
Eur. Phys. J. C (2024) 84:291
https://doi.org/10.1140/epjc/s10052-024-12605-z

Regular Article - Theoretical Physics

Collisions and dynamics of particles with magnetic dipole moment
and electric charge near magnetized rotating Kerr black holes

Shokhzod Jumaniyozov1,2,a, Saeed Ullah Khan3,4,b, Javlon Rayimbaev5,6,7,c , Ahmadjon Abdujabbarov1,8,d,
Bobomurat Ahmedov1,9,e

1 Ulugh Beg Astronomical Institute, Astronomy Str. 33, 100052 Tashkent, Uzbekistan
2 Institute of Nuclear Physics, Ulugbek 1, 100214 Tashkent, Uzbekistan
3 College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China
4 College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
5 School of Mathematics and Natural Sciences, New Uzbekistan University, Movarounnahr St. 1, 100007 Tashkent, Uzbekistan
6 Faculty of Computer Engineering, University of Tashkent for Applied Sciences, Gavhar Str. 1, 700127 Tashkent, Uzbekistan
7 Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, 100000 Tashkent, Uzbekistan
8 Tashkent State Technical University, 100095 Tashkent, Uzbekistan
9 Institute of Theoretical Physics, National University of Uzbekistan, 100174 Tashkent, Uzbekistan

Received: 7 January 2024 / Accepted: 21 February 2024 / Published online: 20 March 2024
© The Author(s) 2024

Abstract Analysis of test magnetized and charged parti-
cles around black holes immersed in external magnetic fields
may help to explain the observed astrophysical phenomena
related to black holes, such as the acceleration of particles
up to high energies. In this sense, we studied the circular
motion of test-charged particles with magnetic dipole orbit-
ing around magnetized rotating Kerr black holes. First, we
derive the effective potential for the circular motion of such
particles, including interactions between the external mag-
netic field and the electric charge, and the magnetic interac-
tion between the magnetic dipole. In addition, we analyze the
angular momentum and energy of particles corresponding to
circular orbits. The effects of magnetic interaction and cou-
pling parameters on the position of innermost stable circular
orbits (ISCOs), the energy and angular momentum of the par-
ticles at ISCO, and the energy efficiency from the Novikov-
Thorne accretion disc have been investigated. We also find
cases of degeneracy between magnetic dipole interaction and
magnetic coupling parameters, giving the same ISCO radius.
Finally, we studied various cases of collisions of neutral,
magnetized, and electrically charged particles near rotating
Kerr black holes in the presence of external magnetic fields.
The critical angular momentum of spinning charged particles
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is found in which the particles can collide. We also analyze
the effects of both magnetic interactions on the center-of-
mass energy of the colliding particles.

1 Introduction

Testing gravity theories using observational data is an impor-
tant task of relativistic astrophysics because gravity theories
are a key concept in understanding the formation and evolu-
tion of the Universe, as well as the behavior of astronomical
objects such as stars and galaxies, as well as the physics
of gravitational compact relativistic objects: black holes and
neutron stars.

One of the most important and well-tested gravity the-
ories is general relativity, describing gravity as a curvature
of spacetime, which was developed by Albert Einstein in
the early 20th century. It has been incredibly successful in
explaining a wide range of astronomical phenomena, such as
the bending of light around massive objects [1,2], the pre-
cession of Mercury’s orbit, and the existence of black holes.
However, there are still a few open fundamental problems
of current relativistic astrophysics related to the nature of
dark matter and dark energy. On the other hand, astrophysi-
cal magnetic fields are also important for understanding the
Universe. The magnetars, pulsars, white dwarfs, stars, and
accretion disks of black holes may play the role of the source
of a strong magnetic field. Thus, the effect of gravity is impor-
tant in the study of powerful magnetic field sources.
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In astrophysics, the magnetic fields play a vital role in
explaining many astrophysical processes, such as the forma-
tion of stars and planets, the acceleration of cosmic rays, and
the ejection of jets from black holes. Magnetic fields can also
confine and heat plasma, the fourth state of matter that makes
up most of the visible Universe.

The solutions of the Maxwell equations around both
Schwarzschild and Kerr black holes immersed in an external
asymptotically uniform magnetic field were first obtained by
Wald in 1974 [3]. Petterson [4] proposed the dipole magnetic
field, which may be formed using the circular current loops
surrounding the black hole. The split-monopole magnetic
field approximation, along with the parabolic field, has been
explored in [5]. It should be noted that parabolic fields are
typically the consequences of numerical modeling of toroidal
configurations considered within the context of general rel-
ativistic magnetohydrodynamics [6].

In astrophysics, it is important to consider magnetic field
effects on particle dynamics in the black holes accretion
discs. However, astrophysical magnetic fields around black
holes are difficult to observe directly. Thus, their effects can
be observed in various ways, such as the emission of polar-
ized light and the acceleration of charged and magnetized
particles. Besides, the astrophysical compact entities’ mag-
netic fields are responsible for witnessing high-energy pro-
cesses in their vicinity. This may be utilized to validate theo-
ries of gravity in an intense field environment by examining
the dynamics of charged and magnetized particles. In this
sense, gravity theories and astrophysical magnetic fields are
important in understanding the Universe.

In past years, using the Walds approach, several studies
have been performed through the dynamics and radiation
of charged and magnetized particles [7–15]. Recently, Khan
and Chen [16], by studying the dynamics of charged particles
in the black hole split-monopole magnetosphere, discovered
that the positive magnetic field boosts the stability of circular
orbits. The motion of magnetized particles near black holes
in the existence of an external magnetic field has been studied
in [17–23].

Observations of electromagnetic fields around black holes
in different bands have yielded valuable information about
the dynamical processes around Sgr A*. The evaluated value
of the magnetic field strength from the vicinity of Sgr A*
to the innermost edge of its accretion is approximately 5–
100 G [24,25], and its estimated value around the orbit of PSR
1745–2900 is about few mG [26]. Another important issue
is related to the magnetic field configuration. Although there
exist numerous theoretical studies on astrophysical events
in the vicinity of the supermassive black hole Sgr A*, the
magnetic field configuration in the close environment of the
black hole is still not defined [27].

Particle collisions around a revolving and charged black
hole’s horizon is an essential and engaging process that can

end up with high-energy emissions. To date, various phys-
ical mechanisms have been presented as black hole energy
extraction techniques. Roger Penrose [28] was the pioneer
in describing an easy mechanism for extracting energy from
black holes. Piran et al. [29,30] have investigated such mech-
anisms associated with the Penrose phenomenon. Banados,
Silk, and West (BSW) [31] observed that collisions could
yield high center-of-mass energy particles for an exces-
sively spinning black hole. Such energy could be greater
than Planckian energy in an idealistic set-up; therefore, black
holes may be considered an ultra-high energy collider. By
studying the charged Gauss–Bonnet-AdS black hole, Zahid
et al. predicted that whenever a pair of neutral electrical test
particles collide near the horizon of a black hole, it may act
as a particle accelerator with arbitrarily enormous center-of-
mass energy [32,33]. Investigating this problem has attracted
a great deal of attention in recent years [34–39].

Several mechanisms exist that minimize the possibility of
large collision energy [40,41]. In the case of fast-rotating
black holes, the center-of-mass energy will be endlessly
large. A little breach of the extremity criterion, which is
virtually unavoidable in astrophysical applications, greatly
reduces this impact. Particle trajectories require consider-
able fine-tuning, even in an idealized spinning situation. This
mechanism is also heavily influenced by gravitational radia-
tion [42].

In our previous works [43,44], we have studied electrically
charged particles with magnetic dipole moment in spacetime
around Schwarzschild and Schwarzschild-MOG black holes
located in external asymptotically uniform magnetic fields.
In this work, we aim to extend the studies into magnetized
rotating Kerr black hole spacetime.

Here, we plan to study the dynamics of magnetized and
electrically charged particles around Kerr black holes in the
presence of an external magnetic field. The paper is orga-
nized as follows: we briefly review magnetized Kerr black
holes as a solution of the Maxwell equations in Sect. 2. We
explore the equation of motion of charged/magnetized par-
ticles around Kerr black holes in the presence of magnetic
fields in Sect. 3. Section 4 is devoted to the analysis of particle
collisions near rotating magnetized black holes. We summa-
rize the results obtained in Sect. 5. Throughout the paper, we
use geometrized units c = G = 1 and run Latin indexes from
0 to 3 and Greek indexes from 1 to 3.

2 Magnetized Kerr black holes

The spacetime geometry of the rotating Kerr black hole with
the total mass M and rotating parameter a can be described
by the following line element

ds2 = gttdt
2 +2gtφdtdφ+grrdr

2 +gθθdθ2 +gφφdφ2, (1)
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where the nonzero components of the metric tensor are
defined as

gtt = −
(

1 − 2Mr

�

)
, grr = �

�
, gθθ = �,

gφφ =
(
r2 + a2 + 2Mr

�
a2 sin2 θ

)
sin2 θ,

gtφ = −2Mra

�
sin2 θ

with � = r2 + a2 cos2 θ , � = r2 + a2 − 2Mr .
One may consider the test field around the rotating black

hole. Magnetic fields around black holes satisfying the condi-
tion B � 1019(M�/M)G are considered to be weak, which
cannot contribute to the space-time curvature of the black
hole [45].

The structure of the external magnetic field near the black
hole horizon could be highly complicated. Near the struc-
ture’s rotation axis, where jets might exist, a parabolic mag-
netic field, irrespective of the magnetic field’s original lay-
out, is correlated. As a result, it may be appropriate to retain
the asymptotically uniform magnetic field suggested by Wald
[3] and used in numerous significant investigations of cosmic
problems as the initial fundamental estimate. To maintain the
space-time configuration’s symmetry, the lines of magnetic
fields must be assumed to be oriented alongside the rotational
axis.

With the assumption of an asymptotically uniform mag-
netic field of intensity B and lines directed alongside the
z-axis in our model of the magnetosphere, the correspond-
ing non-vanishing elements of the electromagnetic potential
four-vector Amu can be expressed as

Aμ = B

2

(
ξ

μ

(φ + 2aξ
μ

(t)

)
− Q

2M
ξ

μ

(t). (2)

In the expressions, (2) Q represents the induced electric
charge of the black hole spacetime. In the case of chargeless
black holes, the parameter Q = 0 and the maximum pro-
duced black hole charge caused by the black hole spin and
the magnetic field. This so-called Wald charge is defined as
QW = 2aB, which results in a potential drop between the
black hole center and infinity. Authors of Ref. [46] have esti-
mated that the Wald charge is much lower than the critical
charge, which may affect spacetime. Therefore, in our analy-
ses, we consider the chargeless rotating black hole by setting
Q = 0 as

At = B

2

(
gtφ + 2agtt

)
, Aφ = B

2

(
gφφ + 2agtφ

)
. (3)

3 Equations of motion of magnetized particles with
nonzero electric charge near magnetized Kerr black
holes

The Hamilton-Jacobi method is a useful tool to determine
the equations of charged and magnetized particles’ motion
around a magnetized Kerr black hole in the following gener-
alized form:

gμν

(
∂S
∂xμ

+ eAμ

)(
∂S
∂xν

+ eAν

)
= −

(
m +U

)2
, (4)

where, the term 2U = DμνFμν is responsible for the interac-
tion between the magnetic dipole and the external magnetic
field, Dμν and Fμν are the polarization tensors and the elec-
tromagnetic field, respectively. The expression for the ten-
sor Dμν = ηαβσνuσ μν satisfies the condition Dαβuβ = 0,
where μν refers to the vector of four dipole moment and uν

is the four-velocity of the particle.
The expression of the electromagnetic field tensor Fαβ =

2u[αEβ] + ηαβσγ uσ Bγ helps to find non-zero components
of the external magnetic field as

Bα = 1

2
ηαβσμFβσuμ (5)

where ηαβσμ = √−gεαβσμ with the Levi–Civita symbol
εαβσμ and the metric determinant g = det (gμν).

In our further analysis, we assume the direction of the
dipole moment is perpendicular to the equatorial plane and

has the following components: μî = (0, μθ̂ , 0), which is
always parallel to the magnetic field lines and perpendicular
to the equatorial plane. Thus, the interaction term U for the
zero angular momentum observer (ZAMO) has the formU =
2μθ̂ B

θ̂
, where the magnetic field [46]

B θ̂ = − B0r sin2 θ
√

�

�2A

×
{[

� −
(

1 − M

r

)
� − a2 sin2 θ

]

×a2(1 + cos2 θ) − �2
}
. (6)

Finally, at the equatorial plane, the interaction term takes
the form, U = 2μB0F(r), where

F(r) = a2M − r3

r(r2 + a2)

√
1 − 2M

r
+ a2

r2 . (7)

The integrals of motion for electrically charged particles
with magnetic dipole moment can be found using the time
translation and the rotational symmetry of the geometry can
be determined by the following form Lagrangian [47, see
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Eq.(7)]

L = 1

2

[
(m +U )gμνu

μuν − kU
]

+ eAμu
μ (8)

and the corresponding conserved quantities are the specific
energy E = E/m of the moving particle and its angular
momentum L = L/m. Consequently, we have

− E = (1 + βF(r))
[
gtt ṫ + gtφφ̇

] + q At , (9)

L = (1 + βF(r))
[
gφφφ̇ + gtφ ṫ

] + q Aφ, (10)

where L = L/m is the specific angular momentum of the
particles and β = μB/(2m) is the magnetic coupling param-
eter corresponding to the magnetic interaction between the
magnetic dipole moment of the particles and q = e/m is the
charge to mass relation.

The dynamics of electrically charged particles with mag-
netic dipole moment orbiting the magnetized Kerr black hole
at the equatorial plane (i.e., θ = π/2 and uθ = θ̇ = 0) will
be described by the following action:

S = −Et + Lφ + Sr . (11)

Then, we can derive the equation for the radial coordinate
using the Hamilton–Jacobi equation (4), taking into account
the Eqs. (9) and (10). With this in mind, we can write the
variables in a separate form in the Hamilton-Jacobi equation.
The radial motion of the particle can then be defined by

grr ṙ
2 = αE2 + 2δE + γ

= [E − V+
eff(r)

] [E − V−
eff(r)

]
(12)

where α = −gtt , δ = gtφ
(L + q Aφ

) + gttq At with

γ = gttq2A2
t + gφφ

(L + q Aφ

)2 + 2gtφq At
(L + q Aφ

)
+ (1 + βF(r))2

and Veff(r) for the circular motion (ṙ = 0) of charged mag-
netized particles has the form

V±
eff = −δ ± √

δ2 − 4αγ

2α
. (13)

In this study, we consider the positive root of the effec-
tive potential, V+

eff , as it corresponds to the so-called positive
root states with four-velocity oriented to future and positive
energy relative to local observers (see, e.g., [48,49]).

In Fig. 1, we present the radial dependency of the effective
potential for different values of the black hole spin a, ωB ,
and β. It is observed that the presence of ωB > 0 (ωB < 0)
causes an increase (decrease) in the effective potential. While
in the presence of the magnetic field and β, the effective
potential increases, particularly β greatly influenced it along
the radial distance r . Our examination reflects that particles
with magnetic dipole moment and electric charge have the

Fig. 1 Radial profiles of Veff for different values of β, a and ωB =
qB/2m parameters

Fig. 2 The angular momentum of magnetized test-charged particles
orbiting magnetized Kerr black holes at different values of the param-
eters β, a and ωB

highest unstable circular orbits in fast-rotating magnetized
Kerr black holes with a compare to slow-rotating ones.

3.1 Circular orbits

This subsection aims to explore the circular motion of the
magnetized and charged particles around magnetized Kerr
black holes. In general, no radial forces/motion along the
circular orbits or the present forces counterbalance each other
at the appropriate angular momentum values of the particles.

The orbit circularity of magnetized test-charged particles
orbiting around magnetized black holes may be investigated
assuming the limitations Veff = E and V ′

eff = 0, wherein the
prime represents the partial derivative over r . As a result of
these conditions, one can determine the angular momentum
and energy of a particle in circular orbits.

Figure 2, depicts the graphical illustration of the angular
momentum of the magnetized and charged particles for the
different parametric values of ωB , a, and β. We find out that
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Fig. 3 Graphical description of the Energy E of the magnetized test-
charged particles orbiting magnetized Kerr black holes at different val-
ues of the parameters β, a and ωB

magnetic fields contribute to the minima of angular momen-
tum in both positive and negative cases of the Larmor fre-
quency parameter ωB . One can also note that ωB < 0 has
more impact on the minima of angular momentum in compar-
ison with ωB > 0. Moreover, we found that black hole spin
a significantly contributes to the minima of angular momen-
tum. Surprisingly, the magnetized Kerr black holes have
the smallest minima as compared to the Schwarzschild and
Schwarzschild-MOG black holes (see Fig.2 in Refs. [43,44]).

In Fig. 3, we have graphically interpreted the behavior of
magnetized test-charged particle’s energy orbiting magne-
tized Kerr black holes at different values of the parameters β,
a and ωB . Our investigation revealed that the energy behaves
quite similarly to the angular momentum under the impact of
these parameters. In addition, one should note that here a also
influences the energy minima. Our results showed that the
magnetic field considerably decreases the energy and angular
momentum of the magnetized test-charged particles orbiting
magnetized Kerr black holes. Also, one noticed that the mag-
netized Kerr black holes have the least minima in comparison
with the Schwarzschild and Schwarzschild-MOG black holes
(see our previous papers [43,44]). In addition, the ωB < 0
further enhances the minima in the orbital energy of the par-
ticles with magnetic dipole and electric charge.

3.2 Innermost stable circular orbits

The solution of V ′
eff = 0 for r helps locate the position of the

orbits, where the effective potential has its maximum values.
The minima of effective potential corresponds to the stability
of circular orbits. In other words, at V ′′

eff(r) < 0, the circular
orbits become unstable, while all circular stable orbits fulfill
the prerequisite of ∂rr Veff(rISCO) > 0. On the contrary, ISCO
complies with the requirements of ∂rr Veff(rISCO) = 0.

Figure 4 demonstrates the graphical representation of
ISCO radius against the Larmor frequency β (left panel) and

Fig. 4 Visual depiction of the ISCO radius vs β and ωB , at various
discrete values of black hole spin a and ωB

ωB (right panel) for different values of the black hole spin.
Our analysis reveals that the magnetic coupling parameter
β contributes to the ISCO radius. From Fig. 4, it can also
be observed that the black hole spin a and the Larmor fre-
quency |ωB | result in decreasing the ISCO radius. Moreover,
the Schwarzschild-MOG black holes (see Fig. 5 in [43]) have
the highest ISCO as compared to the Schwarzschild black
holes (see Fig. 3 in [44]) and magnetized Kerr black holes.
Besides, we also observe that at a particular value of ωB , the
ISCO radius remains unaffected by the magnetic coupling
parameter β, providing the same values of ISCO radius (see
red-dot dashed and black solid lines).

Figure 4 also shows the dependency of the ISCO radius
along the magnetic coupling parameter β. We observed that
the ISCO radius significantly increases with the increase
of β in the case of ωB = 0, while it decreases along the
magnetic coupling β in the presence of Larmor frequency
(ωB �= 0). Also now, here we are interested in degeneracy
values between Larmor frequency ωB and magnetic interac-
tion parameters providing the same ISCO radius.

In Fig. 5, we have plotted the relationships between ωB

and β for the same values of ISCO radius. The graphical
interpretation shows the relationships as contours: at larger
magnetic field values, the contours became smaller. Also, the
contour enlarges with increasing black hole spin.
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Fig. 5 Visual depiction of ωB vs β at various values of ISCO radius
for the case of r = 6M

Fig. 6 Graphical illustration of the energy of particles at their ISCO at
various values of β and ωB

3.3 The ISCO energy of particles

In the following subsection, we examine the impact of various
values of the parameters a, β, and ω on the energy of the test
particle in its ISCO.

Figure 6 shows dependencies of the energy of charged
magnetized particles orbiting magnetized Kerr black holes at
the ISCO along the parameters ωB (upper row) and β (lower
row). It can be seen that increases of ωB cause an increase

in the energy at ISCO EI SCO . Moreover, both the black hole
spin and magnetic interaction parameters have a significant
impact on the particle’s energy at ISCO and considerably
decrease it. Also, one can observe from the top panel that at
a certain negative value of ωB , EI SCO take the same value.

3.4 The ISCO angular momentum

Here, we will study the effects of the magnetic interaction
and spin parameters on the angular momentum of charged
magnetized particles at their ISCOs.

In Fig. 7, we have plotted the behavior of the specific
angular momentum of charged magnetized particles vs. ωB

and β in the top and bottom rows, respectively. From where
one can observe that the black hole spin a diminishes the
ISCO’s angular momentum (LI SCO ). While the Larmor fre-
quency ωB increases the angular momentum, whereas β

causes a decrease in it. Furthermore, the negative value of
ωB decreases the angular momentum of the particles at ISCO
compared to its positive value. Moreover, the Schwarzschild
black hole has greater angular momentum at the ISCO as
compared to the magnetized Kerr black holes, and it further
decreases as the black hole rotates faster.

Fig. 7 Graphical illustration of the angular momentum of particles at
ISCO at various β, ωB , and a parameter values
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3.5 Energy efficiency

Another intriguing scenario emerges when examining a test
particle within a Keplerian accretion disk as it descends
towards the central black hole, releasing energy in the form of
electromagnetic and/or gravitational radiation. The amount
of radiated energy is dictated by the contrast between the
particle’s rest energy, as observed locally, and its energy at
the ISCO, which serves as a reflection of the spacetime char-
acteristics. Consequently, one can compute the energy effi-
ciency of the accretion disk using the expression provided by
Novikov in 1973 [50].

The ISCO significance in the vicinity of black holes is
linked to the inner boundary of an accretion disk. Surpris-
ingly, as testing particles plunge into the center of the black
hole within the Keplerian accretion disk, they extract a cer-
tain amount of energy that might be converted to electro-
magnetic and gravitational radiation upon limitations. The
amount of released energy via radiations is often calculated
as the difference between the particle’s rest energy (as deter-
mined by an appropriate viewer) and the particle’s ISCO
energy (EISCO) [50]. Indeed, the bolometric luminosity of
the brightness emanating from the accretion disk is directly
linked to the energy efficiency of the central black hole, as

Fig. 8 Graphical behavior of the energy efficiency as a function of ωB
(top panel) and β (bottom panel)

expressed by the equation η = Lbol/(Ṁc2), where Ṁ signi-
fies the accretion rate [51].

Here, we also study the efficiency of released energy at
various parametric values of the magnetic coupling and mag-
netic interaction between the magnetic field and the particles’
electric charge, as well as the magnetic dipole moment. As a
result, the efficiency of the accretion disk’s released energy
can mathematically be represented as [50]

η = 1 − E rISCO . (14)

In Fig. 8, we have plotted the behavior of the energy extrac-
tion efficiency along ωB and β in the upper and lower rows,
respectively. Our graphical analysis demonstrated that black
hole spin a contributes to the process of energy extraction.
In addition, the parameters ωB and β considerably influence
the process of energy extraction. One can extract much more
energy in the case of β �= 0 compared to β = 0, whereas
ωB < 0 contributes to the energy extraction while ωB > 0
decreases it. Moreover, our analysis shows that more energy
can be extracted from rotating black holes in comparison
with static ones. Also, it is observed from the top panel that
at a certain negative value of ωB , the energy efficiency at
different a takes the same value for β = 0.1.

4 Particle collisions near magnetized Kerr black holes

The collisional process near black holes remains a signifi-
cant and intriguing general relativity topic. The extraction of
energy may take place from a black hole throughout the colli-
sion process. A variety of methodologies may be employed to
investigate the process of extracting energy from a spinning-
charged black hole. Determining the entire amount of energy
extracted via various methods taking place around black
holes could clarify the reason why the intensity of AGN is on
a scale of 1045erg/s, which might be driven by supermassive
black holes.

Among others, Penrose [28] was the first who laid the
foundation of an easy process according to which a particle
entering the ergosphere of a spinning hole breaks down into
a pair of particles: one of them crashes into the black hole
while another travels to infinity with more energy compared
to the original particle. The technique in question has recently
been explored in various studies in the literature; for details,
see [52–54]).

Banados–Silk–West (BSW) [55,56] investigated particle
collisions around the horizons of black holes as an approach
to extract energy, which was further explored in [56–71].
It is observed that the efficiency of energy extraction from
the center black hole is proven to be greater through head-on
collisions.
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Here, we focus exploring the collisions of test electrically
charged, magnetized, and neutral particles within the metric
of magnetized rotating Kerr black holes. We use the generic
equation presented in [55] for the center of mass energy Ecm

of interacting particles.

(
1√−gtt

Ecm, 0, 0, 0

)
= m1u

μ

(1) + m2u
ν
(2), (15)

where mi and uμ

(i), respectively stands mass of the i th par-
ticle (i = 1, 2) and corresponding four-velocity. Using the
normalization conditions gμνuμuν = −1, we can easily cal-
culate the expression for Ecm as

E2
cm

m1m2
= m2

1 + m2
2

m1m2
− 2gμνu

μ
1 u

ν
2. (16)

We address straightforward situations by considering m1 =
m2 = m (masses) in our subsequent analysis.

4.1 Critical angular momentum of colliding particles

In practice, in the case of particle collisions, the center of
mass energy remains maximal at close orbits near the event
horizon. At the same time, the particle collision’s axial veloc-
ity fulfills the requirements ṙ2 ≥ 0 as a function of the angular
momentum ṙ2(L) and the other parameters. The radial veloc-
ity and its first derivative with respect to r vanishes (ṙ = 0,
and ∂r (ṙ2) = 0) once the angular momentum reaches its
threshold values. However, the radial velocity diminishes as
the angular momentum increases. the challenging system of
equations can be solved numerically.

In Fig. 9, we have plotted the behavior of the critical values
of angular momentum at various parametric values of β in
ωB = −0.01 (top panel) and ωB = 0.01 (bottom panel).
From the graphical behavior, we observed that the difference
between the angular momentum’s critical values increases
along the black hole’s spin and becomes larger in the fast-
spinning black holes. On the other hand, both the black hole
spin and the magnetic coupling parameter β contribute to
increasing in L�∇.

4.2 Center of mass energy of particles in different
scenarios.

This portion looks at the collisions between electrically neu-
tral, magnetized, and electrically charged particles having a
dipole magnetic moment. Taking into account particles of
identical masses, the center of mass energy provided in Eq.
(16) has the following form:

E2
cm

m2 = 2
(
1 − gμνu

μ
1 u

ν
2

)
. (17)

Fig. 9 Graphical behavior of the angular momentum’s critical value
vs. black hole spin a

Which is in the dimensionless form simplifies to

E2
cm = E2

cm/(2m2) = 1 − gμνu
μ
1 u

ν
2. (18)

4.2.1 Neutral and electrically charged particles

We will initially look at the collisions between neutral and
electrically charged particles. The aforementioned Eqs. (9)–
(12) (equations of motion), simplifies the case of neutral par-
ticles with the substitution of β = ω = 0.

Figure 10 depicts the axial dependency of the center of
mass energy in the cases of neutral with neutral and elec-
trically charged particles’ collision. Our graphical analysis
shows that the center of mass energy decreases along the
radial profile in both neutral and electrically charged parti-
cle collisions, but after some extent, in both cases, the energy
increases with increasing values of |ω2|. Furthermore, ω < 0
has a greater impact on the energy release rate compared to
ω > 0. In short, the electrically charged particles contribute
to the center of mass energy.
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Fig. 10 Axial dependency of the center of mass energy in the case
of neutral with electrically charged particle’s collision along the radial
distance r

Fig. 11 Axial dependency of the center of mass energy in the case of
electrically neutral with magnetized particle collisions

4.2.2 Electrically neutral and magnetized particles

Here, in the second case, we consider collisions of electrically
neural and magnetic particles.

In Fig. 11, we investigated the graphical behavior of the
energy release rate in the case of electrically neutral particles
with a collision of magnetized particles. Our results demon-
strate that both ω2 and the magnetic interaction parameter
β2 greatly influence the energy release rate. In conclusion,
ω2 contributes, while β2 > 0 decreases the center of mass
energy along the radial profile r .

4.2.3 Neutral, electrically charged and magnetized
particles

In this subsection, we consider the collisions between neutral
and electrically charged and magnetized particles.

Fig. 12 Axial dependency of the center of mass energy in the case of
neutral, electrically charged, and magnetized particle collisions

Fig. 13 The radial dependency of the center of mass energy in the
collisions of electrically charged and magnetized particles

In Fig. 12, we examine the center of mass energy’s graphi-
cal behavior in the collisions between neutral and electrically
charged and magnetized particles. Here, we observed that the
Larmor parameter ω2 contributes to the energy release rate.
On the other hand, β2 acts inversely as it diminishes the center
of mass energy along the radial profile r .

4.2.4 Electrically charged and magnetized particles

This subsection of our article aims to explore the behavior
of the center of mass energy in the collisions of electrically
charged and magnetized particles.

The graphical behavior in Fig. 13 is shown for various
combinations of ω1 and β2. Our result demonstrates inter-
esting behavior as ω1 > 0 contributes, while ω1 < 0 and
β2 decreases the energy release rate along the radial pro-
file r . In addition, we noted that the collision of neutral and
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electrically charged particles has more energy release rate as
compared to the other cases of particle collisions.

4.2.5 Electrically charged and electrically charged
magnetized particles

The case of electrically charged and electrically charged
magnetized particle collisions is plotted in Fig. 14. From our
graphical analysis, one can see that β2 diminishes, the center
of mass energy along the radial profile r .

4.2.6 Two magnetized particles

Here, we consider the collision between two magnetized par-
ticles only (Fig. 15).

Fig. 14 The radial dependency of the center of mass energy in the
collisions of electrically charged and electrically charged magnetized
particles

Fig. 15 The radial dependency of the center of mass energy in the
collisions of two magnetized particles

Fig. 16 The radial dependency of the center of mass energy in the
collisions of two electrically charged and magnetized particles

From the graphical descriptions, we can see that just like
in the previous case the magnetic field influences the energy
release rate in the same way, as it diminishes the energy
release rate.

4.2.7 Two electrically charged and magnetized particles

In the present subsection, we assumed the collisions of two
electrically charged and magnetized particles.

In this case, we have plotted the behavior of the center of
mass energy in Fig. 16 at various combinations of the electric
and magnetic parameters values. Similarly to the previous
case, here in the collisions of two electrically charged and
magnetized particles, we observe a decrease in the center of
mass energy for the magnetic field. In contrast, one can get
more energy for the case of ω1 = ω2 > 0 in comparison with
ω1 = ω2 < 0. Moreover, charged particle collision releases
much more energy compared to the magnetized particle case
near the horizon.

4.2.8 Magnetized, electrically charged and magnetized
particles

This subsection of our article aims to explore the behavior of
the center of mass energy in collisions of magnetized parti-
cles with electrically charged and magnetized particles (Fig.
17).

Our graphical results of the collisions of magnetized parti-
cles with electrically charged and magnetized particles show
that just like in the previous case the magnetic field decreases
the energy release rate. But here the impact of the magnetic
field is much higher in comparison with previous cases.
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Fig. 17 The radial dependency of the center of mass energy in the colli-
sions of a magnetized particle with electrically charged and magnetized
particles

5 Conclusion

Throughout this work, we have investigated the circular
motion of test particles carrying electric charge and magnetic
dipole moments around magnetized (uncharged) Kerr black
holes. First, we have derived the effective potential for the
circular motion of the particles, taking into account magnetic
interaction with an electrically charged and magnetic dipole
moment. We have analyzed the effective potential, angular
momentum, and energy of the particles for various values
of ωB and β, which correspond to the interactions of exter-
nal magnetic fields with the electric charge and magnetic
moment of the particles. It is observed that Lorentz forces
are proportional to ωB and are stronger than the magnetic
dipole interaction forces. Our main findings are listed below:

– In the case of fasting rotating magnetized Kerr black
holes, the ISCO radius is smaller compared to the case
of slowly rotating and Schwarzschild-MOG black holes.
Moreover, β increases, whereas the black hole spin and
ωB decrease the ISCO radius. Also, we have found that
there are contour-like degeneracy values in ωB and β that
provide the same ISCO radius.

– At a particular value of ωB , the ISCO radius remains
unaffected by the magnetic coupling parameter β, pro-
viding (almost) the same values of ISCO radius.

– The ISCO energy of the particles increases with an
increase of ωB ; however, β and ωB < 0 decrease it.

– We observed that black hole spin a increases the process
of energy extraction. The parameters ωB and β consid-
erably affect the efficiency of the energy extraction pro-
cess. As a result, one can extract much more energy in the

case of β �= 0 compared to β = 0, whereas ωB < 0 con-
tributes to the energy extraction while ωB > 0 decreases
it.

Further, we have focused on exploring the collisions of
test electrically charged, magnetized, and neutral particles
within the metric of magnetized rotating Kerr black holes.
To happen the collisions in circular orbits, the radial velocity
and its first derivative with respect to r must vanish with
corresponding critical angular momentum.

Our numerical and graphical analyses have shown that
ω > 0 contributes, whereas ω < 0 decreases the critical
value of angular momentum. On the other hand, both spin
a and the magnetic coupling parameter β contribute to Lcr .
Finally, we have investigated the collisions between electri-
cally neutral, magnetized, and electrically charged particles
having a dipole magnetic moment by assuming the masses of
the colliding particles are the same. We have studied various
scenarios of the collisions and obtained the following results:

– In the collisions between neutral and electrically charged
and magnetized particles, we have obtained that ωB >

0 contributes to the energy release rate, while β acts
inversely as it diminishes the center of mass energy.

– In the collisions between neutral and electrically charged
and magnetized particles, we observed that ω2 con-
tributes to the energy release rate; however, β2 acts
inversely as it diminishes the center of mass energy.

– For various combinations of ω1 and β2 values: our results
have shown interesting behavior as ω1 >0 contributes,
whereas ω1 <0 and β2 >0 decreases the energy.

– In the case of electrically charged and electrically charged
magnetized particle collisions, we have obtained that the
magnetic field diminishes the energy release rate.

– In the absence of electric charge (ω1 = ω2 = 0), just like
in the previous cases the positive magnetized particles
diminish the center of mass energy.

– In the collisions of electrically charged with electrically
charged and magnetized particles, we have obtained a
decrease in the center of mass energy for β2 > 0.

– The collisions between two electrically charged and mag-
netized particles: magnetic field diminish the energy
release rate. In contrast, we get more energy in the case
of ω1 = ω2 > 0 in comparison with ω1 = ω2 < 0.
Moreover, charged particle collision releases much more
energy compared to the magnetized particle case near the
horizon.
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