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Abstract Based on the Nambu–Jona–Lasinio (NJL) model,
we develop a framework for calculating the spin alignment of
vector mesons and applied it to study φ mesons in a magnetic
field. We calculate mass spectra for φ mesons and observe
mass splitting between the longitudinally polarized state and
transversely polarized states. The φ meson in a thermal equi-
librium system is preferred to occupy the state with spin
λ = 0 than those with spin λ = ±1, because the former state
has a smaller energy. As a consequence, we conclude that the
spin alignment will be larger than 1/3 if one measures along
the direction of the magnetic field, which is qualitatively con-
sistent with the recent STAR data. Around the critical tem-
perature TC = 150 MeV, the positive deviation from 1/3
is proportional to the square of the magnetic field strength,
which agrees with the result from the non-relativistic coales-
cence model. Including the anomalous magnetic moments
for quarks will modify the dynamical masses of quarks and
thus affect the mass spectra and spin alignment of φ mesons.
The discussion of spin alignment in the NJL model may help
us better understand the formation of hadron’s spin structure
during the chiral phase transition.

1 Introduction

Non-central relativistic heavy-ion collisions provide a unique
opportunity to study quantum chromodynamics matter in a
strong magnetic field [1]. The hot and dense matter created in
collisions is known as the quark-gluon plasma (QGP), which
evolves with time and cools down to the hadronic phase at
the freeze-out time. In Au–Au collisions at the Relativistic
Heavy Ion Collider (RHIC) or Pb–Pb collisions at the Large
Hadron Collider (LHC), the magnetic field perpendicular to
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the reaction plane can reach 5m2
π ∼ 1018 Gauss (mπ is the

pion mass) or even larger [2–6]. Such a strong magnetic field
is mainly generated by spectators in the colliding nuclei. It
drops fastly with time, but the existence of medium electri-
cal conductivity will extend its lifetime [7–13]. Therefore
it may have sizeable contributions to many phenomena, for
example, the chiral magnetic effect [2,14,15], the Λ’s polar-
ization [16–18], and the charge-odd directed flow [8,19–22].
On the other hand, the electromagnetic fields also have event-
by-event fluctuations, which are still significantly large even
in the late stage of collisions [5,23,24]. The fluctuating fields
thus contribute to phenomena at the freeze-out time, such as
the magnetic catalysis [25–29], the inverse magnetic cataly-
sis [29,30], and the phase structure of the QGP [26,31–33].

Recently, the STAR collaboration has measured the φ and
K ∗0 meson’s spin alignment along the out-of-plane direction
and observes a significant positive deviation from 1/3 for the
φ meson [34]. The spin alignment refers to the 00-element of
the normalized spin density matrix for a vector meson with
spin-1 [35,36]. The positive derivation from 1/3 observed in
experiments indicates that the spin of φ meson is preferred
to align in the reaction plane. According to the quark coales-
cence model, the spin alignment of vector meson is induced
by polarizations of its constituent quarks [35,37] and thus
have various sources such as the vorticity field [35,37,38],
the electromagnetic field [37], the helicity polarization [39],
the turbulent color field [40], the shear stress [41,42], and the
strong force field [43–46]. Among these works, only the fluc-
tuations of the strong force field successfully reproduce the
experiment data [46]. Since the strong force field in [46] has
the same structure as the classical electromagnetic field, one
naturally expects that fluctuations of electromagnetic fields,
rather than their event-average values, also contribute to the
spin alignment of vector mesons.

In this work, we study the spin alignment of φ meson in a
constant magnetic field using the three flavor Nambu–Jona–
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Lasinio (NJL) model [47–54]. Such a field configuration can
be straightforwardly extended to the case of a space-time
dependent magnetic field with the typical length of its inho-
mogeneity much larger than the typical hadron size. In the
NJL model, gluons are integrated out and quarks interact
via local four-fermion interactions, which have the form that
keeps the chiral symmetry. Mesons are treated as quantum
fluctuations beyond a constant mean-field and their propaga-
tors are introduced through the random phase approximation
by the resummation of quark bubbles [51,52,55]. The mass
spectra for mesons are given by the poles, of their propaga-
tors. Within the framework of magnetized NJL model, the
spectra of light-flavor mesons, including σ , π0, π±, ω, ρ0,
and ρ±, have attracted a lot of interest [56–64], but few works
focus on the φ meson. One can refer to [33,65,66] for recent
reviews on the NJL model in a strong magnetic field. In this
manuscript, we observe the splitting between masses of φ

mesons in different spin states, which is induced by the mag-
netization of the constituent quark and antiquark. In a hot and
thermal equilibrium system, the mass splitting leads to differ-
ent spin-dependent equilibrium distributions and thus corre-
sponds to a nontrivial spin alignment. We also study the effect
of quark anomalous magnetic moments (AMM) consider-
ing that constituent quarks have different magnetic moments
compared with free quarks [61,62,67–70]. The AMMs are
included in the fermion Hamiltonian by putting a new term
q f κ f Fμνσ

μν/2, where Fμν is the electromagnetic field ten-
sor, σμν ≡ (i/2)[γ μ, γ ν], and q f , κ f are the charge and
the AMM for a quark with flavor f = u, d, s. The AMMs
change the dynamical masses of quarks and therefore affect
the spectra and spin alignment of the φ meson.

This manuscript is organized as follows. In Sect. 2 we
review the theoretical framework for the three flavor NJL
model and numerically calculate quark dynamical masses.
Then in Sect. 3 we give analytical formulas for the vector
meson’s propagator, the spectral function, and the spin align-
ment. Numerical results for φ mesons are given in Sect. 4.
We then repeated the calculations in the presence of nonzero
AMMs in Sect. 5. Finally, in Sect. 6 we summarize our find-
ings and conclude.

2 Nambu–Jona–Lasinio model for quarks

2.1 Theoretical framework

In order to describe a strongly-interaction quark matter, we
use the three-flavor NJL model with scalar and vector chan-
nels of four-fermion interactions [51–53,55]. The NJL model
is constructed to display the same chiral symmetry as the
QCD itself. In this model, the gluonic degrees of freedom
is frozen into an effective point-like interaction between
quarks. Despite the lack of explicit gluonic degrees of free-

dom, the NJL model can provide a transparent description
for the chiral phase transition in hot and dense matter [51–
53,55,71,72]. Therefore it was widely used to study the
dynamic generation of quark masses and the chiral symmetry
breaking/restoration. The effective Lagrangian is given by

Leff = Lq + GS

8∑

a=0

[
(ψλaψ)2 + (ψiγ5λaψ)2

]

− GV

8∑

a=0

[
(ψγμλaψ)2 + (ψiγμγ5λaψ)2

]

− K
{
det f

[
ψ(1 + γ5)ψ

] + det f
[
ψ (1 − γ5) ψ

]}
,

(1)

where ψ = (ψu, ψd , ψs) are Dirac spinors for u, d, and
s quarks, respectively, λa with a = 1, 2, . . . , 8 are Gell–
Mann matrices, and λ0 = √

2/3I0 with I0 being the identity
matrix in the color space. The last term in Eq. (1) is the six-
quark Kobayashi–Maskawa–’t Hooft interaction that breaks
the UA(1) symmetry [73]. Here GS and GV are coupling
constants for scalar and vector interactions, respectively. The
LagrangianLq for quarks in an external electromagnetic field
is given by

Lq =
∑

f=u,d,s

ψ f

(
iγμD

μ
f − m f

)
ψ f , (2)

where m f denotes current mass for quarks with flavor f =
u, d, s. The covariant derivative is Dμ

f ≡ ∂μ + iq f Aμ with
q f being the quark charges and Aμ being the gauge potential
for the external electromagnetic field. Under the mean-field
approximation, the Lagrangian becomes

LMF =
∑

f =u,d,s

ψ f

(
iγμD

μ
f − M f

)
ψ f

−2GS

∑

f =u,d,s

σ 2
f + 4Kσuσdσs, (3)

where σ f is the quark chiral condensate σ f ≡ 〈
ψ f ψ f

〉
. Here

we only consider the chiral condensate and set all other possi-
ble condensates to zeros. The dynamical mass M f is related
to σ f as

M f ≡ m f − 4GSσ f + 2K
∏

f ′ �= f

σ f ′ , (4)

where the last term arises from the ’t Hooft interaction.
We consider quarks in a constant magnetic field. Without

loss of generality, we assume the magnetic field is along
the positive z-direction and take the Landau gauge Aμ =
(0, 0, Bx, 0). For each flavor of quark, it is straightforward
to derive the Dirac equation from the Lagrangian (3). The
Dirac equation can be analytically solved by applying the

123



Eur. Phys. J. C           (2024) 84:299 Page 3 of 13   299 

Ritus method [74,75], resulting in the following dispersion
relation for the n-th Landau level,

E = ±E f,n(pz) = ±
√
p2
z + M2

f + 2n|q f B|, (5)

where the momentum perpendicular to the z-direction is
quantized as the Landau levels, while the longitudinal
momentum is not restricted. Here B > 0 denotes the mag-
netic field strength and q f is the electric charge of a quark
with flavor f , with qu = (2/3)e, qd = qs = (−1/3)e, and e
being the elementary charge. The positive and negative ener-
gies are related to particles and antiparticles, respectively.
Using Eq. (5), the quark grand thermodynamic potential Ω f

can be written as

Ω f = Nc|q f B|
4π2

∑

n,s

∫
dpz

{
E f,n(pz)

2

+ 2T ln
[
1 + e−E f,n(pz)/T

]}
, (6)

where T is the temperature and Nc = 3 is the degeneracy
of color. The summation in Eq. (6) runs over s = + for
the lowest Landau level n = 0 and s = ± for other Landau
levels n = 1, 2, 3, . . .. The total grand potential for the whole
system includes Ω f and the mean field part, which is given
by

Ω =
∑

f =u,d,s

(
2GSσ

2
f − Ω f

)
+ 4Kσuσdσs . (7)

The quark condensates σ f and the corresponding quark
masses M f are then calculated by minimizing the grand
potential, ∂Ω/∂σ f = 0.

2.2 Numerical results

Since the NJL model is non-renormalizable, it is necessary to
include a regularization scheme for the divergent momentum
integrals in Eq. (6). A sharp three-momentum cutoff will lead
to nonphysical oscillations in the presence of a magnetic field,
we thus choose the Pauli-Villas regularization scheme [76].
Any function of M f is replaced by a summation,

f (M f ) → fP.V.(M f ) =
3∑

j=0

c j f
(√

M2
f + jΛ2

)
, (8)

with c0 = 1, c1 = −3, c2 = 3, and c3 = −1. We take the
parameter set given in [77],

mu,d = 10.3 MeV, ms = 236.9 MeV,Λ = 0.7812 GeV,

GSΛ
2 = 4.90, KΛ5 = 129.8, (9)

Fig. 1 Dynamical masses as functions of the temperature for u quark
(black lines), d quark (red lines), and s quark (blue lines). The magnetic
field strength is set to eB = 0 (solid lines) or eB = 10m2

π (dashed lines)

which are obtained by fitting vacuum values for the pion
decay constant and masses of pion, kaon, η′, while fixing
the vacuum mass for light-quarks to Mu,d = 325 MeV. For
the strange quark, this set of parameters leads to a dynami-
cal mass Ms = 554 MeV in the vacuum in absence of the
magnetic field.

We first focus on dynamical masses for quarks, which
are related to the chiral condensates σ f as given in Eq. (4).
The condensates σ f are order parameters for the chiral phase
transition. In the chiral symmetry breaking phase, σ f �= 0
and thus quarks have nonvanishing dynamical masses. In the
chiral symmetry restored phase, σ f = 0 and quark dynam-
ical masses reduce to their current masses. The behavior of
dynamical masses for u, d, and s quarks as functions of the
temperature is shown in Fig. 1. Here we choose two sets of
values for the magnetic field strength: solid lines for eB = 0
and dashed lines for eB = 10m2

π . We observe that the chi-
ral phase transition is a cross-over with critical temperature
around TC ≈ 150 MeV. Compared to the case with eB = 0,
a nonzero magnetic field, eB = 10m2

π , corresponds to larger
quark masses and slightly higher TC , which is the behavior
of the magnetic catalysis. We also observe that the u and d
quarks have identical masses when eB = 0, but have dif-
ferent masses in a nonzero magnetic field. That is because
the difference in their electric charges, qu = (2/3)e and
qd = (−1/3)e, leads to different magnetic energies and
breaks the symmetry between light-flavor quarks.

In order to explicitly show the magnetic field dependence,
we plot in Fig. 2 the ratio of quark masses as functions of
the field strength to those in absence of the magnetic field.
Here we fix the temperature at the ordinary critical tempera-
ture T = 150 MeV. We find that quark masses grow with an
increasing magnetic field, which is the phenomena of mag-
netic catalysis. The u quark mass is more affected by the
magnetic field than the d quark mass since |qu | > |qd |. On
the other hand, the s quark is less affected by the magnetic
field because s quark has a larger dynamical mass than u, d
quarks.
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Fig. 2 Dynamical masses as functions of the magnetic field strength
at T = 150 MeV for u, d, and s quarks, denoted by the black solid line,
the red dashed line, and the blue dotted line, respectively. The masses
are normalized by the corresponding values in absence of magnetic field

3 Spin alignment for φ mesons in NJL model

3.1 Propagator for φ mesons

In the NJL model, mesons are described as excitations
beyond the mean field. The progator of a meson is obtained
by taking the quark bubble summation in the random phase
approximation, corresponding to the Dyson–Schwinger equa-
tion shown in Fig. 3. For the vector meson channel, the
Dyson–Schwinger equation is given by

Dμν(k) = 4GVΔμν(k) + 4GVΔμα(k)Σαβ(k)Dβν(k),

(10)

where Dμν is the vector meson’s propagator and Σμν is
the self-energy tensor. The projection operator Δμν(k) ≡
gμν − kμkν/k2 ensures the Ward identity kμDμν(k) = 0.
Using the quark propagator S f (p), the self-energy at one-
quark-loop level is given by

Σμν(k) = −i Nc

∫
d4 p

(2π)4 Tr
[
γ μS f (k + p)γ νS f ′(p)

]
,

(11)

where the quark flavors f and f ′ depend on the type of
considered meson. In this work we focus the φ meson and
thus we take f = f ′ = s in Eq. (11). Following Ref. [65],

Fig. 3 Dyson–Schwinger equation for meson’s propagator. Solid lines
denote quark propagators, dashed lines denote meson propagator, black
dots denotes four-quark vertexes, and white dots denotes the quark-
meson vertexes

the quark propagator in momentum space is expressed as
follows,

S f (p) = ie−p2⊥/|q f B|
∞∑

n=0

(−1)nD f
n (p)

(k0)2 − [E f,n(kz)]2 + iε
(12)

where the poles are shifted above or below the real axis by
an infinite small imaginary part ±iε such that S f (p) denotes
the Feynmann propagator. The residue at each pole energy is
determined by the function in the numerator,

D f
n (p) = 2(p0γ 0 − pzγ

3 + M f )

[
P+Ln

(
2p2⊥
|q f B|

)

−P−Ln−1

(
2p2⊥
|q f B|

)]

+4p⊥ · γ ⊥L1
n−1

(
2p2⊥
|q f B|

)
(13)

where projection operators P± ≡ [1 ± iγ 1γ 2sgn(q f B)]/2
and Li

n(x) are associated Laguerre polynomials with Ln(x) ≡
L0
n(x).
As spin-1 particles, the vector mesons have three spin

states, λ = 0, ±1. Taking the spin quantization direction as
the z-direction in the meson’s rest frame, which is the same
as the direction of magnetic field, we have the following spin
polarization vectors,

ε0 = (0, 0, 1),

ε+1 = − 1√
2
(1, i, 0),

ε−1 = 1√
2
(1,−i, 0), (14)

corresponding to λ = 0,±1, respectively. By taking a
Lorentz boost, we derive the covariant form of spin polar-
ization vectors,

εμ(λ, k) =
(
k · ελ

mV
, ελ + k · ελ

mV (ω + mV )
k
)

, (15)

where kμ ≡ (ω,k) is the four-momentum and mV =√
ω2 − k2 is the mass of the vector meson. It is easy to check

that they are perpendicular to kμ, kμεμ(λ, k) = 0, and are
properly normalized as εμ∗(λ, k)εμ(λ′, k) = −δλλ′ . They
also form a complete basis as

∑

λ=0,±1

εμ∗(λ, k)εν(λ, k) = −Δμν(k). (16)

Then the meson propagator Dμν(k) can be cast into the fol-
lowing form,

Dμν(k) =
∑

λ,λ′=0,±1

ε∗μ(λ, k)εν(λ′, k)Dλλ′(k), (17)
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where the element Dλλ′(k) is a Lorentz invariant function
that is derived by projecting Dμν(k) onto εμ(λ, k)ε∗

ν (λ′, k),

Dλλ′(k) = εμ(λ, k)ε∗
ν (λ′, k)Dμν(k). (18)

Similarly, projecting the Dyson–Schwinger equation in (10)
onto εμ(λ, k)ε∗

ν (λ′, k) gives the equation for Dλλ′(k),

Dλλ′(k) = −4GV δλλ′ − 4GV

∑

λ1=0,±1

Σλλ1(k)Dλ1λ′(k),

(19)

where the self-energy matrix element in the spin space,
Σλλ′(k), is defined as

Σλλ′(k) = εμ(λ, k)ε∗
ν (λ′, k)Σμν(k). (20)

Equation (19) has the following formal solution,

Dλλ′(k) = −
[

4GV

1 + 4GVΣ(k)

]

λλ′
. (21)

where 1 and Σ(k) in the denominator are short-handed nota-
tions for the 3 × 3 unit matrix and the matrix Σλλ′(k).

3.2 Spectral function and spin alignment

In a thermal equilibrium system, the meson’s propagator can
be expressed in the spectral representation as [78]

Dμν(k) = nBE(ω/T )
1

π
ImDμν(k), (22)

where nBE(ω/T ) = 1/(eω/T − 1) is the Bose–Einstein dis-
tribution. The density matrix for the vector meson is the given
by

ρλλ′(k) =
∫

dω 2ω nBE(ω/T )ξλλ′(k), (23)

where the spectral function is derived from the imaginary
part of the full propagator,

ξλλ′(k) ≡ 1

π
εμ(λ, k)ε∗

ν (λ′, k)ImDμν(k). (24)

In Eq. (23), we integrate over ω so that the diagonal element
ρλλ(k) has definite physical meaning of particle number for
vector mesons with spin λ and three-momentum k. The spin
alignment is then given by the 00-element of the normalized
density matrix,

ρ00(k) ≡ ρ00(k)∑
λ=0,±1 ρλλ(k)

. (25)

The result in a constant magnetic field can be evaluated by
using Eqs. (11), (12), and (22)–(25). When calculating the
self-energy in (11), we substitute the energy integral with
a summation over Matsubara frequencies at finite tempera-
ture [78]. This allows us to study the meson properties at
finite temperature.

We emphasize that Eqs. (22)–(25) are universal formulas,
which can be applied in calculating momentum-dependent
spin alignments along any measuring direction. However, it
will significantly simplify our calculation to focus on a static
meson k = 0 and choose the measuring direction as the
z-direction. The corresponding spin polarization vectors as
given in Eqs. (14) and (15). Due to the rotational invariance
in the x − y plane, one can also prove that Σλλ′ , Dλλ′ , and
the density matrix ρλλ′(0) are diagonal in the spin space,

ρλλ′(0) =
⎛

⎝
ρ11 0 0
0 ρ00 0
0 0 ρ−1,−1

⎞

⎠ , (26)

where the states with λ = ±1 are degenerate, ρ−1,−1 =
ρ11. In general, if the measuring direction is characterized
by Euler angles (α, β, γ ), the density matrix is calculated
by performing a rotation in spin space,

ρλλ′(0;α, β, γ )

=
∑

λ1,λ2

Rλλ1(α, β, γ )ρλ1λ2
(0)R−1

λ2λ′(α, β, γ ), (27)

where Rλλ′(α, β, γ ) is the spin-1 representation of the rota-
tion with Euler angles (α, β, γ ). Here ρλ1λ2

(0) is the density
matrix when measuring along the z-direction. A straightfor-
ward calculation shows that the spin alignment is indepen-
dent to Euler angles α and γ ,

ρ00(0;α, β, γ ) = ρ00(0) cos2 β + ρ11(0) sin2 β

ρ00(0) + 2ρ11(0)
. (28)

Defining the spin alignment in the magnetic field direction
as

ρB
00(0) ≡ ρ00(0)

ρ00(0) + 2ρ11(0)
, (29)

we derive that

ρ00(0;α, β, γ ) = 1

2

{
1 − ρB

00(k) +
[
3ρB

00(k) − 1
]

cos2 β
}

,

(30)

which only depends on ρB
00 and the angle between the direc-

tion of the magnetic field and the measuring direction. For
a fluctuating magnetic field, one has to take an average
over the β-angle and the field strength. If the field does not
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have a preferred direction, one can prove that the average
〈ρ00(0;α, β, γ )〉 = 1/3, as expected. If the fluctuations are
anisotropic in space, the average spin alignment will deviate
from 1/3, as predicted in Refs. [43–46].

4 Numerical results for φ mesons

The property of vector meson depends on the coupling
strength GV for the vector channel in the Lagrangian (1).
In our calculation, we take

GVΛ2 = −4.67, (31)

which is determined by fitting the φ meson’s vacuum mass
Mφ = 1.02 GeV in the absence of magnetic field.

4.1 Mass spectra for φ meson

Using quark masses as functions of the temperature and the
magnetic field strength discussed in Sect. 2.2, we are then
able to calculate the vector meson’s spectral functions from
Eqs. (11), (12), and (24). In this work, we focus on the vector
φ meson, which has constituent quarks s and s̄. At the one-
loop level, the self-energy for the φ meson depends on the
propagator of s quark, but does not depend on propagators of
u and d quarks. We set the spin quantization direction parallel
to the magnetic field and therefore the spectral function is
diagonal ξλλ′ = diag(ξ+1, ξ0, ξ−1), and spin states λ = ±1
are degenerate, ξ+1 = ξ−1. In this work, we only focus on
static φ mesons, i.e., the three-momenta of meson are set to
zeros, k = 0.

In order to clearly show the influence of the magnetic
field to the spectral function, we choose the magnetic field
strength eB = 5m2

π and plot the mass spectra for theφ meson
at temperatures T = 100 MeV, 150 MeV, and 250 MeV in
Fig. 4. In general, the spectral function can be separated into
a delta-function part and a continuum part as

ξλ(ω, 0) = δ(ω2 − M2
φ,λ) + ξ∗

λ (ω). (32)

The delta-function part is identified as a stable bound state
that corresponds to a real on-shell φ meson with mass Mφ,λ.
The continuum part ξ∗

λ (ω) is related to unstable resonance
excitations. In Fig. 4, the delta-functions are plotted as
arrows. We observe a mass splitting between bound states
with λ = 0 and λ = ±1 in Fig. 4a, b, indicating that the lon-
gitudinally polarized φ meson and the transversely polarized
φ meson have different energies. The bound state masses
and the thresholds for the continuum drop with increasing
T , which is the result of the decreasing s quark mass. The
bound states will dissociate when T is large enough, which

Fig. 4 Spectral functions for φ mesons in a constant magnetic field
with eB = 5m2

π , at T = 100 MeV (a), T = 150 MeV (b), and
T = 250 MeV (c). Here red solid lines denote spectral functions for
φ mesons with spin state λ = ±1 and blue dashed lines denote the
spectral function of λ = 0. Red and blue arrows correspond to delta
functions

is the Mott transition [79–83]. In this work, the φ meson self-
energy is purely contributed by the s quark loop since we only
consider the coupling between the φ meson and the s quark.
In a thermal medium, the physical φ meson was observed
to have a large broadening [84–86], which may arise from
φN interactions and is beyond the scope of our discussion.
We also observe in Fig. 4 that the continuum parts contains
several well-separated peaks. One can understand the multi-
peak structure of the spectral function in Fig. 4 as follows.
In the presence of a magnetic field, the dispersion relation of
s quark is quantized as Landau levels given in Eq. (5). Sup-
posing the constituent s and s̄ quarks inside a φ meson are at
Landau levels n1 and n2, respectively, the angular momen-
tum conservation demands that the φ meson with λ = 0 must
be consist of quark and antiquark with n1 = n2, and the φ

meson with λ = ±1 correspond to n1 = n2 ± 1. Different
sets of n1 and n2 give different resonance peaks as shown in
Fig. 4.

Denoting the energy for the most significant peak in the
continuum as M∗

φ,λ, we plot M∗
φ,λ, and Mφ,λ for bound states,
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Fig. 5 Dynamical masses as functions of the temperature for φ mesons
at eB = 5m2

π . Masses for bound states with spin λ = 0 and λ = ±1
are plotted with red solid lines and blue solid lines, respectively, while
those for resonance excitations are plotted with red dashed lines and
blue dashed lines, respectively

Fig. 6 Dynamical masses as functions of eB for φ mesons at T =
150 MeV. Notations are the same as in Fig. 5

as functions of the temperature at eB = 5m2
π in Fig. 5.

Similar to the temperature dependence of the s quark, the
φ meson masses also decrease at higher temperatures. One
can observe from Fig. 5 the mass splitting between states
with λ = 0 and λ = ±1, induced by the broken symmetry
because of the magnetic field. States with λ = 0 always have
smaller masses compared to states with λ = ±1. As the tem-
perature increases, the bound states finally dissociate, and
the corresponding dissociation temperature is 215 MeV for
λ = ±1 and 270 MeV for λ = 0. Therefore when the tem-
perature 215 MeV < T < 270 MeV, φ meson bound states
are purely at states with λ = 0. In Fig. 6, we show the field
strength dependence for the φ meson masses.The mass for
λ = 0 bound-states decreases with an increasing eB, while
that for λ = ±1 increases. Masses for resonance excitations
oscillate when eB < 2.5m2

π , and is nearly linear in eB when
2.5m2

π < eB < 10m2
π .

4.2 Spin alignment for φ mesons

Substituting the spectral functions calculated in Sect. 4.1 into
Eqs. (23) and (25), we derive the φ meson’s spin alignment.

Bound

Resonance

Non- rel. coal.

0.10 0.15 0.20 0.25

0.4

0.6

0.8

1.0

T/GeV

Fig. 7 Spin alignments as functions of the temperature. The magnetic
field strength is taken as eB = 5m2

π . Red solid lines are spin alignment
for bound states, calculated using the delta-function part in the spec-
tral function Eq. (32), while blue dashed lines are spin alignment for
resonance excitations, calculated using the continuum part in Eq. (32).
Black dash-dotted lines are results from the non-relativistic coalescence
model, given in Eq. (33)

Note that the bound states and resonance excitations are at
different mass regions: the bound states have masses ∼ 1
GeV or smaller, while masses for the resonance excitations
have larger masses. Therefore we treat them as different kinds
of particles and calculate their spin alignments separately.

In Fig. 7, we plot spin alignments ρ00 as functions of the
temperature at eB = 5m2

π . Spin alignments for bound states
and resonance excitations are denoted as red solid lines and
blue dashed lines, respectively. As a comparison, we also plot
the result from a non-relativistic coalescence model [37],

ρNon-rel. coal.
00 = 1

3
+ 4

9T 2 μ2
s B

2, (33)

where μs = qs/(2Ms) is the magnetic moment for the
s quark, with qs = (−1/3)e. We note that Eq. 33 is an
approximate result when (μs B/T )2 � 1 and thus has ill
behaviour in the limit T → 0. For the temperature interval
0.08 GeV < T < 0.25 GeV considered in Fig. 7, we have
(μs B/T )2 � 0.13, which is significantly smaller than 1 and
thus ensures the validity of Eq. (33). The spin alignment ρ00

for bound states, shown by the red solid line in Fig. 7, is
significantly smaller than the result from the non-relativistic
coalescence model (black dotted line) when T < 150 MeV.
The ρ00 for bound states decreases towards 1/3 with an
increasing T . For the temperature T = 150 MeV, ρ00 for
bound states is in very good agreement with the coalescence
model. Above 150 MeV, ρ00 for bound states is larger than the
result from the coalescence model. Especially, bound states
with λ = ±1 vanish when T > 215 MeV, leading to the
result of ρ00 = 1 in this temperature region. On the other
hand, the spin alignment ρ00 for resonance states is always
larger than the result from the coalescence model except at
very low temperatures. In Fig. 8 we show spin alignments as
functions of the magnetic field strength. We focus on a fixed
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Fig. 8 Spin alignments as functions of the magnetic field strength at
temperature T = 150 MeV. Notations are the same as in Fig. 7

temperature T = 150 MeV and observe that ρ00 increases
with increasing eB. In the zero-field limit eB → 0, ρ00

agrees with 1/3, as expected. We find that the spin alignment
for bound states agrees with the result of the non-relativistic
coalescence model, while the spin alignment for resonance
excitations is significantly larger.

5 Effect of anomalous magnetic field

Considering that constituent quark may have different mag-
netic moments compared with free quarks [61,62,67–70],
we study the effect of AMM in this section. The AMM is
included in the Lagrangian Lq by a term q f κ f Fμνσ

μν/2 as

Lq =
∑

f =u,d,s

ψ f

(
iγμD

μ
f − m f − 1

2
q f κ f Fμνσ

μν

)
ψ f ,

(34)

where κ f denote the AMMs for quarks with flavor f =
u, d, s. By applying the Foldy–Wouthuysen transforma-
tion [87], one can show that the magnetic moment for quark
is modified to μ f = (1 + 2M f κ f )q f /(2M f ), where M f is
the dynamical mass that includes the contribution of chiral
condensate. By fitting the phenomenological values of mag-
netic moments for valence quarks [88], i.e., μu = 2.08μN ,
μd = −1.31μN , and μs = −0.77μN , where the nuclear
magneton μN ≡ e/2mp with mp = 0.938 GeV being the
proton mass, we derive the following set of AMMs,

κu = 0.123 GeV−1, κd = 0.555 GeV−1,

κs = 0.329 GeV−1. (35)

In later parts of this section, this set of AMM is denoted as
κ f �= 0 for simplicity.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.1

0.2

0.3

0.4

Fig. 9 Dynamical masses as functions of the temperature for u quark
(black lines), d quark (red lines), and s quark (blue lines) with AMMs
κ f �= 0 in magnetic fields eB = 5m2

π (solid lines) and eB = 10m2
π

(dashed lines)

5.1 Quark mass

We first focus on dynamical quark masses. In the presence
of AMMs, the dispersion relation for Landau levels reads

E = ±E f,n,s(pz)

= ±
√
p2
z +

(√
M2

f + 2n|q f B| − sκ f |q f B|
)2

, (36)

where s = + for the lowest Landau level and s = ± for
Landau levels n ≥ 1 denote the spin state. The AMMs induce
an additional spin-magnetic coupling and therefore Landau
levels n ≥ 1 are no-longer two-fold degenerate in spin. The
grand thermodynamic potential is constructed in a similar
way as Eq. (6) and the chiral condensates are still solved by
∂Ω/∂σ f = 0.

We plot in Fig. 9 dynamical masses as functions of the
temperature for u, d, and s quarks with κ f �= 0. As T
increases, masses of u and d quarks sharply decrease to their
current masses, indicating a first-order phase transition that
happens at 176 MeV when eB = 5m2

π , and at 133 MeV
when eB = 10m2

π . Such a behaviour is significantly differ-
ent from the cross-over in Fig. 1, indicating that the phase
structure for light quarks are strongly affected by AMMs. On
the other hand, the s quark is less affected by the AMM and
still undergoes a cross-over. In the chiral symmetry breaking
phase, the quark masses at eB = 5m2

π is larger than those
at eB = 10m2

π , which is the inverse magnetic catalysis phe-
nomena. The dependence to the magnetic field strength is
shown in Fig. 10. We observe that the nonzero AMMs result
in the inverse magnetic catalysis, i.e., the dynamical masses
decrease with an increasing field strength, which is oppo-
site to the case with κ f = 0 as shown in Fig. 2. Moreover,
at a particular field strength, Mu and Md suffer a discon-
tinuity, corresponding to a first-order phase transition. For
the set of AMMs in Eq. (35), the critical field strength is
eBC = 7.75m2

π at T = 150 MeV. Above this eBC , dynam-
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Fig. 10 Dynamical masses as functions of the magnetic field strength
at T = 150 MeV for quarks with nonvanishing AMMs, normalized
by masses when eB = 0. Dynamical masses for u, d, and s quarks
are plotted with black solid line, red dashed line, and blue dotted line,
respectively

ical masses for u and d quarks are consistent with current
quark masses.

5.2 Spectral function for φ mesons

The propagator for vector meson is derived by solving the
Dyson–Schwinger equation (10) with self-energy (11). In
the presence of AMMs, the quark propagator is given by the
following form,

S f (p) = ie−p2⊥/|q f B|
∞∑

n=0

(−1)nD f
n (p)

1

M(p) − 2n|q f B| ,

(37)

where D f
n (p) is given by Eq. (13) with M f replaced by M f +

iκ f q f Bγ 1γ 2. The explicit form of the matrix M is given in
Ref. [65], from which we derive

1

M(p) − 2n|q f B|
= 1

Un

[
(p0)2 − (pz)

2 − M2
f − 2n|q f B|

+(κ f q f B)2 + 2κ f q f B(pzγ
0γ 5 − p0γ 3γ 5)

]
, (38)

where the denominator Un is given by

Un =
[
(p0)2 − (pz)

2 − M2
f − 2n|q f B| − (κ f q f B)2

]2

−4(M2
f + 2n|q f B|)(κ f q f B)2. (39)

We note that the eigenenergies in Eq. (36) are determined
by solutions of Un = 0. One can also prove that the prop-
agator reduce to Eq. (12) in the absence of κ f . Using the
quark propagator and the dynamical mass obtained in the
previous subsection, we are then able to calculate the vec-
tor meson’s spectral function. We still focus on the φ meson

Fig. 11 Spectral functions for φ mesons in a constant magnetic field
with eB = 5m2

π , at T = 100 MeV (a), T = 150 MeV (b), and
T = 250 MeV (c). The AMMs are set to nonzero values given in Eq.
(35). Here red solid lines denote spectral functions for φ mesons with
spin state λ = ±1 and blue dashed lines denote the spectral function of
λ = 0. Red and blue arrows correspond to delta functions

at static, k = 0. The spectral functions at T = 100 MeV,
150 MeV, and 200 MeV are shown in Fig. 11. The mag-
netic field strength is set to eB = 5m2

π , leading to the
difference between longitudinally (λ = 0) and transversely
(λ = ±1) polarized states. We also observe the bound state
with λ = 0 vanishes for all three considered temperatures,
while bound states with λ = ±1 vanish at T = 250 MeV
and exist at T = 100 MeV or 150 MeV. The temperature
dependence for the peak masses are shown in Fig. 12, where
we observe that the bound state with λ = 0 does not exist
even at lower temperatures. Compared Fig. 12 with Fig. 5,
we find that the λ = ±1 states and the resonance masses are
nearly not affected by the AMMs. We also plot in Fig. 13
the φ meson masses as functions of magnetic field strength.
When eB < 2.9m2

π , masses for bound states decrease in
larger magnetic fields. The bound state with λ = 0 sud-
denly increases approach the mass of the resonance state at
eB ∼ 2.9m2

π and then dissociate when eB � 3.4m2
π , cor-

responding to the Mott transition. The masses for resonance
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Fig. 12 Dynamical masses as functions of the temperature for φ

mesons at eB = 5m2
π . Masses for bound states with spin λ = 0 and

λ = ±1 are plotted with red solid lines and blue solid lines, respectively,
while those for resonance excitations are plotted with red dashed lines
and blue dashed lines, respectively. The AMMs for quarks are nonzero
values given in Eq. (35)

Fig. 13 Dynamical masses as functions of eB for φ mesons at T =
150 MeV. Notations are the same as in Fig. 5

excitations are nearly independent to the AMMs, as com-
pared to Fig. 6.

5.3 Spin alignment for φ mesons

Substituting the spectral functions into Eqs. (23) and (25),
we derive the φ meson’s spin alignment. For the case with
nonzero AMMs, the spin alignments as functions of tem-
perature and magnetic field strength are shown in Figs. 14
and 15, respectively. As a comparison, we also show results
from a non-relativistic coalescence model [37], given by Eq.
(33), with the magnetic moment μs = (1+2Msκs)qs/(2Ms)

including the effect of AMM. From Fig. 14 we observe that
the spin alignment for bound states is always equal to zero
because all bound states haveλ = ±1, as indicated by Fig. 12.
The resonance states still have ρ00 > ρNon-rel. coal.

00 > 1/3,
which is similar to the case with κ f = 0. On the other hand, in
a weak magnetic field with eB < 2.5m2

π ,ρ00 for bound states
still agrees well with the non-relativistic model. It jumps to
a negative value at eB ∼ 2.9m2

π , which is a straightfor-
ward result of the Mott transition for states with λ = 0.

Fig. 14 Spin alignments as functions of the temperature. The magnetic
field strength is taken as eB = 5m2

π . The quark AMMs are set to
nonzero values given in Eq. (35)

Fig. 15 Spin alignments as functions of the magnetic field strength at
temperature T = 150 MeV. Notations are the same as in Fig. 7

When the magnetic field strength eB � 3.4m2
π , the bound

state with λ = 0 dissociates in the thermal medium, result-
ing in a vanishing spin alignment ρ00 = 0. Meanwhile, the
ρ00 for resonance excitations shows a non-monotonic struc-
ture: ρ00 < 1/3 when eB < 2.6m2

π and ρ00 > 1/3 when
eB > 2.6m2

π .

6 Summary

In this manuscript, we study the mass splitting and the spin
alignment for the vector φ meson in a hot magnetized mat-
ter. The three-flavor NJL model is used to properly include
the chiral phase transition. In this framework, mesons are
described as quantum fluctuations beyond the mean-field
background. The meson’s propagator is given by resuming
quark bubbles at the random phase approximation. For a vec-
tor meson, the propagator is a Lorentz tensor perpendicular
to the meson’s momentum, which can be further projected
into the spin space. The spin density matrix is then derived
by the convolution of the spectral function and the Bose–
Einstein distribution, while the spectral function is given by
the imaginary part of the propagator. In this way, we are able
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to calculate the vector meson’s spin alignment in a thermal
medium.

We note that the NJL model is reliable around or below
the critical temperature because of the gluon confinement,
while the gluon contribution becomes more important at a
higher temperature. However, the lack of explicit gluonic
degrees of freedom may not be too severe to affect quali-
tative behaviours for the φ meson’s mass splitting and spin
alignment. This is because these behaviours arise from the
coupling between external magnetic field and intrinsic spin of
constituent quark/antiquark and therefore they are universal
for all models.

If we choose the spin quantization direction for the vec-
tor meson as the direction of the external magnetic field,
the density matrix is then diagonal and spin states λ = ±1
are degenerate. We numerically calculated the spectral func-
tions for φ mesons. In general the spectral function can be
separated into a delta-function part corresponding to a quark-
antiquark bound state, and a continuum part corresponding
to resonance excitations. We observe multi-peak structures
in the continuum part, which is the result of Landau quan-
tization for constituent quarks. The magnetic field leads to
a mass splitting between states with λ = 0 and λ = ±1,
resulting in the spin alignment ρ00 �= 1/3 for the φ meson in
a hot medium. If we only focus on the bound states, we find
that ρ00 > 1/3 and is in good agreement with the result from
the non-relativistic coalescence model. However, the spin
alignment for resonance states gives a much larger result.
The result ρ00 > 1/3 qualitatively agrees with experiment
results [34].

Since constituent quarks and free quarks have different
magnetic moments, we incorporate the quark AMMs accord-
ing to the constituent quark magnetic moments observed in
experiments. The light-flavor quarks then show the inverse
magnetic catalysis behaviors, and the chiral phase transition
is first order. The AMMs then significantly modify the mass
spectra and the spin alignment for the φ meson, especially
in a strong magnetic field. Considering a different choice of
AMMs, like in Ref. [89], may result in a different ρ00, which
is waiting for more comprehensive studies in the future.

Even though the spin quantization direction is fixed to the
direction of the magnetic field in our numerical calculations,
we can easily generalize the results to the case that ρ00 is
measured along any other direction, c.f., Eq. (30). This is
achieved by performing a rotation in spin space for the den-
sity matrix. Therefore results in this work can be applied to
study the φ meson’s spin alignment in a fluctuating magnetic
field. When the fluctuation is anisotropic in space, the spin
alignment ρ00 will deviate from 1/3. Therefore this work
may help us better understand the role of the magnetic field
in the φ mesons’ spin alignment.
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