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Abstract In the context of this endeavor, we establish
a simple protocol for formulating interior stellar solutions
that exhibit spherically symmetric configurations against
the backdrop of relativistic gravitational decoupling through
radial metric deformation (minimal geometric deformation
scheme). In this pursuit, we make use of the vanishing com-
plexity factor (˜YT F ) condition, based on Herrera’s (Phys Rev
D 97, 044010, 2018) innovative concept regarding the com-
plexity of static or slowly evolving spherical matter configu-
rations. The idea of a complexity factor emerges as the out-
come of the orthogonal splitting of the Riemann–Christoffel
tensor, which yields different scalar functions, known as
structure scalars. The protocol is demonstrated by employ-
ing the Buchdahl and Tolman relativistic stellar ansatzes as
isotropic seeds. Both of these ansatzes exhibit similar phys-
ical features, with a minor variation in their magnitudes in
the case of ˜YT F �= 0, where 0 ≤ α < 1, and α represents a
coupling parameter. However, when ˜YT F = 0, the Buchdahl
stellar ansatz exhibits a uniform density matter configuration,
while the Tolman model features an increasing pressure pro-
file. The obtained relativistic stellar models satisfy the basic
viability constraints required for the physically realistic con-
figurations.

1 Introduction

The Einstein field equations (EFEs), Gμη = κTμη, form
the foundation of the gravitational theory of relativity (GR),
which defines the connection between the spacetime geom-
etry and the distribution of energy within space. The space-
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time geometry describing the gravitational interactions in the
universe, is represented by the Einstein tensor Gμη, while
the overall energy content of space is defined by the stress-
energy tensor Tμη. Undoubtedly, among all relativistic the-
ories, GR provides the most widely accepted understanding
of how the gravitational field influences its surroundings. In
astrophysics, the understanding of relativistic compact stars
holds great significance as they serve as top-notch labora-
tories for exploring extremely dense matter under extreme
conditions. Therefore, modeling the interior configurations
of compact objects remains a subject that captivates the keen
interest of researchers. In the quest for a model of a self-
gravitational compact configuration, the first step involves
identifying exact and closed-form solutions to EFEs. How-
ever, acquiring exact solutions becomes challenging due to
the inherent non-linearity in the EFEs. Researchers have
conducted numerous investigations to establish conditions
that not only allow the closure of the relativistic system but
also simultaneously yield real physical models capable of
describing compact configurations. In this respect, various
conditions are introduced through state equations to represent
the fundamental structural features of relativistic fluids con-
stituting compact stars. However, alternative possibilities,
such as employing reasonable heuristic conditions on met-
ric potentials, also exist and effectively contribute to closing
and solving the gravitational equations of motion. Further-
more, constraints can be applied to the spacetime manifold,
such as the Karmarkar condition, which limits the Riemann-
Christoffel tensor Rμηγ δ to account for the embedding into
a 5-dimensional flat spacetime. By adopting this approach,
we can consider the relevant complexity-notion within the
domain of GR for relativistic stellar fluids. This condition
provides additional information that can be employed to clas-
sify the relativistic system. In this pursuit, several gravita-
tional solutions based on isotropic fluid distributions have
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been formulated with different gravitational models in vari-
ous contexts [2–4].

The assumption of “local isotropy” is generally employed
in the study of spherical compact fluid configurations for
approximating the interior gravitational field of these sys-
tems. The term local isotropy refers to a physical phe-
nomenon where the measurement of pressure is indepen-
dent of direction, giving rise to spherical perfect fluid con-
figurations. This Pascal-like characteristic of the fluid dis-
tribution is supported by extensive experimental findings.
The perfect fluid distributions, whether Newtonian or rel-
ativistic, are considered as the initial approximations in con-
structing physically viable compact systems. Due to the sig-
nificance of these models, general solutions characterizing
perfect fluid configurations with spherical symmetry in Ein-
stein’s GR have been formulated over the past several years.
Schwarzschild [5] developed the pioneering solution for a
slowly evolving stellar configuration with uniform density,
employing a perfect fluid as a gravitational source in 1918.
He formulated two analytical solutions to EFEs: the “exterior
solution”, which is pertinent outside the stellar distribution,
and the “interior solution”, serving as an approximation for
what occurs within the star.

However, compelling theoretical evidence leads astro-
physicists to believe that stellar configurations with nuclear
density, (> 1015g/cm3), exhibit local anisotropy. This leads
to the formation of anisotropic fluid spheres in which Pr �=
P⊥, where Pr and P⊥ denote radial and tangential stresses,
respectively. The classical work by Jeans [6] introduced the
concept of anisotropic stresses in low-density relativistic
gravitational sources, such as spherical galactic structures,
arising from anisotropic velocity distributions. Bowers and
Liang [7] conducted a ground-breaking investigation into the
effects of unequal principal stresses on the structural charac-
teristics of self-gravitational compact spheres. Ruderman [8]
pointed out that in the relativistic regime, matter will deviate
from its isotropic nature, and anisotropic features will enrich
its composition. The presence of anisotropy is believed to
contribute to the formation of more compact configurations.
Furthermore, Herrera and Santos [9] carried out a compre-
hensive investigation to explore the relevance of pressure
anisotropy on relativistic self-gravitational compact systems
in the context of GR. Bonnor [10] investigated the dynam-
ics of stellar configurations assuming an electrically charged
anisotropic fluid distribution. Additionally, Hillebrandt and
Steinmetz [11] examined the stability of anisotropic stresses
in stellar structures within the principles of GR. Further-
more, it has been noted in [12] that the emergence of cer-
tain types of physical phenomena during the evolution of
self-gravitational compact objects will inevitably result in the
appearance of anisotropic stresses, even when the configura-
tion is initially isotropic. Since any equilibrium distribution
represents the final phase of a dynamic regime, there is no rea-

son to assume the disappearance of pressure anisotropy at the
concluding equilibrium phase. Therefore, the final distribu-
tion, even if it is originally filled with perfect fluid becomes
imperfect. Furthermore, numerous studies have been con-
ducted to acquire interior solutions for electrically charged
EFEs linked to both static and non-static anisotropic fluid
spheres [13–22].

In stellar configurations, deviations from gravitational
isotropy can arise in both extremely high-density and
extremely low-density conditions due to various factors. The
relativistic gravitational collapse of compact configurations
with high density can result from exotic phase transitions
[23,24], with one noteworthy example being the pion con-
densed state [25–28]. By releasing a significant amount of
energy and relaxing the state equation, the pion condensed
state significantly influences the relativistic collapsing flu-
ids. The authors of [29] emphasized that the configuration
of a pion condensed phase could be described by consider-
ing anisotropic pressure distributions, which arise from the
configuration of the π− modes. The relevance of anisotropic
part of Tμη linked to magnetic field lines within a type-II
superconductor, particularly in the context of a neutron stars
has been examined in [30,31]. The presence of anisotropic
stresses is also linked to the existence of type-P superfluids
[8], solid core as well as boson stars [32,33] that are con-
sidered as the essential components of realistic stellar con-
figurations. The existence of anisotropic stresses could be
attributed to another source, namely, viscosity.

In addition to considering gravitational anisotropy as a
key element in understanding the dynamics of both static
and non-static compact structures, we can also represent it
through a scalar function. This scalar can be defined in terms
of a unique connection between � = Pr − P⊥ (anisotropic
factor) and the gradient of energy density (density inhomo-
geneity) and is dubbed as complexity factor. The notion of
complexity in physics lacks intuitiveness, making the defi-
nition of complexity for various systems a non-trivial task.
This concept is connected to numerous fascinating aspects
that delve into the structure existing within the system. The
term complexity was initially associated with elements such
as information and entropy, grounded in the notion of quanti-
fying the fundamental internal structure of a system. For this
reason, it has been comprehensively explored by numerous
researchers and applied in diverse scientific scenarios [34–
39]. Despite extensive study, there remains a lack of consen-
sus on how to precisely define complexity across the diverse
features of nature. Generally, the exploration of complexity
stems from examining the perfect crystal (characterized by
regular behavior) and the isolated ideal gas (exhibiting irreg-
ular behavior). These systems serve as examples of the sim-
plest models and, consequently, are considered to have mini-
mal complexity. Since both of these simplest models exhibit
extreme behavior within the spectrum of order and informa-
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tion, it becomes apparent that the conception of complexity
must include some additional factors beyond just order or
information.

To address an intuitively ”complex” configuration, we
should possess the capability to define an observable that can
measure and quantify its complexity. This allows us to effec-
tively distinguish between various structures based on their
respective degrees of complexity. Therefore, establishing a
hierarchy to classify relativistic structures, ranging from the
simplest Minkowski metric to more complex radiating stel-
lar fluids, based on their complexity factors is an important
task [40]. A crucial groundwork for understanding and com-
paring the dynamics of different systems could emerge by
defining corresponding physical attributes within the frame-
work of such a hierarchy. An intuitive description of com-
plexity related to stellar systems, based on fluid features such
as non-uniform energy density and anisotropic stresses, has
been proposed by Herrera [1]. In contrast to the definitions
of complexity associated with order and information, this
new definition is directly linked to the internal configuration
of relativistic fluids. More precisely, this alternative descrip-
tion is associated with a scalar quantity (YT F ) resulting from
the orthogonal splitting of Rμηδγ [41,42]. The scalar YT F is
explicitly connected to the internal framework of the fluid
distribution and demonstrates the complexity inherent in a
self-gravitational compact system. Respective applications
of the YT F = 0 constraint in the context of alternative grav-
itational models are discussed in [43–48].

In seeking closed-form analytical solutions for EFEs, one
of the most widely accepted gravitational decoupling tech-
niques in the realm of classical GR is the minimal geomet-
ric deformation scheme (MGD-decoupling, thereafter). The
basic formalism of MGD-decoupling is based on consider-
ing a generic form of fluid distribution, whose stress-energy
tensor can be encoded as

˜Tμη = Tμη + α	μη,

where the coupling parameter α is inserted to explore the
impacts of 	-gravitational sector corresponding to the seed
source Tμη. It is interesting to observe that the addition
of these new sources may give rise to other fields includ-
ing tensor, vector and scalar fields. The MGD-decoupling
enables us to solve the EFEs for each gravitational source
{

Tμη,	μη

}

independently. The complete solution of the
considered system is then obtained through the principle
of superposition. This is particularly beneficial when deal-
ing with scenarios that are more complex than trivial ones,
i.e., modeling the internal configurations of self-gravitational
objects subject to anisotropic matter. Ovella made ground-
breaking contributions in formulating consistent solutions to
the EFEs using MGD-decoupling against the backdrop of
the Randall-Sundrum brane-world [49,50]. Afterwards this
systematic scheme was extended generalizing the isotropic

fluid configuration into the anisotropic regime. The deforma-
tion of the radial metric potential in MGD-decoupling allows
us to explore the thermodynamical features associated with
compact distributions subject to the 	-gravitational source
[49–51]. The respective applications of MGD-decoupling
can be found in the formulation of diverse cosmological
and astrophysical solutions. Under the framework of MGD-
decoupling, perfect fluid solutions were generalized into an
anisotropic regime through the mechanisms of braneworld
[52] and GR [53]. check grammar By deforming the estab-
lished relativistic metric variables, Durgapal–Fuloria [54],
Heintzmann [55], Tolman VII [56], Schwarzschild [57] and
Krori–Barua [58], physically acceptable stellar models char-
acterizing the anisotropic self-gravitational compact config-
urations have been constructed. Some more recent investiga-
tions on the role of MGD-decoupling in exploring the spheri-
cally symmetric stellar configurations can be seen in [59–64].

Herrera et al. [42] developed a systematic approach for
exploring the internal features of the astrophysical com-
pact configurations within the principles of GR. They stel-
lar solutions characterizing the evolution and configura-
tion of non-static self-gravitational stellar objects. These
equations were expressed through five scalars, namely
{YT F , XT F , XT ,YT , Z}, where Z becomes zero for non-
diffusive fluids fluids. It was pointed out that these scalars are
closely connected to interior structural features of the matter
distribution, such as anisotropic pressure, Tolman mass, and
homogeneous as well as non-homogeneous energy density.
Specifically, these scalars exhibit the following features:

• The combined aftermath of anisotropic pressure and non-
uniform density is encoded in the scalar YT F [42,65].

• The non-uniformity of the energy density is controlled
by XT F [42,65].

• In the equilibrium state, it is found that YT ∝ mT , where
mT denotes the Tolman mass [42,65].

• XT characterizes the energy density associated with the
relativistic fluids [42,65].

The inclusion of an electric charge influences the evolution of
self-gravitational configurations through its explicit presence
in the scalar functions, as discussed in [65]. Inspired by the
profound physical significance of the aforementioned scalar
quantities, we will calculate them using the charged fluid
distribution with two different metric ansatzes, namely:

• Buchdahl ansatz.
• Tolman ansatz.

We construct physically acceptable stellar solutions exhibit-
ing the self-gravitational compact spheres by imposing the
null-complexity constraint under MGD-decoupling. More
precisely, this study delves into investigating the impact
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of complexity on slowly evolving or static charged self-
gravitational fluids characterized by spherical symmetry.
This exploration is carried out through the application of
gravitational decoupling within the framework of MGD for-
malism. This well-established gravitational technique has
previously been employed to derive viable configurations for
compact stars filled with anisotropic fluid, adhering to well-
known metrics. This work is concerned with the theoretical
modeling of two well-known metric potentials (Buchdahl
and Tolman) by employing the MGD-decoupling by consid-
ering electrically charged matter configuration. The MGD-
decoupling is considered very beneficial in formulating the
solutions associated with stellar configuration by deforming
the radial metric potential grr . This involves the decompo-
sition of the considered system into two sets, one for the
Tμη-source and the second for the 	μη-source. The subse-
quent sections of this paper are organized as follows: The
Einstein–Maxwell relativistic equations under the term of
MGD-decoupling are defined in Sect. 2. The basic frame-
work of MGD-decoupling, along with the corresponding
expressions of mass functions and the junction condition,
is introduced in Sect. 3. In Sect. 4, we employ the Karmarkar
condition to construct the structure scalars along with their
respective complexity factors within the MGD-decoupling
framework. The basic framework of complexity-free condi-
tion and the protocol to obtain the anisotropic fluid solutions
is presented in Sect. 4. Furthermore, we obtain the decoupled
stellar solutions endowed with spherical symmetry for the
Buchdahl and Tolman ansatzes obeying the null-complexity
constraint in the Sects. 4.1 and 4.2, respectively. A com-
prehensive physical investigation for the considered metric
potentials is presented in Sect. 5. The concluding remarks
for both sets of solutions are discussed in Sect. 6.

2 The generic formalism of decoupling

The generic action in the context of electrically charged
decoupled stellar structures can be defined as

AG ≡ AEH + αAX

=
∫

d4x
√|g|

(

R

16π
+ Le + Lm + αL	

)

, (1)

where:

• The densities of matter and electric fields are encoded as
Lm and Le, respectively, while L	 denotes the fields of
new gravitational sector (	-gravitational sector, hence-
forward) not addressed by standard GR.

• AEH andAX denote the actions associated with Einstein–
Maxwell sector and the X -gravitational sector, respec-
tively.

• R denotes the usual curvature scalar, derived by contract-
ing the Ricci curvature tensor Rμη.

• The parameter α is the decoupling constant, and g =
tr(gαβ), where gμη is the metric tensor.

The gravitational equations of motion characterizing the
decoupled Einstein–Maxwell framework can be defined by
varying the action (1) with respect to gμη as

Gμη ≡ Rμη − 1

2
Rgμη = 8π

(

˜Tμη + Sμη

)

, (2)

where Gμη and Sμη symbolize Einstein and electromagnetic
tensors, respectively. The stress-energy tensor ˜Tμη denotes
a sum of two different and independent gravitational field
sources,

˜Tμη = Tμη + α	μη, (3)

with

(˜Tμη) = diag (̃ε,−˜Pr ,−˜P⊥,−˜P⊥), (4)

where ε̃, ˜Pr and ˜P⊥ denote effective energy density, effective
radial pressure and effective tangential pressure, respectively.
The interior of the slowly evolving, charged self-gravitational
structure is approximated with perfect fluid distribution. In
this respect, the contributions of the seed sector and 	-
gravitational sector can be encoded as

(

T μ
η

)

= diag (ε,−P,−P,−P) , (5)
(

	 μ
η

)

= diag
(

	 0
0 ,−	 1

1 ,−	 2
2 ,−	 3

3

)

, (6)

where 	
μ
η denotes a specific type of unknown standard fluid

distribution induced by the decoupling parameter α. Now, the
effective variables appearing in Eqs. (4)–(6) are identified as

ε̃ = T 0
0 + α	 0

0 ≡ ε + ε	, (7)

˜Pr = −T 1
1 − α	 1

1 ≡ P + P	
r , (8)

˜P⊥ = −T 2
2 − α	 2

2 ≡ P + P	⊥ . (9)

Now, it becomes evident that the inclusion of the 	-
gravitational source induces anisotropy within the charged
self-gravitational compact system, as defined by its struc-
tural parameters

�e f f ≡ ˜Pr − ˜P⊥ = −α(	 2
2 − 	 1

1 ), 	 1
1 �= 	 2

2 . (10)
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Next, consider the following ansatz

ds2 = gμηdx
μdxη,

(

gμη

)

= diag
(

eν(r),−eλ(r),−r2,−r2 sin2 θ
)

, (11)

for time-independent spherically symmetric manifold, with
Schwarzschild-like coordinates x0,1,2,3 = t, r, θ, ϕ, respec-
tively. The stress-energy tensor describing the electromag-
netic interactions within the compact configuration can be
defined as

Sμη = 1

4π

(

F γ
μ Fηγ + 1

4
gμηFγ δF

γ δ

)

,

with Fμη = ∂μφη − ∂ηφμ, (12)

where φμ is the four potential, which in the static case reads
φμ = (�, 0, 0, 0) with � ≡ �(r). As the electromagnetic
tensor Fμη obeys the Maxwell’s electromagnetic field equa-
tions

∇η

[

(−g)1/2Fμη
]

= 4π(−g)1/2 Jμ, (13)

∂[γ Fμη] = 0, (14)

where the four-current Jμ reads

Jμ = �Vμ, (15)

where � ≡ �(r) being the density of electric charge. Sub-
sequently, for the system (11), the Maxwell’s equations can
be reformulated into the following form

� ′′ + 1

2r

[

4 − r(ν′ + λ′)
]

� ′ = 4π�e(λ+ν/2), (16)

whose integration with respect to r reads

� ′ = s

r2 e
(ν+λ)/2, with s(r) = 4π

∫ r

0
�eμ/2u2du, (17)

where an overhead prime denotes r -derivative, while s(r) is
the total electric charge present inside the spherically sym-
metric compact configuration. Finally, the non-zero compo-
nents of Sμη read

S 0
0 = S 1

1 = −S 2
2 = −S 3

3 = s2

8πr4 . (18)

Thus, the non-null constituents associated with electrically
charged EFEs are defined as

ε̃ + S 0
0 = 1

8π

[

1

r2 −
(

1

r2 − λ′

r

)

e−λ

]

, (19)

˜Pr + S 1
1 = 1

8π

[

− 1

r2 +
(

1

r2 + λ′

r

)

e−λ

]

, (20)

˜P⊥ + S 2
2 = 1

8π

[

λ′′

2
e−λ − (λ′ − ν′)

(

ν′

4
+ 1

2r

)

e−λ

]

.

(21)

The stress-energy tensor obeys the conservation condition

(

˜T μ
η + S μ

η

)

;μ ≡ 0. (22)

If we take μ = 1 in the above equation, then after some
manipulations, we get

0 =
(

˜T 1
1 + S 1

1

)′ − 1

2
g00 (g00

)′

×
(

˜T 0
0 + S 0

0 − ˜T 0
0 − S 0

0

)

− g22 (g11
)′

(

˜T 2
2 + S 2

2 − ˜T 2
2 − S 2

2

)

0 =
(

T 1
1 + S 1

1

)′ − ν′

2

(

T 0
0 + S 0

0 − T 1
1 − S 1

1

)

− 2

r

(

T 2
2 + S 2

2 − T 1
1 − S 1

1

)

+ αF (	 μ
μ

)

, (23)

where

F (	 μ
μ

) ≡
[

(

	 1
1

)′ − ν′

2

(

	 0
0 − 	 1

1

)

− 2

r

(

	 2
2 − 	 1

1

)

]

.

(24)

The above gravitational system reduces to the isotropic
charged stellar distribution by assuming α = 0. In the next
section, we employ the Ovalle’s MGD-approach [66], which
splits the original system into two arrays.

3 The notion of minimal geometric deformation

The gravitational decoupling is a widely recognized mathe-
matical framework that enables us to disintegrate the com-
plex gravitational source and to develop a well-behaved
anisotropic gravitational solutions form the perfect fluid seed
sources. It becomes evident that the non-linear nature of the
Einstein–Maxwell gravitational sector prevents the decom-
position (3), resulting in two separate sets of relativistic
systems, each corresponding to the gravitational sources
involved. In this respect, we employ the MGD approach to
split the considered relativistic system for understanding the
effects emerging from the 	-gravitational source on the elec-
trically charged perfect fluid configuration. Let us consider
a transformation of the metric potentials

{

eλ(r), eν(r)
}

pro-
posed by Ovalle [66], whereby

ν(r) = ω(r) + αH(r), (25)
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e−λ(r) = σ(r) + αG(r), (26)

where α is a real constant controlling the effects of 	μη on
the source Tμη, while {G,H} are the deformation functions.
The MGD-approach assumes deformation only in the radial
metric potential eλ(r), implying H(r) = 0 and G(r) �= 0.
Therefore, employing the above-mentioned deformations,
we obtain two sets of relativistic gravitational systems

ε + s2

8πr4 = 1

8π

(

1 − σ ′
r2 − σ ′

r

)

, (27)

P − s2

8πr4 = 1

8π

(

1 − σ ′
r2 − σ ′ω′

r

)

, (28)

P + s2

8πr4 = 1

8π

[

(

σ ′ω′
4

+ σ ′
2r

)

+ σ

2

(

ω′′ + ω′
r

+ ω′2
2

)]

.

(29)

Then, using the isotropic condition, we can calculate the elec-
tric field for the charged system as

s2

r4 7 = 1

8r2

(

2r2σω′′ + r2σω′2 + 2rσω′ + r2σ ′ω′ + 2rσ ′

− 4rσ ′ − 4σ + 4

)

. (30)

The solution for the electrically charged seed gravitational
source with α = 0 can be described by the following metric

ds2 = gμηdx
μdxη,

(

gμη

)

= diag
(

eω(r), 1/σ(r),−r2,−r2 sin2 θ
)

. (31)

The gravitational equations associated with the additional
gravitational sector 	μη can be defined as

8πε	 = −α

(G′

r
+ G

r2

)

, (32)

8π P	
r = αG

(

1

r2 + ω′

r

)

, (33)

8π P	⊥ = αG
2

(

ω′′ + ω′2

2
+ ω′

r

)

− αG′

2

(

ω′

2
+ 1

r

)

. (34)

The relativistic hydrostatic equilibrium equations associated
with

[

T μ
η + S μ

η

]

and 	
μ
η fluid sources take the following

forms

P ′ + 4πr4P − rm0 + s2

r(r2 − 2rm0 + s2)
(ε + P) = ss′

4πr4 , (35)

and

(

P	
r

)′ + m0 + 4πr3
˜Pr

(r − m0s)

(

ε	 + P	
r

) = −2�e f f

r
, (36)

where the relativistic mass function m0 reads [67–69]

m0 ≡
( r

2

)

R3
232 + s2

2r
= r

2
(1 − σ) + s2

2r
. (37)

Then, we have

m = m0(r) − rα

2
h(r). (38)

The expression of the relativistic geometric mass associ-
ated with decoupled static self-gravitational fluids can be
described via uniform energy density plus the change induced
by the non-uniform distribution of energy density as

m(r) = 4π

3
r 3̃ε − 4π

3

∫ r

0
[̃ε(u)]′ u3du + s2

2r
+ 1

2

∫ r

0

s2

u2 du.

(39)

Next, using Eqs. (7)–(9), we get

m(r) = m0(r) + αm	(r), (40)

where

m0(r) = 4π

3
r3ε − 4π

3

∫ r

0
[ε(u)]′ u3du + s2

2r
+ 1

2

∫ r

0

s2

u2 du,

(41)

m	(r) = 4π

3
r3ε	 − 4π

3

∫ r

0

[

ε	(u)
]′
u3du. (42)

Here, m0 and m	 are denotes the masses associated with
Einstein–Maxwell system and the 	-gravitational sector,
respectively. Furthermore, the Tolman mass function, corre-
sponding to the slowly evolving charged astrophysical con-
figurations with spherical symmetry, can be defined as [70]

mT = 4π

∫ r�

0
u2e(ν+λ)/2

(

˜T 0
0 + S 0

0

− ˜T 1
1 − S 1

1 − 2˜T 2
2 − 2S 2

2

)

du. (43)

The massmT signifies the total energy content of the compact
fluid system, which can also be expressed as

mT = e(ν+λ)/2
(

m(r) + 4πr3
˜Pr − s2

2r

)

, (44)

or alternatively

mT = [mT (r)]�

(

r

r�

)3

− r3
∫ r�

r

[

4π

u4

∫ r�

0

(

[ε(u)] + s2

8πr4

)′

× u3du − 8π

u

(

�e f f − s2

4πr4

)]

e(ν+λ)/2du. (45)
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The above expression can be represented in terms of Weyl
scalar as

mT = [mT (r)]�

(

r

r�

)3

+ r3
∫ r�

r

1

u
e(ν+λ)/2

×
[

4π

(

�e f f − s2

4πr4

)

+ E

]

du. (46)

In terms of the structure scalar YT F , we can rewrite mT as

mT =
( r

R

)3
MT + r3

∫ R

r

e(ν+λ)/2

u
˜YT Fdu, (47)

where MT denotes the overall Tolman mass of
self-gravitational fluid with spherically symmetric configura-
tion of radius R. To establish a physically viable and complete
solution for the self-gravitational compact configuration, it is
essential to smoothly satisfy the junction constraints across
the boundary surface � of the astrophysical configuration
with the familiar Reissner–Nordström metric, as defined by

ds2 = gμηdx
μdxη, gμη

= diag

[

(

1 − 2M

r
+ q2

r2

)

,−
(

1 − 2M

r
+ q2

r2

)−1

,

− r2,−r2 sin2 θ

]

. (48)

Here, M and q encode the total relativistic mass and charge
corresponding to the astrophysical compact distribution,
respectively. The continuity of the first and second funda-
mental forms across �, gives

eν� =
(

1 − 2M

r�
+ q2

r2
�

)

, (49)

e−λ� =
(

1 − 2M

r�
+ q2

r2
�

)

, (50)

Pr (r�) = 0, (51)

s(r�) = q. (52)

The above expressions describe the necessary and sufficient
conditions for the smooth joining of both the
geometries.

4 Complexity of self-gravitational fluid spheres

This section explores the key ingredients for establishing
the notion of complexity within the framework of static,
anisotropic spherical fluid configurations as discussed by
Herrera [1]. The novelty of this idea lies in one of its pri-

mary features: assigning zero complexity to systems that
are isotropic in terms of pressure and uniform in terms of
density. In this scheme, the complexity of anisotropic fluids
spheres is determined by a scalar function, which is associ-
ated with the family of variables so-called structure scalars.
The formulation of these scalar terms is primarily linked to
the well-known scheme of orthogonal decomposition of ten-
sorial quantity Rμηγ δ (known as Riemann tensor). These
scalars are important for exploring the structural features
inherent to the time-independent as well as time-dependent
self-gravitational fluid spheres. Here, we will provide a con-
cise overview of how they are obtained. For spherically sym-
metric compact fluid sources, the Weyl tensor (Cμηγ δ) is
defined in terms of its electric part (Eμη) only since the mag-
netic part disappears as a result of spherical symmetry.

Eμη = Cμηγ δU
ηU δ, (53)

where Uμ denotes the four velocity for the given fluid con-
figuration. The above expression can be rewritten in terms of
Weyl scalar E , unit four vector Kμ = (

0, e−λ/2, 0, 0
)

and
the projection tensor hμη as

Eμη = E

(

KμKη − 1

2
hμη

)

, (54)

where

hμη = gμη +UμUη and E

= 1

4

[

2

r2 (e−λ − 1) + 1

r
(λ′ − ν′) − ν′

2

(

ν′ − λ′)− ν′′
]

e−λ.

(55)

Herrera and his coworkers described that Rμηγ δ can be writ-
ten using the following tensorial terms (for details see [1,65])

Yμη = Rμηγ δU
ηU δ, (56)

Xμη =∗ R∗
μηγ δU

ηU δ = 1

2
ξ ςυ
μη R∗

ςυγ δU
ηU δ,

with R∗
μηγ δ = 1

2
ξςυγ δR

ςυ
γ δ . (57)

The terms Yμη and Xμη can be represented through four
structure scalars {YT F ,YT , XT F , XT } as

Yμη =
(

KμKη − 1

3
hμη

)

YT F + 1

3
hμηYT , (58)

Xμη =
(

KμKη − 1

3
hμη

)

XT F + 1

3
hμηXT . (59)

Then, combining the Einstein–Maxwell equations (27)–(29)
with Weyl scalar E , we obtain the expressions for the elec-
trically charged scalars

{

˜YT F ,˜YT , ˜XT F , ˜XT
}

as [65]
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˜YT F = 4π�e f f + E − s2

r4 = 8�e f f

− 2s2

r4 − 4π

r3

∫ r

0

(

ε̃ + s2

8πr4

)

u3du, (60)

˜YT = 4π(̃ε + 3˜Pr − 2�e f f ) + s2

r4 , (61)

˜XT F = 4π�e f f − E − s2

r4 = 4π

r3

∫ r

0

(

ε̃ + s2

8πr4

)

u3du,

(62)

˜XT = 8π

(

ε̃ + s2

8πr4

)

. (63)

Now, we can clearly specify the effective structure scalars
appearing in Eqs. (60)–(63) as

˜YT F ≡ YT F + Y	
T F , (64)

˜YT ≡ YT + Y	
T , (65)

˜XT F ≡ XT F + X	
T F , (66)

˜XT ≡ XT + X	
T . (67)

Now, we will construct the solutions corresponding to the
gravitational systems (27)–(29) and (32)–(34). The solution
of the system of DEs (27)–(29) requires two conditions due
to the presence of the five unknown variables {ω, σ, ε, P, s}
within that system. However, the solution of the 	μη fluid
requires the obtention of the solution for the system (32)–
(34) corresponding to the Tμη fluid source. In this context,
we employ two conditions: (i) a suitable model for the metric
potential and (ii) Embedding Class I condition. Any metric
describes an Embedding Class I metric if it obeys the Kar-
markar condition, which is defined as

R1212R3030 = R1220R1330R1010R2323, (68)

such that R2323 �= 0. For the spherically symmetric metric
ansatz (31), the above expression turns out to be

2ω′′

ω′ + ω′ = − σ ′

σ(1 − σ)
, σ �= 0, (69)

whose integration reads

ω(r) = 2 ln

[

C1 + C2

∫ (

1 − σ

σ

)1/2

dr

]

, (70)

with C1 and C2 being the integration constants. The above
expression describe a relationship between the geometric
variables {ω, σ }. In the next section, we will employ two
different ansatzes (Tolman and Buchdahl) to examine the
influence of complexity using the structure scalars associ-
ated with the density and pressure of the electrically charged
self-gravitational compact configurations.

4.1 Minimally deformed complexity-free Buchdahl Ansatz

Let us consider the Buchdhal ansatz, which is expressed as

σ(r) = 1 + Ar2

1 + Br2 . (71)

Here, A and B denote integration constants with units
[length−2]. This metric ansatz has been extensively used
in deriving the solutions of spherically symmetric, self-
gravitational fluid configurations [71–74]. Now, using the
Buchdhal ansatz in (72), we obtain

ω(r) = 2 ln[C + D
√

1 + Ar2], (72)

where C = C1 and D = 1
A (B − A)1/2C2. Then, using the

metric potentials {σ, ω} in the system of DEs (27)–(29), the
physical variables {s, P, ε} read

s2

r4 = Br2
[−2DA2r2 + B(C + Dϕ) + A

(−Cϕ + D(−2 + Br2)
)]

2ϕ
(

1 + Br2
)2

(C + Dϕ)
, (73)

8π P =
[−2DA2r2 + B(2 + 3Br2)(C + Dϕ) + ACϕ(2 + 3Br2) − D(2 + 2Br2 + 3B2r4)

]

2ϕ
(

1 + Br2
)2

(C + Dϕ)
, (74)

8πε =
[−2DA2r2(3 + 2Br2) + 3B(2 + Br2)(C + Dϕ) + A

(−3Dϕ(2 + Br2) + D(−6 + 2Br2 + 3B2r2)
)]

2ϕ
(

1 + Br2
)2

(C + Dϕ)
, (75)
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with ϕ = √
1 + Ar2. Next, we proceed to construct the solu-

tion corresponding to the additional fluid 	μη, which is influ-
enced by G(r). To solve this, we impose the complexity-free
condition on the effective gravitational source Tμη, that is
˜TT F = 0, with YT F �= 0. Then, Eq. (60) takes the following
form

˜YT F = 4π�e f f + E − s2

r4 ≡ YT F + Y	
T F = 0, (76)

where YT F is determined by the seed variables {ε, P, s},
therefore

˜YT F =
[

ν′(2 − rν′ + rλ′) − 2rν′′]

4reλ
− s2

r4 , (77)

which is defined as

˜YT F =
[(

A2Dr2(5C + 4Dϕ) − B(2CD + C2ϕ + D2ϕ) − A
(−C2ϕ + D2ϕ(−4 + Br2) + CD(−5 + 2Br2)

))]

2ϕ
(

Br2
)−1 (1 + Br2

)2
(C + Dϕ)2

. (78)

Also, for the Eq. (76), we obtain

ω′G′ +
[

2ω′′ +
(

ω′ − 2

r

)

ω′
]

G − 4YT F = 0. (79)

Then, the combination of the metric potentials {σ, ω} with
YT F produces the following form of the deformation function

G(r) = L(1 + Ar2) − B(1 + Ar2)

2A(A − B)D

×
[
(

3A2 + (B − 4)B + B2
)

D + (A2 − A(B − 2)B + B2
)

Cϕ

B(1 + Br2)

− A
(

A2 − A(B − 2)B + B2
)

C

B3/2
√
B − A

tanh−1

(

ϕ
√
B√

B − A

)

+ A (A(B − 1) + B)

(A − B)
ln

(

1 + Ar2

1 + Br2

)

]

, (80)

where L is constant of integration. To determine the value
of L , we employ the physically acceptable condition for the
metric potential e−λ(r) = σ(r) + αG(r), which requires it
to be equal to unity at the core, that is e−λ(r) = 1. This
conditions implies that G(0) = 0, which gives

L =
(

3A2 + (B − A)B + B2
)

D + (A2 − AB(B − 2) + B2
)

C

2A(A − B)D

− AC
(

A2 + AB(B − 4) + B2
)

√
B(B − A)

× tanh−1

(
√

B

B − A

)

. (81)

Then, the transformation (26) in combination with Eq. (80)
defines the new form of radial metric potential e−λ(r). Now,
the physical variables

{

ε	, P	
r , P	⊥

}

associated with 	-
gravitational sector read

8πε	 = − α

r2

[

r2

{

B
(

A3Cr4 − B (C + Dϕ) + A2r2 ((B − 1)C + 3Dϕ) − A
(

(B − 4)Dϕ + C
(

2 + B(r2 − 1)
)))

ADϕ(1 + Br2)2

+2AL − χ(1)

}

+ L(1 + Ar2) − χ(1)

2A(1 + Ar2)

]

, (82)

8π P	
r = α

2

(

D + 3ADr2 + Cϕ

r2(D + ADr2 + Cϕ)

)

(1 + Ar2)(2L − χ(1)),

8π P	⊥ = α

2

[

r2

(

B
(

A3Cr4 − B (C + Dϕ) + A2r2 ((B − 1)C + 3Dϕ) − A
(

(B − 4)Dϕ + C
(

2 + B(r2 − 1)
)))

ADϕ(1 + Br2)2 (83)

+2AL − χ(1)
)

(

D + 2ADr2 + ϕC

r(D + ADr2 + ϕC)

)

(−r) + AD(2 + Ar2)

ϕ(C + Dϕ)

(

2L − χ(1)
)

]

(84)
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where the value of χ(1) is given in Appendix. The corre-
sponding new radial metric potential will modify the struc-
ture scalar YT F (defined in (78)) to

˜YT F = −
[

Br2
(

−B(2CD + C2ϕ + D2ϕ)(−1 + α)

+A3CDαr4 + A
(

CD(−5 − Br2(−2 + α) + 2α)

+C2ϕ(−1 + (−2 + α)α) + C2ϕ(−1 + (−2 + B)α)

+D2ϕ(−4 + Br2 + 4α − Bα)
)

+A2r2(C2ϕα + D2ϕ(−4 + 3α) + CD(−5 + (2 + B)α))
)]

/

(

2ϕ
(

1 + Br2
)2

(C + Dϕ)2
)

. (85)

The above relation can be used to determine the impact of
decoupling parameter α on the structure scalar ˜YT F , which
is defined as a variable for defining the complexity of the
system.

˜XT F = 1

2r2

[

−2 + Br4(2A2Dr2 − B(C + Dϕ) + A(Cϕ + D(2 − Br2))

2α(1 + Br2)2(C + Dϕ)
+(1 + Ar2)

{

2

1 + Br2 + α
(

2L − χ(1)
)

}

−r2

{

α

(

2AL + B
(

A3Cr4 − B (C + Dϕ) + A2r2 ((B − 1)C + 3Dϕ) − A
(

(B − 4)Dϕ + C
(

2 + B(r2 − 1)
)))

ADϕ(1 + Br2)2

−χ(1)
)

+ 2A

1 + Br2 − 2B(1 + Ar2)

(1 + Br2)2

}]

, (86)

˜YT =
[

−B(D + Lϕ)(8 + 3Br2 + 4α)

−2A2Dr2
(

−3 + B2r4α + Br2(1 + 4α)
)

+A
(

Cϕ
(

8 + Br2(3 − 8α) − 4αB2r4
)

+D
(

6 + B2r4(−3 + 2α) − 2Br2(5 + 4α)
))]

/

(

2ϕ
(

1 + Br2
)2

(C + Dϕ)2
)

, (87)

˜XT =
[

−B(D + Cϕ)
(

Br2(−2 + α) + 3(−1 + α)
)

−A2Nr2
(

3 + 3αB2r4 + Br2(3 + 5α)
)

−2ADB2r4(−1 + 2α) − A
(

D
(

3 + 8αBr2
)

+Cϕ
(

3 + 8αBr2 + 2B2r4(−1 + 2α)
)

+Cϕ
(

3 + 3αB2r4 + Br2(2 + 5α)
))]/

2ϕ

×
(

(

1 + Br2
)2

(C + Dϕ)2
)

. (88)

4.2 Minimally deformed complexity-free Tolman Ansatz

This subsection probes the construction of electrically
charged, complexity-free self-gravitational model under
radial metric transformation (minimal geometric deforma-
tion) by assuming the well-known Tolman model

σ(r) = 1

1 + Ar2 + Br4 . (89)

Here, A and B are integration constants with units [length−2]
and [length−4], respectively. Then, under the Tolman model,
the embedding Class I conditions reads

ω(r) = 2 ln

[(

C + D
(

A + Br2
)3/2

)]

, (90)

with C = C1 and D = C2
3B . Then, the physical variables

{s, P, ε} turn out to be

s2

r4 =
r2
(

A2D − 3BD + 2ABDr2 + B2Dr4 + C
√
A + Br2

)

(

A2 + 2ABr2 + B(−1 + Br4)
)

√
A + Br2(1 + Ar2 + Br4)2

(

C + D(A + Br2)3/2
) , (91)
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8π P =
[

−r2
(

A2D − 3BD + 2ABDr2 + B2Dr4

+ C
√

A + Br2
)

×
(

A2 + 2ABr2 + B(−1 + Br4)
)

−6BD(A + Br2)(1 + Ar2 + Br4)r2

+
(

1 − (1 + Ar2 + Br4)
)
√

A + Br2(1 + Ar2 + Br4)

×
(

C + D(A + Br2)3/2
)]/

r2
√

A + Br2(1 + Ar2 + Br4)2

×
(

C + D(A + Br2)3/2
)

, (92)

8πε =
[

√

A + Br2

(

C + D
(

A + Br2
)3/2

)

×
(

r2(1 + Ar2 + Br4)2 + 2r2(A + 2Br2) − (1 + Ar2 + Br4)
)

+ r2
(

A2D − 3BD + 2ABDr2 + B2Dr4 + C
√

A + Br2
)

×
(

A2 + 2ABr2 + B(−1 + Br4)
)]/

r2

×
√

A + Br2(1 + Ar2 + Br4)2
(

C + D(A + Br2)3/2
)

. (93)

The corresponding complexity factor YT F takes the form

YT F = − [r2 (A2 + 2ABr2 + B
(−1 + Br4))

×
(

−6BCD +
√

A + Br2
(

C2 + A3D2 + B3D2r6)+ 2B2Dr2

×
(

Cr2 − 3D
√

A + Br2
)

+ A2D
(

2C + 3BDr2
√

A + Br2
)

+ABD
(

4Cr2 + 3D
√

A + Br2
(−2 + Br4)

))]

/(
√

A + Br2(1 + Ar2 + Br4)2 (C + D(A + Br2)3/2)2
)

.

(94)

Now, using the Tolman ansatz in Eq. (79), we obtain

6BDr
(

2BrG + (A + Br2)G′)

A2D + 2ABDr2 + B2Dr4 + C
√
A + Br4

− 4YT F = 0

(95)

Then, the combination of (94) and (95) produces the defor-
mation function for the minimally deformed Tolman model

G(r) = L

A + Br2

+
(

A2D − 8BD − B2Dr4 + C
√
A + Br2

12BD(1 + Ar2 + Br4)
− χ(2)

6BD

)

,

(96)

where the value of χ(2) is given in Appendix. Furthermore,
L is an integration constant, whose value can be found by
making use of the physically viable condition: e−λ(0) =
σ(0) + αG(0) = 1, which implies G(0) = 0, and thus,

L = A

6BD

[

(−A2 + 2B)BD√−A2 + 4B
tan−1

(

A + 2B2

√−A2 + B

)

+ AB − B
√
A2 − 4B

2
√

2
√

A − √
A2 + 4B

√
A2 − 4B

×C tan−1

( √
2
√
A

√

A − √
A2 − 4B

√
A2 − 4B

)

− AB + B
√
A2 − 4B

2
√

2
√

A + √
A2 + 4B

√
A2 − 4B

×C tan−1

( √
2
√
A

√

A + √
A2 − 4B

√
A2 − 4B

)]

−
A
(

A2D − 8BD + C
√
A
)

12BD
. (97)

The physical variables associated with 	μη fluid source
transform as

ε	 = α

12r2(A + Br2)2

[

−12L(A + Br2) − χ(3)

BD(A + Br2)
+ 24BLr2 + 2r2

D
χ(3) + 2r2

⎧

⎨

⎩

(

A2D
√
A + Br2 + A

(

C + 2BDr2
√
A + Br2

)

+ B
(

Cr2 + D
√
A + Br2(−6 + Br4)

))

BD(1 + Ar2 + Br4)2

×
(

A2 + 2ABr2 + B(−1 + Br4)
)
√

A + Br2

}]

, (98)

P	
r = α

A + Br2

(

1

r2 + 6BD
√
A + Br2

C + D(A + Br2)3/2

)

⎡

⎣L +
(A + Br2)

(

A2D − 8BD − B2Dr4 + C
√
A + Br2

)

12BD(1 + Ar2 + Br4)

− 1

24D

{

4(A2 − 2B)D√−A2 + 4B
tanh−1

(

A + 2B2

√−A2 + B

)

+
√

2
√

A − √
A2 − 4B√

A2 − 4B
C tanh−1

( √
2
√
A + Br2

√

A − √
A2 − 4B

)

−
√

2
√

A + √
A2 − 4B√

A2 − 4B
C tanh−1

( √
2
√
A + Br2

√

A + √
A2 − 4B

)

+ ln(1 + Ar2 + Br4)

}]

/(

A + Br4
)

, (99)
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P	⊥ = 3αBD(2A + 3Br2)

⎡

⎣L +
(A + Br2)

(

A2D − 8BD − B2Dr4 + C
√

A + Br2
)

12BD(1 + Ar2 + Br4)
− 1

24D

×
⎧

⎨

⎩

4(A2 − 2B)D
√

−A2 + 4B
tanh−1

(

A + 2B2
√

−A2 + B

)

+
√

2
√

A −
√

A2 − 4B
√

A2 − 4B
C tanh−1

⎛

⎝

√
2
√

A + Br2
√

A −
√

A2 − 4B

⎞

⎠

−
√

2
√

A +
√

A2 − 4B
√

A2 − 4B
C tanh−1

⎛

⎝

√
2
√

A + Br2
√

A +
√

A2 − 4B

⎞

⎠

⎫

⎬

⎭

⎤

⎦

/(

(A + Br2)
(

A2D + 2ABDr2 + B2Dr4 + C
√

A + Br2
))

− αr

6(A + Br2)2

(

1

r
+ 3BDr

√

A + Br2
(

C + D(A + Br2)3/2
)

)

×
⎧

⎨

⎩

−12BL −
(

A2D
√

A + Br2 + A
(

C + 2BDr2
√

A + Br2
)

+ B
(

Cr2 + D
√

A + Br2(−6 + Br4)
))

BD(1 + Ar2 + Br4)2

×
(

A2 + 2ABr2 + B(−1 + Br4)
)√

A + Br2 + χ(3)

D

⎫

⎬

⎭

, (100)

where the value of χ(3) is given in Appendix. Further-
more, the modified form of the complexity factor YT F for
the Tolman ansatz are defined as

YT F = (−4 + α)r2
(

A2 + 2ABr2 + B(−1 + Br2)
)

×
(

−6BCD + C2
√

A + Br2 + A3D2
√

A + Br2

+ B3D2r6
√

A + Br2 + 2B2Dr2
(

Cr2 − 3D
√

A + Br2
)

+ A2D
(

2C + 3BDr2
√

A + Br2
)

+ABD
(

4Cr2 + 3D
√

A + Br2
(

−2 + Br4
)))/

2
√

A + Br2(1 + Ar2 + Br4)2
(

C + D(A + Br2)3/2
)2

, (101)

XT F = A + Br2

(1 + Ar2 + Br4)2

+
r2
(

A2D − 3BD + 2ABDr2 + B2Dr4 + C
√
A + Br2

)

√
A + Br2(1 + Ar2 + Br4)2

(

C + D(A + Br2)3/2
) + 1

r2

(

1

1 + Ar2 + Br4

+ Lα

A + Br2 +
α
(

A2D − 8DB − B2Dr4 + C
√
A + Br2

)

(

1 + Ar2 + Br4
)2

⎞

⎠ − αχ(2)

24Dr2(A + Br2)
− α

12(A + Br2)2

×
⎧

⎨

⎩

−12BL −
(

A2D
√
A + Br2 + A

(

C + 2BDr2
√
A + Br2

)

+ B
(

Cr2 + D
√
A + Br2(−6 + Br4)

))

BD(1 + Ar2 + Br4)2

×
(

A2 + 2ABr2 + B(−1 + Br4)
)
√

A + Br2 + χ(3)

D

}

, (102)

YT = 1

2

⎡

⎣

6BD
(

2A + 3Br2
)

√

A + Br2(1 + Ar2 + Br4)2
(

C + D(A + Br2)3/2
)

−
6BDr2

√

A + Br2
(

A + 2Br2
)

(1 + Ar2 + Br4)2
(

C + D(A + Br2)3/2
)

− 4(A + 2Br2)
(

1 + Ar2 + Br4
)2 − A + Br2

1 + Ar2 + Br4 + 2χ(4)

+ 3

(

− 6BD
√

A + Br2

(1 + Ar2 + Br4)
(

C + D(A + Br2)3/2
)

+ 1 − (1 + Ar2 + Br4)

r2(1 + Ar2 + Br4)

)
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+ 6αBD(2A + 3Br2)χ(5)

(A + Br2)
(

A2D + 2ABDr2 + B2Dr4 + C
√

A + Br2
)

+ α

A + Br2

(

1

r2 + 6BD
√

A + Br2
(

C + D(A + Br2)3/2
)

)

χ(5)

+ α

24r2

⎛

⎜

⎝

48BLr2

(A + Br2)2 − 24L

A + Br2 +
8BDr4 − 2Cr4√

A+Br2

D + ADr2 + BDr4

− 4r2(A + 2Br2)χ(6)

BD(1 + Ar2 + Br4)2 + 2χ(6)

BD(1 + Ar2 + Br4)

+ 4(A2 − 2B)D
√

−A2 + 4B
tan−1

(

A + 2B2
√

−A2 + B(A + Br2)

)

+
√

2
√

A −
√

A2 − 4B

D(A + Br2)
√

A2 − 4B
C tanh−1

×
⎛

⎝

√
2
√

A + Br2

D(A + Br2)

√

A −
√

A2 − 4B

⎞

⎠+ ln(1 + Ar2 + Br4)

A + Br2

−
√

2
√

A +
√

A2 − 4B

D(A + Br2)
√

A2 − 4B
C tanh−1

⎛

⎝

√
2
√

A + Br2
√

A +
√

A2 − 4B

⎞

⎠

+ 2Br2χ(5)

D(A + Br2)2 + 2r2
(

AC + BCr2 + 4A2D
√

A + Br2

−4BD
√

A + Br2 + 4ABDr2
√

A + Br2
) /

D(A + Br2)3/2(1 + Ar2 + Br4)
)

− αr

6(A + Br2)

(

1

r
+ 3BDr

√

A + Br2
(

C + D(A + Br2)3/2
)

)

+ χ(3)

D

]

,

(103)

XT = 2(A + 2Br2)

(1 + Ar2Br4)2 + A + Br2

1 + Ar2Br4 + 2χ(4) + α

24r2
⎛

⎝

48BLr2

(A + Br2)2 − 24L

A + Br2 +
8BDr4 − 2Cr4√

A+Br2

D + ADr2 + BDr4

− 4r2(A + 2Br2)χ(6)

BD(1 + Ar2 + Br4)2 + 2χ(6)

BD(1 + Ar2 + Br4)

+ 4(A2 − 2B)D√−A2 + 4B
tan−1

(

A + 2B2

√−A2 + B(A + Br2)

)

+
√

2
√

A − √
A2 − 4B

D(A + Br2)
√
A2 − 4B

C tanh−1

( √
2
√
A + Br2

D(A + Br2)
√

A − √
A2 − 4B

)

+ ln(1 + Ar2 + Br4)

A + Br2

−
√

2
√

A + √
A2 − 4B

D(A + Br2)
√
A2 − 4B

C tanh−1

( √
2
√
A + Br2

√

A + √
A2 − 4B

)

+ 2Br2χ(5)

D(A + Br2)2

)

.

(104)

5 Physical analysis

Now, we will discuss the physical viability of the electrically
charged stellar solutions presented for both metric ansatzes
(i.e., Buchdahl and Tolman models) under the radial metric
deformation approach. We will analyze the behaviors of the
matter variables and the structure scalars for the considered
models that satisfy the condition YT F = 0 by conducting a
detailed graphical analysis.

5.1 First solution (Buchdahl model with ˜YT F = 0)

The behaviors of the sets of effective fluid variables
{

ε̃, ˜Pr
}

,
{

˜P⊥,�e f f
}

, and the sets of structure scalars
{

˜YT F , ˜XT F
}

,
{

˜YT , ˜XT
}

within the range 0 ≤ α ≤ 1 versus the radial
coordinate r are displayed in Figs. 1, 2, 3 and 4, respectively.
Figure 1 indicates that the energy density ε (left panel) and the
radial pressure ˜Pr (right panel) are positive within the inte-
rior of the stellar configuration. However, both ε̃ and ˜Pr peak
at the stellar center, after which they monotonically decrease
towards the stellar surface. We noticed that the stress com-
ponents increase as the value of α increases. We observe that
the �e f f = 0 at the core and increases gradually towards the
surface, reaching its peak at the surface. Moreover, the factor
�e f f increases with a rise in α, as displayed in Fig. 2 (right
panel). This describes how the combination of the MGD-
decoupling scheme and the null-complexity constraint can be
explore the anisotropies appearing in an electrically charged
self-gravitational stellar solution. Furthermore, this solution
is attributed to the null-complexity condition (˜YT F = 0),
exhibiting a constant density profile under the influence of the
electrically charged perfect fluid solution. This stellar solu-
tion highlights the importance of the null-complexity con-
straint in time-independent self-gravitational fluids, empha-
sizing its role in altering the state of matter configurations
within such systems.

The variation of the scalar function ˜YT F , which is defined
as the complexity factor, with different values of α is shown
in Fig. 3 (left panel). By varying the α from 0 to 1, it becomes
apparent that the value of ˜YT F rises over a specific dis-
tance and subsequently declines towards the boundary. How-
ever, its value vanishes as the quantity α is increased. This
reveals an important fact that the influence of complexity
is reduced under the framework of gravitational decoupling.
On the other hand, ˜YT F influences thermodynamic observ-
ables, including density and pressure. Furthermore,˜YT F also
influences the central values of

{

ε̃, ˜Pr
}

because a decrease
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Fig. 1 Diagrammatic scheme of the total density [̃ε × 104] (left panel) and total radial pressure [˜Pr × 104] (right panel) versus radial coordinate
r corresponding to various values of decoupling constant α

Fig. 2 Diagrammatic scheme of [˜P⊥ ×104] (left panel) and [�e f f ×104] (right panel) versus radial coordinate r with various values of decoupling
constant α

in ˜YT F leads to a decrease in these structural variables. The
behavior of the obtained stellar solutions spans the entire
range of values for α, representing a physically acceptable
matter configuration. This is evidenced by the fulfillment of
all scalar quantities, including ˜YT F , ˜XT F , ˜YT , ˜XT and the
homogeneous distribution of energy density.

5.2 Second solution (Tolman model with ˜YT F = 0)

The behavior of the four structure scalars along with the
thermodynamical variables for the second stellar solution is
displayed in Figs. 5, 6, 7 and 8. This presentation involves
particular values of the parameter α within the range [0, 1].

Figure 5 illustrates the evolution of fluid variables, includ-
ing energy density (left panel) and radial stress component
(right panel). On the other hand, Fig. 6 depicts the behavior of
the tangential stress component (left panel) and anisotropic
factor (right panel) in relation to the radial coordinate r , con-
sidering various values of α. It is evident that the quantity
ε̃ > 0 exhibits a uniformly decreasing profile while ε̃ > 0 for
all allowed α-values. It is crucial to emphasize that both the
principal stresses {˜Pr , ˜P⊥} display monotonically decreas-
ing profiles, while remaining positive for small values of α.
Moreover, the Pr = 0 at a particular value of radius, indi-
cating the boundaries of the self-gravitational configuration
throughout the entire range of α at every interior point of
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Fig. 3 Pictorial representation of the complexity factor [˜YT F × 104] (left panel) and density inhomogeneity [˜XT F × 104] (right panel) against the
radial variable r subject to different values of α

Fig. 4 Diagrammatic scheme of [˜XT ×104] (left panel) and [˜YT ×104] (right panel) against the radial variable r with various values of the constant
term α

the configuration. However, as YT F → 0, there is a notable
rise in stress components at every poin within the interior
of the compact configuration. Figure 6 (right panel) displays
that �e f f is positive across the boundary of the dense astro-
physical configuration for the allowable values of α. The
positive behavior of pressure anisotropy the force resulting
from �e f f has a repulsive nature. By opposing the internal
gravitational pull, this repulsion helps to stabilize the stel-
lar structure. This investigation indicates that the value of
the pressure aniostropy �e f f increases with an increase in
the radius, effectively increasing the stability of the shell
more successfully than the core regions. It is also observed
that coupling MGD-decoupling with the condition ˜YT F = 0

reduces the factor �e f f . The profiles of the structure scalars
{˜YT F , ˜XT F , ˜XT ,˜YT }, which characterize physical features
associated with the matter configuration for this model, is
displayed in Figs. 7 and 8.

It is concluded that all these scalars exhibit profiles similar
to those of the previous model, with a slight variation in˜YT F .
We also analyzed that the absence of the condition ˜YT F = 0
gives rise to a viable stellar solution. This factor significantly
influences all fluid variables, resulting in a stable solution for
smaller values of α. The variation of electrical charge s(r)
versus radial variable r for different α-values is displayed in
Fig. 9. In this Fig., we observe that the magnitude of s is zero
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Fig. 5 The behavior of total density [̃ε × 104] (left panel) and total radial pressure [˜Pr × 104] (right panel) against radial variable r with various
α-values

Fig. 6 The variation of [˜P⊥ × 104] (left panel) and [�e f f × 104] (right panel) versus radial coordinate r with various α-values

at the core and maximum at the star’s surface. The amount
of electric charge increases as the α-values increase.

6 Summary and discussions

It is well-established that the impact of electrical charge
on the evolution of dense celestial entities, characterizing
self-gravitational fluid spheres, is entirely determined by
structure scalars. Motivated by the widespread applications
of gravitational decoupling and structure scalars, we have
established minimally deformed, self-gravitational compact
solutions, with interiors modeled by electrically charged
fluid distributions. We emphasize that the combination of
the MGD-decoupling technique with the null-complexity

condition (˜YT F = 0) leads to the formation of self-
gravitational systems filled with electrically charged fluid.
In this respect, we employ the MGD-decoupling approach
as a breakthrough tool, coupled with two metric ansatzes
referred to as Buchdahl and Tolman models. This com-
bination allows us to investigate the potential for obtain-
ing compact distributions that represent physically viable,
charged self-gravitational compact stars, characterized by
a null-complexity factor. We have developed two differ-
ent stellar salutations based on Buchdahl and Tolman mod-
els concerning the fluid variables {̃ε, ˜Pr , ˜P⊥,�e f f } and the
structure scalars {˜YT F , ˜XT F , ˜XT ,˜YT }, along with the elec-
trically charged distribution for the self-gravitational sys-
tems through MGD-decoupling technique. This exploration
involves considering specific values for the decoupling con-
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Fig. 7 Plot of the complexity factor [˜YT F ×104] (left panel) and density inhomogeneity [˜XT F ×104] (right panel) against radial variable r subject
to different values of α

Fig. 8 The behavior of [˜XT × 104] (left panel) and [˜YT × 104] (right panel) against radial variable r with various α-values

stant α, where α ∈ [0, 1]. The effects of the 	-gravitational
source in terms of the parameter α on the thermodynamic
variables are observed for both of the considered models.
It is noted that both solutions behave similarly with only a
minor variation in magnitude when ˜YT F �= 0. However, as
˜YT F → 0, the two solutions derived using the Buchdahl and
Tolman stellar solutions show significant differences, par-
ticularly in the stress components and fluid’s density. This
implies that the scalar function ˜YT F , responsible for assess-
ing the complexity of time-independent self-gravitational
configurations, significantly influences the variables of the
electrically charged fluid through the mechanism of MGD-
decoupling.

More precisely, we have demonstrated two captivat-
ing realistic phenomena within the solution derived from
the Buchdahl metric potential: the identification of a uni-
form density configuration and the vanishing of effective
anisotropy when ˜YT F = 0. Moreover, we have provided
some notably interesting features regarding the stress com-
ponents within the solution obtained from the Tolman ansatz.
We observe that as ˜YT F approaches zero, there is an unde-
sired increase in pressure at every interior point of the stellar
structure. Additionally, we found that the anisotropic factor
decreases due to the gravitational interactions arising from
the 	-sector subject to the null-complexity condition. It is
concluded that the inclusion of ˜YT F allows us to construct
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Fig. 9 Plot of electrical charge [s(r)× 104] against the radial variable
r for various values of the constant term α

well-behaved stellar solutions. It also wields considerable
influence over all fluid variables, leading to a consistent solu-
tion for smaller values of α. Consequently, we have effec-
tively examined the relevance of scalar functions, particularly
˜YT F on astrophysical compact configurations by means of
MGD-decoupling technique, highly potent and useful strat-
egy to explore realistic systems. On the other hand, the mod-
ification of the fluid variables within the compact configura-
tions can be notably influenced by the scalar quantity ˜YT F in
the context of spherically symmetric, static self-gravitational
distributions.
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Appendix

The gravitational terms arising in the Eqs. (82)–(84), (86),
(96) and (98)–(104) are defined as

χ(1) = B

(A − B)2D
[

(A − B)
(

3A2 + AB(B − 4) + B2
)+ (A − B)

(

A2 − AB(B − 2) + B2
)

Cϕ

B(1 + Br2)

−AB−3/2 × (A2 + A(B − 4) − B2)
√
B − AC tanh−1

(

ϕ

√

B

B − A

)

+A (A(B − 1) + B)C ln

(

1 + Br2

1 + Ar2

)

]

, (105)

χ(2) = (−A2 + 2B)4D√−A2 + 4B
tan−1

(

A + 2B2

√−A2 + B

)

+ AB − B
√
A2 − 4B

2
√

2
√

A − √
A2 + 4B

√
A2 − 4B

× C tan−1

( √
2
√
A + Br2

√

A − √
A2 − 4B

√
A2 − 4B

)

− AB + B
√
A2 − 4B

2
√

2
√

A + √
A2 + 4B

√
A2 − 4B

× C tan−1

( √
2
√
A + Br2

√

A + √
A2 − 4B

√
A2 − 4B

)

+ ln
(

1 + Ar2 + Br4) , (106)

χ(3) =
⎡

⎣−
(A + Br2)

(

A2D − 8BD − B2Dr4 + C
√

A + Br2
)

(1 + Ar2 + Br4)

+
{

2(A2 − 2B)D
√

−A2 + 4B
tan−1

(

A + 2Br2
√

−A2 + B

)

+
√

A −
√

A2 − 4B
√

2
√

A2 − 4B
C tanh−1

⎛

⎝

√
2
√

A + Br2
√

A −
√

A2 − 4B

⎞

⎠

−
√

A +
√

A2 − 4B
√

2
√

A2 − 4B
C tanh−1

⎛

⎝

√
2
√

A + Br2
√

A +
√

A2 − 4B

⎞

⎠

+ABD ln
(

1 + Ar2 + Br4
)

}

⎤

⎦ , (107)

χ(4) =
r2
(

A2D − 3BD + 2ABDr2 + B2Dr4 + C
√

A + Br2
)

√

A + Br2(1 + Ar2 + Br4)2
(

C + D(A + Br2)3/2
)

,

(108)

χ(5) =
⎡

⎣L +
(A + Br2)

(

A2D − 8BD − B2Dr4 + C
√

A + Br2
)

12BD(1 + Ar2 + Br4)

− 1

24D
×
{

4(A2 − 2B)D
√

−A2 + 4B
tanh−1

(

A + 2B2
√

−A2 + B

)

+
√

2
√

A −
√

A2 − 4B
√

A2 − 4B
C tanh−1

⎛

⎝

√
2
√

A + Br2
√

A −
√

A2 − 4B

⎞

⎠

−
√

2
√

A +
√

A2 − 4B
√

A2 − 4B
C tanh−1

⎛

⎝

√
2
√

A + Br2
√

A +
√

A2 − 4B

⎞

⎠
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+2AD ln(1 + Ar2 + Br4)

}

⎤

⎦ ,

χ(6) = (−A2D + 8BD + B2Dr4 − C
√

A + Br2). (109)
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