C2
5

(
C2

1 + u
)

⎤
⎦ ,

(4.74)

φ̃4 = 1

4
tanh−1

⎡
⎣ 4

√
u√

C6
0g

2κ2
(
C6 + 2uσg3κ3ρ4

)2 − 16C2
5

(
C2

1 + u
)

⎤
⎦ ,

(4.75)

φ1 = 1

4
ln

[
C1 tanh 4φ̃3 +

√
C2

1 tanh2 4φ̃3 + u

]
+ 1

4
ln

[
uσgκρ

4
√

2

]
,

(4.76)

φ2 = 1

4
ln

[
C1 tanh 4φ̃3 +

√
C2

1 tanh2 4φ̃3 + u

]
− 1

4
ln

[
uσgκρ

4
√

2

]
,

(4.77)

ϕ = 3

4
ln
[√

2C0uσgκρ
]

+ 1

4
ln sinh 4φ̃4,

(4.78)

A = 1

3
ϕ − 1

3
ln sinh 4φ̃4 (4.79)

in which we have chosen the integration constants for φ2 and
A to be zero.

We end this section by pointing out that domain wall solu-
tions obtained from gaugings in56+1 and8−3 representations
can also be found by a similar analysis. The resulting solu-
tions take the same form as the solutions given in this section
with a sign change in some of the scalar fields.
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5 Conclusions and discussions

We have constructed the embedding tensors of six-dimensio
nal maximal N = (2, 2) gauged supergravity for various
gauge groups arising from the decomposition of the embed-
ding tensor under R

+ × SO(4, 4) ⊂ SO(5, 5) symme-
try. Under this decomposition, viable gauge groups can be
determined from the embedding tensor in 8±1, 8±3, and
56±1 representations. We have pointed out that gaugings
in 8±1 representation without 56±1 is not consistent due
to the linear constraint, and gaugings in 8±3 representa-
tion only lead to a translational gauge group R

8. On the
other hand, gaugings in 56±1 representation give rise to
CSO(4− p, p, 1) ∼ SO(4− p, p)�R

4 gauge groups with
p = 0, 1, 2. Including8±3 representation to56∓1 can enlarge
the gauge groups to SO(4 − p, p+ 1) or SO(5 − p, p). We
have also found a number of half-supersymmetric domain
wall solutions from gaugings in 56−1 and 8+3 representa-
tions with various residual symmetries. The corresponding
solutions for gaugings solely from 56−1 representation can
be straightforwardly obtained from these results by turning
off the 8+3 part.

As pointed out in [32], some of the gaugings under
SO(4, 4) decomposition could be truncated to gaugings of
half-maximal N = (1, 1) supergravity coupled to four vector
multiplets in which supersymmetric AdS6 vacua are known
to exist [48–50]. It would be interesting to explicitly trun-
cate the results given here to half-maximal gauged super-
gravity and obtain new gaugings as well as new supersym-
metric AdS6 vacua. Along this direction, a classification of
gauge groups with known eleven-dimensional origins, aris-
ing from truncating the maximal theory to half-maximal one,
has been given in [40]. It could also be interesting to extend
this analysis to many new gaugings identified in this paper.

On the other hand, uplifting the six-dimensional gauged
supergravity and the corresponding domain wall solutions in
this work and in [17,18] to higher dimensions could also be
worth considering. This could be done by constructing trun-
cation ansatze of string/M-theory to six dimensions using
SO(5, 5) exceptional field theory given in [51,52] and would
lead to interesting holographic descriptions of maximal super
Yang–Mills theory in five dimensions. Finally, finding a holo-
graphic interpretation of the domain wall solutions given in
this paper could also be of particular interest. This could
be done along the line of [53,54] in which a holographic
description from a simple domain wall found in [30] with
SO(5) symmetry has been studied.
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Appendix A: SO(4, 4) branching rules

In this appendix, we collect the decompositions for various
representations of SO(5, 5) under R

+ × SO(4, 4) in our
convention. We note that these branching rules have also
been given in [40].

A.1 Vector

Under R
+ × SO(4, 4) ⊂ SO(5, 5), the SO(5, 5) vector

index is decomposed as M = (−, I,+) where I = 1, . . . , 8
is an SO(4, 4) vector index. Accordingly, an SO(5, 5) vector
VM can be written as

VM = (V−, VI , V+) (A.1)

where VI is an SO(4, 4) vector. With the decomposition of
the SO(5, 5) vector index M = (−, I,+), the SO(5, 5)

invariant metric together with its inverse are given by

ηMN =
⎛
⎝

1
ηI J

1

⎞
⎠ and ηMN =

⎛
⎜⎝

1

ηI J

1

⎞
⎟⎠ .

(A.2)

We have also introduced the SO(4, 4) invariant metric

ηI J = ηI J =
(

14

14

)
(A.3)

where 1n denotes an n × n identity matrix. The SO(4, 4)

vector index can be raised and lowered as V I = ηI J VJ and
VI = ηI J V J .
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The SO(5, 5) generators are defined in vector representa-
tion as

(tMN )P
Q = 4ηP[Mδ

Q
N ] (A.4)

where δMN = 110. These generators satisfy tMN = t [MN ] as
well as the SO(5, 5) algebra
[
tMN , t PQ

] = 4(ηM[P tQ]N − ηN [P tQ]M ). (A.5)

Under the SO(4, 4) decomposition, we define a generator
corresponding to R

+ ∼ SO(1, 1) ⊂ R
+ × SO(4, 4) as

d = t−+ whose explicit form in vector representation is

(d)M
N =

⎛
⎝

−2

2

⎞
⎠ . (A.6)

With d of this form, we can assign the R
+ weights ±1 to the

two singlets of the SO(4, 4) in (A.1). Therefore, the branch-
ing rule for a vector representation reads

10︸︷︷︸
VM

→ 1+1︸︷︷︸
V+

⊕ 1−1︸︷︷︸
V−

⊕ 8 0︸︷︷︸
VI

. (A.7)

A.2 Adjoint

The decomposition of adjoint representation follows from
the branching rule of vector representations. Using M =
(−, I,+), we can decompose the SO(5, 5) generators as

tMN =
⎛
⎝

kJ d
−k I τ I J − pI
−d pJ

⎞
⎠ (A.8)

where we have identified t+I = pI and t−I = k I . From the
SO(5, 5) algebra (A.5), we can derive the following com-
mutation relations

[d, d] = 0, [d, τ I J ] = 0, (A.9)[
d, pI

] = −2 pI , [d, k I ] = +2k I , (A.10)[
pI , pJ

] = 0, [k I , kJ ] = 0, (A.11)[
pI , τ J K

] = 4ηI [J pK ], [k I , τ J K ] = 4ηI [J kK ], (A.12)[
pI , kJ

] = 2(dηI J − τ I J ), (A.13)

[τ I J , τ K L ] = 4(ηI [K τ L]J − ηJ [K τ L]I ). (A.14)

The last commutation relation is the SO(4, 4) algebra imply-
ing that τ I J are SO(4, 4) generators. It follows that the
SO(4, 4) branching rule for the adjoint representation of
SO(5, 5) is given by

45︸︷︷︸
tMN

→ 10︸︷︷︸
d

⊕ 280︸︷︷︸
τ I J

⊕ 8+2︸︷︷︸
k I

⊕ 8−2︸︷︷︸
pI

(A.15)

where the R
+ weights are determined from the commutation

relations given in (A.9) and (A.10).

A.3 Spinor

In order to find the SO(4, 4) branching rule for spinor repre-
sentation, we start from the 32-dimensional SO(5, 5) gamma
matrices given in [40]

�̃1 = σ1 ⊗ σ3 ⊗ 12 ⊗ 12 ⊗ 12, �̃2 = σ1 ⊗ σ1 ⊗ σ2 ⊗ σ1 ⊗ σ2,

�̃3 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ 12, �̃4 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ σ1,

�̃5 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ σ3, �̃6 = iσ1 ⊗ σ1 ⊗ σ3 ⊗ σ1 ⊗ σ2,

�̃7 = iσ1 ⊗ σ1 ⊗ 12 ⊗ σ2 ⊗ 12, �̃8 = iσ1 ⊗ σ1 ⊗ 12 ⊗ σ3 ⊗ σ2,

�̃9 = iσ1 ⊗ σ2 ⊗ 12 ⊗ 12 ⊗ 12, �̃10 = iσ2 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ 12

(A.16)

where {σ1, σ2, σ3} are the usual Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.17)

The SO(5, 5) gamma matrices �̃A with A = 1, . . . , 10 sat-
isfy the Clifford algebra
{
�̃A, �̃B

}
= 2ηAB132 (A.18)

in which ηAB = diag(15,−15) is the SO(5, 5) invariant
metric in diagonal basis. In this explicit representation, the
SO(5, 5) chirality matrix is given by

�̃∗ = �̃1...�̃10 = diag(−116,116) (A.19)

and the SO(5, 5) charge conjugation matrix is

C̃ = iσ2 ⊗ σ3 ⊗ σ3 ⊗ 12 ⊗ 12 (A.20)

satisfying

�̃AC̃ = (�̃AC̃)T and C̃T = −C̃. (A.21)

We now transform all these results to the basis with off-
diagonal metric ηMN given in (A.2). In this basis, the Clifford
algebra reads
{
�̃M , �̃N

}
= 2ηMN132. (A.22)

The 32-dimensional SO(5, 5) gamma matrices in the off-
diagonal basis can be obtained from

�̃M = MM
A�̃A (A.23)

with the transformation matrix

M = 1√
2
(ηdiag + ηoff-diag) = 1√

2

⎛
⎜⎜⎝

1 1
14 14

14 −14

1 −1

⎞
⎟⎟⎠ .

(A.24)

Using this transformation matrix, the relation between diag-
onal and off-diagonal η is found to be

ηMN = MM
A

MN
B ηAB . (A.25)
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The SO(5, 5) gamma matrices are chirally decomposed
as

(�̃M )A
B =

(
(	M )A

B′

(	M )A′ B

)
. (A.26)

with spinor index A = 1, 2, . . . , 32 split according to A =
(A, A′) where A = 1, . . . , 16 and A′ = 17, . . . , 32. We can
raise and lower the chirally decomposed spinor indices with
the charge conjugation matrix given in (A.20) such that

(�̃M )AB = (�̃M )A
C
C̃CB =

(
(	M )AB

(	M )A′B′

)
.

(A.27)

The chirally decomposed 16 × 16 gamma matrices (	M )AB
play an important role in determining explicit forms of the
embedding tensor.

Following [40], SO(4, 4)gamma matrices can be extracted
from the SO(5, 5) ones using the decomposition M =
(−, I,+). The ten 32-dimensional SO(5, 5) gamma matri-
ces are also decomposed as �̃M = (�̃−, �̃ I , �̃+). In the
explicit representation (A.16), only �̃ I can be written as

�̃ I = σ1 ⊗ 	I (A.28)

so that the chirally decomposed 16 × 16 gamma matrices on
the upper-right block and the lower-left block in (A.26) are
the same, i.e., (	I )A

B′ = (	I )A′ B . We can redefine these
16×16 gamma matrices to be the SO(4, 4) gamma matrices
(	I )A

B satisfying the Clifford algebra

{	I , 	J } = 2ηI J116. (A.29)

In this case, the SO(4, 4) chirality matrix is

	9 = 	1...	8 = diag(18,−18), (A.30)

and the SO(4, 4) charge conjugation matrix, satisfying
	IC = (	IC)T and CT = C, is given by

C = σ3 ⊗ σ3 ⊗ 12 ⊗ 12. (A.31)

Decomposing the spinor index A = (m, ṁ) where m =
1, . . . , 8 and ṁ = 1̇, . . . , 8̇, we can write this charge conju-
gation matrix in the form

CAB =
(
cmn

cṁṅ

)
and CAB =

(
cmn

cṁṅ

)
(A.32)

where cmn = cmn = −cṁṅ = −cṁṅ = diag(14,−14).

Besides, we find that the SO(4, 4) gamma matrices are also
chirally decomposed as

(	I )A
B =

(
(γI )m

ṅ

(γI )ṁ
n

)
(A.33)

in which (γI )m
ṅ and (γI )ṁ

n are in turn chirally decomposed
8 × 8 gamma matrices. The spinor index B can be lowered

using the SO(4, 4) charge conjugation matrix as

(	I )AB = (	I )A
CCCB =

(
(γI )mṅ

(γI )ṁn

)
(A.34)

where (γI )ṅm = (γI )mṅ due to (	M )BA = (	M )AB .

Following the same decomposition of spinor indices, we
find the remaining two SO(5, 5) gamma matrices of the
forms

(	−)AB = −√
2

(
cmn

)
and (	+)AB = √

2

(
cṁṅ

)
.

(A.35)

The SO(5, 5) generators in spinor representation satisfy-
ing (A.5) are given by

(tMN )A
B = (	MN )A

B (A.36)

where

(	MN )A
B = 1

2

[
(	M )A

C ′
(	N )C ′ B − (	N )A

C ′
(	M )C ′ B

]
.

(A.37)

It should be noted that the SO(5, 5) generators in spinor
representation given in (A.36) also decompose according to
(A.15) and satisfy the same commutation relations given in
(A.9) to (A.14). In particular, with the explicit representation
(A.16), the R

+ generator in spinor representation is

(d)A
B =

(
18

−18

)
. (A.38)

The SO(4, 4) branching rule for spinor representation is
now straightforward. For a given SO(5, 5) spinor in 16s rep-
resentation �A, we have the decomposition

�A =
(

�m

�ṁ

)
. (A.39)

By assigning the R
+ weights +1 and −1 to �m and �ṁ, we

obtain the branching rule of the form

16s︸︷︷︸
�A

→ 8+1︸︷︷︸
�m

⊕ 8−1︸︷︷︸
�ṁ

. (A.40)

A.4 Vector-spinor

The vector-spinor representation of SO(5, 5) we are inter-
ested in is given by a 16 × 10 matrix θ AM ∈ 144c subject
to the linear constraint (2.7), (	M )AB θ BM = 0. This linear
constraint reduces 160 components of θ AM to 144 in 144c
representation.

With the decomposition of SO(5, 5) vector and spinor
indices as M = (−, I,+) and A = (m, ṁ), we decompose
the θ AM matrix as

θ AM =
(

θm−
1 θmI

3 θm+
5

θ ṁ−
2 θ ṁ I

4 θ ṁ+
6

)
. (A.41)
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It is straightforward to determine that R
+ weights of

(θm−
1 , θ ṁ−

2 , θmI
3 , θ ṁ I

4 , θm+
5 , θ ṁ6 ) are given by (+1,+3,−1,

+1,−3,−1). Finally, as in [32], the SO(4, 4) branching rule
for 144c representation is given by

144c︸︷︷︸
θ AM

→ 56−1︸︷︷︸
ϑmI

3

⊕ 56+1︸︷︷︸
ϑ ṁ I

4

⊕ 8−1︸︷︷︸
θ ṁ+

6

⊕ 8+1︸︷︷︸
θm−

1

⊕ 8+3︸︷︷︸
θ ṁ−

2

⊕ 8−3︸︷︷︸
θm+

5

(A.42)

with

ϑmI
3 = θmI

3 +
√

2

8
(γ I )mṅθ

ṅ+
6 and

ϑ ṁ I
4 = θ ṁ I

4 −
√

2

8
(γ I )ṁnθ

n−
1 . (A.43)

These two definitions follow from the linear constraint
decomposed under SO(4, 4) as

0 = √
2cmnθ

n−
1 − (γI )mṅθ

ṅ I
4 and

0 = √
2cṁṅθ

ṅ+
6 + (γI )ṁnθ

nI
3 . (A.44)

It is also useful to note that ϑmI
3 and ϑ ṁ I

4 satisfy the following
conditions

(γI )ṁnϑ
nI
3 = 0 and (γI )mṅϑ

ṅ I
4 = 0. (A.45)
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