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Abstract A novel class of Buchdahl-inspired metrics with
closed-form expressions was recently obtained based on
Buchdahl’s seminal work on searching for static, spheri-
cally symmetric metrics in R2 gravity in vacuo. Buchdahl-
inspired spacetimes provide an interesting framework for
testing predictions of R2 gravity models against observa-
tions. To test these Buchdahl-inspired spacetimes, we con-
sider observational constraints imposed on the deviation
parameter, which characterizes the deviation of the asymptot-
ically flat Buchdahl-inspired metric from the Schwarzschild
spacetime. We utilize several recent solar system experi-
ments and observations of the S2 star in the galactic cen-
ter and the black hole shadow. By calculating the effects
of Buchdahl-inspired spacetimes on astronomical observa-
tions both within and outside of the solar system, including
the deflection angle of light by the Sun, gravitational time
delay, perihelion advance, shadow, and geodetic precession,
we determine observational constraints on the corresponding
deviation parameters by comparing theoretical predictions
with the most recent observations. Among these constraints,
we find that the tightest one comes from the Cassini mission’s
measurement of gravitational time delay.

1 Introduction

Einstein’s theory of general relativity (GR) has been the most
successful theory describing the dynamics of massive objects
under gravitational effects such as the motion of binary stars
and planetary motion near their host stars, predicting novel
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gravitational objects such as black holes, compact stars, and
gravitational waves. It remains the only theory of gravity that
passes all solar system and astronomical tests. In the last few
years, two earliest predictions of GR have been tested and
verified via black holes, namely the gravitational deflection
of light passing by a black hole, resulting in the formation
of a black hole shadow, and the existence of gravitational
waves. Recently, the shadows of black holes at the center
of the M87 and Milky Way galaxies have been observed
and analyzed in detail [1–4]. Astronomers have also detected
numerous gravitational wave signals generated by the merger
of binary black holes of different masses [5,6]. Despite these
successes, some fundamental problems remain in the foun-
dations of GR, including its renormalization and establishing
its unison with quantum mechanics, thereby formulating a set
of physical laws valid for both length scales, the very small
and the very large.

The accelerated cosmic expansion observed in 1998 has
spurred efforts to modify GR to account for the enigmatic
“dark energy” component. Among the various modified the-
ories of gravitation, the family of f (R) introduced by Buch-
dahl in the early 1970s has become an active arena of investi-
gation in the past 25 years [7–10]. Within this ghost-free class
of theories, pure R2 gravity stands out for its scale-invariant
nature. Attempts to incorporate the matter sector, namely the
Glashow–Weinberg–Salam model of particle physics, into
pure quadratic gravity to form a renormalizable quantum
gravity framework have been made in the form of adimen-
sional gravity, or “agravity” [11,12].

The pure R2 action

S = 1

2κ

∫
d4x

√−gR2 + SM
(
gμν, ψ

)
(1)
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can be recast using an auxiliary scalar field � as [8]

S = 1

2κ

∫
d4x

√−g

[
�R − 1

2
�2

]
+ SM

(
gμν, ψ

)
(2)

resulting in the field equations

Gμν = κ

�
Tμν − 1

4
gμν� + 1

�

(∇μ∇ν� − gμν��
)

(3)

3 �� = κT (4)

in which � is equal to the Ricci scalar R. In vacuum, i.e.
Tμν = 0, the terms 1

4gμν� and 1
�

(∇μ∇ν� − gμν��
)

act
as additional “matter” sources to the Einstein–Hilbert field
equation, producing corrections beyond the vacuum solu-
tions of GR. To date, there is yet only empirical evidence
of a scalar degree of freedom beside the established tensor
ingredients. However, the dynamical nature of �, governed
by the “harmonic” equation (4), suggests potential manifes-
tations for � near mass sources in the strong field regime. As
demonstrated by one of the authors [13], the pure R2 field
equation admits a rich host of vacuum solutions with the
non-constant Ricci scalar. The Buchdahl-inspired solutions
found therein are asymptotically de Sitter (or anti-de Sitter)
and entail a new (Buchdahl) parameter k, accounting for the
term 1

�

(∇μ∇ν� − gμν��
)

and enabling spatial variations
in �. Notably, considerations of a scalar degree of freedom
have appeared in other contexts, such as the scalarization in
neutron stars and black holes [14].

One important feature of pure R2 gravity is its limit to
GR. In particular, it concerns the existence of a Newtonian
behavior which is an essential requirement for any viable the-
ory of gravitation. The limit is delicate [15]. This is because,
whereas the vacuo of GR is Ricci flat, i.e. Rμν = 0, for
pure R2 gravity, the vacuum background far from the mass
sources is de Sitter (or anti-de Sitter) with a Ricci scalar
R = 4�. In [15] it was found that, owing to the de Sitter
background, the spin-2 tensor graviton excitations are mass-
less instead of massive (which would have been the case
if the background were locally flat). The massless modes
should effectively carry a long-range interaction rather than
a Yukawa short-range interaction. Based on this insight, one
of the present authors [16] has recently established the emer-
gence of a gravitational potential with the correct Newtonian
tail on a de Sitter background for the pure R2 theory. That is
to say, pure R2 gravity possesses a proper Newtonian limit,
despite the absence of the Einstein–Hilbert term in its action
(1). This finding strengthens the viability of pure R2 as a
candidate theory of gravitation.

An immediate implication is finding novel static and
spherically symmetric spacetime or black hole solutions in
R2 theory which was pioneered by Buchdahl [17]. His work
culminated in the formulation of a second-order ordinary
differential equation for finding metric coefficients, which

remained unsolved until recently, when one of the coauthors
(Nguyen) succeeded in obtaining vacuum solutions which are
asymptotically de Sitter [13] or asymptotically flat as a spe-
cial case [18] (with the axisymmetric extensions of the latter
solution having been proposed in [19]). Our current study is
concerned with this special Buchdahl-inspired solution. The
metric involves a free parameter, the Buchdahl parameter k,
which can be interpreted as a scalar hair, and setting k = 0
yields a Schwarzschild spacetime/black hole as a limiting
case. In [18], it was shown that the respective static, spher-
ically symmetric black hole solution has different areas of
event horizon depending on the chosen value of k. Specifi-
cally, the horizon area can be 0, 4πr2

s , 16πr2
s , and divergent

for the following values k ∈ (−∞, rs) ∪ (0,∞), k = 0, k =
−rs and k ∈ (−rs, 0), respectively. Here, rs is the radius of
the black hole horizon. A further investigation of this new
solution is needed to understand its phenomenology.

We should clarify that the special Buchdahl-inspired solu-
tion is also Ricci scalar flat, namely, � → 0 everywhere
in the vacuum exterior to a mass source. Whereas the
term − 1

4gμν� in Eq. (3) is negligible in this limit, contri-
butions from the term 1

�

(∇μ∇ν� − gμν��
)

persist and
are encoded by the (dimensionless) Buchdahl parameter k̃,
defined to be k normalized by rs [20]. As a higher-derivative
characteristic, the value of k̃ is system-dependent. It does
not have a universal value but can vary from one system to
another, depending on the composition of the matter source.
In normal conditions, such as in the solar system, k̃ could be
insignificant. In extreme conditions, such as around compact
stars, intuitively, k̃ may acquire large values.

In this article, we are motivated to analyze the experimen-
tal and observational implications of the special Buchdahl-
inspired metric. We would like to see how much the new
effects beyond the Schwarzschild case affect the dynam-
ics of particles in geodesic motion in the special Buchdahl-
inspired metric. To be more general, we consider a more gen-
eral form of the Buchdahl-inspired metric by treating several
new parameters for describing the solution independently.
By relying on the classical relativistic methods, we calculate
perihelion shift, gravitational time delay, and geodesic pre-
cession of orbits, and test these results with the solar system
experiments. We also attempt to consider the observational
implications of the Buchdahl-inspired spacetime using the
observational data of the S2 star orbit about the Milky Way
central black hole and to investigate the shadow of rotating
solutions.

Our article is structured as follows. In Sect. 2, we pro-
vide a brief review of the general and special Buchdahl-
inspired metrics in different sets of coordinate systems. In
Sect. 3, we investigate the geodesics of both massless and
massive objects in the general Buchdahl-inspired spacetime
and derive in detail the effects of the spacetime on observa-
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tions in the solar system experiments, black hole shadow
of M87, and the orbit of the S2 star at the galactic cen-
ter. The observational bounds on the deviation parameter,
which characterizes the deviation of the asymptotically flat
Buchdahl-inspired metric from the Schwarzschild spacetime,
are obtained by comparing the theoretical predictions with
observational data. Then, in Sect. 4, we study a spinning
object in the general Buchdahl-inspired spacetime and derive
the geodetic procession of its spin vector, from which we
obtain the constraints on the corresponding deviation param-
eter using the Gravity Probe B and lunar laser ranging data.
A brief summary of our main results and some discussion
are presented in Sect. 5.

2 Summary of Buchdahl-inspired vacuum solutions

In a pioneering Nuovo Cimento work in 1962 [17], Buch-
dahl developed—but prematurely abandoned—a program
to find vacuum configurations for pure R2 gravity. Subse-
quent advancements made by one of us, documented in Refs.
[13,18], completed his program and derives an exhaustive
class of metric in compact form, to be summarized in this
section.

The field equation in vacuum is

R
(
Rμν − 1

4
gμνR

)
+ gμν�R − ∇μ∇νR = 0, (5)

which contains fourth derivatives of the metric components
gμν in �R and ∇μ∇νR. The solution in general thus
involves two additional parameters. As we shall see, they
are the scalar curvature, 4�, at spatial infinity, and a new
(Buchdahl) parameter k which is of the dimension of length.
The case of � �= 0 is an asymptotically (anti-)de Sitter vac-
uum solution, whereas the case of � = 0 is an asymptotically
flat vacuum solution.

The body of our orbital motion study in this paper is on
the asymptotically flat vacuum solution outside of a static
and spherical symmetric mass source. Nevertheless, for com-
pleteness, we shall expose the available representations of the
metrics in this section.

2.1 Asymptotically de Sitter vacuum solution in standard
coordinates

In [13], a general Buchdahl-inspired metric was determined
to be in a compact form (with d�2 := dθ2 + sin2 θ dφ2)

ds2 = ek
∫ dr

q(r)r

{
− p(r)q(r)

r
dt2 + p(r)r

q(r)
dr2 + r2d�2

}
.

(6)

The variables p and q obey first-order “evolution” rules

dp(r)

dr
= 3k2

4 r

p(r)

q2(r)
, (7)

dq(r)

dr
=

(
1 − � r2

)
p(r), (8)

whereas the Ricci scalar is

R(r) = 4� e−k
∫ dr

r q(r) . (9)

The metric involves �, representing the scalar curvature at
spatial infinity, and k, the Buchdahl parameter. When k = 0,
metric (6) duly recovers the de Sitter metric [13].

2.2 Asymptotically de Sitter vacuum solution in
“canonical” coordinates

The metric expressed in (6) contains a conformal factor which
is inversely proportional to the Ricci scalar. In [19], we con-
sidered making r a function of R such that the proper part
of the metric satisfies gtt gRR = −1. The resulting metric is
given by

ds2 = e
k

∫ dR
�(R)r2(R)

{
−�(R)dt2 + dR2

�(R)
+ r2(R)d�2

}
,

(10)

with

�(R) := p(R) q(R)

r(R)
. (11)

The “evolution” rules now involve three functions p(R),
q(R), and r(R)

dr(R)

dR
= 1

p(R)
, (12)

dp(R)

dR
= 3k2

4 r(R)q2(R)
, (13)

dq(R)

dR
= 1 − � r2(R), (14)

with the Ricci scalar being given by

R(r) = 4� e
−k

∫ dR
�(R)r2(R) . (15)

2.3 Asymptotically flat vacuum solution in standard
coordinates

In Ref. [18], we further found an exact closed analytical
solution corresponding to the case of � = 0, which was
called the special Buchdahl-inspired metric. This metric is
Ricci scalar flat, but not Ricci flat. It describes an asymptot-
ically flat spacetime. Hence, it is also appropriate to call it
the asymptotically flat Buchdahl-inspired metric.
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For the region r > rs, the metric of the asymptotically flat
Buchdahl-inspired metric reads

ds2 =
(

1 − rs

r

)k̃ {
−

(
1 − rs

r

)
dt2 + ρ4(r) dr2

r4
(
1 − rs

r

)

+ρ2(r)d�2

}
, (16)

where the function ρ(r) is

ρ(r) = ζ rs

(
1 − rs

r

) ζ−1
2

1 − (
1 − rs

r

)ζ
(17)

and the dimensionless parameters are

k̃ := k

rs
, ζ :=

√
1 + 3k̃2. (18)

2.4 Asymptotically flat vacuum solution in “q” coordinate

In [18], one of us reported yet another expression for the
asymptotically flat Buchdahl-inspired metric, Eq. (16). For
the region q � q+ (which are defined in Eq. (20)):

ds2 =
(
q − q+
q − q−

) k̃−1
ζ

{
−

(
q − q+
q − q−

) 2
ζ

dt2 + dq2

+(q − q+)(q − q−)d�2

}
(19)

with

q± := rs

2
(−1 ± ζ ) , ζ =

√
1 + 3k̃2. (20)

2.5 Asymptotically flat vacuum solution in isotropic
coordinate

The metric (16) can be transformed into an isotropic form
[21],

ds2 =
∣∣∣∣ r̄ − rs/4

r̄ + rs/4

∣∣∣∣
2
ζ
(ζ+k̃−1)

{
−

∣∣∣∣ r̄ − rs/4

r̄ + rs/4

∣∣∣∣
2
ζ
(2−ζ )

dt2

+ζ 2
(

1 + rs

4r̄

)4 (
dr̄2 + r̄2d�2

) }
, (21)

which is symmetric with respect to a reciprocal coordinate
transformation, per

4r̄

rs
� rs

4r̄
. (22)

2.6 Asymptotically flat vacuum solution in Morris–Thorne
form

In Ref. [21], the metric (16)–(18) was brought into the
Morris–Thorne form [22,23]:

ds2 = −e2�(R)dt2 + dR2

1 − b(R)
R

+ R2d�2, (23)

e2�(R) = y
2
ζ
(k̃+1)

, (24)

1 − b(R)

R
= 1

4y2

(
(y2 + 1) + k̃ − 1

ζ
(1 − y2)

)2

≥ 0,

(25)

R = (ζrs)
y

k̃−1
ζ

+1

1 − y2 , (26)

y :=
(

1 − rs

r

) ζ
2 ∈ (0, 1), ζ =

√
1 + 3k̃2, (27)

with �(R) and b(R) being the redshift and shape functions,
respectively. Note that the relation y(R) is implicit by invert-
ing Eq. (26).

2.7 A more generic Morris–Thorne form

In Ref. [24], we generalized the metric in (23)–(27) by mak-
ing two modifications: (i) replacing k̃ with η in the redshift
function (see below); (ii) treating k̃, η, and ζ as independent

parameters (in contrast to Eq. (27), where ζ =
√

1 + 3k̃2).
The generalized metric is expressed as

ds2 = −e2�(R)dt2 + dR2

1 − b(R)
R

+ R2d�2 (28)

with

e2�(R) = y
2
ζ
(η+1)

, (29)

1 − b(R)

R
= 1

4y2

(
(y2 + 1) + k̃ − 1

ζ
(1 − y2)

)2

≥ 0,

(30)

R = (ζrs)
y

k̃−1
ζ

+1

1 − y2 ; y ∈ (0, 1). (31)

Here we would like to present several remarks about the
properties of the solution in the generic Morris–Thorne form.

Remark 1 The metric (28)–(31) recovers the metric (23)–
(27) when η = k̃ and ζ =

√
1 + 3k̃2. Additionally, it recov-

ers the Campanelli–Lousto metric in Brans–Dicke gravity
[25–28] when ζ = 1.

Remark 2 Although the metric (28)–(31) seems to have four

parameters
{
k̃, η, ζ, rs

}
, it effectively depends on only three
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parameters α := η+1
ζ

, β := k̃−1
ζ

, r ′
s := ζrs, per

ds2 = −e2�(R)dt2 + dR2

1 − b(R)
R

+ R2d�2, (32)

e2�(R) = y2α (33)

1 − b(R)

R
= 1

4y2

(
(y2 + 1) + β (1 − y2)

)2 ≥ 0, (34)

R = r ′
s
yβ+1

1 − y2 for y ∈ (0, 1), (35)

with the relation y(R) being implicit in Eq. (35).

Remark 3 The Schwarzschild metric corresponds to metric
(32)–(35) when α = 1, β = −1 and ζ = 1. Meanwhile,
the asymptotically flat Buchdahl-inspired metric corresponds

to

{
α = k̃+1√

1+3k̃2
, β = k̃−1√

1+3k̃2

}
, obeying the relation α2 +

αβ + β2 = 1.

Remark 4 Regardless of α, when β < −1, metric (32)–(35)
yields a wormhole because the function R(y) in (35) pro-

duces a minimum at y0 =
√

β+1
β−1 ∈ (0, 1). The two (sym-

metric) asymptotically flat sheets that are glued together at
the “throat” y0 are both defined in the range y ∈ [y0, 1).

3 Geodesics and classical tests of the general
Buchdahl-inspired metrics

In this section, we will present the geodesics evolution of
a massive/massless particle orbiting the Buchdahl-inspired
metrics. From the geodesic evolution, we are able to calcu-
late some observational quantities so that we can use data to
constrain them. We claim that the data from the solar sys-
tem experiments can provide stronger constraints than those
obtained upon using the stellar stars orbiting the supermas-
sive black hole in the galactic center, so we will consider the
solar system experiments first.

3.1 Geodesics in the general Buchdahl-inspired metrics

In this subsection, we give the general Buchdahl-inspired
metrics in the standard coordinates and consider the geodesics
of both massless and massive objects in this metric. In con-
trast to the metric given in (16), here we treat the parameters
k̃, η, and ζ as independent parameters. Using the coordinates
(t, R, θ, φ), the metric is given by

ds2 = −e2�(R)dt2 + dR2

1 − b(R)
R

+ R2d�2. (36)

In the weak field approximation, this metric can be expressed
as

ds2 � −
(

1 − (1 + η)rs
R

+ (1 + η)(k̃ + η)r2
s

2R2

)
dt2

+
(

1 + (1 − k̃)rs
R

)
dR2 + R2d�2. (37)

The radius rs can be related to the ADM mass of the solution
via rs = 2GM , with M being the ADM mass andG being the
gravitational constant. Comparing this weak field expansion
with the Newtonian limit, we can relateG with the Newtonian
gravitational constant GN as (1 + η)G = GN.

Let us first consider the evolution of a particle in the gen-
eral Buchdahl-inspired metric (36). For a massive/massless
particle, if we ignore self-gravitational effects, its evolution
is governed by the following geodesics

d2xμ

dλ2 + �μ
νρ

dxν

dλ

dxρ

dλ
= 0, (38)

where λ denotes the affine parameter of the geodesics and �
μ
νρ

represent the Christoffel symbols of the general Buchdahl-
inspired metric. Considering that the general Buchdahl-
inspired metric is static and spherically symmetric, it has two
Killing vectors, ξ

μ
t = {∂t , 0, 0, 0} and ξ

μ
φ = {0, 0, ∂φ, 0},

which leads to two constants of motion E and L (conserved
energy and angular momentum), i.e.,

E = −gμνξ
μ
t

dxν

dλ
= −gtt

dt

dλ
, (39)

L = gμνξ
μ
φ

dxν

dλ
= gφφ

dφ

dλ
. (40)

For geodesics, we also have gμν
dxμ

dλ
dxν

dλ
= ε, with ε = −1

for timelike geodesics which describes evolution of massive
particle, and ε = 0 for null geodesics which describes the
evolution of massless particle. Then, using (39) and (40), we
obtain

gRR

(
dR

dλ

)2

+ gθθ

(
dθ

dλ

)2

= ε − gtt

(
dt

dλ

)2

− gφφ

(
dφ

dλ

)2

= ε − E2

gtt
− L2

gφφ

. (41)

Without loss of generality, we consider the evolution of the
particle in the equatorial plane, i.e., we can set θ = π/2 and
dθ/dλ = 0. Then we can simplify the above equation into
the form
(

dR

dλ

)2

= E2 − Veff(R), (42)

123



330 Page 6 of 13 Eur. Phys. J. C (2024) 84 :330

where Veff(R) denotes the effective potential of the particle,

Veff(R) = E2 −
(

ε − E2

gtt
− L2

gφφ

)
1

gRR
. (43)

For later convenience, it is useful to give the derivative of
r with respect to φ, which can be obtained using (40) in
Eq. (42) and is given by
(

dR

dφ

)2

=
(

ε − E2

gtt
− L2

gφφ

) g2
φφ

L2gRR
. (44)

This equation is the starting point for later calculations of the
light deflection angle, gravitational time delay, and perihe-
lion advance in the general Buchdahl-inspired metric in the
following subsections.

3.2 Light deflection angle

The precise measurements of the deflection of the light pass-
ing by the Sun play an essential role in the establishment of
GR. These data can also be used for constraining any possible
derivation of the deflection angle in many modified gravities
from that in GR. Here, our purpose is to calculate the pos-
sible effects of the general Buchdahl-inspired metric on the
deflection angle of the light and then constrain them using
the most recent measurements.

For the propagation of the light in the general Buchdahl-
inspired metric (36), we have ε = 0. Introducing the impact
parameter

b ≡ L

E
, (45)

Eq. (44) can be transformed into

dφ

dR
= ±

√
gRR
gφφ

(
− gφφ

b2gtt
− 1

)−1/2

, (46)

where ± represents the cases with increasing and decreas-
ing R, respectively. In general, for a bending light that does
not fall into the object described by the general Buchdahl-
inspired metric (36), the range of the allowed R is determined
by the condition dR

dλ
≥ 0. In the general Buchdahl-inspired

metric, this implies that the allowed range of R should be
R0 ≤ R < +∞, with R0 denoting the closest approach of
the light to the Sun. R0 is a root of dR

dλ
= 0, and thus we have

b2 = −gφφ(R0)

gtt (R0)
. (47)

Then the deflection of the angle of the light can be calculated
using

�φ = 2
∫ +∞

R0

dφ

dR
dR − π. (48)

Since we are considering the deflection of the light by the
Sun, it is convenient to employ the weak field approximation

by expanding the above integral in terms of rs/R, which gives

�φ � 4GM

R0

2 + η − k

2
� 4GNM

R0

2 + η − k

2(1 + η)
, (49)

where GN = (1 + η)G is the Newtonian gravitational con-
stant. For a special Buchdahl-inspired metric, as given in (16)

with η = k̃ and ζ =
√

1 + 3k̃2, we have

�φ � 4GNM

R0
(1 − k̃), (50)

where GN = (1 + k̃)G is the Newtonian gravitational con-
stant for the Buchdahl-inspired metric.

Now we consider the light deflected by the Sun. We can
express the deflection angle �φ in terms of the �φGR =
1.75′′ as

�φ

�φGR = 1 − η + k̃

2(1 + η)
. (51)

The deflection angles of the light from distant sources by
the Sun have been measured in many experiments over the
past 100 years. The most precise measurement to date was
carried out using the very-long-baseline interferometry tech-
nique [29]. Using the result of this measurement, we can con-

strain the parameter η+k̃
2(1+η)

in the general Buchdahl-inspired
metric to be

− 5.0 × 10−5 <
η + k̃

2(1 + η)
< 2.5 × 10−4 (68% C.L.).

(52)

For a special Buchdahl-inspired metric (16) with η = k̃ and

ζ =
√

1 + 3k̃2, this constraint leads to a constraint on the
parameter k̃ as

− 5.0 × 10−5 < k̃ < 2.5 × 10−4 (68% C.L.). (53)

3.3 Gravitational time delay

Gravitational time delay is an important phenomenon in that
light or radio waves can take more time to travel if they
pass by a massive object, like the Sun or a planet. This phe-
nomenon can be precisely measured by sending a radar sig-
nal from Earth or a spacecraft passing through the Sun and
reflecting off another planet or spacecraft. The effects of the
general Buchdahl-inspired metric (36) on the gravitational
time delay can be derived from Eq. (46), from which we
obtain

dt

dR
= dt

dφ

dφ

dR
= dφ

dR

dt/dλ

dφ/dλ

= ±1

b

√
−gRR

gtt

(
1

b2 + gtt
gφφ

)−1/2

. (54)

Considering a radio wave traveling from the Sun to the point
RA, the time spent during this process can be calculated from

123



Eur. Phys. J. C (2024) 84 :330 Page 7 of 13 330

the integral

t (RA) = 1

b

∫ RA

R0

√
−gRR

gtt

(
1

b2 + gtt
gφφ

)−1/2

dR. (55)

Here, R0 is the closest approach of the radio wave to the
Sun, which can be determined by Eq. (47). In the weak field
approximation, we have

t (rA) �
√
R2
A − R2

0 + GNM

√
RA − R0

RA + R0

+2 + η − k̃

1 + η
GNMarccosh

(
RA

R0

)
. (56)

The first term is the travel time of light in flat spacetime,
and the remaining part contains both the contributions to the
travel time in the Schwarzschild metric and the new effects
of the general Buchdahl-inspired metric. When k̃ = 0 = η,
the above expression exactly reduces to the Schwarzschild
result.

There are two different cases in the experiments mea-
suring the gravitational time delay by sending a radar wave
from Earth or spacecraft which is then reflected off another
planet or spacecraft. One is the inferior conjunction case, in
which the planet (or spacecraft, denoted by B) which reflects
the radar signal is located between the Earth (or spacecraft,
denoted by A) and the Sun. The calculation of the time delay
due to the general Buchdahl-inspired metric of this case is
simple and can be obtained by

�tI � 2
2 + η − k̃

1 + η
GNM ln

RA

RB
= �tGR

I
2 + η − k̃

2(1 + η)
, (57)

or alternatively,

�tI
�tGR

I

= 2 + η − k̃

2(1 + η)
. (58)

The other is the superior conjunction case, in which the
planet that reflects the radar signal and the Earth are on oppo-
site sides of the Sun. For this case, the gravitational time delay
is given by

�tS � 2 + η − k̃

2(1 + η)
4GNM

[
1 + ln

4RARB

R2
0

]
. (59)

The most precise results related to the gravitational time
delay were obtained from the Cassini experiments [30]. This
result ruled out many modified gravity theories that predicted
larger deviations from GR. Here we would like to use its
results to constrain the parameters k̃ and η in the general
Buchdahl-inspired metric. The Cassini experiment was con-
ducted in June 2002, and the test of the gravitational time
delay was achieved in the measurement of the frequency
shift of radio waves to and from the Cassini spacecraft as
they passed near the Sun. In the superior conjunction case,

the relative change in frequency is related to the time delay
�tS via

δν = ν(t) − ν0

ν0
= d

dt
�tS, (60)

where ν0 denotes the frequency of the radio waves emit-
ted from Earth, and ν(t) is the frequency of the radio wave
reflected back to Earth at t . Using Eq. (59), we have

δν � −2 + η − k̃

2(1 + η)

8GNM

R0

dR0(t)

dt
= 2 + η − k̃

2(1 + η)
δνGR. (61)

Alternatively,

δν

δνGR = 2 + η − k̃

2(1 + η)
. (62)

Using the measurement performed in the Cassini exper-
iment [30], we can constrain the parameters k̃ and η in the
general Buchdahl-inspired metric to be

− 4.4 × 10−5 <
η + k̃

2(1 + η)
< 2 × 10−6. (63)

This constraint is stronger than that obtained by the observa-
tions of the deflection angle.

For a special Buchdahl-inspired metric (16) with η = k̃

and ζ =
√

1 + 3k̃2, the above constraint leads to a constraint
on the parameter k̃ as

− 4.4 × 10−5 < k̃ < 2 × 10−6. (64)

3.4 Perihelion advance

Now we consider the orbit’s perihelion advance for a mas-
sive particle moving in the general Buchdahl-inspired metric.
For a massive particle, we have ε = −1. We still start with
Eq. (44), introducing a new variable x = 1/R, which leads
to
(

dx

dφ

)2

= x4
[
−1 − E2

gtt
− L2

gφφ

] g2
φφ

L2gRR
. (65)

Taking the derivative on both sides of the above equation
with respect to φ and expanding the equation about the small
parameter rs (in the weak field approximation), we obtain

d2x

dφ2 + x − GNM

L2 � 3GNMx2 − 3
η + k̃

1 + η
GNMx2

+2
k̃ + η

1 + η

G2
NM2

L2 x . (66)

The right-hand side of the above equation can be treated
as perturbations to Newtonian gravity, which contains two
parts. The first part 3GNMx2 represents the correction from
the Schwarzschild metric in GR, and the last two terms (the
second and the third term on the right-hand side of the above
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equation) are the new effects from the general Buchdahl-
inspired metric. When the perturbations are absent, the above
equation has an exact solution x0(φ) for a bounded orbit,

x0(φ) = GNM

L2 (1 + e cos φ), (67)

which describes an elliptical orbit with the eccentricity e. The
perturbations from GR and the general Buchdahl-inspired
metric lead to the small derivation to the exact elliptical orbit.
Thus we can write the orbit which contains the effects of the
perturbations in the form of

x(φ) = x0(φ) + x1(φ), (68)

where x0 is the elliptical orbit with the eccentricity e given
by Eq. (67), and x1(φ) is the small correction to the elliptical
orbit, which satisfies

d2x1

dφ2 + x1 � 3GNMx2
0 − 3

η + k̃

1 + η
GNMx2

0

+2
k̃ + η

1 + η

G2
NM2

L2 x0. (69)

Using x0(φ) in Eq. (67), we obtain

d2x1

dφ2 + x1 � A0 + A1 cos φ + A2 cos2 φ, (70)

where

A0 = 3 + 2η − k̃

1 + η

G3
NM3

L4 , (71)

A1 = 6 + 2η − 4k̃

1 + η
e
G3

NM3

L4 , (72)

A2 = 3
1 − k̃

1 + η
e2 G

3
NM3

L4 . (73)

The solution of x1 is given by

x1 = A0 + A2

2
− A2

6
cos(2φ) + A1

2
φ sin φ. (74)

Only the last term contributes to the perihelion advance of
a massive particle moving in the general Buchdahl-inspired
metric. For this reason, we can drop other terms and write
the solution of x(φ) as

x � GNM

L2 (1 + e cos φ) + A1

2
φ sin φ

= GNM

L2

[
1 + e cos

(
φ − δφ0

2π
φ

)]
, (75)

where

δφ0 � 6πG2
NM2

L2

(
1 − 2

3

η + k̃

1 + η

)
. (76)

This expression represents the angular shift of the perihelia
per orbit.

For an ellipse described by Eq. (67), we can relate the
angular momentum L of the massive particle to the semi-
major axis a0 of the ellipse as

a0 = L2

GNM(1 − e2)
. (77)

Thus we obtain

�φ = 6πGNM

a0(1 − e2)

(
1 − 2

3

η + k̃

1 + η

)
. (78)

Alternatively,

�φ

�φGR � 1 − 2

3

η + k̃

1 + η
. (79)

It is evident that the above expression reduces to the
Schwarzschild result by taking k̃ = 0 = η.

There are several observations of the perihelion advance
that can be used to constrain the parameters η and k̃ in the
general Buchdahl-inspired metric. Now we consider three
different observations related to the phenomenon of the per-
ihelion advance in very different scales, i.e., the perihelion
advances of the laser-ranging satellites orbiting Earth [31], of
Mercury orbiting the Sun [32], and of the S2 star orbiting the
supermassive black hole in the central region of our Milky
Way galaxy [33].

Let us first consider the measured perihelion advance of
the LAGEOS satellites around Earth. Using 13 years of track-
ing data from the LAGEOS satellites, the precession of the
periapsis of the LAGEOS 2 satellite was measured as [31]

�φ

�φGR = 1 + (0.28 ± 2.14) × 10−3. (80)

From this result, we obtain

− 1.8 × 10−3 <
1

2

η + k̃

1 + η
< 1.4 × 10−3. (81)

This bound corresponds to a constraint on the parameter k̃

− 1.8 × 10−3 < k̃ < 1.4 × 10−3 (82)

for the special Buchdahl-inspired metric with η = k̃ and

ζ =
√

1 + 3k̃2.
We now turn to consider the observation of the anomalous

perihelion advance for Mercury. The most accurate mea-
surement of the perihelion advance was performed by the
MESSENGER mission [32], which measured the perihelion
advance for Mercury as

�φ = (42.9799 ± 0.009)′′/century. (83)

With this measurement, the bound on the η+k̃
1+η

arising from the
general Buchdahl metric can be computed using the experi-
mental error 0.009′′/century, which yields
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− 1.6 × 10−5 <
1

2

η + k̃

1 + η
< 1.6 × 10−5. (84)

This bound is better than that from the LAGEOS satellites by
two orders of magnitude. Again, from the above constraint,
we can obtain the constraint on the parameter k̃ for the special

Buchdahl-inspired metric, with η = k̃ and ζ =
√

1 + 3k̃2,
i.e.,

− 1.6 × 10−5 < k̃ < 1.6 × 10−5. (85)

Here we should mention that the measurement of the anoma-
lous perihelion advance for Mercury will be improved signif-
icantly in the near future from the joint European–Japanese
BepiColombo project, which was launched in October 2018
[34,35]. It is expected that this mission will improve the accu-
racy of the perihelion advance to 10−4 per century. This is
one order of magnitude better than the current accuracy of the
MESSENGER mission [32]. Thus, with the BepiColombo
project, we expect to improve the constraints on the param-

eters η+k̃
1+η

arising from the general Buchdahl-inspired metric

or the parameter k̃ in the special Buchdahl-inspired space-

time to −10−6 � η+k̃
1+η

or k̃ � 10−6, which is much more
restricted than that obtained from the Cassini experiment.

Finally, let us consider the S2 star orbiting the central
black hole of the Milky Way galaxy. Comparing the above
two measurements, the observations of the S2 star provide
a very different environment from test gravity in the strong
gravity regime. The Schwarzschild precession of the S2 star
was recently measured by the GRAVITY collaboration [33],
which gives

�φ

�φGR = 1.1 ± 0.19, (86)

where

�φGR = 12′ (87)

per orbit period from the prediction of GR. For the effect of
the general Buchdahl-inspired metric on the precession, this
observation leads to

− 0.21 <
1

2

η + k̃

1 + η
< 0.067, (88)

which corresponds to

− 0.21 < k̃ < 0.067 (89)

for the special Buchdahl-inspired metric with η = k̃ and

ζ =
√

1 + 3k̃2.

3.5 Including rotation: shadow investigation

An exact stationary axisymmetric vacuum solution for pure
R2 gravity, up to a conformal factor, was derived in [19]

ds2 = A(q, θ; a)

[
−�(q) − a2 sin2 θ

ρ2 dt2

+ ρ2

�(q)
dq2 + ρ2dθ2 + 2a sin2 θ

ρ2 [�(q) − r2(q) − a2]

×dt dφ + �

ρ2 sin2 θdφ2
]

, (90)

where r2(q) = (q − q+)
2q+

q+−q− (q − q−)
−2q−
q+−q− , ρ2(q, θ) =

r2(q) + a2 cos2 θ , �(q) = (q − q+)(q − q−) + a2, and
�(q, θ) = [r2(q) + a2]2 − �(q)a2 sin2 θ . The conformal
factor A(q, θ; a), not needed for shadow investigation, was
determined numerically. The remaining parameters are given
by

q+ = rs
2

[√
1 + 3k̃2 − 1

]
, q− = −rs

2

[√
1 + 3k̃2 + 1

]
.

(91)

Using the Event Horizon Telescope collaboration results
[1–4], we modeled the central black hole M87* by the rotat-
ing metric (90), depending on the mass M = (1 + k̃)rs/2,
rotation parameter a, and the dimensionless parameter k̃.
Considering the shadow angular size and assuming that M
and a parameters are those of M87*, we obtained

− 0.155 ≤ k̃ ≤ 0.004. (92)

4 Geodetic precession of spinning objects in the general
Buchdahl-inspired metric

In this section, we calculate the geodetic precession of spin-
ning objects in the general Buchdahl-inspired metric. In
curved spacetime, the evolution of a spinning particle fol-
lows two equations, the geodesics equation

duμ

dλ
+ �

μ
νλu

νuλ = 0, (93)

and the parallel transport equation,

dsμ

dλ
+ �

μ
νλs

νuλ = 0, (94)

where uμ = dxμ/dλ is the four-velocity of the particle,
and sμ denotes the four-spin vector. uμ and sν satisfy the
following orthogonal condition

uμsμ = 0. (95)

The four-spin vector also satisfies the normalization condi-
tion

sμsμ = 1. (96)
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Without loss of generality, we consider the evolution of the
particle in the equatorial plane, i.e., we can set θ = π/2 and
dθ/dλ = 0. Let us study the test spinning particle moving in
a circular orbit, i.e., Ṙ = 0, and its four-velocity uμ can be
expressed as

ut = ṫ = − E

gtt
, uφ = φ̇ = l

gφφ

. (97)

Then the angular velocity of the spinning particle is written
as

� = uφ

ut
= − l

E

gtt
gφφ

. (98)

The stable circular orbit in the equatorial plane requires

E2 − Veff(R) = 0 and
dVeff

dR
= 0. (99)

Solving these two equations, we have

E =
√√√√ g2

t t (R)g′
φφ(R)

g′
t t (R)gφφ(R) − gtt (R)g′

φφ(R)
, (100)

l =
√√√√ −g2

φφ(R)g′
t t (R)

g′
t t (R)gφφ(R) − gtt (R)g′

φφ(R)
, (101)

� =
√

− g′
t t (R)

g′
φφ(R)

. (102)

Along this circular orbit, the parallel transport equation (94)
can be cast in the form

dst

dλ
+ 1

2

g′
t t (R)

gtt (R)
ut sR = 0, (103)

dsR

dλ
− 1

2

g′
t t (R)

gRR(R)
ut st − 1

2

g′
φφ(R)

gRR(R)
uφsφ = 0, (104)

dsθ

dλ
= 0, (105)

dsφ

dλ
+ 1

2

g′
φφ

gφφ

uφsR = 0. (106)

Differentiating (103) with respect to the affine parameter λ

and converting λ → t using the relation dt = utdλ, we arrive
at a second-order ordinary differential equation of sR ,

d2sR

dt2 + 1

4

[
g′2
φφ(R)

gRR(R)gφφ(R)
�2 + g′2

t t (R)

gtt (R)gφφ(R)

]
sR = 0.

(107)

This equation admits an exact solution

sR(t) = sR(0) cos(ωgt), (108)

where

ωg = 1

2

√
g′2
φφ(R)

gRR(R)gφφ(R)
�2 + g′2

t t (R)

gtt (R)gRR(R)
, (109)

represents the oscillating frequency pertaining to the spin
four-vector sμ. With the solution of sR , the other three com-
ponents st , sθ , and sφ can be immediately solved, giving

st (t) = −1

2

g′
t t (R)

gtt (R)
sR(0) sin(ωgt), (110)

sθ (t) = 0, (111)

sφ(t) = −1

2

g′
φφ(R)

gφφ(R)
�sR(0) sin(ωgt). (112)

In obtaining these solutions, we have used initial conditions
st (0) = sθ (0) = sφ(0) = 0, which means that spin vector
sμ was initially directed along the radial direction.

Comparing Eqs. (109) and (102), we can obviously
observe that the two frequencies, the oscillating frequency
ωg of rotation of the spin vector and the orbital frequency
� of a massive spinning particle along the circular orbit, are
different. This difference leads to a precession of the spin
vector. This is the phenomenon called geodetic precession.
For one complete period of the circular orbit, the angle of the
geodetic precession can be expressed as

�� = 2π
(

1 − ωg

�

)
� 3πGNM

R

(
1 − 2

3

η + k̃

1 + η

)
. (113)

When k̃ = 0 = η, the above result reduces to the geodetic
precession of the Schwarzschild metric.

The geodetic precession can be tested and measured using
the gyroscopes in near-Earth artificial satellites. One such
experiment is the Gravity Probe B experiment, which was
spaced at an altitude of 642 km and had an orbital period of
97.65 min. According to GR, the geodetic effect induces a
precession of the gyroscope spin axis by 6606.1 milliarcsec-
onds (mas) per year. Gravity Probe B measures this effect to
be [36]

�� = (6601.8 ± 18.3)mas/year, (114)

which leads to

− 2.6 × 10−3 <
η + k̃

2(1 + η)
< 2.6 × 10−3. (115)

For the special Buchdahl-inspired metric, the above result
gives

− 2.6 × 10−3 < k̃ < 2.6 × 10−3. (116)

If we treat the Earth–Moon system as a gyroscope orbiting
the Sun, its geodetic precession due to the gravitational field
of the Sun has also been measured by using the lunar laser
ranging data. Recent measurement of the geodetic precession
yields a relative deviation from GR as [37]

�� − ��GR

��GR = −0.0019 ± 0.0064, (117)
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Table 1 Summary of estimates for bounds of the parameter η+k̃
1+η

arising in the general Buchdahl-inspired metric (36) and the parameter k̃ in the
special Buchdahl-inspired metric from several observations

Experiments/observations Constraints on η+k̃
2(1+η)

and k̃ Datasets

Light deflection (−5.0, 25) × 10−5 VLBI observation of quasars [29]

Time delay (−44, 2) × 10−6 Cassini experiment [30]

Perihelion advance (−1.8, 1.4) × 10−3 LAGEOS satellites [31]

(−1.6, 1.6) × 10−5 MESSENGER mission [32]

(−0.21, 0.067) Observation of S2 star at galactic center [33]

Geodetic precession (−2.6, 2.6) × 10−3 Gravity Probe B [36]

(−3.4, 6.2) × 10−3 Lunar laser ranging data [37]

Shadow (rotating solution) (−0.155, 0.004) Event Horizon Telescope collaboration [1–4]

which gives

− 3.4 × 10−3 <
η + k̃

2(1 + η)
< 6.2 × 10−3. (118)

Again, this bound corresponds to

− 3.4 × 10−3 < k̃ < 6.2 × 10−3, (119)

for the special Buchdahl-inspired metric, with η = k̃ and

ζ =
√

1 + 3k̃2.

5 Conclusion

In this paper, we study the observational constraints that
can be imposed on the asymptotically flat Buchdahl-inspired
solution. For this purpose, we theoretically calculate the
effects of the parameter k̃ on several solar system experi-
ments and black hole observations. Specifically, we calcu-
late in detail the deflection angle of light by the Sun, grav-
itational time delay, perihelion advance, and geodetic pro-
cession for massless and massive objects in the Buchdahl-
inspired spacetime. With these theoretical predictions, we
derive the constraints on the parameter k̃ in the asymptot-
ically flat Buchdahl-inspired spacetime by comparing our
theoretical calculations with observations. Our results are
summarized in Table 1. In addition, we provide different
comparisons of parameters from modified gravity and gen-
eral relativity. For instance, Eq. (51) provides a comparison
of the deflection angle of light between the two theories; Eq.
(58) provides a comparison of gravitational time delay; Eq.
(79) and (86) provide a similar comparison for perihelion
and periastron precession between theories, while Eq. (117)
gives a comparison of geodetic precession as predicted by
the two theories.

It is worth mentioning here that the measurement of the
gravitational time delay by the Cassini experiment provides
the most sensitive tool to constrain the parameter k̃ in the solar
system. Another important constraint comes from observing

the perihelion advance for Mercury by the MESSENGER
mission. As we mentioned, the measurement of the anoma-
lous perihelion advance for Mercury will be improved signif-
icantly in the near future from the joint European–Japanese
BepiColombo project, which was launched in October 2018
[34,35]. It is expected that this mission will improve the accu-
racy of the perihelion advance to 10−4 per century, which
can be used to improve the constraints on the parameters
η+k̃
1+η

arising from the general Buchdahl-inspired metric or

the parameter k̃ in the special Buchdahl-inspired spacetime to

−10−6 � η+k̃
1+η

or k̃ � 10−6, which is much more restricted
than that obtained from the Cassini experiment.

In contrast to GR, pure R2 gravity does not adhere to
Birkhoff’s theorem. As a higher-derivative characteristic, the
Buchdahl parameter k̃ of its vacuum solution exterior to a
star is system-dependent. Therefore, our empirical tests as
presented in this article were carried out under this premise.
We have focused on the exterior vacuum solution, deferring
the theoretical determination of k̃ for future exploration [38].

The determination of k̃ is, in principle, contingent on
the composition—specifically, the equation of state and the
distribution of matter within the host star. Typically, this
inquiry involves matching the interior and exterior solu-
tions across the star’s surface. An alternative approach entails
deriving a set of Tolman–Oppenheimer–Volkoff (TOV) equa-
tions governing the pressure and density of the star mate-
rial. By numerically solving these equations in conjunction
with the metric components, the exterior vacuum configura-
tion of a star can be obtained based on a presumed equa-
tion of state and conditions at the star’s center [39–41].
Progress has recently been made on this front by one of
us in reducing the TOV equations for f (R) gravity to a
single integro-differential equation. This simplification has
enabled our investigation into the interior–exterior matching
for the Buchdahl-inspired solution, with detailed findings to
be reported separately [38].
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While most test results presented in Table 1 align with
GR, the cases for S2 star and M87*, which may qualify as
in a strong field regime, show large deviations for k̃ from
0, albeit with error bars too large for definitive conclusions;
see Eqs. (89) and (92). As investigated in [21], a k̃ value
in the range (−1, 0) has been associated with the potential
formation of wormholes. Theoretically, such spacetime con-
figurations could support the possibility of closed timelike
curves, recently explored in [42]. Consequently, future tests
of the Buchdahl-inspired solution and pure R2 gravity in
strong field regimes may be warranted.

Acknowledgements Tao Zhu is supported by the Zhejiang Provincial
Natural Science Foundation of China under Grants No. LR21A050001
and No. LY20A050002, the National Natural Science Foundation of
China under Grants No. 12275238 and No. 11675143, the National
Key Research and Development Program of China under Grant No.
2020YFC2201503, and the Fundamental Research Funds for the
Provincial Universities of Zhejiang in China under Grant No. RF-
A2019015.

Data availability This manuscript has no associated data. [Authors’
comment: The present investigation did not generate new data. Hence
no data available.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. K. Akiyama et al. [Event Horizon Telescope], First M87 event
horizon telescope results. I. The shadow of the supermassive black
hole. Astrophys. J. Lett. 875, L1 (2019). arXiv:1906.11238 [astro-
ph.GA]

2. K. Akiyama et al. [Event Horizon Telescope], First M87 event
horizon telescope results. IV. Imaging the central supermassive
black hole. Astrophys. J. Lett. 875, L4 (2019)

3. K. Akiyama et al. [Event Horizon Telescope], First M87 event
horizon telescope results. V. Physical origin of the asymmetric ring.
Astrophys. J. Lett. 875, L5 (2019)

4. K. Akiyama et al. [Event Horizon Telescope], First M87 event
horizon telescope results. VI. The shadow and mass of the central
black hole. Astrophys. J. Lett. 875, L6 (2019)

5. B.P. Abbott et al. [LIGO Scientific and Virgo], Observation of grav-
itational waves from a binary black hole merger. Phys. Rev. Lett
116(6), 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.
061102. arXiv:1602.03837 [gr-qc]

6. B.P. Abbott et al. [LIGO Scientific and Virgo], Properties of the
binary black hole merger GW150914. Phys. Rev. Lett. 116(24),
241102 (2016). arXiv:1602.03840 [gr-qc]

7. H.A. Buchdahl, Non-linear Lagrangians and cosmological theory.
Mon. Not. R. Astron. Soc. 150, 1 (1970)

8. T.P. Sotiriou, V. Faraoni, f (R) theories of gravity. Rev. Mod. Phys.
82, 451–497 (2010). arXiv:0805.1726 [gr-qc]

9. A. De Felice, S. Tsujikawa, f (R) theories. Living Rev. Relativ. 13,
3 (2010). arXiv:1002.4928 [gr-qc]

10. C.G. Boehmer, E. Jensko, Modified gravity: a unified approach
to metric-affine models. J. Math. Phys. 64, 082505 (2023).
arXiv:2301.11051 [gr-qc]

11. A. Salvio, A. Strumia, Agravity. J. High Energy Phys. 06, 080
(2014). arXiv:1403.4226 [hep-ph]

12. M.B. Einhorn, D.R. Timothy Jones, Naturalness and dimensional
transmutation in classically scale-invariant gravity. J. High Energy
Phys. 03, 047 (2015). arXiv:1410.8513 [hep-th]

13. H.K. Nguyen, Beyond Schwarzschild-de Sitter spacetimes: I. A
new exhaustive class of metrics inspired by Buchdahl for pure
R2 gravity in a compact form. Phys. Rev. D 106, 104004 (2022).
arXiv:2211.01769 [gr-qc]

14. T. Damour, G. Esposito-Farèse, Nonperturbative strong-field
effects in tensor-scalar theories of gravitation. Phys. Rev. Lett. 70,
2220 (1993)

15. L. Alvarez-Gaume, A. Kehagias, C. Kounnas, D. Lüst, A. Riotto,
Aspects of quadratic gravity. Fortschr. Phys. 64, 176 (2016).
arXiv:1505.07657 [hep-th]

16. H.K. Nguyen, Emerging Newtonian potential in pure R2 gravity
on a de Sitter background. J. High Energy Phys. 08, 127 (2023).
arXiv:2306.03790 [gr-qc]

17. H.A. Buchdahl, On the gravitational field equations arising from the
square of the Gaussian curvature. Nuovo Cimento 23, 141 (1962)

18. H.K. Nguyen, Beyond Schwarzschild-de Sitter spacetimes: II.
An exact non-Schwarzschild metric in pure R2 gravity and new
anomalous properties of R2 spacetimes. Phys. Rev. D 107, 104008
(2023). arXiv:2211.03542 [gr-qc]

19. M. Azreg-Aïnou, H.K. Nguyen, A stationary axisymmetric vac-
uum solution for pure R2 gravity. Phys. Scr. 98, 125025 (2023).
arXiv:2304.08456 [gr-qc]

20. H.K. Nguyen, Non-triviality of asymptotically flat Buchdahl-
inspired metrics in pure R2 gravity. arXiv:2305.12037 [gr-qc]

21. H.K. Nguyen, M. Azreg-Aïnou, Traversable Morris–Thorne–
Buchdahl wormholes in quadratic gravity. Eur. Phys. J. C 83, 626
(2023). arXiv:2305.04321 [gr-qc]

22. M.S. Morris, K.S. Thorne, Wormholes in spacetime and their for
interstellar travel: a tool for teaching general relativity. Am. J. Phys.
56, 5 (1988)

23. M.S. Morris, K.S. Thorne, U. Yurtsever, Wormholes, time
machines, and the weak energy condition. Phys. Rev. Lett. 61,
1446 (1988)

24. H.K. Nguyen, M. Azreg-Aïnou, Revisiting weak energy conditions
and wormholes in Brans–Dicke gravity. arXiv:2305.15450 [gr-qc]

25. M. Campanelli, C. Lousto, Are black holes in Brans–Dicke theory
precisely the same as in general relativity? Int. J. Mod. Phys. D 2,
451 (1993). arXiv:gr-qc/9301013

26. L. Vanzo, S. Zerbini, V. Faraoni, Campanelli–Lousto and veiled
spacetimes. Phys. Rev. D 86, 084031 (2012). arXiv:1208.2513 [gr-
qc]

27. A.G. Agnese, M. La Camera, Wormholes in the Brans–Dicke the-
ory of gravitation. Phys. Rev. D 51, 2011 (1995)

28. A.G. Agnese, M. La Camera, Schwarzschild metrics, quasi-
universes and wormholes, in Frontiers of Fundamental Physics
4. ed. by B.G. Sidharth, M.V. Altaisky (Springer, Boston, 2001).
arXiv:astro-ph/0110373

29. E. Fomalont, S. Kopeikin, G. Lanyi, J. Benson, Progress in mea-
surements of the gravitational bending of radio waves using the

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1906.11238
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
http://arxiv.org/abs/1602.03837
http://arxiv.org/abs/1602.03840
http://arxiv.org/abs/0805.1726
http://arxiv.org/abs/1002.4928
http://arxiv.org/abs/2301.11051
http://arxiv.org/abs/1403.4226
http://arxiv.org/abs/1410.8513
http://arxiv.org/abs/2211.01769
http://arxiv.org/abs/1505.07657
http://arxiv.org/abs/2306.03790
http://arxiv.org/abs/2211.03542
http://arxiv.org/abs/2304.08456
http://arxiv.org/abs/2305.12037
http://arxiv.org/abs/2305.04321
http://arxiv.org/abs/2305.15450
http://arxiv.org/abs/gr-qc/9301013
http://arxiv.org/abs/1208.2513
http://arxiv.org/abs/astro-ph/0110373


Eur. Phys. J. C (2024) 84 :330 Page 13 of 13 330

VLBA. Astrophys. J. 699, 1395–1402 (2009). arXiv:0904.3992
[astro-ph.CO]

30. B. Bertotti, L. Iess, P. Tortora, A test of general relativity using
radio links with the Cassini spacecraft. Nature 425, 374 (2003)

31. D.M. Lucchesi, R. Peron, Accurate measurement in the field of
the earth of the general-relativistic precession of the LAGEOS II
pericenter and new constraints on non-Newtonian gravity. Phys.
Rev. Lett. 105, 231103 (2010). arXiv:1106.2905 [gr-qc]

32. R.S. Park, W.M. Folkner, A.S. Konopliv, J.G. Williams, D.E. Smith,
M.T. Zuber, Precession of Mercury’s perihelion from ranging to the
MESSENGER spacecraft. Astrophys. J. 153, 121 (2017)

33. R. Abuter et al. [GRAVITY Collaboration], Detection of the
Schwarzschild precession in the orbit of the star S2 near the Galac-
tic centre massive black hole. Astron. Astrophys. 636, L5 (2020)

34. C.M. Will, New general relativistic contribution to Mercury’s
perihelion advance. Phys. Rev. Lett. 120, 191101 (2018).
arXiv:1802.05304 [gr-qc]

35. J. Benkhoff, J. van Casteren, H. Hayakawa, M. Fujimoto,
H. Laakso, M. Novara, P. Ferri, H.R. Middleton, R. Ziethe,
BepiColombo, comprehensive exploration of Mercury: mission
overview and science goals. Planet. Space Sci. 58, 2 (2010)

36. C.W.F. Everitt et al. [Gravity Probe B re- sults], Gravity probe B:
final results of a space experiment to test general relativity. Phys.
Rev. Lett. 106, 221101 (2011)

37. J.G. Williams, S.G. Turyshev, D.H. Boggs, Progress in lunar laser
ranging tests of relativistic gravity. Phys. Rev. Lett. 93, 261101
(2004)

38. H.K. Nguyen, B. Chauvineau, Tolman–Oppenheimer–Volkoff
equation in f (R) gravity: a new formulation and its theoretical
properties (in preparation)

39. R. Kase, S. Tsujikawa, Neutron stars in f(R) gravity and scalar-
tensor theories. JCAP 09, 054 (2019). arXiv:1906.08954 [gr-qc]

40. K. Yagi, M. Stepniczka, Neutron stars in scalar-tensor theories:
analytic scalar charges and universal relations. Phys. Rev. D 104,
044017 (2021). arXiv:2105.01614 [gr-qc]

41. M. Orellana, F. García, F.A.T. Pannia, G.E. Romero, Structure of
neutron stars in R-squared gravity. Gen. Relativ. Gravit. 45, 771–
783 (2013). arXiv:1301.5189 [astro-ph.CO]

42. H.K. Nguyen, F.S.N. Lobo, Closed timelike curves induced by a
Buchdahl-inspired vacuum spacetime in R2 gravity. Universe 9,
467 (2023). arXiv:2310.19829 [gr-qc]

123

http://arxiv.org/abs/0904.3992
http://arxiv.org/abs/1106.2905
http://arxiv.org/abs/1802.05304
http://arxiv.org/abs/1906.08954
http://arxiv.org/abs/2105.01614
http://arxiv.org/abs/1301.5189
http://arxiv.org/abs/2310.19829

	Observational tests of asymptotically flat mathcalR2 spacetimes
	Abstract 
	1 Introduction
	2 Summary of Buchdahl-inspired vacuum solutions
	2.1 Asymptotically de Sitter vacuum solution in standard coordinates
	2.2 Asymptotically de Sitter vacuum solution in ``canonical'' coordinates
	2.3 Asymptotically flat vacuum solution in standard coordinates
	2.4 Asymptotically flat vacuum solution in ``q'' coordinate
	2.5 Asymptotically flat vacuum solution in isotropic coordinate
	2.6 Asymptotically flat vacuum solution in Morris–Thorne form
	2.7 A more generic Morris–Thorne form

	3 Geodesics and classical tests of the general Buchdahl-inspired metrics
	3.1 Geodesics in the general Buchdahl-inspired metrics
	3.2 Light deflection angle
	3.3 Gravitational time delay
	3.4 Perihelion advance
	3.5 Including rotation: shadow investigation

	4 Geodetic precession of spinning objects in the general Buchdahl-inspired metric
	5 Conclusion
	Acknowledgements
	References




