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Abstract We demonstrate that there exists a class of cyclic
cosmological models, such that these models can in prin-
ciple solve the problem of the entropy growth, and are at
the same time geodesically complete. We thus show that
some recently stated conclusions, according to which cyclic
cosmologies solving the problem of entropy growth can not
be geodesically complete due to the Borde–Guth–Vilenkin
(BGV) theorem, are not justified. We also add a short concep-
tual discussion on entropy and cyclic cosmology, and present
a detailed analysis of entropy density growth during periodic
and non-periodic evolution for cyclic cosmologies.

1 Entropy and cyclic cosmology

Cyclic cosmology represents an alternative to the big bang
cosmology, replacing the initial singularity with the infinite
number of transitions from contraction to expansion of the
Universe. As a theory, cyclic cosmology has many strong
philosophical, logical and physical advantages. Cyclic cos-
mology avoids the problem of creation ex nihilo, describes
the Universe as infinite in time, gives natural and continues
evolution of the Universe without singularities, while also
solving the additional problems of the standard cosmological
model, such as the horizon problem. For more details regard-
ing the cyclic cosmology in the context of the open problems
of modern cosmology see Introduction in [1] and [2]. Starting
from the early proposal of Tolman [3], there were many pro-
posed models of cyclic universe, based on different specific
assumptions and theoretical additions to general theory of
relativity and standard cosmological model, specially in the
last decades [4–11]. Recently, a general model-independent
approach to study cyclic cosmologies was proposed in [2]
and [1], and also applied to the problem of magnetogene-
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sis [12], cosmological constant problem [13] and creation of
wormholes around the cosmological bounce [14].

Ever since Tolman started to investigate the possibility
of cyclic cosmology [3], a so called entropy problem of the
cyclic cosmology was pointed out. Namely, as the entropy
of the Universe needs to increase both during the contract-
ing and expanding phase, one would expect that it needs to
grow without any limit in the Universe infinite in time, thus
subsequently leading to its thermal death. This problem was
even more severe in the original Tolman’s proposal, since
it was based on a spatially finite geometry of the Universe
(k = 1), where the radius of the Universe is proportional to
its entropy – and would then need to be practically singular
in the past. Apart from this problem of the entropy growth,
the contracting phase of the cyclic cosmologies could be con-
nected with additional problems of growing instabilities and
black hole formation [15–17]. In this work, we will not study
these additional potential problems in detail, leaving this for
future research, but we will focus only on the principal ques-
tion of the entropy growth.

Before proceeding further we should stress that invoking
the concept of the entropy growth to question the possibil-
ity of cyclic cosmology is highly questionable. This follows
from the fact that we at this moment do not have any proper
knowledge of how meaningful is the concept of the entropy
growth when applied to the whole Universe and its evolu-
tion, and when, furthermore, considered in a general frame-
work of curved spacetime. It should also not be forgotten
that the concept of entropy growth has a completely differ-
ent character from the usual physical laws, since it is purely
statistical in its essence, and thus represents a highly likely
tendency, but not necessity – which is furthermore depen-
dent on the physical context of available phase space and its
evolution. For this reason, it is highly problematic to skip
the serious and detailed analysis of equations of motion and
their solutions, and to make conclusions about the physics
of the Universe using the simple shortcut – “entropy needs
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to grow”, as it is unfortunately sometimes done. There are
further strong reasons to conclude that the usual concept of
entropy and its growth could be problematic in the context
of cosmology, or at least that we currently do not have a
proper understanding of it. Namely, the evolution of the Uni-
verse does not seem to be in accord with the notion of the
necessary entropy growth even in the standard cosmological
model. The CMB spectrum, almost perfectly corresponding
to the spectrum of the black body radiation, tells us that the
early Universe was already in the state of thermodynamic
equilibrium, which means almost maximal entropy. This is
in a direct contradiction with the assumption that the early
Universe was in the state of low entropy which is increasing
[18,19]. The proposals which invoke the concept of entropy
of gravity to solve this issue [20] are still very hypothetical
and far from obvious. To conclude, it should be completely
obvious that arguments based on the entropy growth can not
be used to dismiss the viability of cyclic cosmology, since at
the same time similar considerations lead to contradictions
in the standard big-bang cosmology. In fact, some interesting
works and models regarding entropy considerations in cyclic
cosmology can be found in [21–24].

Having made this critical remarks, which show that
entropy considerations are in fact not a justified argument
against cyclic cosmology on the fundamental level, in this
work we will, for the sake of an argument, assume that
the concept of entropy and its growth can be meaningfully
applied to cosmology in a simple and usual manner. In this
context, it was recently proposed that a cyclic cosmology
can be made consistent with the entropy growth, invoking
an exponential growth of the scale factor from one cycle to
the next one [25,26]. In this proposal, the total entropy of
the Universe continues to grow between the cycles, but its
density decreases due do the huge increase of the scale fac-
tor. Since the large regions of the Universe exit the causal
horizon during such expansion, the entropy of some causally
connected region in such a cyclic Universe can then be much
smaller at the beginning of a new cosmological cycle.

However, it was pointed out that such cyclic cosmol-
ogy can not be geodesically complete due to the BGV
theorem [27–29]. This theorem, proposed by Borde, Guth
and Vilenkin, states that a sufficient condition for geodesic
incompleteness is the positive value of average Hubble
parameter. It can thus be shown [28,29] that the model
proposed in [25] is past geodesically incomplete, since the
decrease of entropy density in this model leads to the pos-
itive average value of the Hubble parameter. One can find
some examples where authors have simply added a constant
to the scale factor which could potentially circumvent the
assumptions of the BGV theorem. However, those models
are limited to the fact that the spatial curvature k is nonzero.
Due to this fact, the Friedmann equations could admit a non-
homogeneus solution of the differential equation, and thus

a solution with a constant can be simply constructed math-
ematically [30–32]. Those results were, however, quantum-
mechanically unstable and can collapse by quantum tunnel-
ing to zero radius as shown in [33]. From a more technical
perspective, quite recently, the authors in [34] proved that an
uncountable infinite class of classical solutions (monsters)
which have Hav ≥ 0 are in fact geodesically complete, while
also those solutions rely on a more general definition of Hav

[35]. In our work we will also give a more general descrip-
tion of the cyclic Universe and show that some claims made
in [28,29], regarding the geodesic incompleteness of cyclic
cosmologies, are not valid, and that there exist cyclic cos-
mologies which can have phases of decreasing entropy den-
sity, while not violating BGV theorem.

Before continuing with the discussion along the announced
lines, one should pay attention to another very important crit-
ical remark. As very properly pointed out by [36], the absence
of geodesic completeness does not necessary imply the exis-
tence of a physical singularity. This is due to the fact that
particles traveling with a non-vanishing velocity on a past
incomplete geodesic need to reach super-Plankian energies
where the very concept of their trajectory looses it sense
(either due to the quantum interaction processes or because
they need to collapse to a black hole). This is the reason why
such trajectories can not be used for the definition of an initial
singularity. As further shown in [36], when only the particles
not reaching the super-Planckian scales are considered, then
there will be no singularities if the cosmological scale factor
is not vanishing. For this reason, even the cyclic cosmologies
which are shown to be geodesically incomplete do not neces-
sarily contain a physical singularity. Similar considerations
and arguments from which several constraints appear can be
found in [37–39].

This paper is organized in the following manner: in 2. we
review the concept of geodesic incompleteness on FLRW
spacetime, review the BGV theorem and geodesic incom-
pleteness of come cyclic models, in 3. we present a class of
geodesically complete cyclic models capable of solving the
problem of the entropy growth, and we conclude in 4.

2 Geodesic incompleteness on FLRW spacetimes

Here we will give a short review of geodesic incom-
pleteness, specifically in Friedmann–Lemaitre–Robertson–
Walker (FLRW) spacetimes. The definition of geodesic
incompleteness is frequently given as a notion that paths
of observers through spacetime (geodesics) can only be
extended for a finite time as measured by an observer travel-
ing along one, or more technically a property of a spacetime
wherein there exists at least one timelike or null geodesic
that cannot be extended to arbitrarily large values of its affine
parameter—such a spacetime contains a singularity. Accord-
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ing to the famous singularity theorems of Hawking and Pen-
rose [40–46] there is a great indication that there was a singu-
larity present in the cosmological past, therefore technically
we are dealing with the non-spacelike past geodesic incom-
pleteness. The formal statement of the theorem can be con-
cised as follows [47]: Let (M, gμν) be a globally hyperbolic
spacetime with Rμνξ

μξν ≥ 0 for all timelike ξμ, which will
be the case if Einstein’s equation is satisfied with the strong
energy condition (SEC) holding for matter. Suppose there
exist a smooth spacelike Cauchy surface � for which the
trace of the extrinsic curvature satisfies K ≤ C < 0 every-
where, where C is constant. Then all past directed timelike
geodesics are incomplete. For the details and proof of the
theorem please consult [47]. Hawking and Penrose theorems
invoke Einstein’s equation in its statement, and it was in fact
shown that in models of eternal inflation the SEC can be bro-
ken and consequently circumvent the singularity theorems.
However, with the BGV theorem [27] one can investigate
geodesic completeness from a purely kinematical level. For
the BGV theorem it will be enough to adopt a much weaker
assumption where the average value of the Hubble parame-
ter, Hav , should be grater than zero along some past-directed
non-spacelike geodesic. Let’s introduce the FLRW geometry

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (1)

where a(t) is the scale factor. Firstly, we will inspect the null
geodesic kinematics in this setting. By solving the geodesic
equation and using (1) one gets dλ ∼ a(t)dt where λ is
the affine parameter. Therefore, if a(t) decreases sufficiently
quickly in the past direction, then

∫
a(t)dt can be bounded

and the maximum of the affine lenght must be finite [36]. By
introducing the Hubble parameter H(t) = ȧ/a and multi-
plying it with dλ ∼ a(t)dt it follows
∫ λ(t f )

λ(ti )
H(λ)dλ =

∫ a(t f )

a(ti )

da

a(t f )
≤ 1, (2)

where in dλ = [a(t)/a(t f )]dt the parameter 1/a(t f ) is used
as a proportionality constant so that dλ/dt = 1 when t =
t f . The inequality (2) holds if a(ti ) = 0. By exploiting the
definition of the average quantity of the Hubble parameter
we get

Hav = 1

λ(t f ) − λ(ti )

∫ t f

ti
H(λ)dλ ≤ 1

λ(t f ) − λ(ti )
, (3)

where it is clear that any backward-going null geodesic with
Hav > 0 must be past-incomplete. This is the main result
of the BGV theorem which can be generalised for timelike
geodesics, but also for a more general cosmological models,
without assuming homogeneity and isotropy, while assuming
a valid definition of the Hubble parameter, for details consult
[27–29,36]. It could be pointed out that in the original version
of the BGV theorem the meaning of the phrase “sufficiently
quickly diminishing scale factor” is actually not precisely

defined. Furthermore, in the original formulation it is not
stressed that the geodesic incompleteness follows from the
assumption that Hav(ti , t f ) is bounded from below by c > 0
when ti → −∞. The formulation could be made more strict
by the slight modification of (3) in the following manner: let
c ∈ R, c > 0 and t f ∈ R, if ∀ti < t f , 0 < c < Hav(ti , t f )
then it follows λ(t f )−λ(ti ) < 1/c, that is, the geodesics are
past-incomplete.1

3 Geodesic completeness and cyclic cosmology

It was claimed that cyclic cosmologies solving the problem
of the entropy growth need to be geodesically incomplete due
to the BGV theorem [27,28]. This claim was then recently
elaborated and further demonstrated in [29] referring to the
model of Ijjas and Steinhardt [25]. In order to have geodesic
completeness on FLRW spacetime it is necessary that all
geodesics are past and future infinite with respect to the
proper time, when measured from some arbitrary moment
of time. Using the metric of the FLRW spacetime and the
geodesic equation it is possible to see [29] that the following
integral describing the interval of proper time needs to be
divergent:

δτ =
∫ 0

−∞
dt

√
1 + Ca(t)−2

, (4)

where C is a constant. Otherwise, the finite value of this
integral signals that the geodesic ends at a finite value of the
proper time when measured from some arbitrary time taken
as “now” – i.e. that the geodesic is past incomplete. If during
some cycle of cyclic cosmology we want to have a significant
dissipation of entropy density, then we need to have a total
increase of the scale factor at the beginning of a new cycle.
Thus, the Hubble parameter during expansion, Hexp > 0,
and the Hubble parameter during contraction, Hcontr < 0,
then need to satisfy the following inequality
∫ tmax

tb
Hexpdt 	 −

∫ tb+T

tmax

Hcontr dt, (5)

where tb is the time of the bounce at which the cosmological
cycle begins, tmax is the time of the maximal scale factor
during this cycle, and T is the period of the considered cos-
mological cycle. This conditions, of course, means that the
average Hubble rate during this cycle needs to be greater than
zero. In the model of Ijjas and Steinhardt the Hubble param-
eter is assumed to be strictly periodic, H(t) = H(t+T ), and
during each cycle the scale factor is exponentially increased,
a(t + T ) = a(t)eN . Under such assumptions, the aver-
age value of the Hubble parameter in each cycle will be

1 The authors are thankful to the anonymous referee for this proposed
generalisation of the BGV theorem.
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positive, and so will be the total average Hubble param-
eter of the Universe for any number of cycles. Therefore,
such cyclic cosmology will be, according to BGV theorem,
geodesically incomplete. For a more elaborated and techni-
cal proof starting from these assumptions see [29]. One can
also inspect toy-models for such cyclic cosmology with expo-

nential growth, such as a(t) = ebt
(
a0 + sin2(ωt)

)
, where

b, ω and a0 are constants, by using such kind ansatz in inte-
gral (4) and showing that the integral is not divergent, thus
demonstrating the geodesic incompleteness. Therefore, one
can conclude that the presented cyclic model is geodesically
incomplete.

It would, however, be completely wrong to conclude from
the previous discussion that cyclic cosmologies in general
need to be geodesically incomplete. This is because the pre-
sented type of the model, as well as the proof of its geodesical
incompleteness, rests on several assumptions which do not
need to be satisfied for more general cyclic cosmologies.
Namely:

• the Hubble parameter does not need to be periodic in
order to have a cyclic (i.e. oscillatory) behavior,

• the scale factor does not need to exponentially increase
over every cycle,

• the phase of cyclic evolution of the Universe can be a part
of more general type of cosmological dynamics,

• it is possible that the Universe is essentially empty during
some phases of its evolution.

3.1 Entropy growth considerations

The problem with cyclic cosmologies which keep the scale
factor periodic over every cycle is basically that this assump-
tion leads to unbounded increase of entropy density. This
comes from the fact that the increase of entropy density dur-
ing contraction leading to a new cycle with periodic a(t) is
significantly greater than the possible decrease of entropy
density during expansion (while entropy, of course, in gen-
eral grows both during the contraction and expansion). This
is due to the huge increase of entropy during the contracting
phase, which is coming from interaction of matter content of
the Universe during contraction. Let us introduce the func-
tion of change of entropy density per change of the scale
factor

rS(t) = 1

ρb

dρs
da

, (6)

where ρb is the entropy density at the bounce of the corre-
sponding cycle, t = tb. Then we can write down the above
statement of huge increase in entropy density during a peri-
odic cosmological cycle in the following way: 
ρS/ρb =∫ tmax
tb

a · rS · Hdt + ∫ tb+T
tmax

a · rS · Hdt 	 1. Hence, over
infinite number of cycles the entropy density diverges. In the

remainder of this section we will provide a detailed discus-
sion showing that this is indeed the case. On the other hand, if
the scale factor is exponentially increasing and not periodic,
and accordingly the inequality (5) is satisfied, it is possible
to have a significant decrease of entropy density over a cycle,

ρS/ρb = ∫ tmax

tb
a ·rS ·Hexpdt+

∫ tb+T
tmax

a ·rS ·Hcontr dt < 0,
|
ρS/ρb| 	 1. In such a scenario, large regions of the Uni-
verse become causally disconnected and characterized by
smaller entropy due to exponential expansion, although the
total entropy of the Universe continues to grow. But, as we
pointed out already, the condition (5) when applied to the
limit t → −∞, if a(t) decreases sufficiently quickly in
the past direction, leads to Hav > 0 in the past and thus
to geodesic incompleteness.

In order to demonstrate what was stated above, and to
make this discussion of entropy problem more precise and
concrete, we should determine cosmological evolution of
entropy density, that is make a model for rS(t). This is by
no means a simple task, since even the entropy density at
present time is open to discussion, not to mention its past
and future evolution – which will also depend on the still
unknown details of dark and high energy physics. Apart from
that, we also want to stay as general as possible and not lim-
ited to specific models. Due to this reasons we can only make
some rough estimates based on reasonable physical expec-
tations. The entropy density will in general consist of the
contribution from radiation entropy, baryonic and dark mat-
ter entropy and dark energy entropy. For the sake of the cur-
rent discussion we can assume that the dark energy entropy
is zero, as it is the case in general relativity. The radiation
energy density in thermal equilibrium can be written as [48]

ρrad
S = 2π2

45
g∗T 3, (7)

where T is the temperature. As the temperature of the
radiation scales like T ∼ 1/a(t) it follows that roughly
ρS ∼ 1/a3(t). It can be estimated that the entropy contri-
bution coming from baryons and dark matter is negligible in
comparison to radiation entropy today [49], so it can also be
safely ignored in the interval from the bounce till today. On
the other hand, the matter contribution to entropy will in gen-
eral rise with respect to the contribution at the bounce time,
t = tb, due to the second law of thermodynamics, i.e. for the
entropy values in the observable Universe we have S(t)mat =
S(tb)mat + 
Smat (t) (with 
Smat (t) > 0) [50]. Thus, we
can write ρmat

S (t) = [1/(V0 ×a(t)3)][Smat (tb)+
Smat (t)],
where V0 is the volume of the observable Universe today
(when a(t = ttoday) = 1). Now we can make an estimate of
the average value of change of entropy density per change
of the scale factor r̄S during the expansion from the time
of bounce, tb, till turnaround, t = tmax (while ignoring the
effects of all phase transitions and change of effective degrees
of freedom during the cosmological evolution – that is, con-
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sidering only the dominant scale dependence). We can write
the average value of the change of entropy in interval of the
expansion of the Universe as:

r̄ expS = ρS(tmax )/ρb − 1

a(tmax ) − a(tb)
, (8)

Now, using the above presented dependence on the scale
factor, noticing that a(tb) � a(tmax ) and ignoring the con-
tribution of matter to entropy density during the bounce, this
can be approximated as

r̄ expS ≈ 
Smat (tmax )

V0a(tmax )4ρrad
b

− 1

a(tmax )
, (9)

If there would be no significant increase of the matter con-
tribution to entropy during the expansion, then obviously
r̄S ≈ −1/a(tmax ). The negative average value of the change
of entropy here signifies a decrease of entropy coming from
the huge expansion of the Universe from a(tb) to a(tmax ).
In such a case, obviously | r̄S |� 1 and its value decreases
by the increase of the scale factor value at the turnaround.
By considering the significant physical parameters, we can
indeed see that it is reasonable to assume that the first term
in the previous equation is negligible. We can first take
into account that ρrad

b = ρrad
S (today)/a(tb)3, and also that

ρrad
S (today)×V0 = Srad(today). So the first term in Eq. (9)

can be written as [
Smat (tmax ) × a(tb)3]/[Srad(today) ×
a(tmax )

4]. The value of radiation (and total) entropy in the
observable Universe can be estimated to be 1088 [49], and we
can moreover assume that the value of the scale factor during
the bounce is associated with the Planck scale, a(tb) = 10−32

and that the Universe will at least continue to expand for some
time, say a(tmax ) = 105. Thus we get that the first term in
Eq. (9) is approximately 
Smat (tmax ) × 10−204. Since the
current value of the total entropy of the observable Universe
is estimated to be 1088 today, it is quite natural to assume
that during the expansion of the Universe from today until
the turnaround time the growth of entropy contribution com-
ing from matter cannot compensate for such a small number
as 10−204, and this term will be negligible.2 It thus follows,
r̄ expS ≈ −1/a(tmax ). This value for the average change of
entropy density shows that the entropy density has signifi-
cantly decreased during the expansion from the bounce until
the turnaround due to the large increase of the scale factor.

Now we can determine the average value of the change
of entropy density per change of the scale factor during the
contraction phase. Let us first consider the simple periodic
model of cosmological oscillations, given for instance by
a(t) = a0 + sin2(ωt) or similar periodic functions. We first

2 Actually, this estimate is not important for the final estimate of the
relative change of the entropy density during the whole cycle, because
this term in any case gets cancelled by the corresponding term during
the contraction phase.

notice notice that, due to the periodicity of the scale factor,
a(tb+T ) = a(tb), the total entropy density at the new bounce
can be written as ρS(tb+T ) = ρmat

S (tb+T )+ρrad
S (tb+T ) ≈

[1/(V0 × a(tb)3)][Smat (tb) + 
Smat (tb + T )] + ρrad
S (tb),

where 
Smat (tb + T ) is, of course, not a periodic but grow-
ing function. Using this expressions in the equation for the
average value of entropy change per scale factor during con-
traction

r̄ contrS = ρS(tb + T )/ρb − ρS(tmax )/ρb

a(tb) − a(tmax )
, (10)

and doing the equivalent steps and assumptions as before we
finally arrive at:

r̄ contrS ≈ − 1

a(tmax )
− 
Smat (tb + T )

Srad(today)amax
. (11)

Taking into account that the relative change of the entropy
density per one cosmological cycle is 
ρS/ρb = r̄ expS ×
(a(tmax ) − a(tb)) + r̄ contrS × (a(tb) − a(tmax )), we finally
obtain


ρS/ρb ≈ 
Smat (tb + T )

Srad(today)
. (12)

We see that in the periodic cyclic models there necessary
exists a positive change of the entropy density at the end of
the cosmological cycle relative to the entropy density at the
bounce. In the model which was used here, this change is
approximately equal to the ratio of the increase of matter
contribution to entropy during the whole cosmological cycle
to the value of radiation entropy today. For the sake of our
discussion, it is even not important to make a numerical esti-
mate of this term. It is enough to know that it has a positive
value for every cycle, which implies that during the cosmo-
logical evolution the entropy density grows with no upper
bound.

We now discuss how can this unbounded growth of
entropy density over cosmological cycles be avoided in the
case of non-periodic oscillatory cosmologies. Let us con-
sider the model of the type a(t) = eσ t (a0 + sin2(ωt)),
focusing on our present cosmological cycle. Then, we again
have r̄ expS ≈ −1/a(tmax ), where tmax is the time of the
maximal scale factor during the current cycle. Now the
total entropy density at the new bounce can be written as
ρS(tb+T ) = ρmat

S (tb+T )+ρrad
S (tb)e−3σT = [e−3σT /(V0×

a(tb)3)][Smat (tb)+
Smat (tb +T )]+ρrad
S (tb)e−3σT . Then,

repeating the same calculation, we now have

r̄ contrS ≈ e−3σT
[

1

eσT ab − amax

(
Smat (tb + T )

Srad(today)
+ 1

)]

,

(13)

which leads to


ρS/ρb ≈ −1 + e−3σT
[
1 + 
Smat (tb + T )

Srad(today)

]
. (14)
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Generalizing this result to further cycles, where t = tb +
NT , with N being an integer, we see that the the growth of
entropy density starts to diminish with time (since we do not
expect that the contribution of the matter to entropy would
grow as fast to be an exponential function – and even in
that case, the overall attenuation of the second term in (14)
can be established by the proper choice of σ which is a free
parameter of the theory). Moreover, at least after a certain
time, the entropy density starts to decrease. So, in this type
of models there is no divergence, but in fact a decrease of
entropy, as we evolve towards the infinite future (which, of
course, means that the entropy density was always larger
in the past cycles). Note that, by definition, the asymptotic
value for the late times 
ρS/ρb ≈ −1 means that the value
of entropy density at the end of the cycle is approximately
zero (which is, of course, the lower bound for the value of
entropy density).

We can also generalise the upper result with a more general
type of evolving Universe with a(t + T ) = f (T )a(t) where
f (T ) is a monotonically growing function. In this case,
ρS(t) = ρmat

S (t) + ρrad
S (t) for one whole period beginning

with the bounce becomes ρS(tb+T ) ≈ f (T )−3(
Smat (tb+
T )/(V0a3(tb)) + ρrad

b ). Then we can calculate r̄ contrS as

r̄ contrS = 1

ρb

ρS(tb + T ) − ρS(tmax )

ab f (T ) − amax
(15)

r̄ contrS ≈ f (T )−3
[

1

ab f (T )−amax

(
Smat (tb + T )

Srad(today)
+1

)]

,

(16)

and the change of entropy density per N cycles is given as


ρS(tb + NT )/ρb ≈ −1 + f (T )−3N
[
1 + 
Smat (tb + T )

Srad (today)

]
.

(17)

From this equation we see see that f (T )−3N needs to
decrease sufficiently fast in order to compensate for the mat-
ter entropy growth.

But, while the considered class of toy models, a(t) =
eσ t (a0+sin2(ωt)), solves the problem of unbounded entropy
density growth, it is not geodesically complete according to
BGV theorem, since it can be checked that for this model
limt→−∞ Hav > 0, and further confirmed by the conver-
gence of the integral (4) for this a(t). Since the positive aver-
age value of H(t) during the cosmological cycle is needed
in order to have a dominance of expansion over contraction
– which can lead to the attenuation of entropy density, as
we have demonstrated in the above model of exponentially
growing oscillations – it may seem that all models solving
the entropy growth problem need to be geodesically incom-
plete. But we will demonstrate in the next section that this is
in fact not the case.

3.2 Geodesically complete cyclic solutions with no entropy
problem

The models which solve the entropy density growth prob-
lem and are geodesically complete need to be restricted in
their dynamics when t → −∞. First of all, if a(t) decreases
in the past, then the rate of change which a(t) approaches
while t → −∞ cannot be greater than zero, since in that
case Hav > 0 and the BGV theorem leads to geodesic incom-
pleteness. On the other hand, ifa(t) increases while t → −∞
there will be an infinite time of diminishing scale factor, and
thus increasing entropy density. Namely, as the inequality (5)
is not valid for such cyclic models, while also a(t) → ∞ for
t → −∞, this leads to unbounded growth of entropy density
in time. This can be clearly seen if we consider a function like
a(t) = e−σ t (a0 + sin2(ωt)) and repeat the final calculation
of the previous subsection. We get that the entropy density
strongly increases for every cycle in the following manner:


ρS/ρb ≈ −1 + e3σT
[

1 + 
Smat (tb + T )

Srad(today)

]

. (18)

Such an effect will be present for every type of evolution man-
ifesting the decrease of the scale factor during time, as can be
easily seen by directly generalizing the above expression for
any kind of monotonically growing function, g(t) describing
the decrease of the scale factor during the subsequent cycles,
a(tb+T ) = a(tb)/g(T ), instead of the exponential function.
In analogy with previous cases,

r̄ contrS = 1

ρb

ρS(tb + T ) − ρS(tmax )

ab/g(T ) − amax
(19)

r̄ contrS ≈ g(T )3
[

1

ab/g(T )−amax

(

Smat (tb + T )

Srad(today)
+1

)]

,

(20)

and the change of entropy density per N circles for a more
general condition a(tb + T ) = a(tb)/g(T ) where g(t) is a
monotonically growing function is given as


ρS(tb + NT )/ρb ≈ −1 + g(T )3N
[

1 + 
Smat (tb + T )

Srad (today)

]

.

(21)

The remaining possibility of dynamics is that the scale fac-
tor decreases while approaching some fixed positive value,
a → c when t → −∞ such that a(t) > c, ∀t < t ′ for
some fixed t ′ ∈ R. In this case it directly follows from
definition H = ȧ(t)/a(t) that Hav → 0 as t → −∞
while also the integral

∫ t ′
−∞ a(t)dt diverges (since in this

case | ∫ t ′
−∞ a(t)dt |> c | ∫ t ′

−∞ dt |= ∞). Thus, in accord
with (3), in this case the affine length diverges, i.e there is no
geodesic incompleteness. On the other hand, for cyclic mod-
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Fig. 1 Here we present the
scale factor for the function
(22), where a0 = 0.5, ω = 1,
b = 0.1, c = 2 and t̃ is time in
dimensionless units – for
example t̃ = H0t with H0 as the
Hubble constant at some
moment

els where a → c while t → −∞ and which can be mod-
elled as exponentially growing (or, more generally, evolv-
ing according to some sufficiently fast growing function) for
t → ∞ there is no divergence of entropy density as discussed
and shown in Eqs. (14) and (17).

All of this can be clearly seen if we consider a simple
example of adding a constant to already mentioned oscilla-
tory function with exponential growth. Namely, consider the
function

a(t) = a0 + ebt [sin2(ωt) + c], (22)

where b, ω, c and a0 are positive constants. This function is
depicted in Fig. 1.

It is simple to see that a(t) → a0 when t → −∞,
while in the same limit Hav → 0. Here the role of the
constant a0 is of crucial importance – since, as can be eas-
ily checked, if a0 = 0 then limt→−∞ Hav > 0, while for
a0 > 0 limt→−∞ Hav = 0. Also, by adding this function
of the scale factor directly to the integral (4) it follows that
the integral diverges, again signalling that geodesics on such
spacetime are complete. At the same time, as already dis-
cussed, the entropy density in such model decreases during
the cosmological evolution toward t → ∞. Note that the
presence of constant a0 does not play any important role in
the entropy density growth considerations since it is enough
to consider the relative change w(t) ≡ a(t) − a0 as the rel-
evant parameter, and then the discussion basically stays the
same as for (17) where one can substitute a(t) → w(t) and
use f (t) = ebt , sincew(t+T ) = ebTw(t). While the entropy
density changes less and less due to the change of the scale
factor as we move to t = −∞, there is still a slight contri-
bution to the increase of entropy density due to the sponta-
neous increase of entropy, assuming the validity of the second

law of thermodynamics. In order to avoid large increase of
entropy density, it is sufficient to demand that the decrease
of entropy density coming from the slow change of the scale
factor needs to compensate for the spontaneous increase of
entropy in time. Such change to entropy density due to expan-
sion can be estimated as 
ρS ≈ ρbrS(a(t) − a0) < 0 (as rS
is negative since entropy density decreases under dominant
effect of expansion). Moreover, as we move to t → ∞ the
entropy density strongly decreases due to the dynamics of
exponential expansion.

In the example considered above, oscillations gradually
diminish their amplitude in the past while approaching some
constant asymptotic value. Another possible scenario leading
to Hav → 0 for t → −∞ consists in dynamics of the scale
factor where the effective period of oscillations changes dur-
ing the evolution such that it tends to infinity when t → −∞.
Consider, for example, the following function of the scale
factor

a(t̃) = A
(

1 + Bect̃
)

exp
[
sin

1

t̃2 + σ

]
, (23)

with positive constants A, B, c and σ , which is depicted
on Fig. 2. Here, despite of the difference of dynamics of
the scale factor, the limit of Hav and 
ρs at t → −∞ is
the same as in the previous example, so all the discussion
regarding the avoiding geodesic incompleteness and entropy
divergence is the same as before. From the previous discus-
sions we see that this example consists of tree approximate
regimes: slow expansion, oscillations with growing ampli-
tude, and the exponential expansion for t → ∞, where all
this three phases can, for the proper choice of parameters,
as discussed in the previous subsection, lead to the decrease
of entropy density with time. Although this model does not
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Fig. 2 Here we present the
scale factor for the function
(23), where A = 1, B = 1,
c = 1 and σ = 0.03

manifest cyclic evolution over all time, it is still relevant as
an example of infinite geodesically complete cosmology with
an interval of oscillatory dynamics. Moreover, since it can be
easily seen that in the limit t → ∞ this scale factor satisfies
a(t) ∝ ect this example also demonstrates how inflationary
evolution can be made past geodesically complete.

3.3 Physical viability of the proposed models

It can be asked how realistic are the proposed geodesically
complete cyclic cosmologies with no entropy growth prob-
lem. In other words, the following question arises: how much
of exotic new physics is needed for their support? In address-
ing this question, we need to first take into account that the
main task of this paper was to show that cyclic cosmologies
can at the same time be geodesically complete and avoid the
entropy growth problem, contrary to some recent claims. For
this goal, it was enough to show how to construct a class
of counterexamples to the claim that “BGV theorem makes
cyclic cosmologies with decreasing entropy density geodesi-
cally incomplete”. Now, when this general claim was proven
to be wrong, the physical viability of cyclic cosmologies
needs to be determined on case to case basis. However, we
can make some general remarks. The cosmologies of the form
(22) and similar require the modification of the standard gen-
eral relativity or can be supported by some appropriate forms
of exotic fluids. Even the most simple modified gravity the-
ories, such as f (R) and f (T ) gravity have the mathematical
structure which is rich enough to support such type of solu-
tions, although the appropriate modification function may
not be expressible in analytical form (compare the discussion
in [1]). Moreover, we can notice that the geodesically com-
plete cosmologies can be constructed from some well known

and already existing models avoiding the entropy problem,
such as the one proposed in [4,5], if the extra condition, that
a(t) → const as t → −∞ is imposed. We thus conclude
that geodesically complete cyclic cosmologies in principle
do not require any necessary new physics with respect to
earlier proposal which were not geodesically complete.

4 Conclusion

We have started this work by giving a critical examination of
relation between concepts of entropy and cyclic cosmologies.
We have argued that the arguments related to necessity of
entropy growth can not be properly used against the idea
of cyclic cosmology, since the status of the entropy concept
in general relativity, and its meaning in the evolution of the
Universe as a whole, is not at all properly understood. This
conclusion is further stressed by the fact that the concept of
necessary entropy growth is currently in tension even with
the properly tested results of the standard cosmology, namely
the CMB spectrum properties.

In the further part of the work we have, however, for the
sake of the argument, assumed that the concept of entropy
growth can be meaningfully applied to cosmology in the
usual manner. We then considered the question of geodesic
completeness for the cyclic models which in principle can
avoid the problems associated with entropy growth. We did
this while taking into account the fact that geodesic incom-
pleteness does not necessary imply the existence of physical
singularities.

After preliminary considerations related to geodesical
completeness and entropy growth, we have provided the anal-
ysis of the entropy density growth per cycle in the case of
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periodic cosmologies, as well as in the case of cyclic cos-
mologies with exponentially growing oscillations, and also
for the more general type of growth given by the condition
a(tb +T ) = f (T )a(tb). It was demonstrated that if the scale
factor is growing sufficiently fast between the cosmological
cycles, the entropy density growth problem can be avoided.
We have then furthermore demonstrated that such cosmolo-
gies with no entropy density growth problem can be geodesi-
cally complete. For this to be the case the following necessary
condition limt→−∞ a(t) = const. needs to be satisfied.

We have thus concluded that cyclic cosmologies can be
geodesically incomplete for a special set of simple cyclic
models, but that it is not possible to use the BGV theorem to
conclude that physically realistic cyclic cosmologies are in
general geodesically incomplete. Furthermore, we demon-
strated that even some very simple models can at the same
time be past geodesically complete and solve the problem
of entropy growth. Some of the previous discussions in the
literature, that made general conclusions on the limitation of
cyclic models due to the BGV theorem, are thus not justified.
We can conclude that BGV theorem can be very restrictive
with respect to geodesic incompleteness in the context of
general relativity, where the solutions typically lead to sim-
ple dynamics of the scale factor in the form of contraction and
expansion, as is the case for inflation. But, for more general
gravitational theories (for example, already for simple mod-
ifications of GR, such as f (R) and f (T ) gravity), which can
lead to very rich potential dynamics of the Universe, there
will be many models which can be geodesically complete
and solve the entropy growth problem.
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