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Abstract It was demonstrated that the lattice simulation of
B-meson light-cone distribution amplitude (LCDA) is feasi-
ble via the quasi-distribution amplitude (quasi-DA) in large
momentum effective theory (LaMET). The structures of log-
arithmic moments (LMs) of B-meson quasi-DA are explored
in this work. The one-loop results indicate mixing in the
matching: the n-th LM would be not only factorized into
the n-th LM of LCDA, but also other moments with differ-
ent power, accompanied by short distance coefficients. These
results supply the understanding of the matching in LaMET
and may provide guidance to the lattice study of LMs or other
parameters of B-meson LCDA.

1 Introduction

The B-meson light-cone distribution amplitudes (LCDAs)
serve as a fundamental quantity for characterizing the internal
structure of B-mesons in terms of their constituent quarks and
gluons. Initially introduced to capture the essence of generic
exclusive B-decays, these distribution amplitudes have since
played a pivotal role in the development of factorization the-
orems [1–8].

In the realm of numerous hard exclusive reactions, the fac-
torization theorem highlights the significance of the inverse
moment (IM) of the LCDA, particularly in leading-twist con-
tributions. Notably, the IM holds crucial phenomenological
relevance, governing leading-power spectator interactions in
diverse processes such as leptonic decays (B → γ �ν) [9],
semileptonic decays (B → π�ν) [10], and hadronic decays
(B → ππ ) [11]. Additionally, the IM plays a crucial role in
constructing models for LCDA [12–14].

When the analysis of B-meson decays extends beyond the
tree level, the logarithmic moments (LMs) become essen-
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tial, particularly in precision studies such as B → γ �ν,
where they dominate theoretical errors [15]. This empha-
sizes the critical role that both IM and LMs play in advanc-
ing our understanding of B-meson decays and underscores
their importance in theoretical modeling and precision cal-
culations.

Despite the crucial significance of IMs and LMs, our
understanding of them remains limited. This is primarily due
to their encoding of information on nonperturbative dynam-
ics, making their computation challenging from the first prin-
ciples of QCD. Existing results on IM and LMs are largely
model-dependent, lacking satisfactory constraints. This lim-
itation hampers the precision of theoretical predictions in rel-
evant studies within B physics. Consequently, there is a clear
imperative to prioritize the determination of these moments
in a model-independent manner, addressing a critical gap in
our knowledge and advancing the field of B physics. Nonper-
turbative methods such as lattice QCD offers an alternative
way out, the continuum HQET community would like a sim-
ulation on IM and LMs on the lattice. However, a practical
difficulty is that these moments are defined in terms of the
bilocal operators with lightlike separation which cannot be
related to local operators, making the direct lattice simulation
on Euclidean space essentially unfeasible.

In the last decade, it was pointed out that this difficulty
can be overcome by employing the large-momentum effec-
tive theory (LaMET) [16,17] (see also [18–20] for reviews
). This is realized by simulating appropriately chosen equal-
time correlations on the lattice and then converting them to
the desired physical quantities. In addition to LaMET, other
related proposals such as pseudodistributions [21,22] and
lattice cross sections [23,24] also made many progresses in
accessing parton physics on the lattice. In the past few years,
the ideas of lattice parton physics have also been applied to
the structure of heavy hadrons [25–30]. The IM of B-meson
quasi-DA has been introduced and studied in [31]. It was
found that the IM of quasi-DA can be factorized into IM and
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the first two LMs of LCDA. This implies the existence of
a mixing matrix which connects moments of quasi-DA and
moments of LCDA. Furthermore, the study of moments of
the quasi-DA in itself is of interest, as it provides valuable
insights into the characteristics of perturbative matching in
LaMET. In this work, we extend the investigation to include
the LMs of the B-meson quasi-DA. A comprehensive theo-
retical analysis of both the IM and LMs in LaMET will be
conducted, with a specific focus on presenting the one-loop
mixing matrix. Additionally, a numerical analysis of the LMs
of the quasi-DA will be performed.

The rest of this paper is organized as follows. We define
the IM and LMs of B-meson quasi-DA in Sect. 2. In Sect. 3,
we perform the one-loop calculation on IM and LMs of quasi-
DA and LCDA, respectively; The discussion on factorization
formula and a brief phenomenological analysis will be given
in Sect. 4. The last section includes a brief summary and an
outlook for future works.

2 Inverse and logarithmic moments of quasidistribution
amplitude

We follow the notations in [31]. The B-meson LCDA
φ+
B (ω,μ) in momentum space can be deduced from the

Fourier transform of the LCDA in coordinate space

φ+
B (ω,μ) = v+

2π

∫ +∞

−∞
dη eiωv+η φ̃+

B (η, μ), (1)

here vμ is the heavy quark velocity satisfying v2 = 1 and
v+ ≡ n+·v (v− ≡ n−·v), with n± being the unit light-cone
vectors

n+μ = 1√
2
(1, 0, 0, 1), n−μ = 1√

2
(1, 0, 0,−1). (2)

The LCDA in coordinate space φ̃+
B (η, μ) is defined through

the renormalized HQET matrix element of a light-cone oper-
ator [32]
〈
0 |q̄(ηn+)n/+γ5W (ηn+, 0)hv(0)| B̄(v)

〉
= i f̃B(μ)M φ̃+

B (η, μ)v+ , (3)

where W (ηn+, 0) = P
{
Exp

[
igs
∫ η

0 dx n+·A(xn+)
]}

is
Wilson line connecting the light and heavy quark fields,
ensuring the gauge invariance; f̃ B(μ) is the B-meson
decay constant in HQET [33]. Therefore, φ+

B (ω,μ) can be
expressed in terms of the nonlocal and local matrix elements
as

φ+
B (ω,μ) = v+

∫ +∞

−∞
dη

2π
eiωv+η

×
〈
0 |q̄(ηn+)n/+γ5W (ηn+, 0)hv(0)| B̄(v)

〉
〈
0 |q̄(0)n/+γ5hv(0)| B̄(v)

〉 . (4)

The first IM of B-meson LCDA is defined as

λ−1
B (μ) ≡

∫ ∞

0
dω

φ+
B (ω,μ)

ω
, (5)

while the logarithmic moments are [34]

σn(μ) ≡ λB(μ)

∫ ∞

0

dω

ω
lnn

μ

ω
φ+
B (ω,μ). (6)

According to [27], the quasi-DA is defined through the
equal-time matrix element in HQET,

ϕ+
B (ξ, vz, μ) = vz

∫ +∞

−∞
dτ

2π
eiξvzτ

×
〈
0 |q̄(τnz)n/zγ5W (τnz, 0)hv(0)| B̄(v)

〉
〈
0 |q̄(0)n/zγ5hv(0)| B̄(v)

〉 .

(7)

Here, nzμ = (0, 0, 0, 1) and vz ≡ nz ·v. We will work in a
Lorentz boosted frame of the B-meson in which v+ � v−
and v⊥μ = 0. Because there is no time-dependence in Eq. (7),
the quasi-DA can be simulated directly on the lattice. Note
that the support of quasi-DA is (−∞,∞) while for LCDA
the support is [0,∞). As in [31], we define the first IM of
quasi-DA as

λ̃−1
B (vz, μ) ≡ P. V.

∫ ∞

−∞
dξ

ϕ+
B (ξ, vz, μ)

ξ
, (8)

and similarly, the logarithmic moments of quasi-DA can be
defined as

σ̃n(v
z, μ) ≡ λ̃B(vz, μQ)

× P. V.

∫ ∞

−∞
dξ

ξ
lnn

μ

|ξ |ϕ
+
B (ξ, vz, μ) , (9)

where the Cauchy principal value P. V. is introduced as a
prescription of the singularities at ξ = 0 in the integrands in
Eqs. (8) and (9). One can also utilize other prescriptions, see,
e.g., Ref. [31].

3 One-loop results

To calculate the radiative corrections of IM and LMs at
one-loop, we replace the B-meson state with a heavy b
quark plus an off-shell light quark. The off-shellness of
the initial light quark serves as an infrared (IR) regulator,
k2 = 2k+k− − k2⊥ = kt2 − kz2 − k2⊥. The dimensional reg-
ularization (d=4−2ε) with modified minimum subtraction
scheme (MS scheme) is utilized in our calculation.

The calculation is performed in Feynman gauge. The rele-
vant Feynman diagrams at one-loop are shown in Fig. 1. The
results of the IM and the first two LMs of LCDA are:

λB(μ) = k0 + αsCF

4π
k0
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Fig. 1 The Feynman diagrams for calculating IM and LMs of quasi-
DA and LCDA. The red dashed line represents the gauge link, while
the blue double line denotes the heavy quark in HQET. The single line
represents the light quark

×
[

2 ln2 μ

k0 − 2 ln
μ2

−k2 − 4 + 3π2

4

]
+ O(α2

s ),

(10a)

σ1(μ) = ln
μ

k0 + 1

k0 ln
μ

k0 λ
(1)
B + αsCF

4π

1

k0

×
[

− 2 ln3 μ

k0 + 1

12
ln

μ

k0

(
48 − 17π2

)

+
(

2 ln
μ

k0 + π2

3

)
ln

μ2

−k2 + 10ζ(3)

]
+ O(α2

s ),

(10b)

σ2(μ) = ln2 μ

k0 + 1

k0 ln2 μ

k0 λ
(1)
B

−αsCF

4π

1

k0

[
2 ln4 μ

k0 + ln2 μ

k0

(
− 4 + 25π2

12

)

− ln
μ2

−k2

(
2 ln2 μ

k0 + 2π2

3
ln

μ

k0 + 4ζ(3)

)

−28 ln
μ

k0 ζ(3) + π4

10

]
+ O(α2

s ). (10c)

These moments are expressed in series of O(αs), here
k0 = k+/v+ = kz/vz , and ζ(s) is Riemann zeta function.
The k2 in logarithm serves as IR regulator which will can-
cel with the IR divergence in corresponding quasimoments.
Similarly, the results of IM and the first two LMs of quasi-DA
are:

λ̃B(vz, μ) = k0

+αsCF

4π
k0
[

2
(
2 ln 2vz + 1

)
ln

μ

k0 − 2 ln
k02

−k2

−2 ln 2vz
(
ln 2vz + 3

)+ 2 + 5π2

6

]
+ O(α2

s ),

(11a)

σ̃1(vz, μ) = ln
μ

k0 + 1

k0 ln
μ

k0 λ̃
(1)
B + αsCF

4π

1

k0

×
[

− 2
(
2 ln 2vz + 1

)
ln2 μ

k0

− ln
μ

k0

(
− 2 ln2 2vz − 6 ln 2vz + 2 + 11π2

6

)

+
(π2

3
+ 2 ln

μ

k0

)
ln

k02

−k2

+π2
(

1

6
+ ln 2vz

)
+ 6ζ(3)

]
+ O(α2

s ), (11b)

σ̃2(vz, μ) = ln2 μ

k0 + 1

k0 ln2 μ

k0 λ̃
(1)
B − αsCF

4π

1

k0

×
[

2
(
2 ln 2vz + 1

)
ln3 μ

k0

+
(

−2 ln2 2vz − 6 ln 2vz + 2 + 17π2

6

)
ln2 μ

k0

−
(

2π2 ln 2vz + π2

3

)
ln

μ

k0

−4ζ(3)

(
ln

μ2

−k2 + ln
μ

k0

)

− ln
μ

k0 ln
(k0)2

−k2

(
2 ln

μ

k0 + 2π2

3

)

−8ζ(3)
(
2 ln 2vz + 1

)+ 7π4

30

]
+ O(α2

s ). (11c)

It is worth noting that these moments of quasi-DA change
dynamically under a boost along z direction, whose depen-
dence is encoded in the nontrivial expressions of the heavy
quark velocity v.

4 Factorization formula in LaMET

In LaMET, the quasi-quantities can be linked to their light-
cone counterparts via a matching formula. Given that neither
the moments of LCDA nor quasi-DA involve dependencies
on ω and ξ , the matching relations would in the form of
multiplicative relationships instead of convolutions. In [31],
the factorization formula was written down for IM of quasi-
DA by observing that the lnn(μ/k0) terms in λB(μ) and
λ̃B(vz, μ) are related to the logarithmic moments defined in
Eq. (6),

λ̃B(vz, μ) = λB(μ)
[
C0
(
vz
)+ C1

(
vz
)
σ1 (μ)

+C2
(
vz
)
σ2 (μ)

]
+ O(1/vz). (12)
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Table 1 Numerical values of inverse and logarithmic moments in terms of HQET sum rule [2,11,34]. The scale is fixed to be μ = 1 GeV

λB σ1 σ2 σ3 σ4

0.35 ± 0.15 GeV 1.52 ± 0.12 3.38 ± 0.92 13.54 ± 1.20 46.92 ± 16.47

Performing the perturbative expansion, at tree level, we have
C (0)

0 = 1,C (0)
i �=0 = 0. At one-loop, making use of Eqs. (10a)

and (11a), one has

C (1)
0

(
vz
) = αsCF

4π

(
− 2 ln2 2vz − 6 ln 2vz + π2

12
+ 6
)
,

C (1)
1

(
vz
) = αsCF

4π

(
4 ln 2vz + 6

)
,

C (1)
2

(
vz
) = αsCF

4π

(
− 2
)
. (13)

This result is consistent with the expression in [31]. For
the quasilogarithmic moment σ̃1, the matching formula is
expected to be

σ̃1(v
z, μ) = λB(μ)

λ̃B(vz, μ)

[
B0
(
vz
)+ B1

(
vz
)
σ1 (μ)

+ B2
(
vz
)
σ2 (μ) + B3

(
vz
)
σ3 (μ)

]

+ O(1/vz) . (14)

The tree level results of matching coefficients Bi s are B(0)
1 =

1, B(0)
i �=1 = 0. According to Eqs. (10b) and (11b), the one-loop

result reads

B(1)
0

(
vz
) = αsCF

4π

(
π2 ln 2vz − 4ζ(3) + π2

6

)
,

B(1)
1

(
vz
) = αsCF

4π

(
− 2 ln2 2vz − 6 ln 2vz − 11

12
π2 + 6

)
,

B(1)
2

(
vz
) = αsCF

4π

(
4 ln 2vz + 6

)
,

B(1)
3

(
vz
) = αsCF

4π

(
− 2
)
. (15)

Similarly, the matching formula for quasilogarithmic moment
σ̃2 is

σ̃2(v
z, μ) = λB(μ)

λ̃B(vz, μ)

[
A0
(
vz
)+ A1

(
vz
)
σ1 (μ)

+A2
(
vz
)
σ2 (μ) + A3

(
vz
)
σ3 (μ)

+A4
(
vz
)
σ4 (μ)

]
+ O(1/vz). (16)

At tree level, we have A(0)
2 = 1, A(0)

i �=2 = 0. The next-to-
leading order corrections of these hard coefficients are

A(1)
0

(
vz
) = αsCF

4π

(
16ζ(3) ln 2vz + 8ζ(3) − 2

15
π4
)
,

A(1)
1

(
vz
) = αsCF

4π

(
2π2 ln 2vz − 24ζ(3) + π2

3

)
,

A(1)
2

(
vz
) = αsCF

4π

(
− 2 ln2 2vz − 6 ln 2vz − 23

12
π2 + 6

)
,

A(1)
3

(
vz
) = αsCF

4π

(
4 ln 2vz + 6

)
,

A(1)
4

(
vz
) = αsCF

4π

(
− 2
)
. (17)

The effectiveness of LaMET relies on that the moments of
quasi-DA and LCDA share the exactly same IR properties.
It indicates that the matching coefficients do not depend on
the IR regulator ln(−k2), as well as k0 which is related to the
momentum of external light quark. One can see in Eqs. (13),
(15) and (17) the matching coefficients fulfill these require-
ments.

Another intriguing observation is that C (1)
1 , B(1)

2 , and

A(1)
3 exhibit remarkable identicality at one-loop level. The

same thing happens with C (1)
2 , B(1)

3 and A(1)
4 . The reason

behind it is that these coefficients represent mixing with
higher-order power of logarithmic moments (the IM can be
regarded as the zeroth logarithmic moment). We find that
for a certain quasilogarithmic moment σ̃n , the mixing with
higher-power logarithmic moments σn+1, σn+2 is determined
by the λB(μ)/̃λB(vz, μ) term in the factorization formulas
Eqs. (12), (14) and (16). The appearance of higher-power log-
arithmic moments during the calculations on σ̃n(v

z, μ) and
σn(v

z, μ) at one-loop will cancel each other out.
Based on these analyses, a complete mixing matrix can be

written down

⎛
⎜⎜⎜⎜⎜⎜⎝

1
σ̃1

σ̃2

·
·

σ̃n

⎞
⎟⎟⎟⎟⎟⎟⎠

= λB

λ̃B

⎛
⎜⎜⎜⎜⎜⎜⎝

H1,1 H1,2 H1,3 0 0 · · 0 0 0
H2,1 H2,2 H2,3 H2,4 0 · · 0 0 0
H3,1 H3,2 H3,3 H3,4 H3,5 · · 0 0 0

· · · · · · · · · ·
· · · · · · · · · ·

Hn,1 Hn,2 Hn,3 Hn,4 Hn,5 · · Hn,n Hn,n+1 Hn,n+2

⎞
⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
σ1

σ2

.

.

σn
σn+1

σn+2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18)
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Fig. 2 The inverse moment (upper panel) and logarithmic moments
(lower panel) of quasi-DA as functions of vz , obtained from numerical
values of inverse and logarithmic moments of LCDA through HQET
sum rule and factorization formula in Eq. (18)

with Eqs. (12), (14) and (16) as its first three rows. Some
of the matching coefficients have been calculated or deduced
at one-loop,

⎧⎪⎨
⎪⎩

H1,1 = C (0)
0 + C (1)

0

H1,2 = C (1)
1

H1,3 = C (1)
2

,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H2,1 = B(1)
0

H2,2 = B(0)
1 + B(1)

1

H2,3 = B(1)
2

H2,4 = B(1)
3

,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H3,1 = A(1)
0

H3,2 = A(1)
1

H3,3 = A(0)
2 + A(1)

2

H3,4 = A(1)
3

H3,5 = A(1)
4

,

and

⎧⎨
⎩

Hi,i+1 = αsCF
4π

(4 ln 2vz + 6)

Hi,i+2 = αsCF
4π

(−2)

.

(19)

The matching formula in Eq. (18) may provide a con-
venient approach to extract the inverse and logarithmic
moments of B-meson LCDA. λ̃B and σ̃n can be expressed as
polynomials of ln 2vz , with coefficients involving the light-
cone λB and σn according to Eq. (18). Therefore the light-
cone moments can be extracted by a polynomial fit of quasi-
moments with several different values of vz .

Due to the current absence of nonperturbative simulations
for quasimoments λ̃B and σ̃n , it is valuable to examine their
characteristics through the lens of phenomenological models.
Starting with values of light-cone moments λB and σn cal-
culated by the HQET sum rules in Table 1, we want to find
out to which extent the quasimoments will resemble their
corresponding light-cone ones in magnitude. The value and
uncertainty for λB in Table 1 are taken from [4,35], then we
utilize two well-known nonperturbative models for LCDA of
B-meson to estimate the LMs [2,34]

φ+
B,I(ω,μ) = ω

ω2
0

e
− ω

ω0 ,

φ+
B,II(ω,μ) = 4

πω0

k

k2 + 1

[
1

k2 + 1
− 2(σ

(1)
B − 1)

π2 ln k

]

k = ω

1GeV
, (20)

here ω0 = 0.35 GeV, σ
(1)
B = 1.4. The differences between

the results obtained from these two models are taken as sys-
tematic uncertainties for LMs as presented in Table 1.

The factorization formula in Eq. (18) implies the values of
quasimoments. The magnitudes of λ̃B , σ̃1 and σ̃2 as functions
of vz are presented in Fig. 2, with μ fixed at 1 GeV.

We note that the matching formula in Eq. (18) only holds
when vz is sufficiently large. On the other hand, when vz is
too large, the large double and single logarithms of vz may
weaken the convergence of perturbative expansion, hence a
resummation is required. A suitable range for vz might be 1−
3, in which the contributions of logarithms are controllable
and a practical lattice simulation can be conducted.
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5 Conclusion

In this work, we generalize a previous work [31] on inverse
momentum of B-meson LCDA to the logarithmic moments,
which are among the most phenomenologically significant
nonperturbative quantities in B-meson physics. We intro-
duce the inverse and logarithmic moments of quasi-DA
and explore their properties. They can be simulated on a
Euclidean lattice and can be expressed as the linear combi-
nations of light-cone moments, in which the coefficients are
calculable in perturbation theory. The mixing pattern in the
matching formula in Eq. (18) is presented and the matching
coefficients are determined at one-loop. The findings pre-
sented in this study represent an incremental stride toward a
more comprehensive understanding of the matching proper-
ties within the framework of LaMET. These results pave the
way for future realistic lattice studies focusing on the inverse
moment and logarithmic moments of the B-meson LCDA.
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