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Abstract Motivated by the effect of the energy of moving
particles in C-metric, we first obtain exact accelerating black
hole solutions in gravity’s rainbow. Then, we study the effects
of gravity’s rainbow and C-metric parameters on the Ricci
and Kretschmann scalars, and also the asymptotical behavior
of this solution. Next, we indicate how different parameters
of the obtained accelerating black holes in gravity’s rainbow
affect thermodynamics quantities (such as the Hawking tem-
perature, and entropy) and the local stability (by evaluating
the heat capacity). In the following, we extract the geodesic
equations to determine the effects of various parameters on
photon trajectory in the vicinity of this black hole, as well as
obtain the radius of the photon sphere and the corresponding
critical impact parameter to gain insight into AdS black hole
physics by adding the gravity’s rainbow to C-metric.

1 Introduction

Black holes are some of the most fascinating and mind-
bending objects in the cosmos. They can help our knowledge
from the points of theoretical and experimental theories of
physics. Among them, one of the most interesting black holes
is related to the accelerating black hole, which is described
by theC-metric [1–5]. The accelerating black hole includes a
conical singularity which can be imagined as a cosmic string
with a tension providing the force driving the acceleration.
This black hole attracted much attention due to the existence
of a string-like singularity along one polar axis attached to
it [6–15]. In addition, there has been a significant amount of
research conducted on various aspects related to the accel-
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erating black holes. These include the examination of their
global causal structure [16], black hole shadows [17], quan-
tum thermal properties [18], holographic heat engines and
complexity [19–22], and more. One specific area of focus has
been the study of the thermodynamics of accelerating black
holes, which the first time was explored in Ref. [6] and fur-
ther addressed in subsequent references [7,9,23–25]. These
studies have successfully extended the first law of thermo-
dynamics, the Bekentein-Smarr and Christodoulou-Ruffini-
type mass formula, to encompass (un)charged rotating accel-
erating black holes.

Studying the effects of modified theories of gravity on the
accelerating black hole’s properties is an interesting subject.
For example, three and four-dimensional accelerating black
holes in F(R) gravity have been evaluated [26] and [27],
respectively. In addition, a three-dimensional accelerating
black hole in gravity’s rainbow is obtained in Ref. [28].
However, there are no four-dimensional accelerating black
hole solutions in gravity’s rainbow yet. So, we first focus on
extracting the accelerating black hole solutions in this theory
of gravity.

Gravity’s rainbow, initially proposed by Magueijo and
Smolin and investigated within the framework of double spe-
cial relativity [29], introduces a geometry dependent on the
energy of moving particles. In this formalism, varying parti-
cle energies lead to distinct distortions in spacetime. When
investigating the quantum gravity effects of moving probes
on the geometry, the notion of a singular spacetime back-
ground is replaced by a family of line elements, referred to
as the “rainbow functions” which are parameterized by the
energy of these moving probes. Gravity’s rainbow theory
admitted the invariant energy scale connected to the Planck
energy and the invariant velocity of light at low energies [30–
36]. The modified energy-momentum dispersion relation in
this formalism can be expressed as follows [33,34,37,38]
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E2F2 (ε) − p2c2H2 (ε) = m2c4 (1)

where F (ε) and H (ε) stand for rainbow functions that are
characterized by the ratio ε = E

Ep
. Here, Ep denotes the

energy on the Planck scale, while E represents the energy
of the system. To investigate the impact of the gravity’s rain-
bow model on the thermodynamics and geodesic equations
for this black hole – which we will subsequently utilize – the
following rainbow functions are taken into account [39–41]

F (ε) = 1, & H (ε) =
√

1 − γ ε2, (2)

here, γ denotes a dimensionless free parameter in the model.
In light of gravity’s rainbow theory and its applications in

the literature, people have explored theories of cosmology,
astrophysics, modified gravity, as well as deformed structure
of the spacetime around the black hole region and worm-
hole geometries [42–62]. Following the release of the EHT
images [63], scientists became interested in comparing the
data from EHT with theoretical models to determine the black
hole’s characteristics, including mass and spin [64–69]. A
clear picture of how the acceleration of the black hole impacts
the photon trajectory around the AdS black hole in energy-
dependent C-metric is still a mystery, and in this paper, we
focus on one such case. Therefore, we are interested in inves-
tigating the trajectories of light rays in the vicinity of such
an accelerating black hole, as well as determine the radius
of the photon sphere and the corresponding critical impact
parameter, to gain insight into AdS black hole physics by
adding the gravity’s rainbow to C-metric.

2 Exact solutions

To obtain the accelerating black hole, we have to construct a
kind of energy-dependent C-metric. For this purpose we use
the mentioned method in Ref. [70] as

h (ε) = ημνeμ (ε) ⊗ eν (ε) , (3)

where e0 (ε) = 1
F(ε)

ẽ0, and ei (ε) = 1
H(ε)

ẽi . Notably, the
tilde quantities refer to the energy-independent frame fields.
Using the above conditions, we can create a suitable energy-
dependent C-metric to obtain an accelerating black hole in
gravity’s rainbow. Considering the introduced C-metric in
Ref. [6] and by applying e0 (ε) and ei (ε), we can get energy-
dependent C-metric as

ds2 = 1

K2 (r, θ)

[
− f (r)

F2 (ε)
dt2 + dr2

f (r)H2 (ε)

+ r2

H2 (ε)

(
dθ2

g (θ)
+ g (θ) sin2 θdϕ2

K 2

)]
, (4)

whereK (r, θ) = 1+ Ar cos θ , which is called the conformal
factor.

Now, we are in a position to find suitable metric func-
tions f (r) and g (θ) by using all components of equations
of motion Gμν + �gμν = 0 (where gμν is metric tensor).
Considering the metric (4) and equations of motion, one can
find that

Eqtt = Eqrr = sin θgθθK2 (r, θ) + 3
(
Ar cos2 θ

+4Ar sin2 θ

3
+ cos θ

)
gθK (r, θ)

+2r2 sin θ

[
3gA2 cos2 θ + ( f − g) (1 − 2Ar cos θ)

r2

+K (r, θ) f ′

r
+ �

H2 (ε)

]
, (5)

Eqθθ = Eqϕϕ = r2K2 (r, θ) f ′′ + 2
(

1 − A2r2 cos2 θ
)
r f ′

+2Ar sin θK (r, θ) gθ

+6gA2r2 sin2 θ + 2�r2

H2 (ε)
+ 2Ar cos θ [2 (g − f )

+Ar cos θ ( f + 2g)] , (6)

where f = f (r), g = g (θ), f ′ = d f (r)
dr , f ′′ = d2 f (r)

dr2 ,

gθ = dg(θ)
dθ

, and gθθ = d2g(θ)

dθ2 . It is notable that Eqtt , Eqrr ,
Eqθθ and Eqϕϕ are related to components of t t , rr , θθ and
ϕϕ of the equations of motion.

After some calculations, we find the exact solutions of Eqs.
(5) and (6) for the functions f (r) and g (θ) in the following
forms

f (r) =
(

1 − A2r2
) (

1 − 2m

r

)
− �r2

3H2 (ε)
,

g (θ) = 1 + 2mA cos θ, (7)

where �, and m, are the cosmological constant, and a con-
stant that is related to the total mass of the black hole,
respectively. It is worthwhile to mention that we consider
G = c = 1.

Notably, we can define K as introduced in Refs. [6,9],
which is related to the presence of cosmic string. In other
words, by looking at the angular part of the metric and the
behavior of g (θ) at both poles θ+ = 0 (north pole), and
θ− = π (south pole), we can find the presence of cosmic
string. The regularity of the metric at a pole requires K± =
g (θ±) = 1 ± 2mA, where K± is chosen to regularize one
pole and another pole is left with either a conical deficit or
a conical excess along the other pole. Here we would make
the black hole regular on the north pole, i.e., θ = 0, by fixing
K = K+ = 1 + 2mA.

Also, in the absence of the accelerating parameter (A =
0), the solution (7) reduces to the black hole solutions in
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gravity’s rainbow in the form

f (r) = 1 − 2m

r
− �r2

3H2 (ε)
, (8)

and by considering H2 (ε) = 1, the above solution turns to
the well-known Schwartzshield black hole solutions in the
present of the cosmological constant as f (r) = 1 − 2m

r −
�r2

3 .
To find the curvature singularity(ies) of the spacetime, we

calculate the Ricci and Kretschmann scalars. Using the met-
ric (4) and after some algebraic manipulation, one can find
the Ricci scalar (R) and Kretschmann scalar (Rαβγ δRαβγ δ)
in the following forms

R = 4�, (9)

Rαβγ δRαβγ δ = 48A0

r6 + 288A1

r5
+ 720A2

r4 + 960A3

r3

+720A4

r2 + 288A5

r
+ 48A6 + 8�2

3
, (10)

where An = H4 (ε)m2An cosn θ . The above equation indi-
cates that the Kretschmann scalar diverges at r = 0, i.e.,

lim
r−→0

Rαβγ δRαβγ δ −→ ∞, (11)

so we encounter with a curvature singularity at r = 0. Also,
the asymptotical behavior is dependent on the parameters
of this theory. Indeed, the rainbow function H (ε) and the
parameter of accelerating black holes affect the asymptotical
behavior of spacetime, i.e.,

lim
r−→∞Rαβγ δRαβγ δ −→ 48A6 + 8�2

3
. (12)

We study the effects of various parameters on horizons.
Our findings indicate that; (i) by increasing the accelerating
parameter, these black holes may encounter with two hori-
zons (inner and outer horizons), see the up left panel in Fig. 1.
(ii) by increasing the rainbow function H (ε), the event hori-
zon increases (see the up right panel in Fig. 1). (iii) massive
black holes have large radii, as we expected (see the down
left panel in Fig. 1). (iv) by increasing |�|, we encounter with
small black holes (see the down right panel in Fig. 1).

3 Thermodynamics

Considering the black hole as a thermodynamic system, we
are going to obtain some of the conserved and thermody-
namic quantities of the accelerating black holes in the con-
tent of gravity’s rainbow such as the Hawking temperature,

entropy and then study the local stability by evaluating the
heat capacity.

3.1 Hawking temperature

By equating gtt = f (r) = 0, we get the geometrical mass
(m) in the following form

m = (� + 3A2H2(ε))r3+ − 3H2(ε)r+
6(A2r2+ − 1)H2(ε)

. (13)

To get the Hawking temperature, we employ the definition
of surface gravity

κ =
√−1

2

(∇μχν

)
(∇μχν), (14)

where χ = ∂t is the Killing vector. By using the metric (4)
and Eq. (14), we get the surface gravity as

κ =

(
d f (r)
dr

)∣∣∣
r=r+

H(ε)

2F(ε)
, (15)

and by considering the obtained metric function (7), Eq. (13)
and the surface gravity (15) within the Hawking temperature
relation ( TH = κ

2π
), we get it

TH = H(ε)B3A2r4+ + 3H(ε)
(
1 − B2r2+

)

12πr+
(
A2r2+ − 1

)
F (ε)

, (16)

where Bn = �
H2(ε)

+ nA2. Also, r+ is related to the event
horizon of the black hole. The obtained Hawking temperature
depends on all the parameters of these black holes.

The high-energy limit (where the limit r+ → 0 is known
as the high-energy limit) of the temperature (16) is given by
lim
r+→0

TH ∝ H(ε)
4πF(ε)r+ , where indicates that the high-energy

limit of the temperature only depends on rainbow functions
F (ε) and H(ε). Also, in this limit, the temperature is always
positive. As a result, the temperature of small accelerating
black holes in gravity’s rainbow is positive.

The asymptotic behavior of the temperature (16) is
obtained lim

r+→∞TH ∝ −H(ε)B3r+
12πF(ε)

, where reveals the asymp-

totic behavior of the temperature is dependent on the cosmo-
logical constant, acceleration parameter and rainbow func-
tions F (ε) and H(ε). To have the positive temperature, we
must respect to B3 = �

H2(ε)
+ 3A2 < 0, which leads to

� < −3A2H2(ε). In other words, the asymptotic behavior
of the temperature can be positive when the cosmological
constant is negative.

We plot the Hawking temperature versus r+ to study of
the behavior of temperature. The results reveal that:
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Fig. 1 f (r) versus r for
different values of parameters

(i) there is a singularity for the temperature at rdiv =
1
A . This singularity only depends on the accelerating
parameter. Such behavior exists for entropy (see Eq.
(18), in the next subsection). We have to omit this point
to have the physical behavior of the temperature and the
entropy.

(ii) there is a zero point for the temperature (r+T=0 ) which
depends on the parameters of the system.

(iii) the temperature is positive for r+ < rdiv (small black
holes), and r+ > r+T=0 (large black holes).

(iv) Figure 2a reveals that the roof of TH decreases by
increasing |A|.

(v) Figure 2b indicates that by increasing A, the divergence
point decreases (as we expected), and the root of the
temperature decreases.

(vi) by increasing H(ε), the root of temperature increases
(see Figure 2c).

(vii) the root of temperature is independent of F (ε), see
Fig. 2d.

3.2 Entropy

To obtain the entropy of black holes, one can use the area
law in the form S = A

4 , where A is the horizon area and is
defined as

A =
∫ 2π

0

∫ π

0

√
gθθgϕϕ

∣∣∣∣
r=r+

= 4πr2

H2 (ε)
(
1 − A2r2

)
K

∣∣∣∣∣
r=r+

= 4πr2+
H2 (ε)

(
1 − A2r2+

)
K

,

(17)

by replacing the horizon area (17) within S = A
4 , the entropy

of accelerating black holes in gravity’s rainbow is given

S = πr2+
H2 (ε)

(
1 − A2r2+

)
K

, (18)

where in the absence of acceleration parameter and rainbow
function it turns to S = πr2+, as we expected. Indeed, in the
absence of the accelerating parameter, A is zero, and K = 1.

In addition, there is a singularity for the entropy (18) at
r+ = 1

A . This singularity depends on the acceleration param-
eter. There is such behavior for the mass (13) and the obtained
temperature (16). Also, the existence of such singularity is
reported for charged accelerating BTZ black holes [71]. To
remove this singularity, we have to consider r+ 	= 1

A . In other
words, we do not permit to consider r+ = 1

A , because this
radius leads to a singularity in the geometrical mass (13),
temperature (16) and entropy (18).
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Fig. 2 TH versus r+ for
different values of parameters

Now, we series the entropy (18) versus the event horizon
(r+) in the limit r+ → 0 and r+ → ∞, to study the high-
energy and asymptotic behavior of the entropy.

The high-energy limit of the entropy (18) is obtained

lim
r+→0

S ∝ πr2+
H2 (ε) K

, (19)

the high-energy limit of the entropy depends on H(ε), and
K . It is notable that in the high-energy limit, the entropy is
positive because K and H2 (ε) are positive. So, the entropy of
small accelerating black holes in gravity’s rainbow is always
positive.

The asymptotic behavior of the entropy (18) is given by

lim
r+→∞S ∝ −�

A2H2 (ε) K
, (20)

where reveals the asymptotic behavior of the entropy can be
positive, provided � < 0.

3.3 Heat capacity

In the canonical ensemble context, a thermodynamic sys-
tem’s local stability can be studied by heat capacity. So we
study the heat capacity to find the local stability for such black

holes. In other words, we evaluate the effects of rainbow func-
tions (F (ε), and H (ε)), and the acceleration parameter A on
the local stability of accelerating black holes.

The heat capacity is defined as

C = T(
∂T
∂S

) = T(
∂T
∂r+

)
/
(

∂S
∂r+

) , (21)

by considering the obtained temperature (16) and the entropy
(18), and some calculations, we can get the heat capacity in
the following form

C = 2π
(
A2B3r4+ + 3

(
1 − B2r2+

))

H2(ε)

(
A6B3r6+ − A4B6r4+ + 3

(
A2�r2+
H2(ε)

− B−2 − 1
r2+

))
K

.

(22)

To obtain the high-energy limit of the heat capacity (22),
we evaluate it in the limit r+ → 0 and get

lim
r+→0

C ∝ −2πr2+
H2 (ε) K

, (23)

where indicates that in the high-energy limit, the heat capac-
ity is negative. As a result, the heat capacity of small acceler-
ating black holes in gravity’s rainbow is always negative. In
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Table 1 Regions of direct rays, lensing rings, and photon rings for two
different values of the acceleration parameter A

Acceleration parameter A = 0.001 A = 0.1

Direct rays b < 5.04 b < 5.23(
n < 3

4

)
b > 5.95 b > 6.18

Lensing rings 5.04 < b < 5.19 5.23 < b < 5.39(
3
4 < n < 5

4

)
5.22 < b < 5.95 5.42 < b < 6.18

Photon ring
(
n > 5

4

)
5.19 < b < 5.22 5.39 < b < 5.42

other words, the accelerating black holes with small radius
cannot satisfy the local stability condition.

We obtain the asymptotic behavior of the heat capacity
(22) in the limit r+ → ∞, which is given by

lim
r+→∞C ∝ 2π

H2 (ε) K A4r2+
, (24)

where reveals the asymptotic behavior of the heat capacity
is always positive. Indeed, the accelerating black holes with
large radii satisfy the local stability.

Our analysis reveals two important points, which are; (i)
the temperature and entropy of small accelerating black holes
are always positive, but the heat capacity is negative. (ii) The
large accelerating black holes can have positive values for the
temperature and entropy when the cosmological constant is
negative. In other words, large AdS accelerating black holes
are physical objects. However, the heat capacity is always
positive in this range (Table 1).

According to the behavior of the temperature, entropy,
and heat capacity, accelerating black holes with large radii
in gravity’s rainbow can be physical objects and satisfy the
local stability when the cosmological constant is negative.

We plot the heat capacity versus r+ for further investiga-
tion. The results show that:

(i) there are two divergence points for the heat capacity,
which we denote by rdiv1 , and rdiv2 . rdiv1 refers to
the first divergence point and rdiv2 refers to the second
divergence point. There is also a zero point (rC=0).
Further details can be found in Fig. 3.

(ii) the heat capacity at rdiv1 < r+ < rdiv2 , and r+ > rC=0,
is positive.

(iii) by increasing |�|, rdiv1 decreases but rdiv2 does not
change (see Fig. 3a, b). By comparing the temperature
(Fig. 2a) and the heat capacity (Fig. 3a, b), we find that
the local stability area increases by increasing |�|.

(iv) Figure 3c, d, indicate that rdiv1 , rdiv2 and rC=0 decrease
by increasing the accelerating parameter. In addition,
the local stability area increases by increasing A (com-
pare Fig. 2a with Fig. 3c, d).

(v) by increasing H(ε), the first divergence point (rdiv1 ),
and the root of the heat capacity (rC=0) increase. How-
ever, the second divergence point (rdiv2 ) of the heat
capacity does not change (see Fig. 3e, f). By comparing
the temperature (Fig. 2c) and the heat capacity (Fig. 3e,
f), the local stability area decreases by increasing H(ε).

(vi) the heat capacity is independent of the change of F(ε),
see Fig. 3g, h. So, the local stability area does not
change by varying F(ε).

4 Geodesic equations

First, we need to determine the geodesic motion of photons
in a rotationally symmetric and static spacetime metric in
the presence of gravity’s rainbow. The modified C-metric,
which depends on four parameters: the mass parameter m
with length dimension, the acceleration parameter A with
inverse length dimension [4,5], the cosmological constant
� and rainbow functions, is used to describe this scenario.
The rainbow functions, which are introduced in the model,
further influence the motion of photons in this spacetime. To
analyze this motion, we formulate the Lagrangian L(x, ẋ) =
1
2 gμν ẋμ ẋν for the geodesics. The Lagrangian allows us to
analyze how photons move around an accelerating black hole
under the effects of Gravity’s rainbow can be written as

L = 1

2K2 (r, θ)

(
− f (r)

F2 (ε)
ṫ2 + 1

f (r)H2 (ε)
ṙ2

+ r2

g (θ) H2 (ε)
θ̇2 + g (θ) r2 sin2 θ

H2 (ε) K 2 ϕ̇2
)

, (25)

with the dot notation that represents differentiation with
respect to an affine parameter denoted as λ, which is defined
along the geodesic. To examine the trajectories of light rays in
the vicinity of an accelerating black hole, as well as determine
the radius of the photon sphere and the corresponding critical
impact parameter, it is permissible to confine the motion of
the photon to the equatorial plane of the accelerating black
hole, that is, θ = π/2 and θ̇ = 0. Since the metric coefficient
function cannot be determined by the t and θ coordinates,
there exist two conserved quantities, E , and L [64,65], which
correspond to energy and angular momentum, respectively.
The given expressions are

E = −∂L
∂ ṫ

= f (r)

F2 (ε)
ṫ, & L = ∂L

∂ϕ̇
= r2ϕ̇

H2 (ε)
. (26)

The orbit equation for the null geodesic L = 0 can thus
be found as follows

(
dr

dϕ

)2

= r2 f (r)

(
r2F2(ε)

b2 f (r)H2(ε)
− 1

)
. (27)
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Fig. 3 C versus r+ for different
values of parameters
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Fig. 4 Photon behavior for various values of A = 0.001, 0.1. A selec-
tion of related photon trajectories is displayed in the right panel, taking
(r, ϕ) as Euclidean polar coordinates, while the fractional number of

orbits, n = ϕ
2π

, is displayed in the left panel. ϕ represents the total
change in (orbit plane) azimuthal angle outside the horizon

We can observe that the term on the right-hand side of the
equation serves as an effective potential for particles moving
in the r direction. Thus, it is evident that the orbit equation for
a particular metric relies solely on one constant of motion,
such as the impact parameter b = L/E . In cases where the
light ray approaches the center and then exits after reaching
a minimum radius R, it is more convenient to express the
orbit Eq. (27) in terms of R rather than b. Since R represents
the turning point of the trajectory, the condition dr/dϕ|R=0

must be satisfied [66]. By using the orbit Eq. (27), we can
derive the relationship between R and the impact parameter
b as

1

b2 = f (R)H2(ε)

R2F2(ε)
. (28)

We shall now introduce the following function

U (r) =
√

r2F2(ε)

f (r)H2(ε)K 2 . (29)

It is useful to define the impact parameter b with respect
to the function U (r) as b ≡ U (R). When the acceleration
parameter and gravity’s rainbow are absent as well as � = 0,
the functionU (r) can be considered equivalent to the “effec-
tive potential” found in the Schwarzschild case. This effective
potential pertains to the motion of photons in Schwarzschild’s
gravity. By substituting Eqs. (28) and (29) in Eq. (27), we can
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re-express Eq. (27) in the following form
(
dr

dϕ

)2

= r2 f (r)

K 2

(
U 2(r)

U 2(R)
− 1

)
. (30)

Likewise, we can safely consider the limit R → rph from
this point forward.

To proceed, it is necessary to determine the radius of the
photon sphere, denoted as rph. This can be accomplished
by satisfying two conditions along a circular light orbit;
Veff|r=rph = 0 and dVeff

dr |r=rph = 0. By solving these two
equations simultaneously, we obtain the equation for the
radius of a circular light orbit, which takes the form

f ′(rph)

f (rph)
− 2

rph
= 0. (31)

Equations (29) and (31) allow us to obtain both the position
of the photon sphere and the critical impact parameter, bc ≡
U

(
rph

)
, given by

rph =
√

η3 − 1

2A2m
, and bc =

√
3 η2F(ε)√

3A2η1 − η2�
, (32)

where

η1 = √
η3 − 1 − 8A4m4

(
1 + H2(ε)

(
5 − 2

√
η3

)

4A2m2

)
,

η2 = 1 − √
η3 + 3A2m2 (

3 − √
η3

)
,

η3 = 1 + 12A2m2. (33)

We now aim to explore the trajectory of a light ray as
it traverses the vicinity of a black hole. The transformation
x = 1

r is a convenient choice [67,68]. This results in the
transformation of the orbit equation as follows

(
dx

dφ

)2

= W (x), (34)

with

W (x) =
(

F2 (ε)

b2H2 (ε)
−

(
x2 − A2

)
(1 − 2mx) + �

3H2 (ε)

)
.

(35)

Regarding the interaction of light rays with a black hole:
(i) In the case when the impact parameter b > bc, the light
beam approaches one nearest point before retreating back to
infinity from the black hole. (ii) The light ray infalls into the
black hole in all cases when the impact parameter is b < bc.
(iii) At a radius of rc, or the photon sphere radius, the light
ray will circle the black hole when b = bc [67,68].

The smallest positive real root of W (x) = 0, which we
indicate as xm , is the turning point for the b > bc case. Using

Eq. (34), one may compute

ϕ = 2
∫ xm

0

dx√
W (x)

, b > bc, (36)

to find the whole variation in azimuthal angle ϕ for a given
trajectory with impact parameter b. In the case where b < bc,
our interest is directed towards the trajectory beyond the hori-
zon rh . Consequently, the overall variation in the azimuthal
angle ϕ may be determined using the integration

ϕ =
∫ x+

0

dx√
W (x)

, b < bc, (37)

where x+ = 1
r+ .

The authors in [18] classified trajectories into three cate-
gories, direct, lensed, and photon rings to analyze the appar-
ent characteristics of emission emanating from close prox-
imity to a black hole. We provide a brief overview here.
The total number of orbits n, given by n = ϕ

2π
, is depen-

dent on the impact parameter b. We express the solution
of n(b) = 2ξ−1

4 , where ξ = 1, 2, 3, . . . by b±
ξ so that

b−
ξ < bc and b+

ξ > bc. Following this, all trajectories
can be categorized in this way: (i) direct rays case corre-
sponds to 1

4 < n < 3
4 , with b ∈ (

b−
1 , b−

2

) ∪ (
b+

2 ,∞)
.

(ii) lensing rings case corresponds to 3
4 < n < 5

4 , with
b ∈ (

b−
2 , b−

3

)∪(
b+

3 , b+
2

)
. (iii) photon rings case corresponds

to n > 5
4 , with b ∈ (

b−
3 , b+

3

)
[67,68].

In Fig. 4, one can observe the variations in the trajectory
of light rays by changing both the acceleration parameter A
and impact parameter b. As such, we show how the trajec-
tory of light rays changes for associated black hole param-
eters, including the acceleration parameter, while keeping
fixed values for the cosmological constant � and the rain-
bow functions F(ε) and H(ε). Figure 2 depicts the number
of orbits n versus the impact parameter b. The blue color indi-
cates direct emission rays, cyan denotes lensing rays, and red
denotes photon ring rays. The photon orbit and the event hori-
zon of the black hole are depicted by the dashed black circle
and the black disk respectively in the ray tracing picture.

Moreover, if we set m = 1, � = −0.02, F(ε) = 1,
H(ε) = 0.9, we can see from the table and figures that the
range of lensing rings grows with the increasing acceleration
parameter A. In the (b, ϕ) plane, the photon orbit displays a
narrow peak when the impact parameter is extremely close
to the critical impact parameter b ± bc [69]. Afterward, as b
grows, the photon trajectories are always direct rays in any
scenario.

5 Discussion and conclusions

We extracted accelerating black hole solutions in gravity’s
rainbow. Then, we studied the effects of various param-
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eters on the horizons of these black holes in Fig. 1.
We evaluated the Hawking temperature and entropy for
these black holes to find the local stability area using
heat capacity. Our findings indicated that the accelerating
black holes with large radii satisfied the local stability. In
addition, we found that there were two divergence points
and one real root for the heat capacity. The local stabil-
ity areas increased by increasing |�|, and the accelerat-
ing parameter (A). However, the local stability decreased
by increasing H(ε). It is worthwhile to mention that the
local stability was independent of another rainbow function
(F(ε)).

The near-horizon region of energy-dependent C-metric is
influenced by both the acceleration parameter and rainbow
functions of the AdS black hole, making it an interesting area
to explore. Of particular interest is the strong gravitational
lensing effect in this region. A critical curve with an impact
parameter bc which gives rise to a photon sphere with a radius
rph, provides a valuable opportunity to investigate the trajec-
tories of light rays categorized as direct, lensed, and photon
rings.

As a consequence, given the dependence of the event hori-
zon and critical impact parameter on the rainbow functions
(noting that, for the event horizon, this dependence is con-
fined to H(ε)), one observes that an increase in the values
of H(ε) results in an increase and decrease, respectively, in
the event horizon and critical impact parameter. Meanwhile,
the photon sphere radius remains unaffected by these func-
tions.

Moreover, our findings indicate a dependency of the crit-
ical impact parameter, photon sphere radius, and event hori-
zon on the acceleration parameter. In turn, both the photon
sphere radius and event horizon exhibit a similar trend in
response to changing acceleration parameter values, whereas
the trend differs for the critical impact parameter. Specif-
ically, an increase in the acceleration parameter leads to a
decrease in both the photon sphere radius and event horizon,
while causing an increase in the critical impact parameter.

Besides, we observed that the range of lensing rings
increased with the rising acceleration parameter A. In
the (b, ϕ) plane, the photon orbit exhibited a narrow
peak when the impact parameter was near the critical
value. Subsequently, as b increased, the photon trajecto-
ries consistently presented as direct rays in all scenar-
ios.
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