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Abstract We present regular black hole solutions in the
framework of Brane-world gravity sourced by a Gaussian
matter distribution. The black hole metric shares all the com-
mon features of regular black holes in the modified Gen-
eral Relativity (GR) with some exciting features. Consid-
ering the energy momentum tensor for an isotropic fluid
on the brane, the modified Einstein field equation results
with an effective energy momentum tensor that describes
an anisotropic fluid determined by brane world parameters.
Although the effective radial pressure and energy density sat-
isfy the vacuum energy condition, the effective transverse
pressure behaves differently. Gaussian black hole (GBH)
solutions are obtained from a Gaussian matter distribution.
In the paper, a new class of GBH solutions are obtained in
the brane-world gravity with effective normal matter in addi-
tion to exotic matter distribution. In the brane world gravity,
the mass of a GBH depends on the brane tension. The mass
of a GBH formed in the brane world is greater than that at
low energy (i.e., GR). We study the trajectories of the mas-
sive and the massless particles that can be trapped around a
GBH for a set of model parameters. The radii of the photon
spheres around the GBH and the condition for the stability
of the trajectories of the photon spheres are determined. The
properties of the GBHs are studied in detail, including their
possible observable features.

1 Introduction

The idea of the astrophysical object namely a Black hole, has
been conceived long back theoretically. The interest in black
hole grew only after the advent of the theory of general rela-
tivity (GR) by Einstein. In 1916, Schwarzschild first obtained
the exact vacuum solution of Einstein’s field equation in GR,
which is a static black hole solution. The Schwarzschild static
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black hole solution is simple and the Weyl tensor calculated
with the Schwarzschild spacetime is identical to the Rie-
mann tensor i.e., Cμνγ δ = Rμνγ δ because both the Ricci
tensor and Ricci scalar vanishes. Consequently, one obtains
Cμνγ δCμνγ δ = Rμνγ δRμνγ δ = 48G2 M2

c4r6 (where M is the
mass of a Schwarzschild black hole) [1,2]. The curvature
becomes infinite at the origin r = 0, indicating the exis-
tence of a singularity. The Schwarzschild metric cannot be
extended smoothly because the Kretschmann scalar invari-
ant (Rμνγ δRμνγ δ) involves second derivatives of the metric
and the spacetime is no longer well-defined. The presence of
the central singularity underlines the inadequacy of GR as a
theory of spacetime below some length scale.

The discovery of gravitational waves in 2015 by LIGO and
VIRGO collaborations [3–8] made it clear that the detected
gravitational waves were produced from the coalescence of
two massive black holes. The first image of a black hole
discovered by the Event Horizon Telescope (EHT) collabo-
ration in 2019 pointed out that a black hole exists in nature.
It is now generally accepted that supermassive black holes
exist. The discovery of the supermassive black hole at the
center of the M87 galaxy led to a spurt in activities to inves-
tigate compact objects, particularly black holes (BHs) in the
framework of GR and beyond GR. BH is the final stage of a
massive collapsing star, and the study of BHs is an active field
of research in relativistic astrophysics many decades [9]. The
geometric approaches developed to analyze black holes, the
presence of their singularity, in the relativistic solutions, and
their extreme density because of high compactness provided
a good natural laboratory for testing theories of quantum
gravity. In general, it is known that there is a scope for modi-
fication in the gravitational or matter sector in Einstein’s field
equation, leading to modification of the Friedmann equation.
While the modified gravity sector is considered with a linear
combination of scalar curvatures, the geometrical modifica-
tions are usually expressed as an effective modification in
the matter sector, namely, f (R), f (R, T ), f (Q), etc., which
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reflects back into the Einstein’s field equation with effec-
tive energy density and pressure. A modification of the mat-
ter sector does not modify the gravity, instead, it adds new
contributions of matter-energy within the GR. Many alter-
native theories of gravity have come up in recent times to
avoid the singularity problem of the standard Big Bang model
that exists in GR, proposing emergent universe [10–20] and
bouncing [21–33] universes.

In GR, it is known that any singularity occurring at the
event horizon can be removed by a coordinate transforma-
tion [34–36], but the singularity at the centre of the black
hole is a curvature singularity which cannot be removed by a
coordinate transformation [37,38]. The idea of regular black
hole (singularity-free) solution originated in mid-sixties with
Sakharov’s proposal to begin with a vacuum equation of
state (p = −ρ) at very high densities [39]. Sakharov [39]
and Gliner [40] demonstrated that the essential singularity
would not occur when the vacuum is replaced by a vacuum
like medium described by a de Sitter metric. In relativistic
astrophysics, the first regular black hole (RBH) (i.e., non-
singular black hole) having an event horizon was obtained
by Bardeen [41]. RBH in GR is constructed by modifying
the mass of Schwarzschild BHs with a r -dependent func-
tion. Subsequently, a number of black hole solutions in four
dimensions have been obtained [42–49]. Ayo′n-Beato and
Garcia [50] interpreted the Bardeen BH in the framework of
field theory with a magnetic monopole as a source in the non-
linear electrodynamics. In the literature [51–55], the above
approach has been extended to describe the RBH with spher-
ical symmetry.

In 1999, Randall and Sundrum (RS) proposed their first
brane-world model [56] (RS-1) consisting of a positive and
a negative brane tension to resolve the hierarchy problem
in particle physics. In the proposed brane world scenario,
we live on a (3+1) dimensional hypersurface embedded in
a higher dimensional spacetime called bulk. The observed
forces and particles in particle physics are confined on the
(3+1) dimensional brane while gravity propagates freely
in the bulk. Subsequently, Randall and Sundrum proposed
another model [57] (RS-2) by sending the negative tension
brane to infinity. In the RS-2 model, the Newtonian gravity
can be recovered at a low energy limit.The single brane RS-
2 scenario is extremely useful for addressing cosmological
issues and probing astrophysical objects. The motivation of
the paper is to investigate non-singular black holes in the
RS-2 brane world gravity [57] framework inspired by non-
commutative geometry which are known as “Gaussian black
holes” (GBH). In the paper, we obtain GBH solutions in the
RS-2 brane-world and investigate the shadow of the GBH.

The paper is organized as follows: in Sect. 2, mathemat-
ical formalism and modified field equations in brane world
gravity are presented. In Sect. 3, Gaussian Black hole (GBH)
Solutions are obtained, and different features of GBH are dis-

cussed. The cosmological constant � to get de Sitter inner
core of GBH is determined. In Sect. 4, we present an analyti-
cal setup of the GBH solution to investigate the shadow of the
black hole. The effective potential and the shadow behaviour
of the black holes are analyzed in Sect. 5. Finally we briefly
describe the new results in Sect. 6.

2 Mathematical formalism and modified field equation

We consider the modified Einstein’s field equation (EFE) on
the RS-2 [57] three brane is given by

Gαβ = κ2 T ef f
αβ (1)

where κ2 = 8πG, G is Newton’s gravitational constant, α,
and β are four dimensional indices, and the effective energy-
momentum tensor is

T ef f
αβ = Tαβ + 6

λ
Sαβ − 1

κ2 Eαβ (2)

where Tαβ is the energy momentum tensor for the isotropic
fluid on the brane and λ is the brane tension, which corre-
sponds to the vacuum energy density on the brane. The bulk
corrections at a very high energy scale [58,59] led to non-
local quadratic terms in the energy momentum tensor (Sαβ )
and the projection of the Weyl tensor on the brane (Eαβ ) in
eq. (2), are given by

Sαβ = 1

12
Tαβ T − 1

4
TαδT

δ
β + 1

24
gαβ (3Tγ δT

γ δ − T 2),

(3)

Eαβ = − 6

κ2λ

[
Uuαuβ + Prαrβ + 1

3
hαβ(U − P)

]
, (4)

where T is the trace of the energy-momentum tensor, ρ and
p are energy density and pressure, uα is the 4-velocity and rα
is a unit radial vector on the brane, U and P are the nonlocal
energy dark density and nonlocal pressure on the brane of
the 5-dimensional embedding space and the tensor Eαβ is
traceless. It is evident thatEαβ → 0 for the limiting condition
the inverse of brane tension 1

λ
→ 0. Consequently, at this

limit, T ef f
αβ = Tαβ , therefore, one recovers the standard 4D

general relativity. The equation of state (EoS) for U and P
is P = ωU , and the EoS parameter lies in the range −3 <

ω < 2 [59]. The stress-energy tensor on the brane is

Tαβ = ρ uαuβ + p hαβ, (5)

where hαβ = gαβ + uαuβ is the projection of the 5-
dimensional metric on the brane and U = Aρ + C where A
and C are constant model parameters. However, the conser-
vation equation can be written as

dp

dr
= −1

2

dν

dr
(ρ + p). (6)
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We consider a static, spherically symmetric line element
on the brane as

ds2 = −eν(r)dt2 + eμ(r) dr2 + r2(dθ2 + sin2θ dφ2) (7)

where μ(r) and ν(r) are the metric potential. Using the above
metric given by Eq. (7) in Eq. (1) the components of the
modified Einstein field equations [50,60,61] yields

e−μ

(
μ′

r
− 1

r2

)
+ 1

r2 = κ2ρe f f . (8)

e−μ

(
ν′

r
+ 1

r2

)
− 1

r2 = κ2 pef fr (9)

e−μ

(
ν′′

2
− μ′ν′

4
+ ν′2

4
+ ν′ − μ′

2r

)
= κ2 pef ft . (10)

The effective energy density, radial pressures and transverse
pressure are given by

ρe f f = ρ(r)

(
1 + 1

2λ
ρ(r)

)
+ 6U

κ4λ
, (11)

pef fr = p(r) + 1

λ
ρ(r)

(
p(r) + 1

2
ρ(r)

)
+ 2U

κ4λ
+ 4P

κ4λ
,

(12)

pef ft = p(r) + 1

λ
ρ(r)

(
p(r) + 1

2
ρ(r)

)
+ 2U

κ4λ
− 2P

κ4λ

(13)

where ()′ represents derivative w.r.t. r . The effective radial
pressure and the transverse pressure are not same, it leads to
pressure anisotropy. From Eqs. (11) and (12) we obtain

ρe f f + pef fr = (ρ + p(r))
(

1 + ρ

λ

)
+ 4

κ4λ
(P + 2U ).

(14)

The radial null vector lα is selected as l0 = eα/2, lr = ±eβ/2

and li = 0 (i represents other spatial coordinates index).
We determine Rαβlαlβ = eαR00 + eβ Rrr = (eμ+ν )′

eμ+ν which
vanishes when

μ(r) + ν(r) = g(t) (15)

The Schwarzschild metric property can be recovered by
rescaling the time coordinate given by Eq. (15), and for sim-
plicity it really makes earlier considerations

μ(r) + ν(r) = 0. (16)

The above equation yields BH solution with an effective
energy density and radial pressure that satisfies: ρe f f +
pef fr = 0 which yields

(ρ + p)
(

1 + ρ

λ

)
+ 4

κ4λ
(P + 2U ) = 0. (17)

Considering the equation of state P = ω U and using U =
Aρ + C , one obtains

p

ρ
= −1 − 4(Aρ + C)(ω + 2)

κ4ρ(ρ + λ)
. (18)

Therefore it is evident from the Eq. (18) that the vacuum
configuration ρ + p = 0 is possible when

(ω + 2)(Aρ + C) = 0 (19)

unless λ → ∞. Thus we obtain the following: Case I: ω =
−2 and Case II: U = 0 which will be discussed in the next
section.

3 Gaussian black hole solutions and different features

For simplicity we define

f (r) = e−μ(r) (20)

in Eqs. (12)–(13) and the components of the energy momen-
tum tensors can be expressed as

κ2 pef fr = −κ2ρe f f = f (r)

(
1

r2 + f ′

r f (r)

)
− 1

r2 (21)

κ2 pef ft = f (r)

2

[
f ′′

f (r)
+ 2 f ′

r f (r)

]
(22)

Black hole solutions are permitted when the components of
the energy momentum tensor follow

T 0
0 = T r

r , and T θ
θ = T φ

φ . (23)

We consider the distribution of matter density by a Gaussian
source [62,63] in the next para.

The mass of a black hole in a spherically symmetric space-
time is

M = 4π

∫ ∞

0
r2ρ(r)dr. (24)

The density profile T t
t = −ρ, is exponentially decreasing

from a constant value which is given by

ρ = −T t
t = M

(4πl20)3/2
e
− r2

4l2o (25)

where l0 represents the Gaussian distribution free parameter
and M represents the total mass per unit energy of a Gaus-
sian black hole. Nicolini et al. [62,63] first conceived the
idea of a Gaussian black hole employing the parameter θ

that characterize the coordinate of non-commutativity. In the
paper, we use a length scale-free parameter l0 related to the
non-commutative parameter θ as was used in Ref. [64].

The fluid satisfies the equation of state as follows

p = −ρ (26)
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which at a short distance reproduces the “vacuum” state equa-
tion i.e., at r = 0 as ρ(0) = −p(0) but finite, and emanates
from the condition that the effective radial pressure and den-
sity also follow: pef fr = −ρe f f . The following cases are
obtained:

Case I: The effective tangential pressure is given by

pef ft = ρ

[
2

κ4λ
(1 − ω)A − 1 − 1

2
ρ

]
, (27)

for U = Aρ and C = 0. We note the following

(i) pef ft ≥ 0 f or ρ <
4

κ4λ
(1 − ω)A − 2

(i i) pef ft < 0 f or ρ <
4

κ4λ
(1 − ω)A − 2. (28)

Case II: P = U = 0 leads to the transverse effective
pressure given by

pef ft = −ρ

[
1 + 1

2
ρ

]
, (29)

which is negative.
We consider here the first case with U �= 0. The effective

tangential pressure is anisotropic in the brane world scenario,
but as λ → ∞, we get isotropic effective pressure as pef ft =
−ρ and pef fr = −ρ. On integrating Eq. (11) once using Eqs.
(21) and (25) we obtain

f (r) = 1 − Bo

r
− κ2M

2π3/2 r

[(
1 + 6A

κ4λ

)
γ

(
3

2
,
r2

4l20

)

+
√

2M

64π3/2l30λ
γ

(
3

2
,
r2

2l20

)]
(30)

where Bo is an integration constant and the lower incomplete
γ function is γ (s, x) = ∫ x

0 t s−1e−t dt . The metric potential
f (r) → 1 as r → ∞. For point like source we set Bo = 0,
thus the metric function becomes

f (r) = 1 − κ2M

2π3/2 r

[(
1 + 6A

κ4λ

)
γ

(
3

2
,
r2

4l20

)

+
√

2M

64π3/2l30λ
γ

(
3

2
,
r2

2l20

)]
(31)

The BH solution in the brane-world scenario is repre-
sented by the metric potential asymptotically approaches the
Schwarzschild BH solution because the incomplete Gamma

function at infinity attains the value: γ ( 3
2 , r2

4l20
) →

√
π
2 . The

metric potential f (r) is a function of the following model
parameters, namely, (i) the brane tension (λ), (ii) the non-
commutative length (l0), (iii) the equation of state parameter
of the bulk (A) and (iv) mass of the black hole (M). In Fig.
1, we plot the variation of f (r) with r

2l0
for different masses,

for a given set of l0, λ and A and found the following: (i) two
horizons exist and they correspond to an extremal black hole

Fig. 1 Radial variation of f (r) with masses M = 1 (red), 1.15 (blue),
2 (dashed) and 2.5 (green) taking l0 = 10, λ = 100 and A = 1

Fig. 2 Radial variation of f (r) with l0 = 1, 10,100 for M = 2, λ = 1
and A = 1

for M > MrH = 1.5, (ii) degenerate horizons for M = 1.15,
and (iii) for M < 1.15, there is no horizon. The radial varia-
tion of f (r) plotted in Fig. 2 with different non-commutative
parameters l0 for a set of model parameter, and no variation
is observed. The radial variations of f (r) drawn in Fig. 3
with different A for a given set of parameters, l0, mass (M)

and λ, show that as A increases, the depth of the minimum in
f (r) increases. It is also evident that the differences between
the two zeros of gtt also increases.

The variation of the transverse pressure plotted in Fig. 4 for
massive BH with different brane tension and mass of GBH. It
is noted that as the brane tension negative but for lower brane
tension it is positive. Thus the strong energy condition for the
fluid for higher brane tension and lower mass transverse pres-
sure is negative, but it is positive with larger brane tension and
massive GBH. It is found that SEC = ρe f f + pef fr +2pef ft is
negative in the latter case, which requires exotic matter, but in
the former case, the effect of bulk on the transverse effective
pressure of the fluid indicates the presence of normal matter.
However, in the absence of the effect of brane world gravity,
the effective transverse pressure is always found negative.
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Fig. 3 Radial variation of f (r) with A = −1 (green), 0 (blue), 10
(red), 18 (dashed) for M = 2, λ = 1 and l0 = 1

Fig. 4 Radial variation of effective transverse pressure pef ft in the unit
of l20 with A = −1, l0 = 0.05 for the following cases of M

2lo
and λ (i)

100 and 0.01 (dashed) (ii) 50 and 0.01 (blue) (iii) 1 and 0.001 (cyan)
(iv) 10 and 0.001 (red)

We obtain here the noncommutative geometry inspired
Schwarzschild black hole in brane world and the metric
potential is given by

f (r) = 1 − κ2M

4π r

[(
1 + 6A

κ4λ

)
+

√
2M

64π3/2l30λ

]
(32)

The following are the properties of the matter density ρ

in the framework of brane world gravity:

1. Near the origin, i.e., r < l0, dρ
dr � 0 → ρ � ρ(0).

2. Away from the origin for i.e., r > l0, dρ
dr � 0 → ρ �

const. 	 ρ(0).

3. Asymptotically far away i.e., r 
 κ2 M
4π

((
1 + 6A

κ4λ

)
+

√
2M

64π3/2l30 λ

)
, ρ → 0.

The four dimensional GR counter part of the Schwarzschild
solution in non-commutative geometry on the brane is
obtained for the limiting case λ → ∞. The Eq. (31) yields

f (r) = 1 − 4M

r
√

π
γ

(
3

2
,
r2

4l20

)
, (33)

where we substitute κ2 = 8π in the gravitational unit G = 1.
It reduces to the Schwarzschild solution in GR i.e., for a

commutative geometry f (r) = 1 − 2M
r as γ

(
3
2 , r2

4l20

)
→

�( 3
2 ). In Eq. (32), the extra term is a particular feature of

the Gaussian density profile for a Gaussian Black hole in
Brane scenario, which further reduces to that in GR given
by Eq. (33). The event horizon radius is determined from the
vanishing of the gtt , which yields

rH = 2M

[(
1 + 3A

32π2λ

)
2√
π

γ

(
3

2
,
r2
H

4l20

)

+ M

16
√

2π2l30λ
γ

(
3

2
,
r2
H

2l20

)]
. (34)

The event horizon [65] expressed in terms of the upper
incomplete gamma function becomes

rH = 2M

[
1 + 3A

32π2λ

]

−2M

[(
1 + 3A

32π2λ

)
2√
π

�

(
3

2
,
r2
H

4l20

)

− M

16
√

2π2l30λ
γ

(
3

2
,
r2
H

2l20

)]
(35)

The first term is the Schwarzschild solution obtained in
the brane world gravity and the second term is the non-
commutative corrections that originated here. In the ”large

radius” regime
r2
H

4l20

 1, it can be solved by iteration method.

The first order in
(
M
l0

)
is given by

rH = 2MSB

[
1 − M√

πl20
e
− M2

l20

]

+2M∗

(
1 − M√

πl20
e
− 2M2

l20

)
(36)

where M∗ = M2 1
16

√
2π2l30λ

γ

(
3
2 ,

r2
H

2l20

)
and the the Schwarz-

schild mass becomes, MSB = 2 M
(

1 + 3A
32π2λ

)
. However,

as λ → ∞ one recovers GR limiting value of the mass:
MSB = M .
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3.1 de Sitter core

In this section, we discuss de Sitter geometry near the ori-
gin of the GBH solution Eq. (31). As the non-commutative
property does not allow us to reach the centre r = 0, we
use the incomplete gamma function for a short distance (as
permitted in theory determined by the length scale l0) which
is

γ

(
3

2
,
r2

4l20

)
= r3

12l30
− r5

80l50
... ... (37)

using the above expansion in Eq. (31), we get

f (r) = 1 − M(α + βM)r2 + O(r4) (38)

where α =
(

1 + 3A
32π2λ

)
1

3
√

πl0
, β = 1

16π2l60λ
. The Ricci

scalar becomes

R = 12M(α + βM)

which is non-zero at the centre that can be used to describe
a BH without singularity. Consequently, one obtains the de
Sitter line element characterised by an effective cosmological
constant, which is given by

� = 3M

[(
1 + 3A

32π2λ

)
1

3
√

πl0
+ M

16π2l60λ

]
(39)

and the equivalent Ricci scalar in GR is a finite constant
quantity R = 4� in de Sitter spacetime.

The effect of non-commutativity exponentially decreases
at a short distance rHl0 << 1, and for this, the quantum
effect is important. The Eq. (35) is used to determine the
mass of a compact object, which is given by

M =
√

πrH

2

[(
1 + 3A

32π2λ

) (
r3
H

12l30
− r5

H

80l50

)
+ M

32
√

2π3/2l30λ

(
r3
H

3
√

2l30
− r5

H

10
√

2l50

)] . (40)

The corresponding GBH mass given by Eq. (40) in the lim-
iting case is defined as

M0 = lim
rH→2l0

M

consequently a quadratic equation in M is obtained as fol-
lows:

M0

[
M0

120π3/2l30λ
− 8

15

(
1 + 3A

32π2λ

)]
= −2

√
πl0.

We note the following:

Case 1: for 1
λ

→ 0, M0 = 15
√

2l0
4 .

Case 2: for λ → 0, M0 = 2l30√
π
(3A + 16π2).

At a very high energy scale in the brane world framework,
the mass of GBH will be more compared to that in GR when

l20 > 15
√

2π
8(3A+16π2)

and alternatively, the GBH mass will be

less compared to that of GR when l20 < 15
√

2π
8(3A+16π2)

. Thus,
the brane tension is playing a significant role for a massive
GBH.

The black hole temperature or the Hawking temperature
[65] is given by

TH ≡ −
(

1

4π

dgtt
dr

)
r=rH

. (41)

Using Eqs. (31) and (34) in Eq. (41) we derive an expression
for Hawking temperature which is

TH = −
(

1

4π

d f (r)

dr

)
r=rH

= 1

4πrH

⎡
⎢⎢⎢⎣1 − r3

H

4l30

(
1 + 3A

32π2λ

)
2√
π
e
− r2

H
4l20 + M

8π2λ
e
− r2

H
2l20

(
1 + 3A

32π2λ

)
2√
π

γ

(
3
2 ,

r2
H

4l20

)
+ M

16
√

2π2l30λ
γ

(
3
2 ,

r2
H

2l20

)
⎤
⎥⎥⎥⎦ . (42)

For low energy limit, 1
λ

→ 0, it reduces to the four
dimensional GR Hawking temperature for non-commutative
inspired BH [63].

4 Analytical set up

The spacetime metric for the regular BH is given by

ds2 = − f (r) dt2 + f (r)−1 dr2 + r2(dθ2 + sin2 θ dφ2) (43)

where f (r) = 1− κ2 M
2π3/2 r

[(
1+ 6A

κ4λ

)
γ

(
3
2 , r2

4l20

)
+

√
2M

64π3/2l30λ

γ

(
3
2 , r2

2l20

)]
. The Lagrangian for a free particle will be used

to determine the radius of photon sphere which is
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L = 1

2
gμν ẋ

μ ẋν . (44)

where (̇) = d
dτ

and τ is the affine parameter. Expanding Eq.
(44) we get

2L = − f (r)ṫ2 + 1

f (r)
ṙ2 + (r2θ̇2 + sin2 θφ̇2) (45)

To obtain trajectory of the light path of the photon around
the GBH, we consider θ and φ as free parameters, and set
θ = π

2 . The momenta are given by

Pt = ∂L
∂ ṫ

= − f (r)ṫ, Pr = ∂L
∂ ṙ

= 1

f (r)
ṙ ,

Pθ = ∂L
∂θ̇

= r2θ̇ , Pφ = ∂L
∂φ̇

= r2 sin2 θφ̇. (46)

Now as defined above, θ = π
2 , and at the equatorial plane,

we get

∂L
∂ ṫ

= constant, (47)

the energy (E) and angular momentum (J ) at r → ∞ are
obtained from

f (r) ṫ = E, Pφ = r2φ̇ = J. (48)

The Hamilton–Jacobi equation is the most general method
to find the geodesic equation of motion of photon (photon
orbit) around NSBH. In higher dimensions

∂S

∂τ
= H = −1

2
gμν ∂S

∂xμ

∂S

∂xν
(49)

where gμν is the inverse of the metric and S is the Jacobian
given by

S = 1

2
m2τ − E + Jφ + Sr (r) + Sφ(φ) (50)

where Sr (r) and Sφ(φ) are functions of r and φ and m is the
mass of the test particle, it is zero for photon. The Hamilton–
Jacobi Eq. (49) can be rewritten as

r4 f 2(r)

(
∂S

∂τ

)
= E2r4 − r2 f (r)(K + J 2) (51)

1

sin2 φ

(
∂Sφ

∂φ

)2

= K − J 2cot2φ (52)

where K is the Carter constant [66] and f (r) is given in
Eq. (31). Using the above Eq. (46) in Eq. (49) we get the
following

ṫ = E

f (r)
, φ̇ = J

r2 sin2 φ
;

r2ṙ = ±√
R, (r2 sin2 φ) φ̇ = ±√

�i (53)

where “+” and “−” sign corresponds to motion of photon
either in outgoing or, incoming radial direction. For the null
curves the Eqs. (52) yields

R(r) = E2r4 − r2 f (r) (K2 + J 2), (54)

�(φ) = K − J 2 cot2 φ. (55)

The characteristics of photons near the black hole can be
defined by two impact parameters, which are functions of
the constants E , J and K. For general orbit we define the
impact parameters ξ = J

E and η = K
E2 . The photon captured

by the gravitational field of the GBH will orbit around it. It
forms a boundary of the GBH. The boundary of the shadow
of a GBH can be estimated from the effective potential. The
radial null geodesic from Eqs. (51) and (53) combined to
obtain the following equation:
(
dr

dτ

)2

+ Vef f = 0, (56)

where Vef f is the effective potential. For the radial motion
we obtain

Vef f = f (r)

r2 (K + J 2) − E2

=
[

1

r2 − κ2M

2π3/2 r3

((
1 + 6A

κ4λ

)
γ

(
3

2
,
r2

4l20

)

+
√

2M

64π3/2l30λ
γ

(
3

2
,
r2

2l20

))]
(K + J 2) − E2.

(57)

The effective potential is identical to the classical equa-
tion describing the motion of a massless particle in a 1-
dimensional potential V (r) with its energy 1

2 E
2. The poten-

tial V (r) is a function of a set of physical quantities, namely,
Mass (M), angular momentum (J ), Carter constant K,
energy (E), brane tension (λ), A, and the noncommutative
parameter (l0). The radial variation of the potential V (r) in
Fig. 5 is drawn for different masses of the BHs; the poten-
tial depth is found to increase with the increase in energy.
The Fig. 6 is drawn for different energy for a given mass of
BHs, the particles approaching the BH are trapped, and for
less massive BH the particles will follow an unstable trajec-
tory. However, it is evident from Fig. 7 that as the angular
momentum (J ) of the incoming particles increases, the parti-
cles will be trapped in the stable orbit for lower (J ) and in the
unstable circular orbits for higher J , around the black hole.
It is evident that the separation between the two zeros of the
potential is not altered for different angular momentum (J ),
but the minimum of the potential depth gradually increases
with an increase in the angular momentum (J ) i.e., for higher
energy particles. There is a maximum of Vef f (r) for every
value of the angular momentum, but the height of the max-
ima diminishes with the decrease in angular momentum (J ).
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Fig. 5 Radial variation of the effective potential for M =10 (red), 5
(blue), 2 (dashed) in the unit of in the unit of 2l0

Thus orbits of the photons are different for different J . The
particles are bounded for a radius r < rmin and unbounded
in the range rmin < r < rmax . The range of values can be
determined from the sketch. It is found that rmin increases as
the angular momentum (J ) increases. The photons will fly
away from the Gaussian BH and a lower bound on the angular
momentum J exists, which originates a photon sphere around
the BH. In the next paragraph, we analyze the shadow of a
static Gaussian Black hole (assuming a very slow rotation of
BH).

The photon orbits are circular and unstable for a maximum
value of the effective potential. The unstable circular orbit
determines the boundary of the apparent shape of the shadow.
The maximal value of the effective potential corresponds to
a circular orbit, and we note that an unstable photon satisfy

Vef f
∣∣∣
r=rp

= dVef f
dr

∣∣∣
r=rp

= 0, R(r) = dR(r)

dr

∣∣∣
r=rp

= 0

(58)

Using Eqs. (57) and (58), we get

f (rp)

r2
p

(K + J 2) − E2 = 0

rp f ′(rp) − 2 f (rp)

r3
p

(K + J 2) = 0. (59)

The photon radius is obtained from

rp f
′(rp) − 2 f (rp) = 0

which is

rp = 6M

[(
1 + 3A

32π2λ

) (
√

π − M

l20
e
− M

l20

)

+
√

2M

64π2l30λ

(
1 − M√

πl20
e
− M

l20

)]
(60)

obtained by iteration.

Fig. 6 Radial variation of the effective potential for E2= 1 (dashed),
2 (blue), 3 (red) for M = 10 in the unit of 2l0

Fig. 7 Radial variation of the effective potential for J= 10 (dashed), 8
(blue), 5 (red), 4 (cyan) for M = 5 in the unit of 2l0

5 Effective potential and shadow behaviour of GBH

We define the impact parameters η and ξ that are functions of
the energy E , angular momentum (J ) and the Carter constant
(K) respectively as

ξ = J

E
, η = K

E2 . (61)

Using Eq. (58) with
Vef f
E2 = 0 and R

E2 = 0, we get

η + ξ2 = r2
p

f (rp)
, η + ξ2 = 4r2

p

r f ′(rp) + 2 f (rp)
. (62)

The above equations yield,

η + ξ2 = 5r2
p

rp f ′(rp) + 3 f (rp)
, (63)

where the right hand side is also
r2
p

f (rp)
, in the observer’s

frame the shadow can be described properly making use of
the celestial coordinates α and β [67]. Following the defini-
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Fig. 8 Shadow of GBH with M= 3 and l0= 0.1 (red), 5 (black), 0.5
(blue)

tion introduced by Chandrasekhar [68] we get

α = lim
rp→∞

(
rp Pφ

Pt

)
, βi = lim

rp→∞

(
rp Pr

Pt

)
. (64)

For an observer on the equatorial plane, these equations can
be written as

η + ξ2 = α2 + β2 = r2
p

f (rp)
(65)

the radius of the shadow is Rbhs = rp√
f (rp)

. The form of f (r)

is complex and therefore, we study numerically. Figure 7
shows that as the mass increases, the radius of the shadow also
increases. However, the shadow of the photon orbit around
the BGBH will be studied elsewhere with non negligible
rotation.

We plot shadow of GBH with a given mass M = 3 units
for l0 = 0.1 (red), 0.5 (blue), 5 (black) in Fig. 8, and l0 =0.1
(red), 4.0 (blue), 1.0 (green) in Fig. 9. It is evident that for
l0 = 4 unit or greater the radii decreases.

6 Discussion

In the paper, we present a Gaussian black hole (GBH) in the
framework of brane world gravity with a Gaussian distribu-
tion of the energy density. GBHs obtained here are regular
spherical black holes inspired by non-commutative geome-
try. The radial variation of the GBH metric potential is found
to depend on the model parameters, namely, E , J , K, l0, A
and λ. We consider a given set of values of the model param-

Fig. 9 Shadow of GBH with mass M = 3 with l0= 0.1 (red), 4 (blue),
1.0 (green)

eters to describe GBH with properties that are acceptable.
We note from Figs. 1, 2 and 3, that there is a minimum mass
of the GBH (say MrH ) for a given set of model parameters
below which BH does not exist, one event horizon exists for
BH mass M = MrH (where MrH is the critical mass) and
two event horizons exist for M > MrH . The lower limit on
the critical mass of GBH (MrH ) is found to be determined
by Brane world model parameters. For the interior fluid with
isotropic pressure on the brane, it is evident that in the RS-2
brane scenario, the matter part of the modified Einstein field
equation can be described by an effective anisotropic mat-
ter distribution. The effective energy density, radial pressure,
and transverse pressure are determined, and we determine the
condition for a black hole solution in the RS-2 brane model,
which also satisfy, ρe f f + pef fr = 0. The above constraint
that emerges in the brane world coincides with the vacuum
condition of an isotropic fluid p = −ρ in GR. However,
the effective transverse pressure in Brane world is different
from the isotropic pressure (p) in GR. The effective trans-
verse pressure pef ft , for GBH in Fig. 4 shows that near the
black hole pef ft �= 0. It is evident that for a massive GBH,
the effective transverse pressure is negative (shown by blue
and dashed curves) and for GBH with lower mass, the trans-
verse effective pressure is positive (shown by cyan and red
curves in Fig. (4)). The latter result for the effective trans-
verse pressure obtained in Brane world scenario is new and
interesting as it indicates existence of normal matter in GBH,
this is not possible in GR. The event horizon is determined
in Eq. (35). The de Sitter inner core of a GBH is determined
near the centre of the GBH and the corresponding value of
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the cosmological constant. We determined the limiting black
hole mass (M0) for the following two cases: (i) 1

λ
→ 0 and

(ii) λ → 0 and found that at a very high energy scale, the lim-
iting mass of GBH is more than that of the mass of the GBH
at low energy. Thus a massive GBH is permitted in the Brane
world scenario compared to that of a GBH in GR inspired
by non-commutative geometry in a restrictive domain of the
brane tension. We also determine the Hawking temperature of
GBH and found the temperature is smaller than that of GR in
a non-commutative inspired BH [63]. The non-commutative
inspired BH in the brane world does not end up with a sin-
gularity at the end stage of the black hole evaporation.

We also studied the shadow of the GBH (with slow rota-
tion) in detail. The effective potentials are drawn with the
radial coordinates away from the centre of GBH and found
that as the mass of GBH increases, the event horizon size
diminishes (Fig. 5). The event horizon does not depend on
the parameter E2 (Fig. 6), particles with negative energy can
reach very near the GBH as evident from Figs. 5 and 6 for
a set of model parameters. The radius of the photon sphere
around the GBH is determined. Two distinct horizons are
observed for different angular velocities (J ) in Fig. 7; the
horizon near the GBH is independent of J , but the horizon
size at the farthest distance increases with the decrease of J .
The trajectories of the particles having large spin values can
be derived from Fig. 7. The photons from a source while graz-
ing a GBH will be trapped and the photons orbit around the
GBH with definite radii depending on its energy and angular
velocity. There are stable and unstable orbits that produces
the photon sphere around the GBH. The two dimensional
diagram of the photon sphere is drawn in Fig. 8, it is found
the radius of the sphere of photons will be more for a massive
GBH. The existence of a massive GBH with no singularity
inspired by non-commutative geometry is found in the Brane
world scenario, and the mass of GBH depends on the brane
tension. In the GBH, the energy density, the pressures are all
finite at the centre with a finite mass determined by the brane
tension (λ). GBH formed with a small brane tension is found
to have a large mass, may be a superrmassive black hole can
be accommodated here. Thus GBHs that are formed in the
brane world gravity are exciting astrophysical objects as the
current detection of gravitational waves supports such black
holes. It is also interesting to investigate in other modified
theories of gravity. The shadow of a black hole will be dis-
torted in the presence of rotation of the GBH, which will be
presented elsewhere.
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