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Abstract In this paper, we propose the nonlocal sine-
Gordon equation from the AKNS system by the Parity and the
Time symmetries. Moreover, the main work is to construct
the Darboux transformation for the nonlocal sine-Gordon
equation. In particular, various types of solutions are obtained
by taking a seed solution, such as, soliton solutions, kink
solutions, mixed solutions.

1 Introduction

In 1973, Ablowitz, Kaup, Newell and Segur (AKNS) gener-
alized the linear operators based on the results from Zakharov
and Shabat [1], they obtained nonlinear Schrödinger (NLS),
sine-Gordon, Korteweg-de Vries (KdV), modified KdV
equations and so on [2–5]. It follows that

vx = Xv, X =
( −ik q(x, t)
r(x, t) ik

)
, (1.1)

which is the space evolution equation, where q(x, t), r(x, t)
are two complex-valued functions, k is the spectral parame-

ter and v(x, t) =
(

v1(x, t)
v2(x, t)

)
. On the other hand, the time

evolution equation of the AKNS system is given by

vt = Yv, Y =
(
A B
C −A

)
, (1.2)

where A, B,C can be defined with the polynomials of k. It
can be expressed as

A =
3∑
j=0

A jk
j , B =

3∑
j=0

Bjk
j , C =

3∑
j=0

C jk
j . (1.3)

a e-mail: jianli@sit.edu.en
b e-mail: duanjs@sit.edu.cn
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According to the compatibility condition vxt = vt x , it reads
⎧⎪⎨
⎪⎩
Ax = qC − r B,

qt = Bx + 2ikB + 2q A,

rt = Cx + 2ikC + 2r A.

(1.4)

Assume that A = − i cos u
4k , B = i sin u

4k = C and, q(x, t) =
−r(x, t) = − ux

2 , ones obtained the local sine-Gordon equa-
tion

uxt = sin u. (1.5)

Based on a symmetric constraint condition

r(x, t) = q(−x,−t), (1.6)

the Eq. (1.5) can be transformed into the nonlocal sine-
Gordon case,(

i

4k
cos u

)
x

= i

2

(
q(x, t)q(−x,−t)

)
t . (1.7)

In other words, the Eq. (1.7) is also a conservation law equa-
tion. It also indirectly indicates that the nonlocal sine-Gordon
equation has real physical significance and can be applied to
classical mechanics and dynamic systems [6].

What’s more, the nonlocal symmetry is a very important
research field [7]. In 1998, Bender and Boettcher obtained
the nonlocal symmetry through replacing the Hermiticity of
the Hamiltonians in quantum theory, and fully proved that the
nonlocal symmetry also maintains more basic properties in
quantum Physics. Thus, the nonlocal symmetry has been suc-
cessfully applied to optics, electricity and so on [8–14]. Then,
Ablowitz proposed the nonlocal nonlinear Schrödinger equa-
tion and shown an integrable infinite dimensional Hamil-
tonian equation by the PT symmetric [15]. PT symmetry
has been applied in fields such as single-mode laser, opto-
electronic oscillators, sensing, and unidirectional transmis-
sion. For the nonlocal nonlinear Schrödinger equation, it was
applied in a physical application of magnetics and physical
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intuition differ from local case. And a large number of mod-
els of the nonlocal integrable systems were proposed and
studied [16–20]. Therefore, according to the construction of
Darboux transformation for the local integrable systems, lots
of the nonlocal integrable equations have also been studied
by the method of Darboux transformation [21–36]. Based on
this, we apply the Darboux transformation to the quantum
sine-Gordon equation.

This article is organized as follows. In Sect. 2, based on a
gauge transformation, we deform the space and time evolu-
tion Eqs. (1.1) and (1.2) into the new linear equations (2.2).
Then, we obtain the relation between the new potentials and
the old cases via 1-fold Darboux transformation. And, the
N-fold Darboux transformation for the nonlocal sine-Gordon
equation is given by the Proposition 1. In Sect. 3, we give the
forms of 1-soliton solution, 2-soliton solutions, kink solution
and mixed solutions via a seed solution. In fact, by taking dif-
ferent values of ai and bi , other forms of the solutions for the
nonlocal sine-Gordon equation can be obtained.

2 The construction of Darboux transformation for the
nonlocal sine-Gordon equation

Based on the procedures of the Darboux transformation for
the classical local integrable systems, ones obtain the Dar-
boux transformation for the nonlocal sine-Gordon equation
(1.7). Assuming that the seed solution is q(x, t) = 0, many
solutions different from the classical local case are obtained
due to the constraint condition (1.6). Firstly, we introduce a
gauge transformation,

v(1) = T (1)v. (2.1)

Thus, the space and time evolution equations (1.1) and (1.2)
can be deduced to

{
v

(1)
x = (T (1)

x + T (1)X)(T (1))−1v(1) ≡ X (1)v(1),

v
(1)
t = (T (1)

t + T (1)Y )(T (1))−1v(1) ≡ Y (1)v(1).
(2.2)

It is worth mentioning that X (1) and Y (1) have the same
forms as X and Y , and these two references have been proven
through calculations [16,33], at the same time, we also pro-
vided the corresponding calculation process later. It means
that

X (1) =
( −ik q(1)(x, t)
r (1)(x, t) ik

)
,

Y (1) =
( i

4k cos u i
4k sin u

i
4k sin u −i

4k cos u

)
. (2.3)

Given the form of 1-fold Darboux transformation for the
nonlocal sine-Gordon equation has a form,

T (1) = I2×2k + g(1), g(1) =
(
g(1)

11 (x, t) g(1)
12 (x, t)

g(1)
21 (x, t) g(1)

22 (x, t)

)
,

(2.4)

where I2×2 is a 2×2 identity matrix. Substitute the Eq. (2.4)
into the Eq. (2.2), ones obtain the relations between the new
potentials and the old potentials, which is given by
{
q(1)(x, t) = q(x, t) − 2ig(1)

12 (x, t),

r (1)(x, t) = r(x, t) − 2ig(1)
21 (x, t).

(2.5)

Combine with the constraint condition (1.6) and the Eq. (2.5),
we have

g(1)
12 (x, t) = g(1)

21 (−x,−t). (2.6)

Letα =
(

α1(k j )
α2(k j )

)
, andβ =

(
β1(k j )
β2(k j )

)
are the eigenvectors

of the linear equations (1.1) and (1.2), k j ( j = 1, 2) are the
eigenvalues corresponding to α and β. Then we have

T (1)(α(k j ) + σ jβ(k j )) = 0, j = 1, 2, (2.7)

and
{
k j + g(1)

11 + γ j g
(1)
12 = 0,

g(1)
21 + γ j (k j + g(1)

22 ) = 0,
(2.8)

where the specific forms of γ j are given by γ j =
α2(k j )+σ jβ2(k j )
α1(k j )+σ jβ1(k j )

and σ j are constants. Solving the Eq. (2.8),

(g(1)
i j )1≤i, j≤2 are given as

g(1)
11 =

det

(−k1 γ1

−k2 γ2

)

det

(
1 γ1

1 γ2

) , g(1)
12 =

det

(
1 −k1

1 −k2

)

det

(
1 γ1

1 γ2

) , (2.9)

g(1)
21 =

det

(−k1γ1 γ1

−k2γ2 γ2

)

det

(
1 γ1

1 γ2

) , g(1)
22 =

det

(
1 −k1γ1

1 −k2γ2

)

det

(
1 γ1

1 γ2

) . (2.10)

Thus, the Eq. (2.4) can be rewritten into

T (1)=
(
k 0
0 k

)
+ 1

γ2 − γ1

(
k2γ1 − k1γ2 k1 − k2

γ1γ2(k2 − k1) k1γ1 − k2γ2

)
.

(2.11)

Based on the formulations{
T−1 = T �

det(T )
,

(Tx + T X)T � = det(T )A(k),
(2.12)
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where A(k) =
(
a(1)

11 k + a(0)
11 a(1)

12 k

a(1)
21 k a(1)

22 k + a(0)
22

)
, and T � repre-

sents the adjoint matrix of T . It shows that

T (1)
x + T (1)X (1) = A(k)T (1), (2.13)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(1)
11,x − ik2 − ikg(1)

11 + g(1)
12 q

(1)(−x,−t) = a(1)
11 k

2

+(a(1)
11 g(1)

11 + g(1)
21 a

(1)
12 + a(0)

11 )k + g(1)
11 a

(0)
11 ,

g(1)
12,x + kq(1) + g(1)

11 q
(1) + ikg(1)

12

= a(1)
11 g(1)

12 k + a(1)
12 k

2 + g(1)
12 a

(0)
11 + g(1)

22 a
(1)
12 k,

g(1)
21,x − ikg(1)

21 + g(1)
22 q

(1)(−x,−t) + kq(1)(−x,−t)

= a(1)
21 k

2 + (a(1)
21 g(1)

11 + g(1)
21 a

(1)
22 )k + a(0)

22 g(1)
21 ,

g(1)
22,x + q(1)g(1)

21 + ik2 + ikg(1)
22 = a(1)

21 g(1)
12 k + a(1)

22 k
2

+(a(1)
22 g(1)

22 + a(0)
22 )k + a(0)

22 g(1)
22 .

(2.14)

Comparing the order of k on both sides of the Eq. (2.14), we
have

a(1)
11 = −i, a(0)

11 = 0,

a(1)
12 = q(1), a(1)

21 = q(1)(−x,−t),

a(1)
22 = i, a(0)

22 = 0. (2.15)

Thus, X (1) =
( −ik q(1)(x, t)
q(1)(−x,−t) ik

)
, where q(1)(x, t)

and q(x, t) are connected by the Eq. (2.5).

Proposition 1 The N-fold Darboux transformation for the
nonlocal sine-Gordon equation (1.7) can be given by

v(N ) = TN (k)v,

TN (k) = T (N )(k)T (N−1)(k) · · · T (p)(k) · · · T (1)(k),

(2.16)

and

T (p)(k) =
(
k 0
0 k

)
+ 1

γ2p − γ2p−1(
k2pγ2p−1 − k2p−1γ2p k2p−1 − k2p

γ2p−1γ2p(k2p − k2p−1) k2p−1γ2p−1 − k2pγ2p

)
,

(2.17)

where γ j = α
(p−1)
2 (k j )+σ jβ

(p−1)
2 (k j )

α
(p−1)
1 (k j )+σ jβ

(p−1)
1 (k j )

, j = 2p, 2p − 1, p =
1, 2, . . . , N,

α(p)(k) =
(

α
(p)
1 (k)

α
(p)
2 (k)

)
= T (p)α(p−1)(k1, k2, . . . , k2p),

β(p)(k) =
(

β
(p)
1 (k)

β
(p)
2 (k)

)
= T (p)β(p−1)(k1, k2, . . . , k2p),

g(p)
12 (x, t) = g(p)

21 (−x,−t). (2.18)

Thus, we can get the relations between the old and new solu-
tions,

q(N )(x, t) = q(x, t) − 2i
N∑
p=1

g(p)
12 , p = 1, 2, . . . , N .

(2.19)

It is worth mentioning that the Darboux transformation of
the nonlocal sine-Gordon equation (1.7) is different from the
local case, because the constraints are added to the nonlocal
case, this is also the innovation of this article.

3 Exact solutions for the nonlocal sine-Gordon equation

According to the Proposition 1, we can obtain a new solu-
tion for the nonlocal sine-Gordon equation (1.7) via a seed
solution q(x, t) = 0. Follow from the the space and time
evolution equations (1.1) and (1.2), we have

α(x, t; k) =
(

e−ikx− i t
4k

0

)
,

β(x, t; k) =
(

0

eikx+ i t
4k

)
,

and

γ j = σ je
2ik j x+ i t

2k j , j = 1, 2, (3.1)

g(1)
12 = k1 − k2

σ2e
2ik2x+ i t

2k2 − σ1e
2ik1x+ i t

2k1

, (3.2)

g(1)
21 = (k2 − k1)

σ1σ2e
2i(k1+k2)x+( i

2k1
+ i

2k2
)t

σ2e
2ik2x+ i t

2k2 − σ1e
2ik1x+ i t

2k1

. (3.3)

Based on the equation (2.18), we have

σ 2
1 = 1, σ 2

2 = 1. (3.4)

It is obvious that there are many values for σ1 and σ2 in the
Eq. (3.4), in fact, q(1)(x, t) is the solution to the classical
sine-Gordon equation as σ1 = 1, σ2 = 1. It is obvious that
σ 2

1 = 1, σ 2
2 = 1 not only contain solutions for the classical

case but also provide solutions for other cases. From the
subsequent analysis, this undoubtedly enriches the types of
understanding and is also more conducive to analyzing the
dynamic behavior of the solutions. Here we emphasis on the
solution for the nonlocal sine-Gordon equation as σ1 = 1,
σ2 = −1. Under the condition of providing some special
parameter values, we can get the various figures of complex
solutions but are different from the local cases. Then, the
new solution of the nonlocal sine-Gordon equation is given

123
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Fig. 1 Where a1 = −1, b1 = 1

Fig. 2 Where a1 = −1, b1 = 1

Fig. 3 Where
a1 = 0.3, b1 = −1
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Fig. 4 Where
a1 = 0.3, b1 = −1

Fig. 5 Where a1 = 0.1, b1 =
1, a3 = 1, b3 = 0.2

by means of the first-order Darboux transformation,

q(1)(x, t) = 2i
k1 − k2

e
2ik2x+ i t

2k2 + e
2ik1x+ i t

2k1

. (3.5)

Case 1,
Let k1 = a1+ib1, k2 = a1−ib1, where a1, b1 are real. we

can obtain the soliton solution for the nonlocal sine-Gordon
equation, which is given by

q(1)(x, t)

= −2b1e
−2ia1

(
x+ t

4(a2
1+b2

1)

)
sech

(
2b1(x − t

4(a2
1 + b2

1)
)

)
.

(3.6)

And, the Fig. 1 shows the three-dimensional diagram of
one-soliton, Fig. 2 shows the trajectory and density of one-
soliton. It is worth mentioning that the propagation direction
of solitons is single due to 1

4(a2
1+b2

1)
> 0.

Case 2,

Let k1 = a1 + ib1, k2 = 2a1 − i0, we have

q(1)(x, t) = (6ia1 − 2b1)e
4ia1(x+ t

16a2
1
)

1 + e
−2b1x+ b1 t

2(a2
1+b2

1)
+4ia1x+ i t

4a1
+ ia1

2(a2
1+b2

1)

. (3.7)

If b1 > 0, the complexiton propagates like a kink wave,
b1 < 0, it might be the anti-kink waves. And Fig. 3 shows the
three-dimensional diagram of the kink solutions. Although
it can not be seen intuitively from the shape of the solution
that this is a kink wave. Given the trajectory of the solution
at different times, the kink wave can be perfectly displayed
in Fig. 4.
Case 3,

And, we can obtain multiple mixed solutions via the two-
order Darboux transformation (2.16). By giving different
spectral parameters, we can get completely different solu-
tions from the classical sine-Gordon equation, such as peri-
odic solutions, rogue wave solutions. Let λ1 = λ∗

2, λ3 = λ∗
4,

the two soliton solutions of the Eq. (1.7) can be given, thus
we have

q(2)(x, t) = −2i(g(1)
12 (x, t) + g(2)

12 (x, t)), (3.8)

123
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Fig. 6 Where a1 = 0, b1 = 1, a2 = −1, b1 = 0, a3 = 0.1, b3 = 1

Fig. 7 Mixed solutions with soliton and periodic wave with a1 = 0, b1 = 1, a2 = −1, b1 = 0, a3 = 0.1, b3 = 1

where

g(2)
12 (x, t) = k3 − k4

γ4 − γ3
, (3.9)

and ⎧⎪⎨
⎪⎩

γ3 = α
(1)
2 (k3)+σ3β

(1)
2 (k3)

α
(1)
1 (k3)+σ3β

(1)
1 (k3)

,

γ4 = α
(1)
2 (k4)+σ4β

(1)
2 (k4)

α
(1)
1 (k4)+σ4β

(1)
1 (k4)

,

σ3 = 1, σ4 = −1,

(3.10)

α(1)(k j ) =
(

α
(1)
1 (k j )

α
(1)
2 (k j )

)
= T (1)

(
e
−ik j t− i t

k j

0

)
,

(3.11)

β(1)(k j ) =
(

β
(1)
1 (k j )

β
(1)
2 (k j )

)
= T (1)

(
0

e
ik j t+ i t

k j

)
, j = 3, 4.

(3.12)

Here is the density diagram of two solitons, see the Fig. 5.
Case 4,

In order to demonstrate the mixed solutions with soliton
and periodic rogue wave of the Eq. (1.7), we let the spectral

parameters as Re(λ1) = 0, Im(λ2) = 0, λ3 = λ∗
4, so the

mixed solutions can be given by Figs. 6 and 7.
It is worth noting that the second figure in Fig. 7 shows

that when we give different times and have a certain spatial
location, the three lines all tend to the same constant.

4 Conclusions

As one of the most classical methods, Darboux transfor-
mation can successfully give various solutions of this kind
of nonlocal integrable systems. At the same time, nonlocal
model is also widely used in nonlinear optics. Therefore,
the study of nonlocal integrable systems is also very impor-
tant and meaningful. The main contribution of this paper is
to propose the nonlocal sine-Gordon equation based on the
symmetric relation. At the same time, it can be clearly seen
that the nonlocal sine-Gordon equation satisfies the conser-
vation law relationship, which means it has strict physical
significance. Meanwhile, we give several kinds of analytical
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solutions of this equation through mathematical methods,
and analyze the asymptotic properties of these solutions.
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