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Abstract We study linear-perturbation equations for the
two-body system of a charged dilaton black hole, of which
dilaton coupling constant is α, and a static particle with mass
m, electric charge q, and dilatonic charge βm. We find that
a consistent condition for the coupled equations corresponds
to the equilibrium condition of the test particle. The expres-
sions of classical fields are given in closed analytical formu-
las in the most interesting case with β = α. We examine
the electrical field around a charged dilaton black hole espe-
cially in the limit of the maximum electric charge and we
find the electric Meissner effect which has been found for
the Reissner–Nordström black hole in the Einstein–Maxwell
system.

1 Introduction

The electric field created by a point source around a fixed
black hole background has been widely discussed by many
authors (see for example [1–6] and references therein). In
addition, perturbative analyses incorporating back reactions
have already been carried out for the system consisting of a
static particle in the vicinity of a Reissner–Nordström black
hole of which analytical solutions are well known [7–10]. In
this case, the electrical repulsive force attains the equilibrium
configuration of the black hole and the point charge.

In the low-energy limit of string theory and supergravity
theories, which are candidates for a unified theory including
gravity, a massless scalar field called a dilaton field appears.
It is also known that the dilaton field is non-minimally cou-
pled to the Maxwell field with an exponential coupling.
On the other hand, dilaton fields also appear in the con-
text of Kaluza–Klein theories. The dilaton mediates scalar
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long-range forces, like gravity and electric forces. Thus, the
Einstein–Maxwell-dilaton theory is an interesting and sim-
ple theoretical arena for exploring modified gravities which
involve scalar and vector fields, while black holes are very
important objects in terms of strong gravity.

In this paper, we approach the case of a static particle
of mass m, charge q and dilaton charge βm, in the field of a
static, spherically symmetric charged dilaton black hole [11–
14] in the Einstein–Maxwell-dilaton system with the dilaton
coupling constant α. We derive linear-perturbation equations
for the metric field, electric field and dilaton field from field
equations of the system, and obtain them up to first-order
contributions such as mass and charges of a particle in the
present paper. In this case, the attractive forces by the dila-
tonic and gravitational forces cancel the repulsive forces by
the electric field in the two-body system.

The particle is assumed to be at rest at the point x = b. The
non-vanishing component of the energy-momentum tensor,
the electric current density, and the dilaton charge of the
particle are given by 1

T p
00 ∝ mδ3(x − b), J 0

p ∝ qδ3(x − b)

� p ∝ βmδ3(x − b), (1.1)

and the other components are zero. These will be put into
the Einstein equations, the electromagnetic field equations,
and the dilaton equations all combined. As an important
preceding study, the electric field surrounding a Reissner–
Nordström black hole was investigated by Bini, Geralico
and Ruffini [7–10] for a point charge at rest. We follow their
method and proceed our analysis on the charged dilaton black
hole.

The structure of the present paper is as follows. In the
next section, the exact solution for a spherical charged dila-

1 Exact expressions are provided later in Sect. 3.
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ton black hole in the Einstein–Maxwell-dilaton gravity is
reviewed. We consider linear perturbative fields about the
charged dilaton black hole solution and derive the differential
equations for them in Sect. 3. We also clarify the consistency
condition for the particle at rest in this section. Section 4
is devoted to the simple but interesting case with β = α,
and we give a closed form of perturbed fields in this case.
In Sect. 5, the electric and dilaton fields are explored for the
β = α case. The electric Meissner effect [7–10] can be found
in the limit of the maximally-charged black hole. We com-
pare the case of the maximally-charged dilaton black hole
with the well-known exact multi-black hole solution in the
Einstein–Maxwell-dilaton system in Sect. 6, and we confirm
the coincidence of them up to the linear order of the small
mass of the particle. We analytically study the system of the
maximally-charged dilaton black hole and the particle for
β �= α in Sect. 7. We summarize our results in Sect. 8.

We use the metric convention (− + ++) and adopt G =
c = 1 units (where G is the Newton constant and c is the
light speed) throughout the present paper.

2 The electrically charged dilaton black hole

In this section, we give a brief introduction to the charged
dilaton black hole in 1 + 3 dimensions. We consider theories
including coupled gravitational, electromagnetic, and dilaton
fields with the action:

S =
∫

d4x

√−g

16π

[
R − 2(∇�)2 − e−2α�F2

]
, (2.1)

where R is the scalar curvature, � is a real scalar field (the
dilaton) and (∇�)2 ≡ gμν∇μ�∇ν�, while the electromag-
netic field strength is defined by Fμν = ∂μAν − ∂ν Aμ with
the U (1) gauge field Aμ, and F2 ≡ FμνFμν . The constant
α represents the dilaton coupling. When α = 0, the action
reduces to a usual Einstein–Maxwell action.

The field equations derived from the action (2.1) without
external sources are

∇ν(e
−2α�Fμν) = 0, (2.2)

∇2� + α

2
e−2α�F2 = 0, (2.3)

Gμν ≡ Rμν − 1

2
Rgμν = 8πT�

μν + 8πT F
μν, (2.4)

where

8πT F
μν = e−2α�

[
2FμλFν

λ − 1

2
F2gμν

]
, (2.5)

8πT�
μν = 2∇μ�∇ν� − (∇�)2gμν. (2.6)

A static spherically symmetric solution of the equations
represents an electrically charged dilaton black hole with the
line element [11–14]

ds2=− f (r)dt2 + 1

f (r)
dr2 + r2σ 2(r)(dθ2 + sin2 θdϕ2),

(2.7)

where

f (r) =
(

1 − r+
r

) (
1 − r−

r

) 1−α2

1+α2
and

σ(r) =
(

1 − r−
r

) α2

1+α2
. (2.8)

For later convenience, we define a function of r ,

�(r) ≡
(

1 − r+
r

) (
1 − r−

r

)
, (2.9)

and then, f (r) can also be written as

f (r) = �(r)σ−2(r). (2.10)

The solution for the electric and dilaton fields are given
by

F01 = − Q

r2 and � = �0(r)

≡ α

1 + α2 ln
(

1 − r−
r

)
= 1

α
ln σ(r), (2.11)

that is,

e2α�0(r) = σ 2(r). (2.12)

The mass and electric charge of the black hole are given
by the formulas: [11–14]

M = 1

2

(
r+ + 1 − α2

1 + α2 r−
)

and Q =
√

r+r−
1 + α2 , (2.13)

where we assume Q > 0 without loss of generality. Espe-
cially, the relation (1+α2)Q2 = r+r− will be used frequently
later.

In the above equations, r+ and r− are called the radii of the
outer and inner horizons [13]. Strictly speaking, r = r− does
not describe a horizon, since the dilaton field diverges here.
Thus, the limit of r− = r+ does not yield an extreme ‘black
hole’, but a singularity. We can, however, deal with such a
limit similarly to the point-mass limit of compact objects. In
the limit of r− = r+, dubbed as the limit of the maximally-
charged black hole in other words, the mass and charge take
the values

M = r+
1 + α2 and Q = r+√

1 + α2
(r− = r+), (2.14)

and we find that r+ > r− means Q/M <
√

1 + α2.

3 Equations with field perturbations

Now, we consider a point mass on the z-axis (θ = 0), i.e.,

T p
00 ∝ mδ(cos θ−1)δ(r−b), J 0

p ∝ qδ(cos θ − 1)δ(r − b),
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� p ∝ βmδ(cos θ − 1)δ(r − b), (3.1)

in the field of the charged dilatonic black hole discussed in
the previous section.

Applying an appropriate gauge [8,15,16], we write down
the perturbed metric as

ds2 = −[1 −
∑

l
H0(r)Y (θ)] f (r)dt2

+2
∑

l
H1(r)Y (θ)dtdr

+[1 +
∑

l
H2(r)Y (θ)] f (r)−1dr2

+[1 +
∑

l
K (r)Y (θ)]r2σ 2(r)(dθ2 + sin2 θdϕ2),

(3.2)

where Y (θ) ≡ Yl0(θ). Here Ylm(θ, ϕ) is the spherical har-
monic function. Note that

Yl0(θ) =
√

2l + 1

4π
Pl(cos θ), (3.3)

where Pl(x) is the Legendre polynomial. The labels l is sup-
pressed for variables (such as

∑
l H0lYl0 → ∑

l H0Y ), as the
traditional convention [8,15].

Additionally, we assume that the electromagnetic field
takes the form

F = 1

2
Fμνdx

μ ∧ dxν=
(

− Q

r2 +
∑

l
f01(r)Y (θ)

)
dt ∧ dr

+
∑

l
f02(r)Y

′(θ)dt ∧ dθ,

(3.4)

where Y ′(θ) ≡ ∂θY (θ). Then, the integrability condition
dF = 0 leads to

f01 − f ′
02 = 0, (3.5)

where f ′
02 denotes ∂r f02 (and so on). Besides, we define

4π Jμ ≡ ∇ν(e
−2α�Fμν), (3.6)

for later use. With the ansatze so far, one finds that J 1 =
J 2 = J 3 = 0 holds identically.

In the same way, the dilaton field is assumed to be

� = �0(r) +
∑

l
φ(r)Y (θ). (3.7)

The Einstein equation with the point source is rewritten
as

Gμν − 8πT F
μν − 8πT�

μν ≡ Gμν = 8πT p
μν, (3.8)

where T F
μν and T�

μν are (2.5) and (2.6) where the perturbed
fields (3.2), (3.4), and (3.7) are used. One finds that the equal-
ities G03 = G13 = G23 = 0 hold identically if the perturbed
fields (3.2), (3.4), and (3.7) are adopted.

Since T p
01 = T p

02 = 0, the components of the Einstein
equation G01 and G02 should vanish. These equations yields

H1(r) = 0, just as in the case with a Reissner–Nordström
black hole [8].

We now proceed to calculate the other components ofGμν .
First, we obtain

G22 = 1

2

∑
l

[
(r − r+)(r − r−)

(
K ′′(r) − H ′′

0 (r)

− f ′(r)
f (r)

H ′
0(r) + 4�′

0(r)φ
′(r)

)

+(2r − r+ − r−)

(
K ′(r) − H ′

0(r) + H ′
2(r)

2

)

+l(l + 1)(H0(r) − H2(r))−2Q2

r2 (H0(r)−2αφ(r))

+4Q f01(r)]Y (θ) + 1

2

∑
l
(H0(r) − H2(r))Y

′′(θ),

(3.9)

where

f ′(r)
f (r)

= [(1 + α2)r+ + (1 − α2)r−]r − 2r+r−
(1 + α2)r(r − r+)(r − r−)

and

�′
0(r) = α

1 + α2

r−
r(r − r−)

. (3.10)

For l ≥ 2, the Einstein equation G22 = 0 leads to H0(r) =
H2(r) ≡ W (r). Although the cases with l = 0, 1 should be
considered separately [8], we take H0 = H2 = W as an
ansatz. Now, the equation (3.9) reads

(r − r+)(r − r−)

(
K ′′ − W ′′ − f ′

f
W ′ + 4�′

0φ
′
)

+(2r − r+ − r−)
(
K ′ − W ′)

−2Q2

r2 (W − 2αφ) + 4Q f01 = 0. (3.11)

On the other hand, from the equation G11 = 0, one obtains

f01 = 1

4Q

[
(2r − r+ − r−)(K ′ − W ′) + (r − r+)(r − r−)

×
(

f ′

f
W ′ − 4�′

0φ
′
)

− [l(l + 1) − 2](K − W )

+2Q2

r2 (W − 2αφ)
]
. (3.12)

Substitute (3.12) into (3.11), we obtain

(r − r+)(r − r−)(K − W )′′ + 2(2r − r+ − r−)(K − W )′

−[l(l + 1) − 2](K − W ) = 0. (3.13)

Note that this equation does not include the modes of the
dilaton field φ. From the equation G12 = 0, one obtains

f02 = −r2�(r)

4Q

[
K ′ − W ′ − f ′

f
W + 4�′

0φ

]
. (3.14)

Substituting (3.12) and (3.14) into the integrability equation
(3.5), we obtain the same equation (3.13).
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The only regular solution in the region [r+,∞] for (r −
r+)(r −r−)X ′′ +2(2r −r+ −r−)X ′ −[l(l+1)−2]X = 0 is
X (r) ≡ 0 [8], so we should take K (r) = W (r). At this stage,
the linear-perturbation modes of the electric field strength are
expressed by

f01 = 1

4Q

[
r2�(r)

(
f ′

f
W ′−4�′

0φ
′
)

+2Q2

r2 (W−2αφ)

]
,

(3.15)

f02 = r2�(r)

4Q

[
f ′

f
W−4�′

0φ

]
, (3.16)

which will be used later. Note that the condition (3.5) can
be confirmed by use of (3.15) and (3.16), without using the
equation of motion for W and φ.

Now, setting K = W , we find that G00 with (3.12) takes
the form

G00 = − f 2(r)
∑

l

[
W ′′(r) + 2

r
W ′(r)

− l(l+1)

r2�(r)
W (r)+2�′

0(r)(αW
′(r)+2φ′(r))

]
Y (θ),

(3.17)

while 4π J 0 (3.6) can be written, with all the information
thus far, as

4π J 0 = −r2 f (r)

4Q

∑
l

[
f ′(r)
f (r)

(
W ′′(r) + 2

r
W ′(r)4

− l(l + 1)

r2�(r)
W (r)

)

−4�′
0(r)

(
φ′′(r)+2

r
φ′(r)− l(l+1)

r2�(r)
φ(r)

)]
Y (θ).

(3.18)

In addition, the following quantity including the second-
order derivative of the dilaton field becomes

4π� ≡ ∇2� + α

2
e−2α�F2

= f (r)
∑

l

[
φ′′(r) + 2

r
φ′(r)

− l(l + 1)

r2�(r)
φ(r) + f ′(r)

2 f (r)
(αW ′(r) + 2φ′(r))

]
Y (θ).

(3.19)

Now, leaving them aside, let us fix the rigorous form of
the point source. The action of a particle coupled to dilaton
is given by [17]

Sp = −
∫ [

meβ� + q Aμ

dxμ

dτ

]
dτ. (3.20)

Presuming the action, we decipher the form of the sources of
gravitational, electrical, and dilaton fields as

Tμν
p = m√−g

∫
eβ�(x)δ4(x − z(τ ))UμU νdτ, (3.21)

J 0
p = q√−g

∫
δ4(x − z(τ ))Uμdτ, (3.22)

� p = βm√−g

∫
eβ�(x)δ4(x − z(τ ))dτ, (3.23)

where Uμ ≡ dzμ
dτ

and the normalization of the delta function
is defined by

∫
δ4(x)d4x = 1. Further, for the static point

located at r = b on the z-axis (θ = 0) in the background of
the charged dilaton black hole, we find 2

T p
00 = meβ�0(b)

2πb2σ 2(b)
f (b)3/2δ(r − b)δ(cos θ − 1), (3.24)

J 0
p = q

2πb2σ 2(b)
δ(r − b)δ(cos θ − 1), (3.25)

� p = βmeβ�0(b)

2πb2σ 2(b)
f (b)1/2δ(r − b)δ(cos θ − 1), (3.26)

since U 0 = 1√
f

and dτ = √
f dt , in this case [8].

For now, the remaining equations are

G00 = 8πT p
00, 4π J 0 = 4π J 0

p , 4π� = 4π� p. (3.27)

We now have three coupled equations for two functions W
and φ to be solved. The compatibility of the system of equa-
tions requires

meβ�0(b)
(

f ′(b)
f (b)

+ 2β�′
0

)
= 2qQ

b2
√

f (b)
. (3.28)

This relation is the same as the static condition of a test
particle in the background of a charged dilaton black hole
[17]. Namely, the equation V ′

e f f (b) = 0, where

Vef f (r) = qQ

r
+ m

√
f (r)eβ�0(r), (3.29)

is the effective potential for the particle (with vanishing angu-
lar momentum [17]).3

4 The case with β = α

The differential equations (3.27) are clearly simplified if
φ(r) = −α

2 W (r). Then, the equations become

8πT p
00 = − f 2(r)

∑
l

[
W ′′(r) + 2

r
W ′(r) − l(l + 1)

r2�(r)
W (r)

]
Y (θ),

(4.1)

4π J 0
p = −r2 f (r)

4Q

�′(r)
�(r)

2 Note that, since the particle is located at θ = 0, the factor 2π appears
instead of δ(ϕ − ϕ0).
3 At large distance, Vef f (r) = qQ−mM−�p(∞)�bh (∞)

r +O(r−2), where
�p(∞) = βm and �bh(∞) = αr−

1+α2 (see Sect. 5).
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∑
l

[
W ′′(r) + 2

r
W ′(r) − l(l + 1)

r2�(r)
W (r)

]
Y (θ),

(4.2)

4π� p = −α

2
f (r)

∑
l

[
W ′′(r) + 2

r
W ′(r) − l(l + 1)

r2�(r)
W (r)

]
Y (θ),

(4.3)

and then, the equations are compatible if and only if

β = α and m
�′(b)

2
√

�(b)
= qQ

b2 . (4.4)

This stability condition reads

q

m
√

1 + α2
= b2�′(b)

2
√
r+r−�(b)

. (4.5)

Since (b2�′(b))2 − (2
√
r+r−�(b))2 = (r+ − r−)2 ≥ 0,

the charge-to-mass ratio must satisfy the condition q/m ≥√
1 + α2. Especially, the equality q/m = √

1 + α2 is
achieved if and only if the black hole is maximally charged
(that is, Q/M = √

1 + α2), and the equilibrium realizes for
any value of b then.

In this case, the sources are written as

T p
00 = m

2πb2σ(b)
f (b)3/2δ(r − b)δ(cos θ − 1), (4.6)

J 0
p = q

2πb2σ 2(b)
δ(r − b)δ(cos θ − 1), (4.7)

� p = αm

2πb2σ(b)
f (b)1/2δ(r − b)δ(cos θ − 1), (4.8)

and we obtain the following single partial differential equa-
tion:[

∂2
r + 2

r
∂r + 1

r2�(r)

(
∂2
θ + cot θ∂θ

)]
W(r, θ)

= − m

2πb2
√

�(b)
δ(r − b)δ(cos θ − 1), (4.9)

where W(r, θ) = ∑
lW (r)Y (θ).

As can be seen from the form of the equation, the regular
solution of this equation [1] is exactly the same as for the
Reissner–Nordström black hole [7–10], if it is expressed in
terms of two radii r+ and r−. That is,

W(r, θ) = 2m

b
√

�(b)

1

rD

[ (
r − r+ + r−

2

) (
b − r+ + r−

2

)

−
(
r+ − r−

2

)2

cos θ

]

= 4Qq

b3�′(b)
1

rD

[ (
r − r+ + r−

2

) (
b − r+ + r−

2

)

−
(
r+ − r−

2

)2

cos θ

]
, (4.10)

where

D(r, θ) =
[(

r − r+ + r−
2

)2

+
(
b − r+ + r−

2

)2

−2

(
r − r+ + r−

2

)(
b − r+ + r−

2

)
cos θ

−
(
r+ − r−

2

)2

sin2 θ

]1/2

. (4.11)

Note that the relation

∂θD = sin θ

D

[ (
r − r+ + r−

2

)(
b − r+ + r−

2

)

−
(
r+ − r−

2

)2

cos θ

]
(4.12)

will be used later.
In this case, the dilaton field is given by

� = �0(r) +
∑

l
φ(r)Y (θ) = �0(r) + φ̃(r, θ)

= �0(r) − α

2
W(r, θ). (4.13)

Besides the coupled differential equations can be simply
solved in this case, the condition β = α is very interesting
because the point source can be regarded as a singular limit
of the charged dilaton black hole in the system governed by
the single action (2.1), although the massive point is a limit
of an over-charged naked singularity (i.e., q/m >

√
1 + α2)

except for the maximally-charged dilaton black hole (i.e.,
r− = r+).

5 Electric and dilatonic charges and mass of the system
(β = α)

5.1 The electric field and charge (β = α)

In the case with β = α, which means φ = −α
2 W , the linear-

perturbation modes of the electric field strength (3.15) and
(3.16) take simpler forms:

f01 = 1

4Q

[
r2�′W ′ + 2(1 + α2)Q2

r2 W

]

= 1

4Q

[
r2�′W ′ + 2r+r−

r2 W

]
, f02 = r2�′

4Q
W. (5.1)

Thus, the electrostatic potential Vp = −A0 for the point-
charge contribution is given by

Vp(r, θ) = r2�′(r)
4Q

W(r, θ) = qr�′(r)
b3�′(b)

1

D

×
[ (

r − r+ + r−
2

)(
b − r+ + r−

2

)
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−
(
r+ − r−

2

)2

cos θ

]
, (5.2)

which leads to

F = −
(
Q

r2 + Er

)
dt ∧ dr − Eθdt ∧ dθ, (5.3)

where

Er = −
∑

l
f01(r)Y (θ) = −∂r Vp(r, θ),

Eθ = −
∑

l
f02(r)Y

′(θ) = −∂θVp(r, θ) (5.4)

To the first order in the perturbation, the electrical flux
4πQbh(r) generated by the charged dilaton black hole is
given by

4πQbh(r) = 2π

∫ π

0
r2σ 2e−2α�(1 + W)

Q

r2 sin θdθ

= 2π

∫ π

0
r2σ 2e−2α�0 (1 + W + α2W)

Q

r2 sin θdθ

= 4πQ + 2π
4(1 + α2)Q2q

rb3�′(b)

×
∫ π

0

sin θ

D

[ (
r − r+ + r−

2

) (
b − r+ + r−

2

)

−
(
r+ − r−

2

)2

cos θ

]
dθ

= 4πQ + 8πqr+r−
rb3�′(b)

[D(r, π) − D(r, 0)], (5.5)

while the electrical flux 4πQp(r) generated by the point
charge is given by

4πQp(r) = 2π

∫ π

0
r2σ 2e−2α�0 Er sin θdθ

= −2πr2∂r

{
qr�′(r)
b3�′(b)

∫ π

0

sin θ

D

[ (
r − r+ + r−

2

)

×
(
b − r+ + r−

2

)
−

(
r+ − r−

2

)2

cos θ

]
dθ

}

= −2πr2∂r

{
qr�′(r)
b3�′(b)

[D(r, π) − D(r, 0)]
}

= 2π
q

b3�′(b)

{(
r+ + r− − 4r+r−

r

)

×[D(r, π) − D(r, 0)] − r3�′(r)∂r

×[D(r, π) − D(r, 0)]
}

. (5.6)

Thus, the total flux 4πQtot (r) ≡ 4πQbh(r) + 4πQp(r)
turns out to be

4πQtot (r) = 4πQ + 2π
q

b3�′(b)

{
(r+ + r−) [D(r, π)

−D(r, 0)] − r3�′(r)∂r [D(r, π) − D(r, 0)]
}

= 4πQ + 4π
q

b3�′(b)

{
(r+ + r−)

[
(r − r+ + r−

2
)

×ϑ(b − r) + (b − r+ + r−
2

)ϑ(r − b)

]

−[(r+ + r−)r − 2r+r−]ϑ(b − r)
}

= 4πQ + 4π
q

b3�′(b)

{
−2

(
r+ − r−

2

)2

ϑ(b − r)

+(r+ + r−)(b − r+ + r−
2

)ϑ(r − b)
}

= 4πQ + 4πqϑ(r − b)

−4π
2q

b3�′(b)

(
r+ − r−

2

)2

, (5.7)

where the function ϑ(x) denotes a step function, i.e., ϑ(x) =
1 for x > 0 and ϑ(x) = 0 for x < 0.

Therefore, we obtain

4πQbh(r) + 4πQp(r) + 4π Q̄ = 4πQ + 4πqϑ(r − b),

(5.8)

where

4π Q̄ ≡ 4π
2q

b3�′(b)

(
r+ − r−

2

)2

. (5.9)

The charge Q̄ can be recognized by the induced charge at
the horizon, or this can be regarded as that from the l = 0
mode of f01, i.e., an additional contribution ∼ Q̄/r2 to f01,
which has been omitted in the analysis so far. This mode
corresponds to the constant shift (l = 0) in W and φ̃, which
can be eliminated by a suitable transformation [8].4

Note that 4π Q̄ = 0 automatically if and only if r− = r+,
that is the case with the maximally-charged dilaton black
hole. In the limit of r− = r+, the compatibility condition
(4.4) becomes

mr+ = qQ (r− = r+), (5.10)

which is independent of the location of the point charge, b.
The electrostatic potential Vp in the limit of r− = r+ reads

Vp(r, θ)
∣∣
r−=r+

= q (r − r+)2

r2
√

(r − r+)2 + (b − r+)2 − 2 (r − r+) (b − r+) cos θ

.

(5.11)

In Fig. 1, we show the contour plot of the electrostatic
potential Vp for r− = r+ = 1 and b = 40.5 Thus, the electric
field Er = −∂r Vp produced by the point charge vanishes at
the horizon, r = r+. This is just the electric Meissner effect

4 The treatment by replacing Q → Q− Q̄ is suggested in the references
[9,10].
5 Here, q or the height of each contour line is considered arbitrary.
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Fig. 1 The contour plot of the electrostatic potential Vp of the parti-
cle in the x-z plane (x = r sin θ and z = r cos θ are Cartesian-like
coordinates) for r− = r+ = 1 and b = 40

found in [7–10], because the electric line of force originated
from the point charge cannot cross the horizon. Here, we
would like to emphasize that if Vp for r− = r+ is expressed
by r+ and b, it is completely the same as the case of the
Reissner–Nordström black hole, while the value of r+ and
the condition for r− = r+ expressed by mass, charge, and
dilaton coupling constant are different.

5.2 the dilatonic field and charge (β = α)

The dilatonic flux 4π�bh of the charged dilaton black hole
alone cannot be defined on an arbitrary closed surface around
the black hole, because the dilaton is coupled to the Maxwell
field strength in the present model and the dilaton charge
is not the Noether charge, contrarily to the electric charge.
The scalar charge can simply be defined at spatial infinity in
several cases [12,14,18–20].

We consider the following integration on the sphere S2

centered at the origin with the radius r as the dilatonic flux:

4π�(r) ≡
∫
S2

√−ggrr∂r�dS, (5.12)

that is, the asymptotic behavior of the dilaton field is � ∼
−�(∞)

r (r → ∞).
The contribution solely from the black hole can be found

as

4π�bh(r) ≡ 4πr2σ 2(r) f (r)�′
0(r) = 4πr2�(r)�′

0(r)

= 4παr−
1 + α2

(
1 − r+

r

)
. (5.13)

Note that �bh(∞) = αr−
1+α2 and �bh(r+) = 0.

Since the perturbative dilaton field which comes from the
point source is

φ̃(r, θ) = − αm

b
√

�(b)

1

rD

[ (
r − r+ + r−

2

) (
b − r+ + r−

2

)

−
(
r+ − r−

2

)2

cos θ

]
, (5.14)

the dilatonic flux generated by the point charge is given by

4π�p(r) = 2π

∫ π

0
r2�(r)∂r φ̃(r, θ) sin θdθ

= −2π
αm�(r)

b
√

�(b)
r2∂r

{
1

r

∫ π

0

sin θ

D

[(
r − r+ + r−

2

)

×
(
b − r+ + r−

2

)
−

(
r+ − r−

2

)2

cos θ

]
dθ

}

= −2π
αm�(r)

b
√

�(b)
r2∂r

{
1

r
[D(r, π) − D(r, 0)]

}

= 2π
αm�(r)

b
√

�(b)

{
[D(r, π) − D(r, 0)]

−r∂r [D(r, π) − D(r, 0)]
}

= 4π
αm�(r)

b
√

�(b)

{
[(r − r+ + r−

2
)ϑ(b − r)

+(b − r+ + r−
2

)ϑ(r − b)] − rϑ(b − r)
}

= 4π
αm�(r)

b
√

�(b)

[
−r+ + r−

2
+ bϑ(r − b)

]
. (5.15)

It is notable that the discontinuity of �p(r) appears at r = b.
Note that �p(r+) = 0 and

�p(∞) = αm

b
√

�(b)

[
b − r+ + r−

2

]
. (5.16)

It is notable that, in the limit of b → ∞, �p(∞) → αm.
Another interesting result is obtained if r− = r+, that is

�bh(∞) = αM, �p(∞) = αm (r− = r+) (5.17)

are obtained, which are independent of the value of b.
Because the square of the electric fields F2 is also the source
of the dilatonic filed, it is natural that odd values come out for
�(∞). Nevertheless, it is remarkable that the point-particle
description has validity in the limit of the maximal charge of
the black hole.

5.3 Mass of the system (β = α)

The asymptotic mass observed at the spatial infinity is given
by [7,8]

Mtot = 1

2
lim
r→∞ r

[
1 − f (r)(1 − W(r, θ))

]
. (5.18)
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Incidentally, this formula simply corresponds to the fact that
the time-time component of the metric gtt can be approxi-
mated as

gtt = −
(

1 − 2Mtot

r

)
+ O(r−2), (5.19)

in the asymptotic region. Then, for the case with β = α, we
obtain

Mtot = M + m√
�(b)

(
1 − r+ + r−

2b

)
, (5.20)

noting that up to the first order of m is meaningful. Here, M
is given by (2.13).

We can rewrite (5.20) and find that

Mtot = M + m
(b − r+) + (b − r−)

2
√

(b − r+)(b − r−)
≥ M + m, (5.21)

where we used the inequality of arithmetic and geometric
means, i.e., (A + B)/2 ≥ √

AB for positive A and B. The
equality holds if r− = r+.

6 Comparison with the exact solution of the maximally
charged black holes (β = α)

If we suppose β = α and r− = r+, which is the limit of
the maximal charge of the charged dilaton black hole, the
equation for the equilibrium condition V ′(b) = 0 becomes
independent of b,

qQ = mr+ = mM(1 + α2) = mQ
√

1 + α2, (6.1)

that is,

q

m
= Q

M
=

√
1 + α2. (6.2)

Thus, the charge and mass of the point particle should satisfy
the same relation as the charged dilaton black hole if β = α

and r− = r+.
Noting that r− = r+, we obtain

W(r, θ)|r−=r+

= 2m (r − r+)

r
√

(r − r+)2 + (b − r+)2 − 2 (r − r+) (b − r+) cos θ

,

(6.3)

Vp(r, θ)
∣∣
r−=r+

= q (r − r+)2

r2
√

(r − r+)2 + (b − r+)2 − 2 (r − r+) (b − r+) cos θ

.

(6.4)

On the other hand, the exact solution for two maximally charged
dilaton black holes is known as [21]

ds2 = −U
− 2

1+α2 dt2

+U
2

1+α2 [dR2 + R2(dθ2 + sin2 θdϕ2)],
(6.5)

and

− A0 = 1√
1 + α2

(1 −U−1), e−2α� = U
2α2

1+α2 , (6.6)

where

U = 1 + r+
R

+ (1 + α2)m√
R2 + B2 − 2RB cos θ

. (6.7)

Changing the coordinates as R = r − r+, B = b− r+, U reads

U = 1

1 − r+
r[

1 + (1 + α2)m
(
1 − r+

r

)
√

(r − r+)2 + (b − r+)2 − 2(r − r+)(b − r+) cos θ

]
.

(6.8)

The straightforward calculation reveals that (6.5) and (6.6) can
be expressed, in the first order of m, as

ds2 = −
(

1 − r+
r

) 2
1+α2 [

1 − W(r, θ)|r−=r+
]
dt2

+ [
1 + W(r, θ)|r−=r+

] [ (
1 − r+

r

)− 2
1+α2

dr2

+r2
(

1 − r+
r

) 2α2

1+α2
(dθ2 + sin2 θdϕ2)

]
, (6.9)

and

− A0 = Q

r
+ Vp(r, θ)

∣∣
r−=r+ ,

� = α

1 + α2 ln
(

1 − r+
r

)
− α

2
W(r, θ)|r−=r+ . (6.10)

Thus, we confirmed the perturbative calculation for β = α and
r− = r+ coincides with the exact solution of two maximally-
charged black holes in the first order of m = q/

√
1 + α2.

7 The electric field around a maximally charged dilaton
black hole r− = r+ (β �= α)

In Sect. 5, we have found the electric Meissner effect for the case
with β = α in the limit of r− = r+. In this section, we investigate
the case in the limit of r− = r+, but β �= α. First, we notice that,
when r− = r+,

f (r) =
(

1 − r+
r

) 2
1+α2

, σ (r) =
(

1 − r+
r

) α2

1+α2
,

�0(r) = α

1 + α2 ln
(

1 − r+
r

)
, (7.1)

and

�(r) =
(

1 − r+
r

)2
. (7.2)
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Consequently, we find

f ′(r)
f (r)

= 2

1 + α2

r+
r(r − r+)

and

�′
0(r) = α

1 + α2

r+
r(r − r+)

. (7.3)

The two independent differential equations are found to be

8πT p
00 = − f 2(r)

∑
l

[
W ′′(r) + 2

r
W ′(r) − l(l + 1)

(r − r+)2 W (r)

+ 2α

1 + α2

r+
r(r − r+)

(αW ′(r) + 2φ′(r))
]
Y (θ), (7.4)

4π� p = f (r)
∑

l

[
φ′′(r) + 2

r
φ′(r) − l(l + 1)

(r − r+)2 φ(r)

+ 1

1 + α2

r+
r(r − r+)

(αW ′(r) + 2φ′(r))
]
Y (θ), (7.5)

where

T p
00 = m

2πb2σ 2(b)

(
1 − r+

b

) αβ

1+α2

× f (b)3/2δ(r − b)δ(cos θ − 1), (7.6)

� p = βm

2πb2σ 2(b)

(
1 − r+

b

) αβ

1+α2

× f (b)1/2δ(r − b)δ(cos θ − 1). (7.7)

The compatibility (equilibrium) condition (3.28) for r− = r+
becomes

q

m
√

1 + α2
= 1 + αβ

1 + α2

(
1 − r+

b

) α(β−α)

1+α2
. (7.8)

The linear combination of (7.6) and (7.7) with (7.8) yields the
partial differential equation
[
∂2
r + 2

r
∂r + 1

(r − r+)2

(
∂2
θ + cot θ∂θ

)]
(W − 2αφ̃)

= −
√

1 + α2q

2πb2
√

�(b)
δ(r − b)δ(cos θ − 1). (7.9)

The regular solution of the equation, which we have already known,
is expressed as

W(r, θ) − 2αφ̃(r, θ)

= 2
√

1 + α2q (r − r+)

r
√

(r − r+)2 + (b − r+)2 − 2 (r − r+) (b − r+) cos θ

.

(7.10)

Remarkably, using (7.1), (7.2), and
√

1 + α2Q = r+, the modes
of the electric field strength (3.15) and (3.16) become

f01 = 1

2
√

1 + α2

[(
1 − r+

r

)

×(W ′ − 2αφ′) + r+
r2 (W − 2αφ)

]
(r− = r+), (7.11)

f02 = 1

2
√

1 + α2

(
1 − r+

r

)

×(W − 2αφ) (r− = r+). (7.12)

Therefore, we obtain the following electrostatic potential:

Vp(r, θ)
∣∣
r−=r+

= q (r − r+)2

r2
√

(r − r+)2 + (b − r+)2 − 2 (r − r+) (b − r+) cos θ

.

(7.13)

Note that this is identical to (5.11). Apparently, the radial compo-
nent of the electric field Er = −∂r Vp originated from the point
charge vanishes at the horizon, r = r+. Thus, we can conclude
that the electric Meissner effect [7–10] emerges for the maximally-
charged dilaton black hole, regardless of the dilatonic charge of the
point charge.

Incidentally, in Appendix A, we show approximate analyti-
cal expressions for W and φ separately near the horizon of the
maximally-charged black hole.

8 Summary and discussion

In this paper we have studied the perturbative approach to the static
configuration of the charged dilaton black hole and a massive parti-
cle with electric and dilatonic charges. We found that the compati-
ble condition of the coupled equation coincides with the static con-
dition of the massive test particle with charges in the background
of a charged dilaton black hole. The exact analytical expression of
the linear perturbation of fields has been found for the case with
β = α. We also found that the component of the electric field nor-
mal to the outer horizon tends to vanish as the limit r− → r+ and
the flux lines are expelled in the limit. This result is independent
of the values of α and β. This is the “electric Meissner effect”,
which has been found for the Reissner–Nordström black hole [7–
10].

We performed analytic study of the system in the present paper,
but to obtain solutions for the general case withβ �= α and r− �= r+,
we need a numerical calculation. Contrary to the general case, the
specific system with β ≈ α and r− ≈ r+ may be investigated
through the perturbative calculation on the exact multi-black hole
solution. We will try to carry out the calculations in the future work.

A straightforward extension of the theoretical investigation can
be thought on the system including magnetically charged dila-
ton black hole [11,12,22,23], and on the generalized Einstein–
Maxwell-scalar system described by [24–28], and on the system
of nonlinearly charged black holes [29–42], etc. We are going to
address these subjects in our further work.

Data availability This manuscript has no associated data or the data
will not be deposited. [Authors’ comment: This is a purely theoretical
study and has no associated experimental data.]
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Appendix A: Approximate analytical expressions for W
and φ near the horizon of the
maximally-charged dilaton black hole
(r− = r+)

We consider an approximation valid for β − α � 1. First, we
assume that the contributions of the terms including αW ′(r) +
2φ′(r) in (7.4) and (7.5) are small. Then, we assume W(r, θ) =∑

lW (r)Y (θ) = ∑
l [W0(r)+W1(r)]Y (θ) = W0(r, θ)+W1(r, θ)

and φ̃(r, θ) = ∑
lφ(r)Y (θ) = ∑

l [φ0(r) + φ1(r)]Y (θ) =
φ̃0(r, θ) + φ̃1(r, θ), where W1 and φ1 are small. Thus, we can
obtain

W0(r, θ)

= 2m
(
1 − r+

b

) α(β−α)

1+α2 (r − r+)

r
√

(r − r+)2 + (b − r+)2 − 2 (r − r+) (b − r+) cos θ

,

(A1)

φ̃0(r, θ)

=− βm
(
1 − r+

b

) α(β−α)

1+α2 (r − r+)

r
√

(r − r+)2 + (b − r+)2 − 2 (r − r+) (b − r+) cos θ

.

(A2)

Consequently, we find

αW0 + 2φ̃0

= 2m(α − β)
(
1 − r+

b

) α(β−α)

1+α2 (r − r+)

r
√

(r − r+)2 + (b − r+)2 − 2 (r − r+) (b − r+) cos θ

.

(A3)

Admittedly, this turns out to be small in the sense of β − α � 1.
Since the following simple expansion is well known:

1√
1 − 2t x + t2

=
∞∑
l=0

Pl(x)t
l , (A4)

the combination (A3) can be expressed as

αW0 + 2φ̃0 = 2m(α − β)
(
1 − r+

b

) α(β−α)

1+α2

r

×
∞∑
l=0

(r − r+)l+1

(b − r+)l+1 Pl(cos θ) (r < b), (A5)

αW0 + 2φ̃0 = 2m(α − β)
(
1 − r+

b

) α(β−α)

1+α2

r

×
∞∑
l=0

(b − r+)l

(r − r+)l
Pl(cos θ) (r > b). (A6)

These can be used to find the next order, but the differential equa-
tions (7.4) and (7.5) are difficult to solve exactly. Therefore, we

demonstrate an approximate analytical approach at r − r+ � r+.
Using (A5), the equations (7.4) and (7.5) can be read in this order
as

(rW1)
′′ − l(l + 1)

(r − r+)2 rW1

= − 2α

1 + α2

2m(α − β)r+
(
1 − r+

b

) α(β−α)

1+α2

r − r+

×
√

4π

2l + 1
∂r

(r − r+)l+1

r(b − r+)l+1 , (A7)

(rφ1)
′′ − l(l + 1)

(r − r+)2 rφ1

= − 1

1 + α2

2m(α − β)r+
(
1 − r+

b

) α(β−α)

1+α2

r − r+

×
√

4π

2l + 1
∂r

(r − r+)l+1

r(b − r+)l+1 . (A8)

Since r − r+ � r+, we adopt the approximation

∂r
(r − r+)l+1

r(b − r+)l+1 ≈ (l + 1)(r − r+)l

r(b − r+)l+1 (A9)

and we get

(rW1)
′′ − l(l + 1)

(r − r+)2 rW1

= −4αm(α − β)

1 + α2

(
1 − r+

b

) α(β−α)

1+α2
(l + 1)

×
√

4π

2l + 1

(r − r+)l−1

(b − r+)l+1 , (A10)

(rφ1)
′′ − l(l + 1)

(r − r+)2 rφ1

= −2m(α − β)

1 + α2

(
1 − r+

b

) α(β−α)

1+α2
(l + 1)

×
√

4π

2l + 1

(r − r+)l−1

(b − r+)l+1 . (A11)

Finally, the solutions for these approximate equations:

W1 = −4αm(α − β)

1 + α2

(
1 − r+

b

) α(β−α)

1+α2 l + 1

2l + 1

×
√

4π

2l + 1

(r − r+)l+1

(b − r+)l+1 ln
r − r+

C(b − r+)
, (A12)

φ1 = −2m(α − β)

1 + α2

(
1 − r+

b

) α(β−α)

1+α2 l + 1

2l + 1

×
√

4π

2l + 1

(r − r+)l+1

(b − r+)l+1 ln
r − r+

C(b − r+)
, (A13)

where C is the undetermined constant in the present approach.
However, we can determine that the solutions in this order is regular
at r = r+.6 Notice that the electric field around the maximally-
charged black hole with a point charge does not change even for
β �= α.

6 The summed expressions W1 and φ̃1 are possible but they are not
needed for this time, so we omit them.
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