
Eur. Phys. J. C (2024) 84:306
https://doi.org/10.1140/epjc/s10052-024-12663-3

Regular Article - Theoretical Physics

Heavy baryon decays into light meson and dark baryon within
LCSR

Yu-Ji Shi1,2,a , Ye Xing3,b, Zhi-Peng Xing4,c

1 School of Physics, East China University of Science and Technology, Shanghai 200237, China
2 Shanghai Key Laboratory of Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai Jiao Tong University,

Shanghai 200240, China
3 School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
4 Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, Jiangsu, China

Received: 30 January 2024 / Accepted: 10 March 2024 / Published online: 23 March 2024
© The Author(s) 2024

Abstract We studied the decays of Heavy baryon into a
pseudoscalar meson and a dark baryon in the recently devel-
oped B-Mesogenesis scenario, where the two types of effec-
tive Lagrangians proposed by the scenario are both consid-
ered. The decay amplitudes of �0

b are calculated by light-
cone sum rules using its light-cone distribution amplitudes.
The decay amplitudes of �

0,±
b are related with those of �0

b
through a flavor SU(3) analysis. The uncertainties of thresh-
old parameter and the Borel parameter are both considered in
the numerical calculation. The values of effective coupling
constants in the B-Mesogenesis are taken as their upper lim-
its that obtained from our previous study on the inclusive
decay. The upper limits of the decay branching fractions are
presented as functions of the dark baryon mass.

1 Introduction

The Standard Model of particle physics and cosmology have
been proven to be successful in describing the physics of the
most microscopic and macroscopic worlds. However, there
is inconsistency between these two models, where two of the
most confusing problems are the existence of dark matter
(DM) and the asymmetry of matter and anti-matter. Nowa-
days, a number of mechanisms aiming to solve this puzzle
have been proposed according to the Sakharov conditions
for the baryogenesis [1]. One of the disadvantages among
these mechanisms is the existence of high energy scales and
extremely massive particles, which make them difficult to
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be tested in experiments. Recently, a new mechanism called
B-Mesogenesis is proposed by Refs. [2–6], which aims to
explain both the relic dark matter abundance and the baryon
asymmetry without introducing high energy scales. The B-
Mesogenesis is testable at hadron colliders and B-factories
[3,7], and also indirectly testable at the Kaon and Hyperon
factories [8,9]. Recently, the Belle-II collaboration and the
LHCb collaboration have started to search for the decays of B
mesons with energy missing according to the B-Mesogenesis
[10,11].

The B-Mesogenesis proposes a new mechanism for
Baryogenesis and DM production. In this model, during a
late era in the history of the early universe, a certain heavy
scalar particle � decays into b, b̄ quarks, which then form
charged and neutral B-mesons after the universe cool down.
After that, the neutral mesons B0, B̄0 quickly undergo CP
violating oscillations, and the remained mesons continue to
decay into a dark sector baryon ψ with baryon number −1
and visible hadron states with baryon number +1. As a result,
the asymmetry of the baryon and anti-baryon number from
the CP violation during B0 − B̄0 oscillations is induced but
without violating the total baryon number. Recently, there
are a number of theoretical studies on the B meson decays
in the B-Mesogenesis. The exclusive decay B → pψ was
firstly studied by Ref. [12] using leading twist light-cone
sum rules (LCSR) calculation, and a higher twist contribu-
tion are calculated in Ref. [13]. A more complete study on B
meson decays into an octet baryon or a charmed anti-triplet
baryon plus ψ was given in Ref. [14]. In addition, a simi-
lar exclusive decay of B meson into a baryon plus missing
energy are studied by Ref. [15] for probing the lightest neu-
tralino. Besides the exclusive decays, previously we studied
the semi-inclusive decay of B → Xu/c,d/sψ using heavy
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quark expansion (HQE), where Xu/c,d/s denotes any possi-
ble hadron states containing u/c and d/s quarks with unit
baryon number [16]. Using the experimental upper limits on
the branching fractions of B → Xu/c,d/sψ from the ALEPH
experiment [17–19], we predicted the upper limits on the
coupling constants in the B-Mesogenesis.

Up to now, the studies on the B-Mesogenesis mainly focus
on the B decays. However, apart from the generous produc-
tion of B meson in the LHCb and Belle experiments, �0

b is
the most baryons that can be produced experimentally. In the
B-Mesogenesis model, �0

b can also undergo baryon number
violated decays such as �b → Mψ , where M is a neutral
pseudoscalar meson including π0, K 0, D̄0. Compared with
B → p/nψ , the phase space of �0

b → Mψ is larger, which
can amplify the decay width to a certain extent so that offer
more possibility for observing such decays in the experi-
ments. In this work, we will perform a theoretical study on the
�0

b → Mψ decays. The decay amplitude will be calculated
by LCSR with the use of the light-cone distribution ampli-
tudes (LCDAs) of �0

b. One disadvantage of �0
b → Mψ is

that since the neutral final pseudoscalar meson makes it diffi-
cult to be detected. In contrast, the charged decay�±

b → Mψ

should be a more ideal channel for experimental searching.
In the flavor SU(3) symmetry limit, the decay amplitudes
of these decay channels are related with each other. The
SU(3) symmetry analysis is a powerful tools frequently used
in heavy hadron decays [20–26], where it is generally be per-
formed in two different frameworks: the topological diagram
amplitude (TDA) and the irreducible representation ampli-
tude (IRA) methods. These two methods have been proven
to be equivalent in Refs. [23,25,27–30]. In this work, we will
choose IRA method to obtain the relations between the decay
amplitudes of �±

b → Mψ and those of �0
b → Mψ , and use

them to predict the decay branching fractions of �±
b → Mψ .

This article is organized as follows: Sect. 2 introduces the
B-Mesogenesis scenario proposed by Refs. [2–4]. Section 3
present a detailed LCSR calculation for the �0

b → Mψ

decays. Section 4 present a SU(3) analysis on the decay
amplitudes, which relates �±

b → Mψ to �0
b → Mψ . Sec-

tion 5 present numerical calculations on the decay amplitudes
and branching fractions. Section 6 is a summary of this work.

2 The B-mesogenesis scenario

This section gives a brief introduction to the B-Mesogenesis
scenario [2–4], which aims to simultaneously explain the
baryon asymmetry and the existence of dark matter in our
Universe. In the B-Mesogenesis scenario, the b quark is pos-
sible to decay into two light quarks and a dark baryon ψ .
The total baryon number in such decay process is conserved,
however, due to the invisible ψ the visible decay products
exhibit baryon number non-conserving phenomenon. As pro-

posed by Refs. [2,3], this kind of baryon number violating
decays can emerge from the following two types of effective
Lagrangians:

LI
eff = − yubεi jkY

∗i ū j
Rb

c,k
R − ycbεi jkY

∗i c̄ jRb
c,k
R

− yψdYi ψ̄dc,iR − yψsYi ψ̄sc,iR + h.c,

LI I
eff = − yudεi jkY

∗i ū j
Rd

c,k
R − yusεi jkY

∗i ū j
Rs

c,k
R

− ycdεi jkY
∗i c̄ jRd

c,k
R − ycsεi jkY

∗i c̄ jRs
c,k
R

− yψbYi ψ̄bc,iR + h.c, (1)

which correspond to the type-I and II models in the B-
Mesogenesis, respectively. All the quark fields are taken as
right handed, the superscript c indicates charge conjugate
and the y s are unknown coupling constants. Y is a charged
color triplet scalar with QY = −1/3, which is assumed to
have large mass MY . In the Type-I model the b quark cou-
ples with u, c quarks, the dark anti-baryon ψ couples with
d, s quarks. In the Type-II model, the situations of the b and
d, s quarks are interchanged. In fact, as proposed by Ref.
[3], there should be a third type of effective Lagrangian with
QY = 2/3 in B-Mesogenesis, which reads as

LI I I
eff = − ybdεi jkY

∗i b̄ j
Rd

c,k
R − ybsεi jkY

∗i b̄ j
Rs

c,k
R

− yψuYi ψ̄uc,iR − yψcYi ψ̄cc,iR + h.c. (2)

In this work, we will only consider the case of QY = −1/3
to be consistent with the studies of exclusive B meson decay
in B-Mesogenesis [12,14].

Integrating out the heavy boson Y in Eq. (1), one can
obtain the effective Hamiltonian for the two types of models
as:

HI,uq
eff = − yub yψq

M2
Y

iεi jk(ψ̄qc,iR )(ū j
Rb

c,k
R ) + h.c.

= −GI
(uq)Ō I

(uq)ψ
c + h.c.,

HI I,uq
eff = − yψb yuq

M2
Y

iεi jk(ψ̄bc,iR )(ū j
Rq

c,k
R ) + h.c.

= −GI I
(uq)Ō I I

(uq)ψ
c + h.c., (3)

where for simplicity, q = s, d and we use u to denote the u
or c quarks simultaneously. The effective coupling constant
and the effective operators in the two models are defined as

GI
(uq) = yub yψq

M2
Y

, O I
(uq) = −iεi jk(u

iT C PRb
j )PRq

k,

GI I
(uq) = yψb yuq

M2
Y

, O I I
(uq) = −iεi jk(u

iT C PRq
j )PRb

k, (4)

where PR = (1+γ5)/2 andC is the charge conjugate matrix.
The baryon number violated decays �b → πψ , �b → Kψ
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Fig. 1 The Feynman diagram of the �b → Mψ decays. The green
and gray bubbles denote the �b and pseudoscalar M , respectively, and
the white crossed dot denotes the O(uq) vertex

and �b → Dψ are induced by HI,ud
eff , HI,us

eff and HI,cd
eff

respectively.

3 �b → Mψ decays in LCSR

3.1 Hadron level calculation

In this section, we perform a LCSR calculation on the
�b → Mψ decays as shown in Fig. 1. The green and gray
bubbles denote the �b and pseudoscalar M , respectively,
and the white crossed dot denotes the O(uq) vertex. Using
the effective Hamiltonians given in Eq. (3), one can express
the decay amplitude as

iM = −G(uq)ū
c
ψ(q, sψ)〈M(p′)|O(uq)(0)|�b(p, s�)〉, (5)

where uψ is the spinor of dark baryon, with momentum q =
p − p′. The transition matrix element on the right hand side
above can be parameterized by two form factors:

〈M(p′)|O(uq)(0)|�b(p, s�)〉
= PR

[
F1(q

2) + /q

m�b

F2(q
2)

]
u�b (p, s�). (6)

In the framework of LCSR, the calculation of the transition
matrix element given above starts from the following two-
point correlation function

	(p, q)

= i
∫

d4x eip·xqμ〈0|T { j Mμ (x)O(uq)(0)}|�b(p + q)〉,
(7)

where j Mμ denotes the interpolation current for the final
meson, which reads as

jπμ = 1√
2
(ūγμγ5u − d̄γμγ5d), j Kμ = s̄γμγ5d,

and j Dμ = c̄γμγ5d (8)

for the final states: M = π0, K 0 and D0 respectively. In
LCSR, the correlation function defined in Eq. (7) will be cal-
culated both at the hadron and quark-gluon level. The one at
hadron level can be expressed by the form factors defined in
Eq. (6). On the other hand, the one at quark-gluon level will
be calculated explicitly in QCD, with the light-cone distri-
bution amplitudes (LCDAs) of �b taken as non-perturbative
inputs. Matching of the correlation function at these two lev-
els enables us to extract the transition form factors.

At the hadron level, one inserts a complete set of states
with the same quantum number of M between the j Mμ (q2)

current and O(uq)(0). The correlation function becomes

	H (p, q) = i fM
m2

M − p2
(p · q)PR

×
[
F1(q

2) + /q

m�b

F2(q
2)

]
u�b (p + q)

+
∫ ∞

sth

ds
ρH (s, q)

s − p2 , (9)

where the meson decay constant is defined as: 〈0| j Mμ (0)

|M(p)〉 = i fM pμ. Here only the pole contribution from M
is expressed explicitly, while the contribution from excited
state and continuous spectrum above threshold sth are cap-
suled in the integration of ρH (s, q), which will be sup-
pressed by Borel transformation. Note that in the expression:
p·q = (1/2)(m2

�b
−q2−m2

M )+(1/2)(m2
M− p2), the second

term will cancel the denominator of the pole contribution in
Eq. (9), so that the terms proportional to it will vanish under
the Borel transformation on p2. As a result, the Borel trans-
formed correlation function becomes

B{	H }(p, q) = i

2
fM (m2

�b
− q2 − m2

M )e−m2
M/T 2

PR

×
[
F1(q

2) + /q

m�b

F2(q
2)

]
u�b (p + q)

+
∫ ∞

sth

ds e−s/T 2
ρH (s, q), (10)

where T is the Borel parameter. Now the contributions from
excited state and continuous spectrum are suppressed by the
exponential term e−s/T 2

. Next, the same correlation function
will be calculated at the quark-gluon level, where the result
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can be generally written as a dispersion integration form

	QCD(p, q) = 1

π

∫ ∞

sm
ds

Im	QCD(s, q)

s − p2 , (11)

with sm being the quark level threshold. From the assumption
of quark-hadron duality, the last term of Eq. (9), denoting
the excited state and continuous spectrum at hadron level, is
equivalent with the spectrum integration above sth at quark-
gluon level. After the Borel transformation and subtracting
the continuous spectrum contribution, we arrive at the sum
rules equation:

B{	H }(p, q)pole = B{	QCD}(p, q)

= 1

π

∫ sth

sm
ds e−s/T 2

Im	QCD(s, q).

(12)

Thus the form factors F1,2 can be extracted through this equa-
tion as long as the imaginary part of 	QCD is obtained.

3.2 Quark-gluon level calculation

Now we perform an quark-gluon level calculation for the
correlation function defined in Eq. (7). Here we take the type-
I model and the case of M = D̄0 as an example to illustrate
the calculation. Using the quark level expression of j Dμ given
in Eq. (8), one can write the correlation function as

[
	

QCD
�b→D(p, q)

]
κ

= −εi jk

∫
d4xeip·x

× [
PRCSc(0, x)/qγ5

]
γα

(PR)κβ

× 〈0|uiα(q2)d j
β(0)bkγ (0)|�b(p + q)〉,

(13)

where Sc is the charm quark propagator. Note that the correla-
tion function has a structure of spinor and the corresponding
spinor index is denoted as κ . α, β, γ are also spinor indexes,
while i, j, k denote color indexes. The non-local three quark
matrix element above is expressed by the �b LCDAs, which
are defined as [31,32]

εi jk〈0|uiα(x1)d
j
β(x2)b

k
γ (0)|�b(v)〉

= 1

8
f (2)
�b

�2(t1, t2)(/nγ5C)αβu�bγ (v)

+ 1

4
f (1)
�b

�s
3(t1, t2)(γ5C)αβu�bγ (v)

− 1

8
f (1)
�b

�σ
3 (t1, t2)(iσnnγ5C)αβu�bγ (v)

+ 1

8
f (2)
�b

�4(t1, t2)(/nγ5C)αβu�bγ (v), (14)

Fig. 2 The Feynman diagram of the the correlation function defined in
Eq. (7). The green bubble denotes the �b LCDAs, the white crossed and
the black dots denote the O(uq)(x) and the j Mμ (0) vertexes, respectively

where σnn = σμνnμnν and x1 = t1n, x2 = t2n are on
the light cone. Inversely, the light cone vectors n, n̄ can be
expressed by the coordinates as

nμ = xμ

v · x , nμ = 2vμ − xμ

v · x .

At the quark-gluon level, the corresponding diagram for the
correlation function defined in Eq. (7) is shown in Fig. 2. The
green bubble denotes the �b LCDAs, the white crossed and
the black dots denote the O(uq)(x) at and the j Mμ (0) vertexes,
respectively.

The �2, �
s
3, �

σ
3 , �4 in Eq. (14) are the LCDAs with dif-

ferent twists. In the momentum space, the LCDAs can be
characterized by the total momentum ω of the two light
quarks in �b, and the momentum fraction u of one light
quark:

�i (t1, t2) =
∫ ∞

0
ωdω

∫ 1

0
due−iω(t1u+t2u)ψi (ω, u), (15)

with u = 1 − u, and [31]

ψ2(ω, u) = ω2u(1 − u)[ 1

ε4
0

e−ω/ε0 + a2C
3/2
2 (2u − 1)

× 1

ε4
1

e−ω/ε1 ],

ψ s
3(ω, u) = ω

2ε3
3

e−ω/ε3 ,

ψσ
3 (ω, u) = ω

2ε3
3

(2u − 1)e−ω/ε3 ,

ψ4(ω, u) = 5N−1
∫ s

�b
0

ω/2
dse−s/τ (s − ω/2)3, (16)

where C3/2
2 (2u − 1) is the Gegenbauer polynomial, and

the normalization factor N in ψ̃4(ω, u) reads as N =∫ s
�b
0

0 dss5e−s/τ . These four LCDAs are calculated by QCD
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sum rules in Ref. [31], with τ being the Borel parameter
for the sum rules calculation. All the parameters involved in
the LCDAs are ε0 = 200+130

−60 MeV, ε1 = 650+650
−300 MeV,

ε3 = 230 MeV, a2 = 0.333+0.250
−0.333, s�b

0 = 1.2 GeV and
τ = 0.4−0.8 GeV. [31].

Using the LCDAs defined in Eq. (14), and the free charm
quark propagator, one can express the correlation function as
a convolution of the perturbative part and the LCDAs. Firstly,
the twist-3 s contribution can be straightforwardly written as

	
QCD(3s)
�b→D (p, q) = i

4
f (1)
�b

∫ 2s
�b
0

0
dω ω

∫ 1

0
du ψ3s(ω, u)

× 1

(uωv − p)2 − m2
c
PR/q(uω/v − /p)u�b (v). (17)

To extract the imaginary part of correlation function, one has
to calculate its discontinuity across the complex plane of p2.
The denominator can be rewritten as

(uωv − p)2 − m2
c =

(
1 − uω

m�b

)
(p2 − �c),

�c = 1

m�b − uω

[
uω(m2

�b
− q2) + m�b(m

2
c − u2ω2)

]
.

(18)

Now the imaginary part comes from the term

Im

[
1

(uωv − p)2 − m2
c

]
= 1

2i
(−2π i)

m�b

m�b−uω
δ(s−�c),

(19)

where s = p2. Expressing 	
QCD(3s)
�b→D as a dispersion integra-

tion in sm < s < sth, performing the Borel transformation,
and integrating out s by the delta function in Eq. (19), one
arrives at

B{	QCD(3s)
�b→D }(T, q) = i

4
f (1)
�b

∫ 2s
�b
0

0
dω

×
∫ 1

0
du θ(�c − sm)θ(sth − �c)e

−�c/T 2

× ψ3s(ω, u)PR

[
m�bω/q − m�bω

m�b − uω
q2

]
. (20)

The calculation for the twist-3σ contribution is more
involved. The corresponding correlation function can be
firstly written as

	
QCD(3σ)
�b→D (p, q) = − i

4
f (1)
�b

∫
d4x eip·x

∫ 2s
�b
0

0
dω ω

×
∫ 1

0
du e−iuωv·x

∫
d4k

(2π)4 e
ik·x

× ψ3s(ω, u)PR(1 − /n/v)/q
1
/k
u�b (v),

(21)

where the 4-velocity of �b is m�bv = p+q. It can be found
that the term containing no /n above has almost the same form
as that of 	

QCD(3s)
�b→D . The corresponding contribution to the

Borel transformed 	
QCD(3σ)
�b→D is

B{	QCD(3σ(1))
�b→D }(T, q) = − i

4
f (1)
�b

∫ 2s
�b
0

0
dω

×
∫ 1

0
du e−�c/T 2

θ(�c − sm)θ(sth − �c)

× ψ3σ (ω, u)PR

[
m�bω/q − m�bω

m�b − uω
q2

]
. (22)

Next we consider the term proportional to /n in Eq. (21).
Note that nμ = xμ/v · x , to eliminate the 1/v · x one can
define modified LCDAs as

ψ̄i (ω, u) =
∫ ω

0
dττψi (τ, u), (23)

with i = 2, 3s, 3σ, 4. Thus the 1/v · x can be eliminated
through integration by part:

∫ 2s
�b
0

0
dω ωψi (ω, u)e−iuωv·x xμ

v · x

= iu
∫ 2s

�b
0

0
dωψ̄i (ω, u)e−iuωv·x xμ. (24)

Here the boundary term has been omitted since large ω in
the exponential induces high frequency oscillation under the
integration of x , which suppresses its contribution. The xμ

can be written as −i∂/∂pμ, and thus the /n term in Eq. (21)
contributes:

	
QCD(3σ(n))
�b→D (p, q) = i

4
f (1)
�b

∫ 2s
�b
0

0
dω ω

∫ 1

0
du ψ̄3σ (ω, u)

× PR
∂

∂pμ

[
1

(p − uω)2 − m2
c
γ μ/v/q(uω/v − /p)

]
u�b(v).

(25)

After dispersion integration, performing the Borel transfor-
mation, and introducing auxiliary mass to lower the higher
power of denominators: 1/(p2 −�c)

2 = (∂/∂M2)[1/(p2 −
�c − M2)]|M2=0, one obtains the /n term contribution as

B{	QCD(3σ(n))
�b→D }(T, q)

= − i

2
f (1)
�b

∂

∂M2

∫ 2s
�b
0

0
dω

∫ 1

0
du u ψ̄3σ (ω, u)

123
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θ [(�c + M2) − sm]θ [sth − (M2 + �c)]e−(�c+M2)/T 2

× PR

(
m�b

m�b − uω

)2 [
A(p2, q2) + (2v · q)m2

c

+B(p2, q2)/q
]
u�b(v)

∣∣∣
M2=0, p2=�c+M2

, (26)

where

A(p2, q2) = (2v · q)(m�b − uω)(m�b + uω − 2v · p)
− 2(m�b − v · p)q2,

B(p2, q2) = q2 − (m�b − uω)(m�b + uω − 2v · p),
(27)

and note that all the Lorentz invariants involved above should
be expressed by p2, q2 as

v · q = 1

2m�b

(m2
�b

+ q2 − p2),

v · p = 1

2m�b

(m2
�b

+ p2 − q2),

p · q = 1

2
(m2

�b
− q2 − p2). (28)

The twist-2 and 4 contributions to the correlation function
can be obtained similarly as that of twist-3. The correspond-
ing Borel transformed correlation function is

B{	QCD(2)+(4)
�b→D }(p, q)

= i

4
mc f

(2)
�b

∫ 2s
�b
0

0
dω

∫ 1

0
du u e−�c/T 2

θ(�c−sm)θ(sth−�c)

× ψ2(ω, u)

(
ωm�b

m�b − uω

)
PR

[
2v · q − /q

]
u�b (v)|M2=0

+ i

4
mc f

(2)
�b

∂

∂M2

∫ 2s
�b
0

0
dω

∫ 1

0
du u e−(�c+M2)/T 2

θ

× (�c + M2 − sm)θ(sth − M2 − �c)(ψ̄2 − ψ̄4)(ω, u)

×
(

m�b

m�b − uω

)2

PR
[
2p · q + q2 − 2uωv · q − (m�b

−uω)/q
]
u�b (v)

∣∣∣
M2=0, p2=�c+M2

. (29)

It can be found that here the twist-2 and 4 contributions are
proportional tomc. In the case of �b → π, K+ψ decays, the
twist-2 and 4 contributions are proportional tomu = md = 0
and thus vanish. For the �b → π, K +ψ decays in the type-I
model, the calculation of the correlation function in Eq. (7)
is almost the same, which can be found in the Appendix A.

Generally, as Eq. (10) shows, the correlation function has
two independent spinor structures: 1 and /q. In the type-I
model both of them exists in the correlation function. How-
ever, it can be found that the /q term is absent in the type-

II model. As a result, only F1 contributes to the �0
b →

π0, K 0, D̄0 + ψ decays, while F2 vanishes up to the twist-3
LCDA contributions. On the other hand, in the type-II model
the �0

b → π0 +ψ decay is forbidden due to the flavor SU(3)
limit, which will be discussed in the next section. The corre-
sponding analytical results in the type-II models are given in
the Appendix B.

4 SU(3) analysis

In the above study we have only focused on the decay pro-
cesses �0

b → π0, K 0, D̄ + ψ , while the various decay

channels �
0,−
b → π0,−, K 0,− + ψ and �0

b, �
0
b → η + ψ

have not been considered. In principle, the amplitudes of
these missed processes can also be calculated as soon as the
LCDAs of �b or η are known, which have not been studied
as well as the LCDAs of �b. However, with the use of fla-
vor SU(3) symmetry, one can still able to predict the decay
widths of these missed channels as long as the decay widths
of �0

b → π0, K 0 + ψ are known.
As shown in Eq. (3), the effective Hamiltonian:−GuqO(uq)

contains two light quark fields u, d or u, s. In the flavor
SU(3) representation, this Hamiltonian can be represented by
a rank-two tensor Hi j , where i, j are the flavor indexes. Its
non-vanishing components are H12 = Gud and H13 = Gus

for b → u, d and b → u, s transitions, respectively. Note
that Hi j is reducible so that can be further be reduced into
three SU(3) irreducible representations: a symmetric and
traceless tensor S̄{i j}, an anti-symmetry tensor T[i j] and a
trace term I δi j :

Hi j = S̄{i j} + T[i j] + I{i j}, (30)

where

S̄{i j} = 1

2
Hi j + 1

2
Hji − 1

3
δi j Hkk, T[i j] = 1

2
Hi j − 1

2
Hji .

(31)

The non-vanishing components are S̄12 = S̄21 = 1
2 , T12 =

−T21 = 1
2 for b → u, d, and S̄13 = S̄31 = 1

2 , T13 = −T31 =
1
2 for b → u, s. It should be mentioned that in the type-II
model, as shown by Eq. (4) the two light flavors are anti-
symmetrized, so that S̄i j vanishes in this case.

On the other hand, the initial anti-triplet baryons Tb3̄ and
the final light mesons M can also be expressed by SU(3)
irreducible representations as

(T i j
b3̄

) =
⎛
⎝ 0 �0

b �0
b−�0

b 0 �−
b−�0

b −�−
b 0

⎞
⎠

i j

,
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Table 1 Decay amplitudes of anti-triplet bottom baryon decays into a
light meson and dark baryon from Eq. (33), where the left and right
columns correspond to b → d and b → s transitions, respectively

Channel Amplitude Channel Amplitude

�0
b → π0ψ

√
2s1Gud �0

b → K 0ψ −(s1 + t1)Gus

�0
b → K̄ 0ψ −(s1 + t1)Gud �0

b → π0ψ 1√
2
(s1 − t1)Gus

�−
b → K−ψ −(s1 − t1)Gud �−

b → π−ψ (s1 − t1)Gus

�0
b → ηψ −

√
2
3 t1Gud �0

b → ηψ
(

1√
6
t1 −

√
3
2 s1

)
Gus

Mi
j =

⎛
⎜⎜⎝

π0√
2

+ η√
6

π+ K+

π− − π0√
2

+ η√
6

K 0

K− K
0 − 2η√

6

⎞
⎟⎟⎠

i j

. (32)

Using Tb3̄, Mi
j , S̄i j and Ti j , one can construct SU(3) invariant

amplitude as

A = s1 T i j
b3̄
S̄ jk(M

T )ki ψ + t1 T i j
b3̄
Tjk(M

T )ki ψ

+ t2 T i j
b3̄
Ti j (M

T )kkψ. (33)

Here we have not considered the color singlet η1 in the con-
struction of Mi

j , thus the third term above vanishes due to

Mk
k = 0. The unknown amplitudes s1, t1, t2 contain all the

information about the strong interaction in the decays. All the
decay amplitudes of anti-triplet bottom baryon decays into a
light meson and dark baryon are listed in Table 1, where the
left and right two columns correspond to b → d and b → s
transitions.

Note that the amplitude of �0
b → π0 + ψ is proportional

to s1 which is absent in the type-II model. Therefore, in the
type-II model the �0

b → π0 + ψ decay is forbidden, and
we have s1 = 0 in Table 1 so that the amplitudes of all the
decay channels are proportional to t1. On the other hand, in
the type-I model, using the decay amplitudes of �0

b → π0ψ

and �0
b → K 0ψ calculated in this work by LCSR, we can

determine the fraction ξK/π = t1/s1 as

− 1√
2
(1 + ξK/π )λs/d = A(�0

b → K 0ψ)

A(�0
b → π0ψ)

, (34)

with λs/d = Gus/Gud . This enables us to predict all the
decay amplitudes listed in Table 1.

5 Numerical results

The hadron masses are taken as: m�b = 5.62 GeV, mπ =
0.135 GeV, mK = 0.498 GeV and mD = 1.86 GeV. The
quark masses are taken as mu = md = 0 and mc = 1.1
GeV at μ = 3 GeV [33]. τ = 0.6 GeV is taken as the center

value in its range τ = 0.4 ∼ 0.8 GeV. The threshold param-
eters should be above the lowest state while nearly below
the next lowest state. The next lowest states corresponding
to π, D, K are π(1300), K (1460), D(2550) [33] and sth can
be parameterized as

sπ,K ,D
th = (1 − λ)m2

π,K ,D + λ m2
π(1300),K (1460),D(2550),

(35)

where λ = 0 and λ = 1 correspond to the lowest and the next
lowest states, respectively. In this work, to estimate the uncer-
tainties from the threshold parameter, we choose the range
0.6 < λ < 1.0 for error analysis in numerical calculations.

Now we have to exam the behavior of the form factors
F1, F2 as functions of T 2, and determine the choice of T 2

value. In principle, the physical results should be independent
of the Borel parameters, and thus one has to find a T 2 region
where the behavior of F1, F2 are almost stable. In Figs. 3 and
4, the form factors F1, F2 are plotted in a wide range of T 2 for
the type-I and II models respectively, with q2 = 0. It can be
found that when T 2 is large, the form factors become stable
and the curves are almost flat. On the other hand, in order to
suppress the continuous spectrum contribution before quark-
hadron duality, the T 2 cannot be too large according to the
exponential term in Eq. (12). Quantitatively, this requirement
can be expressed as

ξ(T 2) ≡
∫ ∞
sth

ds e−s/T 2
Im	QCD(s, q)∫ ∞

sm
ds e−s/T 2 Im	QCD(s, q)

< 50%, (36)

where the integrand is the same as that in Eq. (12). In the
numerator, the integration in the range sth < s < ∞ denotes
the continuous spectrum contribution, while the integration
in the denominator denotes the sum of pole and continuous
spectrum contributions. It can be found that ξ(T 2) increases
with the increasing of T 2, and thus Eq. (36) in principle
determines the upper limit of T 2. Actually, in the wide T 2

regions as shown in Figs. 3 and 4, the requirement ξ(T 2) <

50% has already been safely satisfied, and the maximum ξ

in these regions are listed in Table 2.
Therefore, the upper limit values of T 2 can be safely

chosen from the flat regions in Figs. 3 and 4 with a certain
degree of arbitrariness, which has negligible impact on the
error analysis. On the other hand, since in this work only
the leading order QCD calculation is performed, one cannot
determine the lower limits of T 2 by comparing the leading
and next-to-leading order contributions. Therefore, here we
choose the lower limits of T 2 in the region slightly below
the stable region. Although choosing T 2 around unstable T 2

region may introduce more uncertainties on the result, this
will make the phenomenological prediction more conserva-
tive for the new physics searching. Finally, we choose the
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Fig. 3 The form factors F1, F2 as functions of T 2 in the type-I model, with q2 = 0. The band width denotes the uncertainty of sth: 0.6 < λ < 1.0

ranges of T 2 as

�b → πψ, Kψ : 4 GeV2 < T 2 < 12 GeV2,

�b → Dψ : 12 GeV2 < T 2 < 28 GeV2 (37)

for both the type-I and II models.
On the other hand, note that the F1,2(q2) obtained by

LCSR are only reliable in the small positive q2 or q2 < 0
regions, instead of the physical region q2 > 0. Therefore,
one has to fit the form factors in the q2 < 0 region by a suit-
able parameterization function, and extent the form factors
to physical region. In this work, we use the z-series formula

[34] with single pole structure to perform the fitting, which
reads as

F1,2(q
2) = F1,2(0)

1 − q2

m2
pole

[
1 + b1,2(z(q

2) − z(0))

+c1,2(z(q
2) − z(0))2

]
, (38)

where mpole is the mass of the lowest baryon state that can

be created by O†
uq from the vaccum. For the �b → π, K , D

transitions,mpole is chosen asm�b ,m�b = 5.79GeV,m�bc =
6.94GeV respectively, where m�bc is taken from QCD sum
rules calculation [35]. The F1,2(0), b1,2 and c1,2 in Eq. (38)
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Fig. 4 The form factors F1, F2 as functions of T 2 in the type-II model, with q2 = 0. The band width denotes the uncertainty of sth: 0.6 < λ < 1.0

Table 2 The maximum values of ξ in the ranges of T 2 as shown in
Figs. 3 and 4

Type-I �0
b → π0 �0

b → K 0 �0
b → D̄0

F1(0) ξ < 48% ξ < 37% ξ < 35%

F2(0) ξ < 36% ξ < 36% ξ < 13%

Type-II – �0
b → K 0 �0

b → D̄0

F1(0) – ξ < 10% ξ < 3%

are three fitting parameters, and the z function is defined as

z(q2) =
√
t+ − q2 − √

t+ − t0√
t+ − q2 + √

t+ − t0
(39)

with t± = (m�b ± mM )2 and t0 = t+
(

1 − √
1 − t−/t+

)
.

The fitting results of F1,2(0), b1,2 and c1,2 are listed in Table
3, while the form factors extended to the physical region are
shown in Figs. 5 and 6 for the type I and II models, respec-
tively.

With the use of form factors F1,2 obtained above, we can
calculate the decay widths of �b → Mψ decays. The decay
width formula reads as

�[�b → Mψ] = G2
(uq)|q|

8m2
�b

(2π)5

[
(m2

�b
+ m2

ψ − m2
M )

(
F2

1 (m2
ψ) + m2

ψ

m2
�b

F2
2 (m2

ψ)

)

+4m2
ψ F1(m

2
ψ)F2(m

2
ψ)

]
, (40)

which is a function of the dark baryon mass mψ . |q| is the
3-momentum magnitude of the dark baryon in the center of

mass frame:

|q| = 1

2m�b

√
(m2

�b
−(mψ + mM )2)(m2

�b
−(mψ − mM )2).

(41)

The upper limits of the unknown coupling constants G(uq)

have been determined in Ref. [16] through a study of B meson
semi-inclusive decays into baryons and a dark baryon, which
read as

Type I : G2
ud < (1.8 ± 0.35) × 10−14GeV−4,

G2
us < (3.75 ± 0.74) × 10−14GeV−4,

G2
cd < (1.06 ± 0.21) × 10−12GeV−4,

G2
cs < (1.63 ± 0.33) × 10−12GeV−4;

Type II : G2
us < (1.07 ± 0.21) × 10−11GeV−4,

G2
cs < (3.62 ± 0.72) × 10−10GeV−4. (42)

Here we take G(uq) as their upper limit values to calculate
the decay width. Accordingly, the upper limits of branching
fractions for �b → Mψ as functions of mψ are shown in
Figs. 7 and 8 in the type I and II models, respectively. The
blue and red bands denote the uncertainties from the Borel
parameter and the G(uq) from Eq. (42).

In Sect. 4, a SU(3) analysis is performed to predict the
amplitudes of all the anti-triplet bottom baryon decays into a
meson and dark baryon. In the type-I model, using Eq. (34)
one can further determine ξK/π by the ratio of branching
fractions:

1

2
(1 + ξK/π )2λ2

s/d = B(�0
b → K 0ψ)

B(�0
b → π0ψ)

, (43)

if the phase space volume of �0
b → K 0ψ is assumed to be

the same as that of �0
b → π0ψ . The ξK/π as a function of

mψ is shown in the left diagram of Fig. 9, where the range of

123
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Table 3 Fitting parameters of the F1,2 for �b → π, K , D transitions in the Type-I and II models

Type-I F1(0) b1 c1 F2(0) b2 c2

�0
b → π0 − 0.02 ± 0.005 − 15.77 16.41 0.07 ± 0.014 −3.81 4.43

�0
b → K 0 0.04 ± 0.006 −5.74 12.34 − 0.04 ± 0.006 −5.88 13.32

�0
b → D̄0 0.01 ± 0.001 26.79 −35.06 0.06 ± 0.003 −4.0 11.89

Type-II F1(0) b1 c1 F2(0) b2 c2

�0
b → K 0 0.003 ± 0.001 6.21 −5.76 – – –

�0
b → D̄0 0.07 ± 0.0 −1.01 −17.6 – – –

Fig. 5 The form factors F1, F2 as functions of q2 in the type-I model. The band width denotes the combined uncertainties of the Borel parameter
and sth: 0.6 < λ < 1.0

123
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Fig. 6 The form factors F1, F2 as functions of q2 in the type-II model. The band width denotes the combined uncertainties of the Borel parameter
and sth: 0.6 < λ < 1.0

Fig. 7 The upper limits of branching fractions for �b → Mψ as functions of mψ in the type-I model. The blue and red bands denote the
uncertainties from the Borel parameter and the G(uq) from Eq. (42)

mψ is chosen as 0 < mψ < (m�b − mK ) and Gud ,Gus are
taken as the center values in Eq. (42).

Now the branching fractions of all the decay channels
listed in Table 1 can be expressed in the units of B(�0

b →
π0ψ) and B(�0

b → K 0ψ) for the type-I and II models
respectively, which are shown in Table 4. Particularly, the
branching fraction of the charged decay �−

b → K−ψ in the

type-I model is shown in the right diagram of Fig. 9. The
branching fraction of �−

b → π−ψ has the same shape as
�−

b → K−ψ but a factor λ2
s/d should be timed on it.

The branching fractions of the charged decays in the type-
II model are simply proportional to B(�0

b → K 0ψ) so we
do not plot them here.
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Fig. 8 The upper limits of branching fractions for �b → Mψ as functions of mψ in the type-II model. The blue and red bands denote the
uncertainties from the Borel parameter and the G(uq) from Eq. (42)

Fig. 9 The ξK/π as a function of mψ from Eq. (43), where the range of mψ is chosen as 0 < mψ < (m�b − mK ) (left). The branching fractions
of �−

b → K−ψ as functions of mψ in the type-I model (right). The blue and red bands denote the uncertainties from the Borel parameter and the
G(ud) from Eq. (42)

Table 4 The amplitudes of all the anti-triplet bottom baryon decays into a light meson and dark baryon are expressed in the units of B(�0
b → π0ψ)

and B(�0
b → K 0ψ) for the type-I and II models, respectively

Channel Type-I Br. Channel Type-I Br.

�0
b → π0ψ 1 �0

b → K 0ψ 1
2 (1 + ξK/π )2λ2

s/d

�0
b → K̄ 0ψ 1

2 (1 + ξK/π )2 �0
b → π0ψ 1

4 (1 − ξK/π )2λ2
s/d

�−
b → K−ψ 1

2 (1 − ξK/π )2 �−
b → π−ψ 1

2 (1 − ξK/π )2λ2
s/d

�0
b → ηψ 1

3 ξ2
K/π �0

b → ηψ 1
12 (1 − 3ξK/π )2λ2

s/d

Channel Type-II Br. Channel Type-II Br.

�0
b → π0ψ 0 �0

b → K 0ψ 1

�0
b → K̄ 0ψ λ−2

s/d �0
b → π0ψ 1/2

�−
b → K−ψ λ−2

s/d �−
b → π−ψ 1

�0
b → ηψ 2

3 λ−2
s/d �0

b → ηψ 1/6
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6 Conclusion

In this work, we have studied the decays of Heavy baryon into
a pseudoscalar meson and a dark baryon using the recently
developed B-Mesogenesis scenario, where the two types of
effective Lagrangians proposed by the scenario are both con-
sidered. The decay amplitudes of �0

b have been calculated
by LCSR using its light-cone distribution amplitudes. The
decay amplitudes of �

0,±
b has been related with those of �0

b
through a flavor SU(3) analysis. In the numerical calcula-
tion, the uncertainties of threshold parameter and the Borel
parameter are both considered. The values of effective cou-
pling constants in the B-Mesogenesis are taken as their upper
limits that obtained from our previous study on the inclusive
decay. The upper limits of the decay branching fractions of
�0

b, �
0,±
b → Mψ are presented as functions of the dark

baryon mass, which will be tested by future experimental
detections.
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Appendix A Analytical results in the type-I model

In this appendix, we present the analytical results of the
quark-gluon level calculation for the correlation function
defined in Eq. (7). In the type-I model, the twist-3 s con-
tribution to the correlation function for the �b → π decay
is

B{	QCD(3s)
�b→π }(T, q) = i

4
√

2
f (1)
�b

∫ 2s
�b
0

0
dω

×
∫ 1

0
du θ(� − sm)θ(sth − �)e−�/T 2

× ψ3s(ω, u)PR

[
m�bω/q − m�bω

m�b − uω
q2

]

+ i

4
√

2
f (1)
�b

∫ 2s
�b
0

0
dω

∫ 1

0
du θ(�̄−sm)θ(sth−�̄)e−�̄/T 2

× ψ3s(ω, u)PR

[
(ūω(2q · v) − 2p · q − q2)

ωm�b

m�b − ūω

+m�bω/q
]
u�b (v), (A. 1)

where � = �c|mc=0 and �̄ = �|u→ū . The twist-3σ contri-
butions are

B{	QCD(3σ)
�b→π }(p, q) = − i

4
√

2
f (1)
�b

∫ 2s
�b
0

0
dω

×
∫ 1

0
du θ(� − sm)θ(sth − �)e−�/T 2

× ψ3s(ω, u)PR

[
m�bω/q − m�bω

m�b − uω
q2

]
u�b (v)

− i

4
√

2
f (1)
�b

∫ 2s
�b
0

0
dω

∫ 1

0
du θ(�̄−sm)θ(sth−�̄)e−�̄/T 2

× ψ3σ (ω, u)PR

[
(ūω(2q · v) − 2p · q − q2)

ωm�b

m�b − ūω

+m�bω/q
]
u�b (v)

− i

2
√

2
f (1)
�b

∂

∂M2

∫ 2s
�b
0

0
dω

∫ 1

0
du ψ̄3σ (ω, u)e−(�+M2)/T 2

× θ((� + M2) − sm)θ(sth − (� + M2))

(
m�b

m�b − uω

)2

× PR[A(p2, q2) + B(p2, q2)/q]u�b (v)

∣∣∣
M2=0, p2=�+M2

+ i√
2
f (1)
�b

∂

∂M2

∫ 2s
�b
0

0
dω

∫ 1

0
du ψ̄3σ (ω, u)e−(�̄+M2)/T 2

× θ((�̄ + M2) − sm)θ(sth − (�̄ + M2))

(
m�b

m�b − ūω

)2

× (p · q − ūωv · q)PR(m�b − ūω − /q)u�b (v)∣∣∣
M2=0, p2=�̄+M2

, (A. 2)

The twist-3 s and twist-3σ contributions to the correlation
function for the �b → K decay are
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B{	QCD(3s)
�b→K }(T, q) = − i

4
f (1)
�b

∫ 2s
�b
0

0
dω

×
∫ 1

0
du θ(�̄ − sm)θ(sth − �̄)e−�̄/T 2

× ψ3s(ω, u)PR

[
(ūω(2q · v) − 2p · q − q2)

ωm�b

m�b − ūω

+m�bω/q
]
u�b (v),

B{	QCD(3σ)
�b→K }(p, q) = i

4
f (1)
�b

∫ 2s
�b
0

0
dω

×
∫ 1

0
du θ(�̄ − sm)θ(sth − �̄)e−�̄/T 2

× ψ3σ (ω, u)PR

[
(ūω(2q · v) − 2p · q − q2)

ωm�b

m�b − ūω

+m�bω/q
]
u�b (v)

− i f (1)
�b

∂

∂M2

∫ 2s
�b
0

0
dω

∫ 1

0
du ψ̄3σ (ω, u)e−(�̄+M2)/T 2

× θ((�̄ + M2) − sm)θ(sth − (�̄ + M2))

(
m�b

m�b − ūω

)2

× (p · q − ūωv · q)PR(m�b − ūω − /q)u�b (v)

×
∣∣∣
M2=0, p2=�̄+M2

. (A. 3)

The twist-2, 4 contributions to the correlation function for
the �b → π, K decays vanishes in the chiral limit mu =
md = 0.

Appendix B Analytical results in the type-II model

In the type-II model, the �b → π decay is forbidden in the
flavor SU(3) limit. The twist-3 s and twist-3σ contributions
to the correlation function for the �b → K decay are

B{	QCD(3s)
�b→K }(T, q) = − i

2
f (1)
�b

∫ 2s
�b
0

0
dω

×
∫ 1

0
du θ(�̄ − sm)θ(sth − �̄)e−�̄/T 2

× ψ3s(ω, u)
ωm�b

m�b − ūω
PR[ūωv · q − p · q]u�b (v),

B{	QCD(3σ)
�b→K }(p, q) = i

2
f (1)
�b

∫ 2s
�b
0

0
dω

×
∫ 1

0
du θ(�̄ − sm)θ(sth − �̄)e−�̄/T 2

× ψ3σ (ω, u)
ωm�b

m�b − ūω
PR[ūωv · q − p · q]u�b (v)

− 2i f (1)
�b

∂

∂M2

∫ 2s
�b
0

0
dω

∫ 1

0
du ψ̄3σ (ω, u)e−(�̄+M2)/T 2

× θ((�̄ + M2) − sm)θ(sth − (�̄ + M2))

(
m�b

m�b − ūω

)2

×(v · p−ūω)(p · q−ūωv · q)PRu�b (v)

∣∣∣
M2=0, p2=�̄+M2

.

(B. 1)

The twist-2+4 contributions to the correlation function for
the �b → D decay are

B{	QCD(2+4)
�b→D }(p, q) = i

2
mc f

(2)
�b

∫ 2s
�b
0

0
dω

×
∫ 1

0
du θ(�c − sm)θ(sth − �c)e

−�c/T 2

× ψ2(ω, u)
ωm�b

m�b − ūω
(v · q)PRu�b (v)

+ i

2
mc f

(2)
�b

∂

∂M2

∫ 2s
�b
0

0
dω

×
∫ 1

0
du (ψ̄2 − ψ̄4)(ω, u)e−(�c+M2)/T 2

×θ((�c + M2)−sm)θ(sth−(�c + M2))

(
m�b

m�b−ūω

)2

× (p · q − uωv · q)PRu�b (v)

∣∣∣
M2=0, p2=�c+M2

. (B. 2)

The twist-3 contributions to the correlation function for the
�b → D decay are

B{	QCD(3s)
�b→D }(p, q) = −i f (1)

�b

∫ 2s
�b
0

0
dω

×
∫ 1

0
du θ(�c − sm)θ(sth − �c)e

−�c/T 2

×(ψ3s+ψ3σ )(ω, u)
ωm�b

m�b−ūω
(uωv · q−p · q)PRu�b (v)

+ 2i f (1)
�b

∂

∂M2

∫ 2s
�b
0

0
dω

×
∫ 1

0
du ψ̄3σ (ω, u)e−(�c+M2)/T 2

×θ((�c + M2)−sm)θ(sth−(�c + M2))

(
m�b

m�b−ūω

)2

× (v · p − uω)(p · q − uωv · q)PRu�b(v)

×
∣∣∣
M2=0, p2=�c+M2

. (B. 3)
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