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Abstract Quantum mechanical concept such as the Casimir
effect is explored to model traversable wormholes in an
extended symmetric teleparallel gravity theory. The minimal
length concept leading to the generalized uncertainty princi-
ple (GUP) is used to obtain the Casimir energy density. The
effect of the GUP correction in the geometrical and physical
properties of traversable Casimir wormholes are investigated.
It is noted that the GUP correction has a substantial effect on
the wormhole geometry and it modifies the energy condi-
tion. From a detailed calculation of the exotic matter content
of the GUP corrected Casimir wormhole, it is shown that, a
minimal amount of exotic matter is sufficient to support the
stability of the wormhole.

1 Introduction

Wormholes can be defined as the hypothetical tunnel con-
necting two asymptotic regions of the same space time. To be
very specific, wormhole is any compact region of space time
with topological boundary, however its interior is topologi-
cally non-trivial [1]. These hypothetical bridges, known as
the Einstein–Rosen bridges [2,3] were obtained as solutions
of General Relativity (GR) [4]. However, due to the recent
observational signatures of black holes [5–8], the related
concept of wormhole has come into the field of attraction
to the researchers. As a result, specifically construction of
traversable wormholes are nowadays affluently available in
GR as well as in modified gravity theories [9–23].
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The traversable wormholes contain exotic matter with
negative energy density and it is quite obvious that they vio-
late the positivity condition of the sum of the energy den-
sity (ρ) and pressure (p). This condition is known as the
Null Energy Condition ρ + p ≥ 0 (NEC). The possibility
of physical travel through the wormhole tunnel depends on
the opening of its mouth which requires the matter content
to be exotic. In fact, in his work, Visser [1] attempted to
avoid falling of the traversable path within the exotic mat-
ter area. Since, within the classical Physics, it is not possi-
ble to create matters with negative energy density, in prin-
ciples, traversable wormholes should not exist classically.
Though there are many attempts made for the existence of
traversable wormholes, but there is no detection or even
trace of traversable wormholes. Recently it has been indi-
cated that Casimir energy with negative energy density can
be a potential physical source for the existence of traversable
wormhole [24–26]. The negative energy density due to the
Casimir effect is a manifestation of the quantum fluctuation
of the vacuum of the electromagnetic field between two plane
parallel, uncharged conducting plates [27]. There have been
many studies on the Casimir effect near or around traversable
wormholes within GR [28–30]. Subsequently, the modelling
of traversable wormhole exploring the Casimir effect has
been shown in extended theory of gravity [13]. There are
some more studies available in literature [32–38] on Casimir
wormhole by employing different modified theories of grav-
ity. Recently Santos et al. have obtained a traversable worm-
hole solution sourced by Casimir energy density and pres-
sure related to the quantum fluctuations in Yang–Mills the-
ory [31]. It is worthy to mention here that the Casimir energy
represents the artificial yet laboratory source of exotic matter
and it has strong dependence on the geometry of boundaries.
However, the result of this Casimir effect is in principle but
not in practice.
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The curvature and teleparallel representation are two
equivalent geometric representations of GR, the other being
the non-metricity representation. In the curvature representa-
tion, the torsion and non-metricity vanish while in the telepar-
allel representation the curvature and non-metricity vanish.
Interestingly in the non-metricity representation, the curva-
ture and torsion vanish which eventually leads to the sym-
metric teleparallel gravity [39]. In this approach, the basic
geometry of the gravitational action is represented by the
non-metricity Q of the metric. This has been further devel-
oped into the coincident gauge known as the f (Q) gravity
or non-metricity gravity [40]. Subsequently f (Q) gravity
has been extended to f (Q, T ) gravity [41] by including the
trace of energy momentum tensor T . This modified grav-
ity theory has been used to address some of the cosmology
and astrophysics issues pertaining to early and late time evo-
lution of the Universe. The late time cosmic acceleration
issue has been studied in f (Q, T ) gravity [42] and different
bouncing scenarios have been discussed in [43]. The possible
occurrence of future singularity has been studied in Ref. [44]
whereas the dynamical system analysis has been performed
in Ref. [45].

The purpose of the present work is to construct possi-
ble Casimir wormholes in f (Q, T ) gravity and to study the
effect of the GUP correction arising out of the minimal length
concept in quantum mechanics. The paper is organised as fol-
lows: in Sect. 2, a brief description of f (Q, T ) gravity and
its mathematical formalism has been provided. In Sect. 3, we
have discussed in brief the Casimir effect and the GUP correc-
tion and their applications to traversable wormholes. Also we
have studied the effect of GUP correction on the wormhole
geometry and other properties of traversable wormholes. The
energy condition and exotic matter content are analysed in
Sect. 4. Finally the discussion and conclusion are presented
in Sect. 5.

2 Wormhole taxonomy and f (Q, T ) gravity field
equations

The action of f (Q, T ) gravity reads as [41],

S =
∫ [

1

16π
f (Q, T ) + Lm

]
d4x

√−g, (1)

where, f (Q, T ) be the arbitrary function of the nonmetricity
Q and trace of energy momentum tensor T and both can be
respectively expressed as, Q ≡ −gμν(Lk

lμL
l
νk − Lk

lk L
l
μν)

and T = gμνTμν . The disformation tensor in Q can be
defined as, Lk

lγ ≡ − 1
2g

kλ(�γ glλ + �l gλγ − �λglγ ). The
determinant of the metric tensor and the matter Lagrangian
respectively denoted as g and Lm in the action. Now, varying
the gravitational action (1) with respect to the metric tensor,

the field equations of f (Q, T ) gravity [41] can be obtained
as,

− 2√−g
�k ( fQ

√−g pkμν) − 1

2
f gμν − fQ(pμkl Q

kl
ν

−2Qkl
μ pklν) + fT (Tμν + �μν) = 8πTμν, (2)

where we denote, f ≡ f (Q, T ) and fQ = ∂ f
∂Q . The super

potential term is defined as, pkμν = − 1
2 L

k
μν + 1

4 (Qk −
Q̃k)gμν − 1

4δk(μQν). The energy momentum tensor, Tμν =
−2√−g

δ(
√−gLm )

δgμν and �μν = gkl δTkl
δgμν . Also, The non-metricity

tensor can be expressed as, Qk = Q μ
k μ, Q̃k = Qμ

kμ.
The line element for the spherically symmetric wormhole

in the coordinate (t , r , θ , φ) can be expressed as [4],

ds2 = −e2�(r)dt2 + dr2

1 − b(r)
r

+ r2(dθ2 + sin2θdφ2),

(3)

where �(r) and b(r) are respectively the redshift and shape
functions. It is to note that the redshift function remains finite
everywhere to avoid the presence of event horizons whereas
the shape function needs to obey the flare-out condition of the
throat. Now, using a wormhole matter content and its stress-
energy tensor, an anisotropic fluid source with a tensor that
fulfills the energy criteria can be expressed as [46],

Tμν = (ρ + pt )UμUν + pt gμν + (pr − pt )XμXν, (4)

with ρ, pr and pt are respectively be the energy density, radial
pressure and tangential pressure as measured in the fluid ele-
ment in rest frame. Here Xμ is a space-like vector orthogo-
nal to Uμ, the four-velocity vector of the fluid satisfying the
conditions UμUνgμν = −1, XμXνgμν = 1 and the orthog-
onality condition, UμXμ = 0. Hence, the diagonal form of
the stress-energy tensor is, Tμ

ν = diag[−ρ, pr , pt , pt ]. The
experimental verification of all potential parameter combi-
nations claimed that there is no significant difference in the
wormhole solution whether �(r) �= 0 or �(r) = 0. There-
fore, for simplicity, we have opted for zero tidal force, i.e.
�(r) = 0 and have derived the field equations of f (Q, T )

gravity for the line element (3) as,

F

r2

[
r − b(r)

r
− b′(r)

]
+ 2Ḟ(r − b(r))

r2 + f

2
= 8πρ,

(5)
F

r2 − f

2
− 2F(r − b(r))

r3

= pr (8π + fT ) + ρ fT , (6)

−F(1 − b′(r))
2r2 − F(r − b(r))

2r3 − Ḟ(r − b(r))

r2 − f

2
= pt (8π + fT ) + ρ fT , (7)
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where the notation, F = ∂ f
∂Q and a prime denotes the deriva-

tive with respect to r and an over dot represents derivative
with respect to t , fT = ∂ f

∂T . With an algebraic manipulations,
the set of field equations (5)–(7) can be expressed as,

ρ = 1

8π

[
F

r2

(
r − b(r)

r
− b′(r)

)

+2Ḟ(r − b(r))

r2 + f

2

]
, (8)

pr = 1

(8π+ fT )

[
F

r2

((
−1− fT

8π

)
+

(
2+ fT

8π

)
b(r)

r

+ fT
8π

b′(r)
)

+Ḟ
fT
8π

(
2b(r)

r2 −2

r

)
−

(
1+ fT

8π

)
f

2

]
,

(9)

pt = 1

(8π + fT )

[
F

r2

((
−1 − fT

8π

)

+
(

1

2
+ fT

8π

)
b(r)

r
+

(
1

2
+ fT

8π

)
b′(r)

)]

+ Ḟ

8π + fT

[((
−1 − fT

4π

)
1

r

+
(

1 + fT
4π

)
b(r)

r2

)
−

(
1 + fT

8π

)
f

2

]
. (10)

In their seminal work, Xu et al. [41] have suggested three
forms of the function f (Q, T ) such as, (i) f (Q, T ) = λ1Q+
λ2T , (ii) f (Q, T ) = λ1Qn+1 + λ2T and (iii) f (Q, T ) =
−λ1Q−λ2T 2, where λ1 and λ2 are two arbitrarily constants.
However, here we consider the first case f (Q, T ) = λ1Q +
λ2T to obtain the wormhole geometry solution such that,
F = λ1 and Ḟ = 0. With this consideration, the nonmetricity
becomes,

Q = −2

r

(
1 − b(r)

r

)
1

r
. (11)

Now, the set of field equations (8)–(10) reduce to,

ρ = 1

8π

[
λ1

r2

(
r − b(r)

r
− b′(r)

)
+ f

2

]
, (12)

pr = 1

(8π + λ2)

[
λ1

r2

((
−1 − λ2

8π

)
+

(
2 + λ2

8π

)
b(r)

r

+ λ2

8π
b′(r)

)
−

(
1 + λ2

8π

)
f

2

]
, (13)

pt = 1

(8π + λ2)

[
λ1

r2

((
−1 − λ2

8π

)
+

(
1

2
+ λ2

8π

)
b(r)

r

+
(

1

2
+ λ2

8π

)
b′(r)

)
−

(
1 + λ2

8π

)
f

2

]
. (14)

From Eqs. (12)–(14), the trace of the energy momentum ten-
sor can be obtained as,

T = −ρ + pr + 2pt = 2λ1b′(r)
(λ2 + 8π)r2 . (15)

We have the trace of nonmetricity tensor and energy momen-
tum tensor, so we can substitute this in f ≡ f (Q, T ) =
λ1Q + λ2T in Eqs. (12)–(14) to obtain,

ρ = − λ1b′(r)
(λ2 + 8π)r2 , (16)

pr = λ1b(r)

r3(λ2 + 8π)
, (17)

pt = λ1(−b(r) + rb′(r))
2r3(λ2 + 8π)

. (18)

In classical relativity, the energy conditions are violated in
wormhole geometry, however it may have different behaviour
in the modified theories of gravity e.g. f (Q, T ) gravity. The
Raychaudhuri equation [68–70] describes the energy con-
ditions in terms of time-like and space-like curves [71]. The
energy conditions in terms of radial and tangential pressure
for the traversable wormhole within the f (Q, T ) gravity are
expressed as,

ρ + pr = λ1(b(r) − rb′(r))
r3(8π + λ2)

,

ρ + pt = −λ1(b(r) + rb′(r))
2r3(8π + λ2)

,

ρ − pr = −λ1(b(r) + rb′(r))
r3(8π + λ2)

,

ρ − pt = λ1(b(r) − 3rb′(r))
2r3(8π + λ2)

,

pt − pr = λ1(−3b(r) + rb′(r))
2r3(8π + λ2)

,

ρ + pr + 2pt = 0. (19)

3 Casimir wormholes and GUP correction

In classical GR, though traversable wormhole solutions are
very much possible, but its very existence as well as stabil-
ity depend on the invoked amount of exotic matter content.
Particularly, the NEC of the wormhole matter field should
be violated which requires a negative energy density source
to keep open the mouth of the wormhole for any physical
object to pass through its tunnel. Within the classical regime,
it is not possible to have a negative energy source and there-
fore, classical traversable wormhole may not exist in nature.
However, quantum mechanics provides us some opportunity
to explore certain sources with negative energy density. One
such aspect is the Casimir energy as predicted long back
by Casimir [27] and confirmed through experiments later
on by others [47–51]. The Casimir effect involves the exis-
tence of an attractive force between two parallel, conducting
and uncharged conductors resulting from the distortion of
vacuum of the electromagnetic field. The zero-point energy
of the quantum electrodynamics distorted by the plates has
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some bearing on the negative Casimir energy. In fact, the
quantum field fluctuation leading to a negative energy den-
sity which represents the only source of exotic matter that
can be produced within a laboratory condition [52].

The attractive Casimir force develops between the plates
because of the renormalized negative energy

E(d) = − π2

720

A

d3 , (20)

where A and d respectively denote the plate surface area and
the plate separation distance. It is obvious that the Casimir
energy decreases if the plates are moved closer to each other.

Now the Casimir energy density (Casimir energy per unit
volume ρ = E

V ) may be obtained as

ρ(d) = − π2

720

1

d4 , (21)

and consequently the pressure becomes

p(d) = − π2

240

1

d4 . (22)

Another important aspect in quantum mechanics is the
existence of minimal length scale of the order of Planck

length l p =
√

Gh̄
c3 � 10−35m that limits the resolution

of small distances in the spacetime [53]. Such a minimal
length scale is implied in many quantum gravity theories
[54–63]. It is to be noted here that, the spatial resolution
can not be improved below this characteristic length scale
which obviously demands a corresponding (GUP) in the form
	x	p ≥ 1

2

[
1 + β (	p)2], where β represents the parame-

ter of the GUP correction. In fact, the minimal length concept
in quantum mechanics with the GUP depends upon the max-
imally localized quantum states. In momentum representa-
tion, the maximally localized states are given by

ψML = 1

(2π)3/2 �(p) exp−i[k.r−w(p)t], (23)

which satisfies the equation

[
x̂ − 〈x〉 + 〈[x̂, x̂]〉

2(	p)2( p̂ − 〈p〉)
]

|ψ〉 = 0. (24)

The commutation relation after incorporating the correction
due to the minimal length concept can be generalised to n
dimension as [65]

[
x̂i , p̂ j

] = i
[
f ( p̂2)δi j + g( p̂2) p̂i p̂ j

]
, (25)

where, i, j = 1, ......., n, and f ( p̂2) and g( p̂2) are the
generic functions.

From translational and rotational invariance of the gener-
alized uncertainty principle, one may get the generic func-
tions. Use of different generating functions leads to different
construction of the maximally localized quantum states. In
this work, we would like to focus upon two such construc-
tions of the maximally localized quantum states by two dif-
ferent groups of scientists, viz. Kempf, Mangano and Mann
(KMM) [62] and Detournay, Gabriel and Spindel (DGS)
[64]. Through a detailed calculation of the Hamiltonian and
the corrections to the Casimir energy due to the minimal
length driven GUP keeping upto first order in β, Frassino
and Panella [65] obtained the Casimir energy density as

ρi (a) = − π2

720

1

d4

[
1 + ξi

β

d2

]
, (26)

where

ξKMM = π2

(
28 + 3

√
10

14

)
, (27)

ξDGS = 4π2
(

3 + π2

21

)
. (28)

One should note that, ξKMM
ξDGS

= 1.0923 and therefore
the contribution coming from the GUP correction term may
decrease by a factor of 1.0923 for the DGS construction [64]
as compared to that of KMM construction [62].

We may now replace the plate separation distance d by
the radial coordinate r and integrate the field equations in the
extended symmetric teleparallel gravity to obtain the shape
function for the GUP corrected Casimir wormhole as

b(r, β) = r0 − k

(
1

r
− 1

r0

)
− kξiβ

3

(
1

r3 − 1

r3
0

)
, (29)

where k = π2

720

(
λ2+8π

λ1

)
. It is obvious that the above shape

function reduces to the wormhole throat for r = r0. The first
derivative of the shape function is

b′(r, β) = k

r2

(
1 + ξiβ

r2

)
, (30)

which becomes

b′(r0, β) = k

r2
0

(
1 + ξiβ

r2
0

)
, (31)

at the wormhole throat. The geometry modification of the
gravity theory affects the wormhole geometry through the
quantity k and appear in the second and third terms of the
expression of the shape function. However, the GUP correc-
tion appears only in the third term of the shape function. In
the absence of the GUP correction, the shape function will
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Fig. 1 The graphical bahaviour of the shape function and its derivatives for the GUP corrected Casimir wormhole (a) with KMM construction
and (b) with DGS construction for β = 0.05. We have considered the model parameters as λ1 = −4.4 and λ2 = 0.01

reduce to the usual case of Casimir wormhole

b(r) = r0 − k

(
1

r
− 1

r0

)
. (32)

In Fig. 1, we show the shape function of the GUP cor-
rected Casimir wormhole and other related functions such
as b′(r, β), b/r and 1 − b/r as functions of the reduced
radial distance r/r0. For the sake of convenience, we con-
sider the wormhole throat radius to be r0 = 1. The parameter
space used in the present work is β = 0.05, λ1 = −4.4 and
λ2 = 0.01. In order to draw a comparison between different
choices of the construction of the maximally localized quan-
tum states, we have considered two specific choices denoted
as KMM and DGS constructions. The shape function for the
Casimir wormhole as obtained for these two constructions
are shown in Fig. 1. In both the cases, the only difference is
the value of the parameter ξi which is greater for the KMM
construction and therefore, the value of the shape function for
KMM construction is slightly higher as compared to that of
the DGS construction. In both the cases, the shape function
satisfies the flare out condition and reduces to r0 at the worm-
hole throat. In order to assess the role of the GUP parameter
on the shape function and the wormhole geometry, we have
shown the Casimir wormhole shape function for different
values of the GUP parameter β namely β = 0, 0.05 and
0.1 in Fig. 2. The curve corresponding to β = 0 represents
the Casimir wormhole without GUP correction taken into
account. It is obvious that, the GUP parameter has an exem-
plified effect outside the wormhole throat. With an increase
in β, the shape function is found to increase substantially.
However, within the wormhole throat, the GUP parameter
has a role to decrease the value of the shape function at a
given radial distance.

The radial and tangential pressures for the GUP corrected
Casimir wormhole are obtained respectively as

pr (r, β) = λ1

λ2 + 8π

1

r3

[
r0 − k

(
1

r
− 1

r0

)

−kξiβ

3

(
1

r3 − 1

r3
0

)]
, (33)

pt (r, β) = − λ1

λ2 + 8π

1

r3

[
r0

2
− k

(
1

r
− 1

2r0

)

+kξiβ

3

(
1

2r3
0

− 2

r3

)]
. (34)

One should note that, the Casimir effect is visible in the
second and third terms of the respective expressions of the
radial pressure and tangential pressure. However, the GUP
correction appears only in the respective third terms. From
the expressions of the radial and tangential pressures, we
may define the radial and tangential equation of state (EoS)
parameters, respectively, as

ωr (r, β) = pr (r, β)

ρ

= −3r4
0r

3−3kr3
0r

2+3kr3r2
0 −kξiβr3

0+kξiβr3

3kr3
0 (r2+ξiβ)

,

(35)

ωt (r, β) = pt (r, β)

ρ

= 3r4
0r

3+3kr3r2
0 −6kr3

0r
2−4kr3

0 ξiβ+kr3ξiβ

6kr3
0 (r2+ξiβ)

,

(36)

where ρ = − π2

720
1
r4

[
1 + ξiβ

r2

]
.
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Fig. 2 The graphical bahaviour of shape function for the GUP corrected Casimir wormhole (a) with KMM construction and (b) with DGS
construction for different values of β. We have considered the model parameters as λ1 = −4.4 and λ2 = 0.01

The anisotropy in the pressure of the exotic matter of the
wormhole becomes

	 ω(r, β) = ωt (r, β)

ωr (r, β)

= 6kr3
0r

2−3r4
0r

3−3kr3r2
0 −kr3ξiβ+4kr3

0 ξiβ

2(3r3r4
0 −3kr3

0r
2+3kr3r2

0 −kr3
0 ξiβ+kr3ξiβ)

.

(37)

We may also define the pressure anisotropy through

	p = pt − pr = λ1

λ2 + 8π

1

r3

[
− 3r0

2
+ k

(
2

r
− 3

2r0

)

+kξiβ

3

(
1

r3 − 1

2r3
0

)]
. (38)

It is interesting to note that, the GUP modification to the
Casimir energy affects the wormhole pressure both in the
radial and tangential directions. At the wormhole throat, the
magnitude of anisotropy in the pressure remains the same
as that without modification. Beyond the wormhole radius,
the anisotropy factor decreases with the increase in β. How-
ever, for a radial distance less than the throat 	ω(r, β)

increases with β. In comparison to the usual Casimir worm-
holes, the behaviour of 	ω(r, β) is quite different at a
radial distance r < r0. At the wormhole throat, the pres-
sure anisotropy parameter becomes independent of the GUP
correction parameter β.

In Fig. 3 the pressure anisotropy as defined through the
radial and tangential EoS parameter are shown for different
values of the GUP parameter. In the left panel of the figure, we
plot for the KMM construction and in the right panel that for
the DGS construction. As we have already stated, the KMM
and DGS constructions provide similar results but differ only

in numerical values of 	ω(r, β). One should note that, the
GUP parameter affects the 	ω(r, β) only near the worm-
hole throat. Away from the throat, the pressure anisotropy
almost vanishes and therefore, the GUP parameter has least
affect upon it. In Fig. 4, the plot of 	P(r, β) for both the
constructions are shown. In general, the pressure anisotropy
in the exotic fluid content of the Casimir wormhole increases
upto a radial distance twice the throat radius and after it sub-
sides and vanishes at far distance from the throat. The GUP
parameter greatly exemplifies the pressure anisotrpy within
r � 2r0. However, the influence of β decreases as we move
away from the throat.

The behaviour of 	ω(r, β) altogether changes near the
wormhole throat, i.e., around r � r0. At this radial distance,
	ω(r, β) suddenly changes its sign. In order to understand
this behaviour, we have plotted the radial and tangential pres-
sures for both the constructions for a given β in Fig. 5. One
may observe that, the radial pressure decreases from a posi-
tive value to attain a negative minimum and then rises with
the radial distance to vanish at large distnaces. On the other
hand, the tangential pressure increases from a negative value
to attain a maximum in the positive domain and then decrease
to null values. During these evolution, near the wormhole
throat, the radial and tangential pressures both become neg-
ative so that there occurs a sudden change in sign in the
behaviour of 	ω(r, β).

4 Energy conditions and exotic matter content

In general, due to the presence of exotic matter in wormholes,
some energy conditions are violated. Particularly the NEC
defined as tμνkμkν ≥ 0 or ρ(r, β)+ pr (r, β) ≥ 0 is violated.
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In this section, we intend to check whether the GUP corrected
Casimir wormholes in the f (Q, T ) gravity theory satisfy the
energy conditions. The NEC for the GUP corrected Casimir
wormholes can be assessed from the expression of NEC

NEC:

ρ(r, β) + pr (r, β)

= λ1

λ2 + 8π

[
−2k

r4 + r0

r3 + k

r0r3 − 4kξiβ

3r6 + kξiβ

3r3r3
0

]
.

(39)

In the above, the GUP correction term is proportional to
the minimal uncertainty parameter β. For a radial distance
r < r0, obviously the right hand side of the above equation is

a negative quantity and therefore the NEC is violated. With
an increase in β, the contribution becomes more and more
negative. In the limit β → 0, the above equation reduces to
that of a Casimir wormhole:

ρ(r) + pr (r) = λ1

λ2 + 8π

[−2k

r4 + r0

r3 + k

r0r3

]
. (40)

At the throat, the NEC reduces to

ρ(r0, β)+ pr (r0, β) = λ1

λ2 + 8π

[
1

r2
0

(
1 − k

r2
0

− kξiβ

r4
0

)]
.

(41)
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Since, the right side of the above equation is a negative quan-
tity, it is obvious that, the NEC is violated by the GUP cor-
rected Casimir wormhole at the throat.

The strong energy condition (SEC) is given by ρ(r, β) +
2pt (r, β) ≥ 0. Another way to express the SEC is ρ(r, β) +
pr (r, β) + 2pt (r, β) ≥ 0. For this statement, we have

ρ(r, β) + pr (r, β) + 2pt (r, β) = 0 (42)

and other energy conditions are

ρ(r) − pr (r) = λ1

λ2 + 8π

[
−r0

r3 − k

r0r3 − 2kξiβ

3r6

− kξiβ

3r3r3
0

]
, (43)

ρ(r0) − pr (r0) = λ1

λ2 + 8π

[
−1

r2
0

− k

r4
0

− kξiβ

r6
0

]
, (44)

ρ(r) + pt (r) = λ1

λ2 + 8π

[
−r0

2r3 − k

2r0r3 − kξiβ

3r6

− kξiβ

6r3r3
0

]
, (45)

ρ(r0) + pt (r0) = λ1

λ2 + 8π

[
−1

2r2
0

− k

2r4
0

− kξiβ

2r6
0

]
, (46)

ρ(r) − pt (r) = λ1

λ2 + 8π

[
r0

2r3 − 2k

r4 + k

2r0r3

−5kξiβ

3r6 − kξiβ

6r3r3
0

]
, (47)

ρ(r0) − pt (r0) = λ1

λ2 + 8π

[
1

2r2
0

− 3k

2r4
0

− 11kξiβ

6r6
0

]
.

(48)

The energy conditions along with the effect of the GUP
correction in Casimir wormholes are shown in Fig. 6. While
the NEC1, i.e, ρ(r, β) + pr (r, β) ≥ 0 is violated beyond the
wormhole throat, the NEC2, i.e, ρ(r, β) + pt (r, β) ≥ 0 is
violated within and around the wormhole

Traversable wormholes with exotic matter content vio-
late the average null energy condition (ANEC) [4,66]. Since
quantum effects induce some energy condition violation [67],
it is pertinent to think of how much ANEC violating matter
is present in the spacetime. Visser et al. [72] have proposed a
volume integral theorem that quantifies the amount of ANEC
violating matter present in the spacetime.
Using the integral theorem of Visser et al. [1] we calculate
the exotic matter content of the GUP corrected wormholes
violating the ANEC as

m =
∫

(ρ(r) + pr (r)) dV . (49)

Since
∮
dV = 2

∫ ∞
r0

dV = 8π
∫ ∞
r0

r2dr , we should evaluate
the integral

m = 8π

∫ R

r0

(ρ(r) + pr (r)) r
2dr

= 8π

∫ R

r0

λ1

λ2 + 8π

[
r0

r3 + k

r0r3 − 2k

r4

−4kξiβ

3r6 + kξiβ

3r3r3
0

]
r2dr

= 8πλ1

λ2 + 8π

[(
r0 + k

r0
+ kξiβ

3r3
0

)
ln

R

r0
+ 2k

(
1

R
− 1

r0

)

+4

9
kξiβ

(
1

R3 − 1

r3
0

)]
. (50)

One should note that, if R = r0, m = 0, i.e no exotic matter
is required. However if R = r0 + δ, where δ � 1 being a
small quantity, we have

ln

(
R

r0

)
= ln

(
1 + δ

r0

)
, (51)

1

R
− 1

r0
= 1

r0

(
1

1 + δ
r0

− 1

)
, (52)

(
1

R3 − 1

r3
0

)
= 1

r3
0

⎡
⎢⎣ 1(

1 + δ
r0

)3 − 1

⎤
⎥⎦ , (53)
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so that the exotic matter content of the GUP corrected Casimir
wormhole becomes

m = 8πλ1

λ2 + 8π

×
[(

r0 + k

r0
+ kξiβ

3r3
0

)
ln

(
1 + δ

r0

)

+2k

r0

(
1

1 + δ/r0
− 1

)]
+ 8πλ1

λ2 + 8π

×
[

4

9
kξiβ

1

r3
0

(
1

(1 + δ/r0)3 − 1

)]
. (54)

For δ
r0

<< 1, we get

m = −32π

3

(
λ1

λ2 + 8π

) [
kξiβ

δ

r4
0

]
. (55)

In Fig. 7, the exotic matter content of the GUP corrected
Casimir wormholes is shown for the two constructions of the
maximally localized quantum states. In other words, a small
amount of exotic matter is required to support a traversable
wormhole in a region close to the throat. In fact, the total
amount of ANEC violating matter can be reduced by con-
sidering suitable wormhole geometry. The GUP parameter
substantially affects the exotic mass content of the Casimir
wormhole. While almost no exotic matter is required for
Casimir wormhole with no GUP correction, the exotic matter
increases with an increase in β.

5 Discussion and conclusion

In this paper, the role of GUP correction in Casimir wormhole
has been presented under the framework of the extended sym-

123



  325 Page 10 of 12 Eur. Phys. J. C           (2024) 84:325 

0.0 0.1 0.2 0.3 0.4
-20

0

20

40

60

80

100
m

δ

β = 0
β = 0.05
β = 0.1

KMM

0.0 0.1 0.2 0.3 0.4
-20

0

20

40

60

80

100

m

δ

β = 0
β = 0.05
β = 0.1

DGS

Fig. 7 Exotic matter content of the GUP corrected Casimir wormhole. Left panel for the KMM construction and the right panel for the DGS
construction

metric teleparallel gravity, the f (Q, T ) gravity. This modi-
fied gravity theory is quite successful in explaining the late
time acceleration phenomenon and other issues in cosmol-
ogy. Assuming the function f (Q, T ) = λ1Q + λ2T , we
have obtained the solution of the modified field equation
and discussed the traversable wormhole geometry through
the calculation of the shape function. In general, the stability
issue of traversable wormhole concerning the violation of the
NEC requires the wormhole matter content to have negative
energy density. The negative energy density enables it to open
up its mouth so as to make the passage of the physical object
to pass through the tunnel. Since such exotic matter with
negative energy density is not possible classically, a stable as
well as traversable wormhole was possibly unavailalbe. How-
ever, quantum mechanical concepts such as the Casimir effect
involving the fluctuation of the quantum field near a pair of
uncharged, conducting parallel plates provides a hope for
realizable matter source with negative energy density. This
may well serve as the source for traversable wormholes. In
the present work, we explore the possibility of such Casimir
energy density to model traversable wormholes within the
set up of the f (Q, T ) gravity.

Another important aspect in quantum mechanics, mostly
occurring in supergravity theories and string theories is the
concept of the minimal length scale of the order of Planck
length leading to the generalization of the usual uncertainty
principle. We have applied this GUP correction to the Casimir
wormhole and assess its impact upon the different geomet-
rical and physical properties of the traversable wormhole.
In the present work, we restrict ourselves to two different
construction techniques of the maximally localized quantum
states such as the KMM [62] and DGS [64] constructions.
The GUP correction has an exemplified effect on the worm-
hole shape function outside the wormhole throat in the sense

that, with an increase in β, the shape function is found to
increase substantially. The radial and tangential pressures of
the Casimir wormhole are also affected by the GUP correc-
tion. The pressure anisotropy 	p decreases with the increase
in β. It is interesting to note that, the GUP correction affects
the pressure anisotropy only near the wormhole throat while
away from the throat, the pressure anisotropy almost van-
ishes.

The GUP correction to the Casimir wormholes also affects
the energy conditions. The NEC are obtained to be vio-
lated beyond the wormhole throat and the violation is more
strengthened with GUP correction.

We have also calculated the exotic matter content of the
GUP corrected Casimir wormholes. Almost no exotic mass
is required to support the traversable wormhole with no GUP
correction, a little amount is required with GUP correction.

The possible construction of traversable wormholes
exploring the Casimir energy within the purview of modified
gravity theories have been discussed in literature [13,24–
26,32–38]. Tripathy [13] has considered the construction of
Casimir wormholes within f (R, T ) gravity theory where it
has been shown that, the wormhole geometry specifically
depends on the choice of the model parameters as well as
that of the GUP correction parameter. Within the set up of
GR, Garattini [26] has examined the consequence of quan-
tum weak energy condition on the static traversable Casimir
wormholes. In the weak field limit, Javed et al. [32] obtained
the weak deflection angle of light from Casimir wormhole.
Zubair and Farooq [34] have analysed the effect of GUP cor-
rection on traversable Casimir wormholes within five dimen-
sional Einstein Gauss–Bonnet gravity theory. de Oliviera et
al. [73] considered Yukawa type corrections to the wormhole
shape function and shown that for some Yukawa parame-
ter it is possible to obtain repulsive gravitational wormhole.
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In another work, Garattini has studied the effect of electric
charge on the throat of the Casimir wormholes [74]. Alencar
et al. have shown that in 2 + 1 dimensions, the Casimir energy
density and pressure can not provide a sustainable structure
for traversable wormholes [75]. Therefore, in the reduced
dimesion we may have Casimir wormholes [75]. However,
traversable Casimir wormholes are possible in higher dimen-
sional spacetimes with D > 3 [76]. Santos et al. in a recent
work studied a three dimensional Casimir wormhole sourced
by Casimir energy density and pressures related to the quan-
tum vacuum fluctuations in Yang–Mills (Y–M) theory [77].
In the present work, within the extended symmetric telepar-
allel gravity theory with the inclusion of GUP correction,
we have shown that, the GUP correction affects modified the
wormhole geometry substantially and affects the pressure
anisotropy near the throat.

In a nutshell, one can notice that, (i) the GUP correction
to the Casimir wormholes substantially alters the wormhole
geometry and modifies the energy conditions, and (ii) GUP
corrected Casimir wormholes require little exotic matter for
their stability.
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