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Abstract We revise the dynamics of interacting vector-like
dark energy, a theoretical framework proposed to explain the
accelerated expansion of the universe. By investigating the
interaction between vector-like dark energy and dark mat-
ter, we analyze its effects on the cosmic expansion history
and the thermodynamics of the accelerating universe. Our
results demonstrate that the presence of interaction signif-
icantly influences the evolution of vector-like dark energy,
leading to distinct features in its equation of state and energy
density. We compare our findings with observational data
and highlight the importance of considering interactions in
future cosmological studies.

1 Introduction

As revealed by observational data, the accelerated expan-
sion of the universe is one of the most perplexing phenom-
ena in modern cosmology. The prevailing explanation for
this cosmic acceleration lies in an enigmatic entity known
as dark energy, which constitutes a significant portion of the
universe’s energy content [1,2]. Exploring this entity offers
immense potential to unravel the mysteries surrounding the
fundamental building blocks and evolution of our vast Uni-
verse. The enigma of dark energy lies in its ability to drive
the universe’s accelerated expansion while eluding a compre-
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hensive understanding of its physical origin and underlying
mechanisms. This cosmic force permeates the fabric of space,
counteracting the gravitational pull of matter and pushing
galaxies farther apart. The precise nature of dark energy
remains elusive, with candidates ranging from a cosmologi-
cal constant, often associated with the energy of empty space
[3,4], to dynamical scalar fields evolving over cosmic time
[5] and modified gravity theories [6,7].

The simplest dark energy model, the �CDM model based
on the cosmological constant and cold dark matter, faces
theoretical issues like the fine-tuning problem tied to its
energy scale, the cosmological constant problem, and the
coincidence problem [8,9]. Furthermore, notable discrepan-
cies have emerged between the �CDM model predictions
using cosmic microwave background (CMB) data and inde-
pendent local measurements [10–13]. Specifically, the Hub-
ble constant H0 from Planck data is 4.0σ to 6.3σ below
local measurements [14], and the σ8 clustering amplitude is
higher than values from low-redshift observations [13,15–
17]. Thus, these theoretical issues and recent observational
findings have motivated the scientific community to explore
and investigate alternative dark energy models. For instance,
in the context of scalar field models and modified gravity the-
ories, one can find in the literature non-minimally coupled
scalar fields models [18–25], coupled dark energy [26–31],
f (R, φ) [32–38], and f (T, φ) gravity [39–46], among others
(see Refs. [2,7,47] and references therein).

Additionally, dark energy has not only been described
using scalar fields but also through other types of fields, such
as vector fields. In the context of generalized Proca theo-
ries, a massive vector field is introduced, which breaks the
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U (1) symmetry. These vector theories belong to the class of
time-like vector models. The homogeneous version of this
vector field has a non-zero temporal component that is a func-
tion of cosmic time. For the most general case, its dynamics
exhibit an asymptotic de Sitter attractor [48–53]. However,
when the field is in its canonical form and minimally cou-
pled to gravity, the equation motion becomes trivial, lacking
dynamics and rendering it incapable of acting as a source
of dark energy [54]. Furthermore, space-like vector has also
been explored as a means to model inflation and dark energy
[54–61]. While space-like models are generally associated
with generating a highly anisotropic universe, there are spe-
cific scenarios where this challenge can be overcome. For
instance, one of these scenarios involves the assumption of
many randomly oriented vector fields, which, on average,
results in an isotropic cosmological background, as described
in Refs. [62,63]. Another method entails the consideration of
three identical vector fields for each spatial direction, referred
to as the ‘cosmic triad,’ a concept that also aligns with the
background symmetry, as expounded upon [57].

Specifically, in Ref. [57], the author proposed a dark
energy model based on three self-interacting vector fields
minimally coupled to gravity, oriented in mutually orthogo-
nal spatial directions, and sharing the same time-dependent
length. This model, also known as the vector-like dark energy
model, effectively drives the current accelerated expansion of
the universe and introduces new tracking attractor solutions,
making cosmic evolution insensitive to initial conditions [57]
(see also Refs. [54,58,64,65]). Furthermore, in Ref. [66],
the authors examined the dark-like energy model using the
Noether approach, while in Ref. [67], they investigated the
unified first law within this model.

As an interesting extension of this latter model, the Inter-
acting Vector-like Dark Energy (IVDE) model has been pro-
posed. For instance, in Ref. [68], the authors constructed
a vector-like dark energy model for which an interaction
between dark energy and a background perfect fluid was
assumed. They identified two types of cosmological coin-
cidence problems: the first asks why we live in an epoch
where dark energy and dust matter energy densities are com-
parable; the second ponders why we exist in an epoch with
wde < −1. In this way, they found that these cosmological
coincidence problems can be alleviated in such IVDE mod-
els. Also, in Ref. [69], the predictions of the IVDE model
were compared with observational H(z) data. In particular,
they showed that the best IVDE models exhibit an oscillating
feature for H(z) and the equation-of-state parameter (EoS),
crossing −1 around redshift z ∼ 1.5.

The IVDE model offers a compelling avenue of explo-
ration, providing a fresh approach to understanding the pro-
found mysteries of dark energy. In this theoretical framework,
dark energy is not an isolated entity but interacts with other
cosmic components, such as dark matter, radiation, or neu-

trinos [70,71]. These interactions, mediated by a vector-like
field, can potentially influence the cosmic expansion history
and the formation and evolution of large-scale structures.

Understanding the properties and dynamics of IVDE is
essential for several reasons. To the present work, IVDE may
offer an alternative explanation for the accelerated expansion
of the universe that extends beyond the standard cosmolog-
ical model. By examining specific interaction mechanisms
and studying their effects on cosmic evolution, we can gain
deeper insights into the nature of dark energy and its role
in shaping the cosmos [72,73]. Moreover, from a broader
perspective in theoretical physics, IVDE has the potential to
illuminate the complex interplay between dark energy and
other fundamental forces and particles. For instance, explor-
ing IVDE within the frameworks of quantum field theory and
particle physics framework could reveal significant connec-
tions, thereby bridging the gaps between our understanding
of the macroscopic universe and the microscopic realm of
particles and fundamental interactions [74,75].

Therefore, the investigation of IVDE represents a capti-
vating and vital avenue to understanding the nature and prop-
erties of dark energy. Through an in-depth analysis of IVDE,
we can strive towards a comprehensive understanding of the
nature and properties of dark energy while also advancing
our knowledge of fundamental physics and the evolution of
the cosmos. This research promises to unlock new horizons
in our quest to comprehend the underlying mechanisms that
govern the vastness of our universe.

In this paper, we study the cosmological dynamics of
IVDE, analyzing its effects on the cosmic expansion history
and the thermodynamics of the accelerating universe. In par-
ticular, we have performed a detailed phase space analysis,
assuming several different functional forms for the coupling
function Q between vector-like dark energy and dark matter.
We extend previous studies in the literature [68] by including
not only linear functional forms but also nonlinear functions
for Q in terms of the energy densities. In the case of nonlin-
ear functions, we demonstrate that the Q function can exhibit
sign changes throughout the cosmic evolution.

The paper is organized as follows: In Sect. 2, we intro-
duce the IVDE models, present the total action of the model,
and derive the field equations in a general space-time. We
then obtain the cosmological equations and define the effec-
tive dark energy, along with its coupling to dark matter.
In Sect. 3 we reformulate the complete set of cosmologi-
cal equations using new phase-space variables to derive a
closed autonomous system. Furthermore, a detailed phase-
space analysis of the model is performed, where we identify
the corresponding critical points and their stability condi-
tions. In Sect. 4, we corroborate our analytical findings by
numerically solving the field equations. In Sect. 5, we explore
the thermodynamic aspects of the interacting scenario within
the context of IVDE models, determining the evolution of the

123



Eur. Phys. J. C           (2024) 84:276 Page 3 of 18   276 

temperature of dark matter and dark energy as influenced by
the coupling function Q. Finally, in Sect. 6, we summarize
the results obtained.

2 Vector-like dark energy

The concept of “vector-like dark energy” refers to a “cosmic
triad,” as described in reference [57]. This triad consists of
three identical vectors oriented in mutually orthogonal direc-
tions, ensuring the preservation of isotropy. In line with the
approach presented in reference [57], we examine the sce-
nario where vector-like dark energy is minimally coupled to
gravity. The corresponding action can be expressed as fol-
lows:

S =
∫

d4x
√−g

[
R

2κ2 −
3∑

a=1

(1

4
Fa

μνF
aμν + V (Aa2

)
)]

+Sm + Sr , (1)

where κ2 = 8πG, with G being the gravitational constant,
Fa

μν = ∂μAa
ν−∂ν Aa

μ and Aa2 = gμν Aa
μA

a
ν . Sm is the action

of matter Sr is the action of radiation. It is worth noting that
the superscript a indicates each vector field constituting the
cosmic triad.

Then, varying the action (1) with respect to the metric, we
obtain the following equations:

Gμν

κ2 −
3∑

a=1

{
Fa

μρF
aρ
ν + 2

dV

dAa2 A
a
μA

a
ν

−gμν

[1

4
Fa

μνF
aμν + V (Aa2

)
]}

= 2T (m)
μν + 2T (r)

μν . (2)

And, varying with respect to the cosmic triad Aa
μ we find

the equation of motion

∂μ(
√−gFaμν

) = 2
√−g

dV

dAa2 A
aν

. (3)

Below, we detail the basic equations for the cosmic triad
in a cosmological background.

2.1 Cosmological dynamics

We consider a spatially flat Friedmann–Lemaître–Robertson–
Walker (FLRW) universe with metric:

ds2 = −dt2 + a2(t)δi jdx
idx j , (4)

where a is the scale factor, a function of the cosmic time t.
We also assume the following ansatz:

Aa
μ = δaμA(t)a(t). (5)

Thus, the modified Friedmann equations are given by

3H2

κ2 = 3

2
( Ȧ + H A)2 + 3V + ρm + ρr , (6)

−2Ḣ

κ2 = 2( Ȧ + H A)2 + 2A2V,A2 + ρm + 4

3
ρr , (7)

and the motion equation of the vector field A:

Ä + 3H Ȧ + AḢ + 2AH2 + 2AV,A2 = 0. (8)

In the above, V
(
A2

)
represents the scalar potential, H ≡

ȧ/a stands for the Hubble rate, where a dot denotes the
derivative with respect to time, and a comma indicates deriva-
tive with respect to A2. Furthermore, the functions ρi and pi ,
with i = m, r denoting either non-relativistic matter (com-
prising cold dark matter and baryons) or radiation, respec-
tively, serve as the energy and pressure densities. It is impor-
tant to note that in the equations mentioned earlier, we have
already incorporated the respective barotropic equations of
state, namely, wm = pm/ρm = 0 and wr = pr/ρr = 1/3.

Following Ref. [2] one can rewrite the Friedmann equa-
tions (6) and (7) in their standard form as

3H2

κ2 = ρde + ρm + ρr , (9)

−2Ḣ

κ2 = pde + ρde + ρm + 4

3
ρr . (10)

Therefore, we can define the effective energy and pressure
densities of the model as:

ρde = 3

2
( Ȧ + H A)2 + 3V, (11)

pde = 1

2
( Ȧ + H A)2 − 3V + 2A2V,A2 . (12)

On the other hand, from the conservation of the total
energy-momentum tensor we have

ρ̇ + 3H(ρ + p) = 0, (13)

each component (matter, radiation, and dark energy) sat-
isfy (13) separately in a scenario without interaction. And,
it is worth noticing that matter and radiation have standard
behavior ρm ∼ a−3 and ρr ∼ a−4, respectively.

Additionally, we can define the effective dark energy EoS
as

wde = pde
ρde

. (14)

It is also convenient to introduce the total equation-of-state
parameter as

wtot = pde + pr
ρde + ρm + ρr

, (15)

which is related to the deceleration parameter q through

q = 1

2
(1 + 3wtot ), (16)
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and, hence, it is easy to see that the acceleration of the Uni-
verse occurs for q < 0 or, equivalently, when wtot < −1/3.

Finally, another set of cosmological parameters that can
be introduced is the standard density parameters, which are
defined as

�r ≡ κ2ρr

3H2 , �m ≡ κ2ρm

3H2 , �de ≡ κ2ρde

3H2 , (17)

and satisfy the constraint equation

�r + �m + �de = 1. (18)

In what follows, we extend the previous analysis to include
the interaction between vector-like dark energy and dark mat-
ter [76].

2.2 Interacting dark energy

We assume that the vector-like dark energy interacts with the
dark matter through a phenomenological interaction term Q,

according to [76]

ρ̇de + 3H(ρde + pde) = −Q, (19)

ρ̇m + 3Hρm = Q, (20)

ρ̇r + 4Hρr = 0, (21)

which preserves the total energy conservation law. By assum-
ing this interaction between the dark components, the equa-
tion of motion (8) should be changed when Q �= 0 and a new
term due to Q will appear in its r.h.s. [68].

In the following section, we conduct a thorough phase-
space analysis for this dark energy model. Specifically, we
derive the corresponding autonomous system based on the
set of cosmological equations (9), (10), (19), (20) and (21).

3 Phase-space analysis

We introduce the following set of dimensionless variables
[2]:

x = κ Ȧ√
6H

, y = κ
√
V√

3H
, λ = −V,A2

κ2V
,

u = κA√
6
, 
 = κ

√
ρr√

3H
, � = V,A2A2V

(V,A2)2 , (22)

and the constraint equation:

3x2 + 3y2 + 3u2 + 6ux + 
2 + �m = 1. (23)

Therefore, we obtain the dynamical system

dx

dN
= 1

2

[
u3(3 − 36λy2) + 9u2x(1 − 4λy2)

+u(9x2 + 3(4λ − 3)y2 + 
2 − 1)

+x(3x2 − 9y2 + 
2 − 3)
]

− Qκ2

18(u + x)H3 ,

dy

dN
= 1

2
y
[
u2(3 − 36λy2) + 6(1 − 2λ)ux

+3x2 − 9y2 + 
2 + 3
]
,

d


dN
= 1

2


[
u2(3 − 36λy2) + 6ux + 3x2 − 9y2 + 
2 − 1

]
,

dλ

dN
= −12(� − 1)λ2ux,

du

dN
= x, (24)

where N ≡ ln a is the number of e-folds, and it is used as the
temporal parameter since it is a function of the cosmic scale
factor. Using the above set of phase space variables, we can
also write:

�de = 3u2 + 6ux + 3x2 + 3y2, (25)

�m = 1 − 3u2 − 6ux − 3x2 − 3y2 − 
2, (26)

�r = 
2. (27)

The equation of state (EoS) of dark energy wde = pde/ρde
can be rewritten as

wde = u2(1 − 12λy2) + 2ux + x2 − 3y2

3(u2 + 2ux + x2 + y2)
, (28)

whereas the total EoS becomes

wtot = u2(1 − 12λy2) + 2ux + x2 − 3y2 + 
2

3
. (29)

To obtain an autonomous system from the dynamical sys-
tem (24), we need to define the potentials for the vector
field. From now we concentrate on the exponential poten-
tial V (A2) ∼ e−κ2λA2

. Below, we study the critical points
and their stability properties for various interaction cases.

In the literature, various models have been explored where
the function Q, which represents the interaction term, is
considered as a function of energy densities and the Hub-
ble parameter [76,77]. In this paper, we use three interacting
scenarios: linear, non-linear, and a sign-changeable [78].

3.1 Critical points

In this section, we obtain the critical points from the con-
ditions dx/dN = dy/dN = d
/dN = du/dN = 0 [2].
Where, if we consider the definition of each dynamical vari-
able (22), the critical points that are physically possible are
given by yc ≥ 0, 
c ≥ 0 and uc ≥ 0.
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Consequently, we find the critical points for each interac-
tion term:

3.1.1 Case I: Q = 3αHρm

Using the above set of phase space variables, we can rewrite
the interaction term as:

Q = 9αH3(1 − 3u2 − 6ux − 3x2 − 3y2 − 
2)

κ2 . (30)

Critical points of the system (24) with interaction case
(30) are shown in Table 1 and the values of their cosmological
parameters in Table 2. Also, in this subsection and so on, we
define �

(r)
de and �

(m)
de as the amount of dark energy during a

radiation and dark matter domination era, respectively.
The critical pointaR corresponds to a scaling radiation era,

where �
(r)
de = u2

c . When uc = 0, we obtain the radiation-
dominated solution with �r = 1 and wde = wtot = 1/3.

For uc �= 0, this point represents a scaling radiation era.
Thus, to satisfy the early constraint imposed by the physics
of big bang nucleosynthesis (BBN) and ensure �

(r)
de < 0.045

[79,80], we need to have uc < 0.122.

The critical point c represents a dark energy-dominated
solution with a de Sitter EoS, where wde = wtot = −1. As a
result, this critical point yields accelerated expansion for all
parameter values.

On the other hand, for α = 0, the critical point labeled
as bM represents a matter-dominated era, with �m = 1 and
wde = wtot = 0. In this case, the energy density of mat-
ter dominates the universe, and the EoS parameter for dark
energy (wde = 1/3) and the total EoS parameter (wtot ) is
zero. For α �= 0, we have a scaling matter era which is con-
strained to satisfy �

(m)
de < 0.02 (95% CL), at redshift de

z ≈ 50, according to CMB measurements [81]. Thus, this
leads us to the constraint 0 < α < 0.01, which is also com-
patible with 0 < �m < 1.

3.1.2 Case II: Q = 3βH
ρm

2

ρm + ρde

With the phase space variables mentioned earlier, we express
the interaction term in the following form

Q = 9βH3
[
3(u + x)2 + 3y2 + 
2 − 1

]2

κ2
(
1 − 
2

) . (31)

The critical points of the system described in Eq. (24) under
the interaction case given by Eq. (31) are presented in Table 3,
along with the corresponding values of their cosmological
parameters in Table 4.

The critical point labeled as dR corresponds to a scaling
radiation era, characterized by �

(r)
de = u2

c . When uc = 0,

we obtain the radiation-dominated solution with �r = 1
and wde = wtot = 1/3. For uc �= 0, this point describes a

scaling radiation era. To satisfy the early constraint imposed
by the physics of big bang nucleosynthesis (BBN) and ensure
�

(r)
de < 0.045 [79,80], the condition uc < 0.122 must be met.
On another note, for β = 0, the critical point denoted

as eM represents a matter-dominated era, where �m = 1
and wde = wtot = 0. In this scenario, the energy density
of matter dominates the universe, resulting in a dark energy
EoS parameter of wde = 1/3 and a total EoS parameter
of wtot = 0. For β �= 0, we have a scaling matter era.
Applying the constraint �

(m)
de < 0.02 (95% CL), at redshift

de z ≈ 50, according to CMB measurements [81], we obtain
0 < β < 0.01, which is also compatible with 0 < �m < 1.

Moreover, the critical point labeled as f signifies a dark
energy-dominated solution characterized by a de Sitter EoS,
with wde = wtot = −1. Consequently, this critical point
leads to accelerated expansion regardless of the parameter
values.

Finally, the points f1 and f2 are not physically viable,
because the fractional density is constrained by 0 < �m < 1,

meaning that, 0 < −1/β < 1 or β < −1, but β must
be positive and small to obtain a matter-dominated era as
described by point eM . Therefore, aiming to reproduce the
standard thermal history of the universe, points f1 and f2 are
identified as unphysical.

3.1.3 Case III: Q = 3

2κ2 ηH3(1 + �r − 3�de)�m

Given the above set of phase space variables, we express the
interaction term as follows:

Q=3ηH3
(
9(u + x)2+9y2−
2−1

) (
3(u+x)2+3y2+
2−1

)
2κ2 .

(32)

Critical points of the system (24) with interaction case (32)
are shown in Table 5 and the values of their cosmological
parameters in Table 6

The critical point denoted as gR corresponds to a scaling
radiation era, where �

(r)
de = u2

c . When uc = 0, it gives
rise to the radiation-dominated solution with �r = 1 and
wde = wtot = 1/3. The case uc �= 0, corresponds to a
scaling radiation era. Therefore, to meet the early constraint
imposed by the physics of big bang nucleosynthesis (BBN)
and ensure �

(r)
de < 0.045 [79,80], the condition uc < 0.122

must be satisfied.
Conversely, when η = 0, the critical point labeled as hM

represents a matter-dominated era, characterized by �m = 1
and wde = wtot = 0. In this scenario, the energy density of
matter dominates the universe, leading to a dark energy EoS
parameter of wde = 1/3. In contrast, the total equation of
the state parameter remains at wtot = 0. When η �= 0, this
point represents a scaling matter era. Thus, from constraint
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Table 1 Critical points for the
autonomous system

Name xc yc 
c uc

aR 0 0
√

1 − 3uc2 uc

bM 0 0 0
√

α

c 0 1√
3λ

0
√

λ−1
3λ

Table 2 Cosmological
parameters for the critical points
in Table 1

Name �de �m �r wde wtot

aR 3uc2 0 1 − 3uc2 1
3

1
3

bM 3α 1 − 3α 0 1
3 α

c 1 0 0 −1 −1

Table 3 Critical points for the
autonomous system. Where
Fβ =
β2(λ − 1)2 + βλ(2λ + 1) + λ2

Name xc yc 
c uc

dR 0 0
√

1 − 3uc2 uc

eM 0 0 0
√

β
1+3β

f 0 1√
3λ

0
√

λ−1
3λ

f1 0

√√
Fβ+βλ+β+λ

6βλ
0

√
−√

Fβ+β(λ−1)+λ

6βλ

f2 0

√
−√

Fβ+βλ+β+λ

6βλ
0

√√
Fβ+β(λ−1)+λ

6βλ

�
(m)
de < 0.02 (95% CL), at redshift de z ≈ 50, according to

CMB measurements [81], we get −0.04 < η < 0, which is
also compatible with 0 < �m < 1.

Additionally, the critical point i corresponds to a dark
energy-dominated solution with a de Sitter EoS, where
wde = wtot = −1. Consequently, this critical point results
in accelerated expansion for all parameter values.

Finally, points i1 and i2 are not physically viable. For these
points, the physical condition 0 < �m < 0 implies η < −3
or η > 6, but this result is not compatible with a dark matter-
dominated era as described by point hM (−0.04 < η <

0). Hence, to reproduce the standard thermal history of the
universe, we designate the points i1 and i2 as unphysical.

3.2 Stability of critical points

To study the stability of the critical points, we introduce time-
dependent linear perturbations denoted as δx, δy, δ
, and δu
around each critical point. These perturbations take the form
of x = xc +δx, y = yc +δy, 
 = 
c +δ
, and u = uc +δu.

Substituting these expressions into the autonomous system
(24) and linearizing the equations, we obtain the linear pertur-
bation matrix M, as outlined in [2]. The eigenvalues of M,

denoted as μ1, μ2, μ3, and μ4, evaluated at each fixed point,
determine the stability conditions for those points. Typically,
the classification of stability properties proceeds as follows:
(i) A stable node exists when all the eigenvalues are nega-

tive, (ii) An unstable node emerges when all the eigenvalues
are positive, (iii) A saddle point is characterized by having
one, two, or three of the four eigenvalues as positive and the
others as negative, (iv) A stable spiral is observed when the
determinant of M is negative, and the real part of all the
eigenvalues is negative. Points classified as stable nodes or
stable spirals are referred to as attractor points, and these
fixed points are reached during the cosmic evolution of the
Universe, regardless of the initial conditions of the system,
as long as they belong to the attraction basin of the critical
point. In the following lines, we present the eigenvalues and
stability conditions for each critical point in every interaction
case.

3.2.1 Case I: Q = 3αHρm

• Point aR has the eigenvalues

μ1 = 0, μ2 = −1, μ3 = 2, μ4 = 1 − 3α, (33)

then this point is always unstable for all the values of α.

• Point bM has the eigenvalues

μ1 = −1, μ2 = 1

2
(−1 + 3α), μ3 = 3

2
(α + 1),

μ4 = −1 + 3α, (34)
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Table 4 Cosmological
parameters for the critical points
in Table 3

Name �de �m �r wde wtot

dR 3uc2 0 1 − 3uc2 1
3

1
3

eM
3β

1+3β
1

1+3β
0 1

3

√
β

1+3β

f 1 0 0 −1 −1

f1
1
β

+ 1 − 1
β

0 − β
β+1 −1

f2
1
β

+ 1 − 1
β

0 − β
β+1 −1

Table 5 Critical points for the autonomous system. Where, Rc = √
(2η(λ − 3) − 12λ)2 − 72η(η + 3)λ

Name xc yc 
c uc

gR 0 0
√

1 − 3uc2 uc

hM 0 0 0
√

η
9η−6

i 0 1√
3λ

0
√

λ−1
3λ

i1 0 1
6

√
2ηλ+6η−12λ+Rc

ηλ
0 1

6

√
2ηλ−6η−12λ−Rc

ηλ

i2 0 1
6

√
2ηλ+6η−12λ−Rc

ηλ
0 1

6

√
2ηλ−6η−12λ+Rc

ηλ

Table 6 Cosmological
parameters for the critical points
in Table 5

Name �de �m �r wde wtot

gR 3uc2 0 1 − 3uc2 1
3

1
3

hM
η

3η−2
2(η−1)
3η−2 0 1

3
η

9η−6

i 1 0 0 −1 −1

i1
1
3 − 2

η
2
η

+ 2
3 0 3η

6−η
−1

i2
1
3 − 2

η
2
η

+ 2
3 0 3η

6−η
−1

which is a saddle point when α > 1
3 or −1 < α < 1

3 .

On the other hand, it becomes a stable node when α <

−1. However, this point cannot account for the current
accelerated expansion of the Universe.

• Point c has the eigenvalues

μ1 = −2, μ2 = −3(α + 1),

μ3,4 = −3λ±√
16λ−7λ2

2λ
. (35)

This is a de-Sitter solution, ensuring accelerated expan-
sion for all parameter values. We observe that it is a stable
node when α > −1 and 1 < λ ≤ 16

7 . Finally, this point
never exhibits stable spiral behavior (Fig. 1).

3.2.2 Case II: Q = 3βH
ρm

2

ρm + ρde

• Point dR has the eigenvalues

μ1 = 2, μ2 = −1, μ3 = 1, μ4 = 0, (36)

which tells us that it is always an unstable node.
• Point eM has the eigenvalues

μ1 = − 1
2(1+3β)

, μ2,3 = −1, μ4 = 3(1+4β)
2(1+3β)

, (37)

which is a saddle point when β < − 1
3 or β > − 1

4 . On the
other hand, it becomes a stable node when − 1

3 < β <

− 1
4 . However, this point cannot account for the current

accelerated expansion of the Universe.
• Point f has the eigenvalues

μ1 = −2, μ2 = −3, μ3,4 = −3±
√

−7+ 16
λ

2 . (38)

This is a de-Sitter solution, hence ensuring accelerated
expansion for all parameter values. We observe that it is
a stable node when 1 < λ ≤ 16

7 . Finally, this point never
exhibits stable spiral behavior.

• Stability of points f1 and f2 is given by the solution of
the characteristic polynomials (Fig. 2).
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Fig. 1 Evolution curves in phase space for different values of λ and
α. Blue solid lines correspond to initial conditions: α = 0.0014, λ =
1.004, xi = 4 × 10−9, yi = 4.9 × 10−13, 
i = 0.99982, and ui =
8×10−5. Blue dashed lines correspond to initial conditions: α = 0.013,

λ = 2.114, xi = 8 × 10−9, yi = 4.549 × 10−13, 
i = 0.999708,

and ui = 5 × 10−3. It is shown that both trajectories converge to
the attractor c, which is a stable node that describes the dark-energy-
dominated universe. Also, we have matched the current values for the
fractional energy densities of dark energy �

(0)
de ≈ 0.68 and dark matter

�
(0)
dm ≈ 0.32, at redshift z = 0, according to Planck results [82]

3.2.3 Case III: Q = 3

2κ2 ηH3(1 + �r − 3�de)�m

• Point gR has the eigenvalues

μ1 = 0, μ2 = −1, μ3 = 2, μ4 = 1 + η − 6ηuc
2,

(39)

which is always an unstable node.
• Point hM has the eigenvalues

μ1 = −1, μ2 = 1−η
3η−2 , μ3 = 3−5η

2−3η
, μ4 = η − 1, (40)

which acts as a saddle point when 2
3 < η < 1, η > 1,

or η < 3
5 . Conversely, it behaves as a stable node when

3
5 < η < 2

3 . Nonetheless, this point cannot explain the
current accelerated expansion of the Universe.

• Point i has the eigenvalues

μ1 = −2, μ2 = −3 − η, μ3,4 = −3±
√

−7+ 16
λ

2 . (41)

Fig. 2 Evolution curves in phase space for different values of λ and
β. Blue solid lines correspond to initial conditions: β = 0.00002, λ =
1.00004, xi = 7.3 × 10−8, yi = 5.02 × 10−13, 
i = 0.999822, and
ui = 4 × 10−8. Blue dashed lines correspond to initial conditions:
β = 0.014, λ = 2.09, xi = 11.3 × 10−7, yi = 4.36 × 10−13, 
i =
0.999775, and ui = 10−5. It is shown that both trajectories converge to
the attractor f, which is a stable node that describes the dark-energy-
dominated universe. Also, we have matched the current values for the
fractional energy densities of dark energy �

(0)
de ≈ 0.68 and dark matter

�
(0)
dm ≈ 0.32, at redshift z = 0, according to Planck results [82]

This is a de-Sitter solution, ensuring accelerated expan-
sion for all parameter values. We observe that it is a stable
node when η > −3 and 1 < λ ≤ 16

7 . Finally, this point
never exhibits stable spiral behavior.

• Stability of points i1 and i2 is given by the solution of the
characteristic polynomials (Fig. 3).

A summary of this section is shown in Table 7, which
contains the principal properties of critical points.

4 Numerical results

In this section, we aim to numerically solve the autonomous
system represented by Eq. (24), associated with a set of cos-
mological equations (9)–(10). Our objective is to explore the
characteristics of our model (for each interacting term Q)

to explain the ongoing accelerated expansion of the Uni-
verse. Subsequently, we compare the predicted results with
the most recent measurements of the Hubble parameter H(z),
Appendix A. We consider various parameter values and ini-
tial conditions with the aim of studying the behavior of cos-
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Fig. 3 Evolution curves in phase space for different values of λ and η.

Blue solid lines correspond to initial conditions: η = −0.05, λ = 1.01,

xi = 10−7, yi = 4.7 × 10−13, 
i = 0.99974, and ui = 10−7. Blue
dashed lines correspond to initial conditions: η = −0.1, λ = 2.2,

xi = 8 × 10−6, yi = 4.3 × 10−13, 
i = 0.99963, and ui = 5 × 10−3.

It is shown that both trajectories converge to the attractor i, which is
a stable node that describes the dark-energy-dominated universe. Also,
we have matched the current values for the fractional energy densities
of dark energy �

(0)
de ≈ 0.68 and dark matter �

(0)
dm ≈ 0.32, at redshift

z = 0, according to Planck results [82]

mological parameters throughout the thermal history of the
universe at intermediate redshifts. By investigating these sev-
eral different parameter values and initial conditions, we can
identify the range of potential evolutions for these cosmolog-
ical parameters, all converging towards a common final-state
attractor point.

4.1 Case I: Q = 3αHρm

We have presented the numerical results found for this inter-
acting model in Figs. 1, 4, 5, 6 and 7.

In Fig. 1, we verify that the model provides a dark energy-
dominated solution with attractor behavior. The attractor is a
one-parameter solution, and thus, one can have different loca-
tions for this fixed point in the field space. This implies vary-
ing temporal durations for the transitions between the decel-
erating and accelerating phases. However, this is restricted
by cosmological observations [82]. In Fig. 4, we depict the
behavior of the energy density for radiation, matter, and dark
energy. Remarkably, one can observe the scaling behavior
of dark energy during the radiation and matter-dominated
eras. This is an essential feature of the model because scal-

ing solutions provide a natural mechanism to alleviate the
energy scale problem of dark energy [41,83,84]. In Fig. 5,
we show the evolution of both the EoS of dark energy and
the total EoS.

Additionally, we added the corresponding curve associ-
ated with the �CDM model to contrast the predictions of
our model. During the radiation and matter-dominated eras,
the EoS of dark energy behaves like a radiation field, which is
an expected result since the source of dark energy is a vector
field [57]. Thus, in Fig. 6, we observe a slight discrepancy
in the deceleration-acceleration transition redshift compared
to the �CDM result. This latter result is validated in Fig. 7,
where it shows the evolution of the Hubble rate H(z) as a
function of the redshift, along with the corresponding results
from �CDM. In the same plot, we have depicted the relative
difference for the �CDM model, showing that our results are
compatible with observations (for more detail, see Table 8).

4.2 Case II: Q = 3βH
ρm

2

ρm + ρde

For this ansatz, we have shown the numerical results in
Figs. 2, 8, 9, 10 and 11.

In Fig. 2 one can see that the system has an attractor point,
which is a dark energy-dominated solution. Furthermore, this
attractor point has a nature of cosmological constant with an
EoS wde = −1. However, the position of this fixed point
in the phase space depends on the parameter λ. Thus, the
transition time between the dark matter-dominated era and
late-time acceleration depends on it, too. Let us remember
that this transition time is constrained by current cosmolog-
ical observations [82]. In Fig. 8, we can observe the scal-
ing regimes during the dark-matter and radiation-dominated
epochs. At early times, the dark energy component reaches
higher energy scales, alleviating the energy scale problem
of dark energy. In Fig. 9, we depict the behavior of the EoS
of dark energy and total EoS for our model, comparing the
corresponding results from �CDM.

Interestingly enough, the evolution of the total EoS of our
model is very close to that of �CDM, with some slight dif-
ferences during the dark matter-dark energy transition time.
However, the EoS of dark energy behaves like a radiation
field at early times and like a cosmological constant at late
times, also, in Fig. 10, one can observe the decelerating-
accelerating transition time as described by the evolution of
the deceleration parameter. We found that this transition time
is slightly displaced towards smaller redshift values than the
result from �CDM. Nevertheless, this result is still compat-
ible with observational data [82].

Finally, in Fig. 11, we numerically corroborated that our
model is compatible with observational data. The evolution
of the Hubble rate is consistent with Hubble rate data found
in the literature [85,86].
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Table 7 Properties of the critical points

Cases Name Existence Stability Acceleration

aR ∀ λ, α Unstable ∀ λ, α Never

I bM α > 0 Unstable for α > −1 Never

c λ > 1 α > −1 and 1 < λ ≤ 16
7 Always

dR ∀ λ, β Unstable ∀ λ, β Never

eM β < − 1
3 ∨ β > 0 Unstable for β < − 1

3 or β > − 1
4 Never

II f λ > 1 1 < λ ≤ 16
7 Always

f1 λ > 1 ∧ 2β + λ
(
2λ+√

12λ−3+1
)

(λ−1)2 ≤ 0 Numerical solution only Always

f2 (β > 0 ∧ λ �= 0)∨ Numerical solution only Always(
2β + λ

(
2λ+√

12λ−3+1
)

(λ−1)2 ≤ 0 ∧ λ > 1

)

gR ∀ λ, η Unstable ∀ λ, η Never

hM η < 0 ∨ η > 2
3 Unstable for η < 3

5 and η > 2
3 Never

i λ > 1 η > −3 and 1 < λ ≤ 16
7 Always

(−3 < η < 0 ∧ (λ < 0 ∨ 0 < λ ≤ 1))∨(
1 < λ < 3

(√
15 + 4

)
∧ 3

(
2λ2+3λ

)
λ2−24λ+9

i1 −9
√

3
√

4λ3−λ2

(λ2−24λ+9)
2 ≤ η < 0

)
∨ Numerical solution only Always

III
(
η < 0 ∧ λ = 3

(√
15 + 4

))
∨(

λ > 3
(√

15 + 4
)

∧(
η < 0 ∨ η ≥ 3

(
2λ2+3λ

)
λ2−24λ+9

+ 9
√

3
√

4λ3−λ2

(λ2−24λ+9)
2

))

(
1 < λ < 3

(√
15 + 4

)
∧ 3

(
2λ2+3λ

)
λ2−24λ+9

−9
√

3
√

4λ3−λ2

(λ2−24λ+9)
2 ≤ η < −3

)
∨

i2
(
η < −3 ∧ λ = 3

(√
15 + 4

))
∨ Numerical solution only Always(

λ > 3
(√

15 + 4
)

∧(
η < −3 ∨ η ≥ 3

(
2λ2+3λ

)
λ2−24λ+9

+ 9
√

3
√

4λ3−λ2

(λ2−24λ+9)
2

))

4.3 Case III: Q = 3

2κ2 ηH3(1 + �r − 3�de)�m

Finally, for our third model, the numerical results are shown
in Figs. 3, 12, 13, 14 and 15.

In Fig. 3, we show the evolution curves in the phase space
for this ansatz. As for previous models, we have an attractor
fixed point, which is a cosmological constant solution. This
attractor solution with accelerated expansion has a variable
position in the phase space, which depends on the model
parameter related to the slope of the vector’s potential. In
Fig. 12, we show the scaling behavior for early times.

On the other hand, in Fig. 13 we depict the evolution of the
EoS of dark energy and the total EoS. As before, the effective
dark energy fluid behaves as radiation field density at early
times, whereas it behaves as a quintessence field at late times,

in Fig. 14, we observe that this model provides a deceleration-
acceleration transition redshift closer to the value from the
�CDM model, and therefore, it becomes compatible with
observations [82]. This result is also corroborated in Fig. 15,
where we plot the theoretical Hubble rate from our model
along with the current Hubble rate data [85,86].

5 Thermodynamics

The Universe, as a whole, can be seen as a classical thermo-
dynamic system composed of interacting fluids. The temper-
ature is defined through the Gibbs equation

Td

(
S

N

)
= d

(ρ

n

)
+ p

(
1

n

)
, (42)
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Fig. 4 We depict the evolution of the energy density of dark energy
(ρde) in blue, dark matter (including baryons) (ρm) in orange, and
radiation (ρr ) in green as functions of the redshift (z), for two val-
ues of λ and α. In particular, solid lines correspond to initial condi-
tions: α = 0.0014, λ = 1.004, xi = 4 × 10−9, yi = 4.9 × 10−13,


i = 0.99982, and ui = 8 × 10−5. Dashed lines correspond to initial
conditions: α = 0.013, λ = 2.114, xi = 8×10−9, yi = 4.549×10−13,


i = 0.999708, and ui = 5 × 10−3

Fig. 5 We depict the total EoS parameter wtot (orange line), the EOS
parameter of dark energy wde (blue line), and the total EOS of the
�CDM model (green line) as redshift functions. We also used the same
initial conditions as shown in Fig. 4 to obtain both the solid and dashed
blue lines. For the dashed line, a value of wde ≈ −0.959 is observed
at the current time z = 0. Meanwhile, for the solid line, a value of
wde ≈ −0.997 is observed at the current time z = 0, which is consistent
with the observational constraint w

(0)
de = −1.028 ± 0.032

whereT is the temperature of the system and S is total entropy
per comoving volume and N = nV = const with V = a3,

and n is the number density.
This equation can be written as

Td

(
S

N

)
= d

(
dρ

nT

)
−

(
ρ + p

n2T

)
dn. (43)

Thus, the integrability condition

∂2S

∂n∂ρ
= ∂2S

∂ρ∂n
, (44)

Fig. 6 We show the evolution of the deceleration parameter q(z), for
the same initial conditions used in Fig. 4

Fig. 7 We present the evolution of the Hubble rate H(z) and its relative
difference �r H(z) = 100 × |H − H�CDM|/H�CDM for the �CDM
model, as functions of redshift, using the same initial conditions as
shown in Fig. 4. This is complemented by the evolution of the Hubble
rate H�CDM in the �CDM model and the Hubble data from references
[85,86]. We have employed the current value of the Hubble rate, H0 =
67.4 km/(Mpc·s), from Planck 2018 [82]

can allow us to obtain

n
∂T

∂n
+ (ρ + p)

∂T

∂ρ
= T

∂p

∂ρ
. (45)

Since T = T (n, ρ), and using the conservation laws

ρ̇ + 3H (ρ + p) = 0, (46)

ṅ + 3Hn = 0, (47)

where ρ and p are the total energy and pressure densities, we
obtain

Ṫ = −3H

[(
∂T

∂n

)
n +

(
∂T

∂ρ

)
(ρ + p)

]
. (48)

Using the relation (45) we get

Ṫ

T
= −3H

(
∂p

∂ρ

)
n
. (49)
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Table 8 Hubble’s parameter vs. redshift and scale factor

z H(z) (
km/s
Mpc ) Refs.

0.07 69 ± 19.6 [98]

0.09 69 ± 12 [99]

0.100 69 ± 12 [99]

0.120 68.6 ± 26.2 [98]

0.170 83 ± 8 [99]

0.179 75 ± 4 [100]

0.199 75 ± 5 [100]

0.200 72.9 ± 29.6 [98]

0.270 77 ± 14 [99]

0.280 88.8 ± 36.6 [98]

0.320 79.2 ± 5.6 [101]

0.352 83 ± 14 [100]

0.3802 83 ± 13.5 [100]

0.400 95 ± 17 [99]

0.4004 77 ± 10.2 [100]

0.4247 87.1 ± 11.2 [100]

0.440 82.6 ± 7.8 [102]

0.4497 92.8 ± 12.9 [100]

0.470 89 ± 50 [103]

0.4783 80.9 ± 9 [100]

0.480 97 ± 62 [104]

0.570 100.3 ± 3.7 [101]

0.593 104 ± 13 [100]

0.600 87.9 ± 6.1 [102]

0.680 92 ± 8 [100]

0.730 97.3 ± 7 [102]

0.781 105 ± 12 [100]

0.875 125 ± 17 [100]

0.880 90 ± 40 [104]

0.900 117 ± 23 [99]

1.037 154 ± 20 [100]

1.300 168 ± 17 [99]

1.363 160 ± 33.6 [105]

1.430 177 ± 18 [99]

1.530 140 ± 14 [99]

1.750 202 ± 40 [99]

1.965 186.5 ± 50.4 [105]

2.340 222 ± 7 [106]

2.360 226 ± 8 [107]

In the case of a barotropic perfect fluid with pressure p =
w(a)ρ we obtain

T (a) = T (a0)exp

[
−3

∫ a

a0

da
w(a)

a

]
. (50)

Fig. 8 We depict the evolution of the energy density of dark energy
ρde (blue), dark matter (including baryons) ρm (orange), and radiation
ρr (green) as functions of the redshift z, for two values of λ and β. In
particular, solid lines correspond to initial conditions: β = 0.00002,

λ = 1.00004, xi = 7.3 × 10−8, yi = 5.02 × 10−13, 
i = 0.999822,

and ui = 4 × 10−8. Dashed lines correspond to initial conditions:
β = 0.014, λ = 2.09, xi = 11.3 × 10−7, yi = 4.36 × 10−13, 
i =
0.999775, and ui = 10−5

Fig. 9 We depict the total EoS parameter wtot (orange line), the EOS
parameter of dark energy wde (blue line), and the total EOS of the
�CDM model (green line) as redshift functions. We also used the same
initial conditions as shown in Fig. 8 to obtain both the solid and dashed
blue lines. For the dashed line, a value of wde ≈ −0.968 is observed
at the current time z = 0. Meanwhile, for the solid line, a value of
wde ≈ −0.999 is observed at the current time z = 0, which is consistent
with the observational constraint w

(0)
de = −1.028 ± 0.032

For two interacting fluids (dark matter and dark energy) one
can write

ρ̇de + 3H(1 + w
e f f
de )ρde = 0, (51)

ρ̇m + 3H(1 + w
e f f
m )ρm = 0, (52)

where it has been defined

w
e f f
de = wde + Q

3Hρde
, (53)

w
e f f
m = wm − Q

3Hρm
, (54)

123



Eur. Phys. J. C           (2024) 84:276 Page 13 of 18   276 

Fig. 10 We show the evolution of the deceleration parameter q(z), for
the same initial conditions used in Fig. 8

Fig. 11 We present the evolution of the Hubble rate H(z) and its rela-
tive difference �r H(z) = 100 × |H − H�CDM|/H�CDM with respect
to the �CDM model, as functions of redshift, using the same initial
conditions as shown in Fig. 8. This is complemented by the evolution
of the Hubble rate H�CDM in the �CDM model and the Hubble data
from references [85,86]. We have employed the current value of the
Hubble rate, H0 = 67.4 km/(Mpc·s), from Planck 2018 [82]

and then Eq. (50) gives us

Tde(z)

Tde(0)
= exp

[
3
∫ z

0
d ln(1 + z)we f f

de (z)

]
, (55)

Tm(z)

Tm(0)
= (1 + z)3wm exp

[
−

∫ z

0
d ln(1 + z)

(
Q

Hρm

)]
.

(56)

Thus, one can verify that for non-relativistic matter wm = 0,

the temperature is constant in the absence of coupling. So,
after specifying the coupling between dark matter and dark
energy, we can evolve the temperature for both components
as functions of redshifts. For the present interacting vector-
like dark energy model, the time evolution of the effective
EoS of dark energy w

e f f
de depends on both the magnitude of

the vector field and the coupling to matter. Therefore, temper-
ature behavior is determined by the dynamics of the vector
field. In Figs. 16, 17, and 18, we depict the temperature behav-

Fig. 12 We depict the evolution of the energy density of dark energy
ρde (blue), dark matter (including baryons) ρm (orange), and radiation
ρr (green) as functions of the redshift z, for two values of λ and β.

In particular, solid lines correspond to initial conditions: η = −0.05,

λ = 1.01, xi = 10−7, yi = 4.7×10−13, 
i = 0.99974, andui = 10−7.

Dashed lines correspond to initial conditions: η = −0.1, λ = 2.2,

xi = 8 × 10−6, yi = 4.3 × 10−13, 
i = 0.99963, and ui = 5 × 10−3

Fig. 13 We depict the total EoS parameter wtot (orange line), the EOS
parameter of dark energy wde (blue line), and the total EOS of the
�CDM model (green line) as redshift functions. We also used the same
initial conditions as shown in Fig. 12 to obtain both the solid and dashed
blue lines. For the dashed line, a value of wde ≈ −0.986 is observed
at the current time z = 0. Meanwhile, for the solid line, a value of
wde ≈ −0.999 is observed at the current time z = 0, which is consistent
with the observational constraint w

(0)
de = −1.028 ± 0.032

ior of matter and dark energy, parameterized in terms of the
ratiosTde(z)/T

(0)
de andTm(z)/T (0)

m , respectively, as functions
of redshift z for different initial conditions. Here, we define
T (0)
m ≡ Tm(z = 0) and T (0)

de ≡ Tde(z = 0). Also, in Fig. 19,
we depict the behavior of the coupling function Q(z) for the
three models studied. From Figs. 16, 17, and 18, it is evident
that the temperature of matter increases very slowly, while the
temperature of dark energy rises more rapidly. Consequently,
when we combine these findings with Fig. 19, we observe an
energy transference from dark energy to dark matter, indicat-
ing that dark energy possesses a negative heat capacity. Fur-
thermore, it is verified that the second law of thermodynamics
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Fig. 14 We show the evolution of the deceleration parameter q(z), for
the same initial conditions used in Fig. 12

Fig. 15 We present the evolution of the Hubble rate H(z) and its rela-
tive difference �r H(z) = 100 × |H − H�CDM|/H�CDM with respect
to the �CDM model, as functions of redshift, using the same initial
conditions as shown in Fig. 12. This is complemented by the evolution
of the Hubble rate H�CDM in the �CDM model and the Hubble data
from references [85,86]. We have employed the current value of the
Hubble rate, H0 = 67.4 km/(Mpc·s), from Planck 2018 [82]

is satisfied during the regime Tm < Tde for Q > 0. From
the Gibbs equation (42) and the continuity equations (19)
and (20) one can demonstrate that TdedSde = −QVdt and
TmdSm = QVdt, where Sm and Sde represent the entropy of
matter and dark energy, respectively. Consequently, we can
verify that d(Sde + Sm) = dStot = QV (1/Tm − 1/Tde)dt,
and the second law d(Sde + Sm) > 0, requires Tm < Tde
if Q > 0, or Tm > Tde if Q < 0 [87]. In Figs. 16, 17,
and 18, we observe that Tde(z)/T

(0)
de < Tm(z)/T (0)

m . Thus,
for Q > 0, the validity of the second law requires Tm < Tde
[87], and therefore T (0)

m < T (0)
de (see Appendix B).

In the case of model III, we observe a sign change in Q,

which suggests a change in the direction of the energy flux.
This could imply a corresponding sign change in the heat
capacity of dark energy, which must be in concordance with
the temperature behavior in Fig. 18 (see Refs. [87,88]).

Fig. 16 We depict the evolution of the temperature of dark energy and
dark matter as a function of the redshift for interaction “Case I” using
the same set of initial conditions used in Fig. 4

Fig. 17 We depict the evolution of the temperature of dark energy and
dark matter as a function of the redshift for interaction “Case II” using
the same set of initial conditions used in Fig. 8

Fig. 18 We depict the evolution of the temperature of dark energy and
dark matter as a function of the redshift for interaction “Case III” using
the same set of initial conditions used in Fig. 12
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Fig. 19 We depict the evolution of the interaction term Q for each case
considered

6 Concluding remarks

In the present paper, we studied the cosmological dynamics
of interacting vector-like dark energy. The vector-like dark
energy refers to the “cosmic triad”, which consists of three
identical vectors oriented in mutually orthogonal directions
and thus preserving the space isotropy [57]. Furthermore, we
assumed an interaction between dark energy and dark matter.
This interaction is described by the function Q, which is a
function of the energy densities of both dark energy and dark
matter, as well as the Hubble rate. Thus, we have studied
several different models for Q [76].

We have shown that the cosmic triad can explain the
dynamics of dark energy, providing a dark energy-dominated
solution with accelerated expansion. These dark energy solu-
tions are attractors fixed points, and thus, the system will
reach them over a wide range of initial conditions. Neverthe-
less, one can observe that the whole cosmological evolution
is altered by the presence of interaction between the effective
dark energy fluid and dark matter. In particular, we obtained
new scaling solutions of radiation and dark matter, which
originate from both the pure dynamics of the vector field and
the matter-vector interaction function Q.

It is important to note that although the critical point
describing the dark energy-dominated era is an attractor,
reachable through a wide set of initial conditions, fine-tuning
is still required. This is to ensure consistency with the current
estimations of cosmological parameters at redshift z = 0, as
well as to accurately reproduce the thermal history of the uni-
verse in line with observational data. The need for fine-tuning
arises because the attractor critical point is only asymptoti-
cally achieved in the future, not precisely at z = 0. To address
this issue of finite-tuning, also known as the cosmological
coincidence problem [2], the existence of an attractor scaling
solution featuring accelerated expansion may be necessary.
However, obtaining such solutions is inherently difficult. Not
all dark energy models offer this kind of solution [19,89,90],

and in some cases, even when these solutions are present,
the model may not successfully replicate the dark matter era
[91].

As the scaling solutions contribute to the existence of
small amounts of dark energy in the radiation and matter era,
they can give rise to notable physical outcomes [83,84]. This
specifically changes the Hubble rate during that era, leading
to adjustments in the theoretical forecasts for the abundances
of primordial light elements [79,80]. Furthermore, the shape
of the Cosmic Microwave Background (CMB) anisotropies
spectrum is profoundly affected by such a scaling field [80].
The influence of this scaling field also extends to the devel-
opment of the universe’s large-scale structures, affecting the
evolution of cosmic entities like galaxies and galaxy clusters
[91].

We also have studied the thermodynamics of our model,
considering the interaction function Q. Using the Gibbs
equation applied to an expanding universe, one can obtain
general expressions for the temperature of dark matter and
dark energy as functions of redshift in the presence of inter-
action between them [87]. We have analyzed three types of
interaction functions Q that depend on the energy density of
dark energy and dark matter. Since the effective dark energy
depends on the vector field and its dynamics, the interaction
function Q does well. In particular, we found for each inter-
action model the expressions for Q in terms of the dynamical
variables. By numerically solving the background equations
and using the expressions for Q in terms of the phase-space
variables, we have depicted the behavior of the temperatures
of dark energy and dark matter. Our results showed us that the
temperature of matter increases very slowly, whereas the tem-
perature of dark energy rises more quickly. Thus, we corrob-
orated that there is a transference of energy from dark energy
to dark matter, as dark energy has a negative heat capacity. In
this way, we verified that the second law of thermodynamics
is satisfied during the regime Tm < Tde for Q > 0 [87], pro-
vided that T (0)

m < T (0)
de However, it is important to note that

measuring the temperature of dark matter and dark energy
is extremely challenging [87,92,93]. Currently, the temper-
atures of these components remain unknown. Additionally,
developing a suitable thermodynamic framework for the dark
energy sector continues to be an area of active research due to
the existing gaps in our understanding of its intrinsic nature.
It is conceivable that future astronomical and cosmological
observations will enhance our understanding of these elusive
components , thereby enriching our knowledge of their ther-
modynamic evolution [94,95]. The analysis of the models
studied through the interaction term (as shown in Fig. 19)
determines that the models include a change of sign for the
dark energy interaction function. Since the interaction terms
change their signs during evolution, our results indicate that
today, dark energy is transferred to dark matter, but in the
past, the transfer was the opposite [78,96,97].
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Appendix A: Hubble’s parameter data

In this appendix, we present Hubble’s parameter data for
0.01 < z < 2.360:

Appendix B: Thermodynamics calculations

From Figs. 16, 17, and 18 we see that

Tde

T (0)
de

<
Tm

T (0)
m

, (B1)

where T (0)
de = Tde(z = 0) and T (0)

m = Tm(z = 0). Then,
from (B1) we obtain

Tde < Tm
T (0)
de

T (0)
m

. (B2)

We know that for Q > 0, the second law of thermody-
namics requires Tm < Tde [87]. Therefore, we have:

Tm < Tde < Tm
T (0)
de

T (0)
m

. (B3)

Consequently, we get

Tm < Tm
T (0)
de

T (0)
m

⇒ T (0)
m < T (0)

de . (B4)
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