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Abstract We study the metric corresponding to a three-
dimensional coset space SO(4)/SO(3) in the lattice setting.
With the use of three integers n1, n2, and n3, and a length
scale, lμ, the continuous metric is transformed into a discrete
space. The numerical outcomes are compared with the con-
tinuous ones. The singularity of the black hole is explored
and different domains are studied.

1 Introduction

The challenges encountered while attempting to quantize
gravity have inspired the advancement of discrete gravity the-
ories. Different approaches to lattice gravity were explored
over the past years [1,8,11]. Lately, in [6], a new approach to
discrete gravity was proposed where the manifold is taken to
be discrete and consists of elementary cells. The dimension
d is defined assuming each cell has 2d neighboring cells that
share a common boundary with each individual cell, and a
finite number of degrees of freedom is associated with each
cell. This approach stands out from others primarily because
it clearly reveals the continuous limit.

Recently and based on the above model, the scalar curva-
ture of discrete gravity in two dimensions was investigated
in [4], while the examination of the curvature tensor in three
dimensions can be found in [5]. In the latter, a three-sphere
was considered and its continuous metric was converted into
a lattice. It was shown that the scalar curvature in the discrete
space approaches the expected value in the continuous limit.

In this paper, we will study again the three-dimensional
case, but now for a black hole coset space metric. To dis-
cretize, a length scale lμ and three integers n1, n2, n3 are
used. The metric corresponding to a three-dimensional coset
space, along with the spin connections and curvatures in the
continuous case, are presented in the Sect. 2. In Sect. 3, we
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discretize the continuous metric of the black hole coset space.
We investigate the domains in the proximity of the singu-
larities and away from them, and numerically compare the
discrete values of the curvature tensor with the expected con-
tinuous ones.

2 Black hole coset space metric

Consider the metric corresponding to a three-dimensional
coset space SO(4)/SO(3) [3,7]

ds2 = tanh2 z

u
dx2 + coth2 z

u
dy2 + dz2, (1)

where

u = 1 −
(
x2 + y2

)
, u ≥ 0, −∞ ≤ z ≤ ∞. (2)

A coset space of the form G/H is the space of elements
where g ∈ G can be decomposed in the form:

g = kh ∈ G, k = exp
(
iθ i4 Ji4

)
∈ G/H,

h = exp
(
iθ i j Ji j

)
, i, j = 1, 2, 3.

This metric was first obtained to represent a configuration
of a metric in the presence of a dilation field, but we will
not add a dilation here. This choice is of particular interest
because the lattice is not trivial and not maximally symmetric.
The z-behaviour is different than the x and y. Upon letting

θ1 = tanh z√
u

dx, θ2 = coth z√
u

dy, θ3 = dz

be the three one-forms, the spin connections and curvature
tensors are all computed. The scalar curvature is then given
by

R = −4

(
1 + 1

sinh2 z cosh2 z
+ 1

u

(
y2 tanh2 z + x2 coth2 z

))
.

(3)
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Since u ≥ 0, R will always have negative curvature. There
is a singularity at all points on the circle defined by u = 0
and at z = 0. We can further confirm this by calculating the
curvature invariant RabRab

RabRab = (R11)
2 + (R22)

2 + (R33)
2 + 2 (R12)

2

+2 (R13)
2 + 2 (R23)

2 .

It is worth noting that the coordinate system we are using
cannot be extended. It is an Euclidean black hole with no
horizon. The singularities are for z = 0 and on the boundary
of the disc with x2 + y2 = 1, i.e. u = 0.

To relate it to the lattice setting, the metric used here gives
the curvature tensor in flat coordinates (anholonomic sys-
tem). This is the system where:

θ1 = e1
.
1
dx, θ2 = e2

.
2
dy, θ3 = e3

.
3
dz

so that:

e1
.
1

= tanh z√
u

, e2
.
2

= coth z√
u

, e3
.
3

= 1. (4)

Thus, we will have:

R i j
μν = ekμe

l
νR

i j
kl .

In terms of components, we will have:

R i j
.
1

.
2

= e1
.
1
e2

.
2
R i j

12 , R i j
.
1

.
3

= e1
.
1
e3

.
3
R i j

13 ,

R i j
.
2

.
3

= e2
.
2
e3

.
3
R i j

23 .

For the non-vanishing components, we have

R 13
.
1

.
3

= 2 sinh z√
u cosh3 z

, R 13
.
1

.
2

= − 2y

u
3
2 cosh2 z

,

R 23
.
2

.
3

= − 2 cosh z√
u sinh3 z

, R 23
.
1

.
2

= − 2x

u
3
2 sinh2 z

,

R 12
.
1

.
3

= − 2y sinh z

u cosh3 z
, R 12

.
2

.
3

= −2x cosh z

u sinh3 z
,

R 12
.
1

.
2

= −2

u

(
1 + 1

u

(
y2 tan2 z + x2 cot2 z

))
.

We note that we can compare with the discrete case by observ-
ing that:

R 13
.
1

.
3

= −R 2
.
1

.
3

, R 13
.
1

.
2

= −R 2
.
1

.
2

,

R 23
.
2

.
3

= R 1
.
2

.
3

, R 23
.
1

.
2

= R 1
.
1

.
2

,

R 12
.
1

.
3

= R 3
.
1

.
3

, R 12
.
2

.
3

= R 3
.
2

.
3

, R 12
.
1

.
2

= R 3
.
1

.
2

.

3 Discretizition and numerics

In order to discretize, we follow the same methodology we
used in [5]. Explicitly, we define:

�1 = �2 = �3 = 1

N
, x = n1

N
, y = n2

N
, z = n3

N
, (5)

where

n1 = 1, 2, . . . N , n2 = 1, 2, . . . N , n3 = 1, 2, . . . N ,

(6)

which together with the constraint (from Eq. 2) give:

u = 1 − n2
1 + n2

2

N 2 > 0. (7)

Discretization is required in all three dimensions, x , y,
and z; therefore, in terms of numerical complexity, the code
is O(N 3). Hence, expanding the lattice would scale as N 3.

To derive the three-dimensional discrete curvature, we
start with the definition [6]

i

2
Ri

μνσ
i = 1

2�μ�ν

(
�μ (n) �ν (n + μ̂)�−1

μ (n + ν̂)

�−1
ν (n) − μ ↔ ν

)

= 1

2�μ�ν

{(
cos

1

2
�μωμ (n) + iω̂i

μ (n)

sin
1

2
�μωμ (n) σ i

)

·
(

cos
1

2
�νων (n + μ̂) + iω̂i

ν

(n) sin
1

2
�νων (n + μ̂) σ i

)

·
(

cos
1

2
�μωμ (n + ν̂) − iω̂i

μ (n + ν̂)

sin
1

2
�μωμ (n + ν̂) σ i

)

·
(

cos
1

2
�νων (n) − iω̂i

ν (n) sin
1

2
�ν

ων (n) σ i
)

− μ ↔ ν

}
.

Consider the product

(
cos

1

2
�μωμ (n) + iω̂i

μ (n) sin
1

2
�μωμ (n) σ i

)

(
cos

1

2
�νων (n + μ̂) + iω̂i

ν (n + μ̂) sin
1

2
�νων (n + μ̂) σ i

)
,
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this can be rewritten as:

(
cos

1

2
�μωμ (n) cos

1

2
�νων (n + μ̂) − ω̂i

μ (n) ω̂i
ν (n + μ̂)

sin
1

2
�μωμ (n) sin

1

2
�νων (n + μ̂)

)

+ i

(
cos

1

2
�μωμ (n) ω̂i

ν (n + μ̂) sin
1

2
�νων (n + μ̂)

+ ω̂i
μ (n) sin

1

2
�μωμ (n) cos

1

2
�νων (n + μ̂)

εi jk ω̂
j
μ (n) sin

1

2
�μωμ (n) ω̂k

ν (n + μ̂) sin
1

2
�νων (n + μ̂)

)
σ i

≡ Aνμ + i Bi
μνσ i ,

where

Aμν (n) =
(

cos
1

2
�μωμ (n + ν̂) cos

1

2
�νων (n) − ω̂ j

μ (n + ν̂) ω̂ j
ν (n)

sin
1

2
�μωμ (n + ν̂) sin

1

2
�νων (n)

)
,

and:

Bi
μν (n) =

(
ω̂i

μ (n) sin
1

2
�μωμ (n) cos

1

2
�νων (n + μ̂)

+ ω̂i
ν (n + μ̂)

sin
1

2
�νων (n + μ̂) cos

1

2
�μωμ (n) − εi jkω̂ j

μ (n)

sin
1

2
�μωμ (n) ω̂k

ν (n + μ̂) sin
1

2
�νων (n + μ̂)

)
.

Similarly, the next pair gives

(
cos

1

2
�μωμ (n + ν̂) − iω̂i

μ (n + ν̂) sin
1

2
�μωμ (n + ν̂) σ i

)

(
cos

1

2
�νων (n) − iω̂i

ν (n) sin
1

2
�νων (n) σ i

)

= Aμν (n) − i Bi
νμ (n) .

Thus, the total product is

i

2
Ri

μνσ i =
(

1

2�μ�ν

(
Aνμ + i Bi

μνσ i
) (

Aμν − i Bi
νμσ i

)

−μ ↔ ν)

= i

�μ�ν

(
AμνB

i
μν − AνμBi

νμ + iεi jk B j
μν B

k
νμ

)
σ i ,

giving the below result

Ri
μν (n) = 2

�μ�ν

(
Aμν (n) Bi

μν (n) − Aνμ (n) Bi
νμ (n)

+εi jk B j
μν (n) Bk

νμ (n)
)

. (8)

The connection ων (n) is determined from the zero torsion
condition, which is given by

Tμν (n) = 1

�μ

(
�μ (n) eν (n + μ̂) �−1

μ (n) − eν (n)
)

−μ ↔ ν, (9)

where this equation is written in a contracted form where the
vielbeins eaα are incorporated into the Clifford algebra. Upon
computing this, we get

0 = 1

�μ

((
cos

1

2
�μωμ (n) + iω̂i

μ (n) sin
1

2
�μωμ (n) σ i

)
σ k

(
cos

1

2
�μωμ (n) − iω̂ j

μ (n) sin
1

2
�μωμ (n) σ j

)
ekν (n + μ̂)

−eiν (n) σ i
)

− μ ↔ ν) .

By expanding and grouping terms, we get the following
result:

T i
μν (n) = 1

�μ

(
cos �μωμ (n) eiν (n + μ̂) − εi jk

sin �μωμ (n) ω̂ j
μ (n) ekν (n + μ̂) + 2ω̂i

μ (n)

ω̂ j
μ (n) sin2 1

2
�μωμ (n) e jν (n + μ̂) − eiν (n)

)

− (μ ↔ ν) .

The vanishing of T i
μν provides 9 conditions to solve for

the 9 unknowns ωi
μ (n) . The values of the spin connections

are obtained numerically, and hence, the three-dimensional
discrete curvatures are obtained using Eq. (8).

Equation 3 gives the expression of the scalar curvature in
the continuous case. We are going to compare it with what
we get from the discrete case. In the latter, the expression of
the scalar curvature is given by:

R = 2

(
1

e1
.
1
e2

.
2

R3
.
1

.
2
+ 1

e2
.
2
e3

.
3

R1
.
2

.
3
+ 1

e3
.
3
e1

.
1

R2
.
3

.
1

)
,

which holds when eiμ is diagonal, which is the case here as
it is evident from Eq. 4. It is clear from (3) that there is a
singularity at z = 0 and at all points on the circle defined by
u = 0. First, we will examine the domain where z is large,
followed by an analysis of the domain where z is small.

3.1 The limit of large z

R → −4

u

(
1 + x2 + y2

u

)
. (10)

The singularity at u = 0 is evident. Therefore, in order to
determine the permissible range over which the curvature is
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Fig. 1 The rms error between the continuous and discrete values of the
scalar curvature in the limit of large z are plotted as a function of ε for
different N , where ε denotes the distance away from u = 0 where the
discretization is expected to hold. We note that the approach to ε = 0
where the locus of the singularity leads to a blow-up in the RMS

well-behaved, we define 1 − x2 − y2 > ε, the range of coor-
dinates in the vicinity of the singularity. We note that ε = 0
is the locus of u = 0 or equivalently x2 + y2 = 1, and thus
finding the right value of ε is equivalent to finding the proper
cut-off to avoid the singularity. Therefore, we iterate over dif-
ferent values of ε between 0 and 0.5 in increments of 0.05,
and calculate the mean-square error between the continuous
value of the scalar curvature and its discrete numerical coun-
terpart defined to be 1

n

∑n
i (Ri,con−Ri,numerical)

2. We repeat
the process for different values of N . The results are plotted
in Fig. 1. The different colors correspond to different values
of N . We conclude from the plot that the error is converging
to zero for ε = 0.15.

For ε smaller than 0.15, we are close to the singularity
(u = 0) and the discretization method fails to agree with the
continuous limit as the RMS error between Rcon and Rdiscrete

blows up. In the limit where they are in agreement, we show
a sample in Fig. 2 for N = 35 and ε = 0.15, where we plot
the values of Rcon and those of Rdiscrete on the same graph
with the index i denoting the element number in the curvature
vector associated with given coordinates xi , yi and zi .

3.2 The limit of small z

For a small value of z, we are in the region near the singularity
z = 0. Therefore, and following the same reasoning we did to
find ε near u = 0, we limit z between εz/N and 1 and follow
the RMS between the continuous and discrete values of the
scalar curvature. In Fig. 3, we show the RMS for N = 35
and ε = 0.15, which allows us to define the lower cutoff
near z = 0 below which the scalar curvature will blow up.

It is evident from the plot that as εz approaches 5, the error
tends to zero. Further, in order to show the well-behavedness

Fig. 2 R continuous and discrete for N = 35 and ε = 0.15

Fig. 3 The RMS error is followed as a function of εz for N = 35 and
ε = 0.15

of the discrete scalar curvature, we follow it together with
its continuous counterpart in this domain. Figure 4 shows the
finiteness of Rdiscrete as opposed to the large, near-singular
behavior of Rcon . The inset shows their agreement away from
the jumps.

For very small z, we have sinh z → z and cosh z → 1,

R → −4

(
1 + 1

z2 + 1

u

(
y2z2 + x2

z2

))
(11)


 −4

(
1 − y2

uz2

)
(12)

with obvious asymmetry. Figure 5 is obtained by plotting

Rdiscrete and Rlimit = −4
(

1−y2

uz2

)
for small values of z,

showing their agreement.
Further, when x = 0 we get R → −4N 2, displaying

clearly the singularity of the black hole. In Fig. 6, the discrete
value of the scalar curvature is plotted for z 
 1

N and x = 0
along with its expected limiting behavior, which is −4N 2.
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1

Fig. 4 R continuous and discrete are followed for N = 35, ε = 0.15,
z < 1, and εz = 5. The inset shows their local agreement and makes it
obvious that Rcon exhibits large near-singular jumps, which are avoided
in the discrete case

Fig. 5 Rdiscrete is compared with its limiting behavior 4(
1−y2

uz2 ) for
small z

Fig. 6 Rdiscrete is compared with its limiting value −4N 2 for z ≈ 1
N

and x = 0

4 Conclusion

In this paper, we applied the methodology used in [5] to define
the curvature of the discrete space in the proposed model of
discrete gravity. We considered the black hole coset space
metric. The singularities were studied, and the curvatures in
the discrete and continuous limits were compared close and
far away from the singularity. We found that as we move away
from the singularity, the rms error between the two curvatures
tends to zero. We also showed that near the singularity, the
discrete method is more reliable than the continuous.

Our contribution to the literature on black holes and
numerical relativity is that it introduces a discrete approach
complementing the prevailing continuum counterpart. This
sets the ground for the calculations of curvatures for arbitrary
surfaces. Further, the introduction of our method in the con-
text of naked singularities establishes a mathematical and
numerical framework to be generalized to 4D. Unlike the
general concern of numerical relativity in answering ques-
tions about dynamics around black holes and their properties
[2,9,10,12], our work is an experimentation on the limita-
tion of discrete gravity and its accompanying numerics and
whether it is generalizable to 4D. The next step is to address
how to calculate the metric and curvature of an arbitrary
closed surface.
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