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Abstract At the Paul Scherrer Institut (PSI), we are devel-
oping a high-precision apparatus with the aim of searching
for the muon electric dipole moment (EDM) with unprece-
dented sensitivity. The underpinning principle of this exper-
iment is the frozen-spin technique, a method that suppresses
the spin precession due to the anomalous magnetic moment,
thereby enhancing the signal-to-noise ratio for EDM signals.
This increased sensitivity enables measurements that would
be difficult to achieve with conventional g− 2 muon storage
rings. Given the availability of the 125 MeV/c muon beam
at PSI, the anticipated statistical sensitivity for the EDM
after a year of data collection is 6 × 10−23 e·cm. To achieve
this goal, it is imperative to do a detailed analysis of any
potential spurious effects that could mimic EDM signals. In
this study, we present a quantitative methodology to evaluate
the systematic effects that might arise in the context of the
frozen-spin technique utilised within a compact storage ring.
Our approach involves the analytical derivation of equations
governing the motion of the muon spin in the electromag-
netic (EM) fields intrinsic to the experimental setup, validated
through numerical simulations. We also illustrate a method
to calculate the cumulative geometric (Berry’s) phase. This
work complements ongoing experimental efforts to detect a
muon EDM at PSI and contributes to a broader understanding
of spin-precession systematic effects.

a e-mail: chavdar.dutsov@psi.ch (corresponding author)

1 Introduction

The existence of a permanent EDM in any elementary par-
ticle suggests a violation of Charge-Parity (CP) symmetry.
Within the framework of the Standard Model (SM) of particle
physics, EDMs are predicted to be remarkably small, despite
the substantial CP-violating phase provided by the Cabibbo–
Kobayashi–Maskawa matrix. In fact, they are so small that
they are beyond the reach of any imminent measurements.
Nevertheless, numerous SM extensions allow for substantial
CP violating phases, which can result in large EDMs [1,2].
Recently, the EDM of the muon has drawn significant atten-
tion, due to a persistent tension between the experimental
results for the muon anomalous magnetic moment (AMM)
[3,4] and the theoretical SM predictions [5].

Farley et al. [6–8] proposed a method to measure EDMs
in storage rings, known as the frozen-spin technique. The
frozen-spin technique cancels the anomalous (g − 2) pre-
cession by applying a radial electric field perpendicular to
the momentum of the stored particles and to the magnetic
field, so that any remaining precession is a consequence of
the EDM. In a real-world storage ring, where precession due
to the AMM cannot be completely suppressed, EDM-like
signals may be induced. Such systematic effects can reduce
experimental sensitivity or result in a signal mimicking a
genuine EDM.

A non-zero EDM manifests itself through a precession
of the spin around the electric-field vector in the particle’s
frame of reference. In the case of muons, the spin preces-
sion can be measured by studying the direction of the emitted
decay positrons, which is correlated to the spin direction. Our
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study is focused on the systematic effects induced by cou-
pling of the magnetic dipole moment to the EM field of the
experiment. We delve into both the dynamic and geometric
phases of the spin for muons circulating within the confines
of a compact storage ring that employs the frozen-spin tech-
nique. Although we strive to maintain sufficient generality in
our derivations to ensure their applicability across different
scenarios, our discussions are rooted in the context of the
ongoing experimental efforts. Specifically, we have evalu-
ated potential systematic effects associated with the ongoing
effort to search for a muon EDM at PSI.

The main part of this paper is separated in four sections.
First we present the details of the experimental setup which
will be used to search for the EDM of the muon. The frozen-
spin technique is elaborated upon and the expected statistical
sensitivity is given. In the next section we derive analytical
expressions for the motion of the muon spin in an idealised
version of the EM fields of the experiment. The results are
verified by comparison with simulations using Geant4 [9–
11], shown in detail in the appendix. The derivations treat
both the dynamic phase build-up, as well as the potential
for generation of geometric phases. Next we consider effects
arising from possible deviations of the real EM field from the
nominal one. In this part we also derive effects arising from
deviations of the initial spin and momentum of the muon
at the start of a measurement. Finally, in the discussion, we
use the derived analytical equations to calculate limits on
parameters of the experimental setup such that any possible
systematic effect is lower than our target sensitivity for the
search for a muon EDM.

2 Search for the muon EDM at PSI

The search for a muon EDM at PSI will rely on a storage
ring inside a compact solenoid with inner diameter less than
a meter [12,13]. The anti-muons will be injected into the
solenoid one by one, through a superconducting injection
channel [14] and subsequently kicked by a pulsed magnetic
field into a stable orbit within a weakly-focusing field [15].
Two concentric cylindrical electrodes will provide a radial
electric field at the position of the muon orbit. The strength
of this electric field must be precisely tuned so as to satisfy
the frozen-spin condition, where the anomalous spin preces-
sion is cancelled and the spin remains aligned with the muon
momentum for the duration of its lifetime.

As the muon decays, the direction of its spin can be sta-
tistically inferred from the trajectory of the emitted decay
positron. The parity violation in the weak decay results
in a preference for high-energy positrons to be emitted in
the direction of the muon spin. The EDM will be calcu-
lated based on the change in asymmetry, d A/dt, where
A(t) = (N↑(t) − N↓(t))/(N↑(t) + N↓(t)), which measures

the difference between the number of positrons emitted along
or opposite the main magnetic field, see Fig. 1. Detectors
positioned symmetrically on both sides of the plane defined
by the ideal muon orbit will monitor the direction of emis-
sion.

A staged approach has been adopted for this project.
The initial phase (Phase I) will focus on demonstrating
the feasibility of all critical techniques, with the goal of
achieving a sensitivity to the muon EDM dμ better than
σ(dμ) ≤ 3 × 10−21 e·cm. The next phase (Phase II) aims
to achieve a sensitivity of better than 6 × 10−23 e·cm, which
would represent an improvement of more than three orders
of magnitude over the current experimental limit of dμ ≤
1.8 × 10−19 e·cm (95% CL) [16].

To reach this target sensitivity, it is crucial to ensure that
potential systematic effects leading to a false EDM signal are
adequately controlled. In particular, we investigate the impact
of EM field irregularities on the experimental results. For this,
we study the relativistic spin motion of a positively charged
(+e) muon of mass m with momentum �p in electric �E and
magnetic �B fields described by the Thomas-BMT equation
[17–19], with an additional term describing the effect of the
EDM on the spin precession rate, namely

�Ω = �ΩAMM + �ΩEDM

= − e

m

[
a �B − aγ

(γ + 1)

( �β · �B
) �β

−
(
a + 1

1 − γ 2

) �β × �E
c

]

− ηe

2m

[
�β × �B + �E

c
− γ

c(γ + 1)

( �β · �E
) �β

]
, (1)

where �β = �pc/E and γ = (
1 − β2

)−1/2
are the relativis-

tic factors with total energy E, a is the anomalous magnetic
moment, and η = 4dμmc/(eh̄) the gyro-electric ratio multi-
plied by 2mc/e which is the dimensionless constant describ-
ing the size of the EDM.

The second line of Eq. (1) represents the anomalous pre-
cession frequency �ΩAMM, the difference between the Larmor
precession and the cyclotron precession, due to the AMM.
The last line represents the precession �ΩEDM due to the EDM
coupling to the electric field in the boosted reference frame
of the moving muon.

The experimental setup proposed for the search for a
muon EDM is based on the ideas and concepts discussed
in [6,12,13,15]. The salient feature of the proposed search
is the cancellation of the precession due to the anomalous
magnetic moment by meticulously choosing a radial elec-
tric field, and thus fully exploiting the large electric field
γ c �β × �B ≈ 1 GV/m in the rest frame of the muon to
achieve a perpendicular precession ( �Ω ⊥ �B) only. By exam-
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Fig. 1 Illustration of the Phase I muon EDM experimental device employing a compact storage ring inside a solenoid magnet

ining Eq. (1), we can counteract the anomalous precession
term by applying an electric field such that:

a �B =
(
a + 1

1 − γ 2

) �β × �Ef

c
. (2)

In the case of �β · �B = �β · �E = 0, �B · �E = 0, and assuming
a � 1/(1 − γ 2), which is a good approximation for small
γ, we find a required field strength of |Ef | ≈ acβγ 2|B|,
which is approximately 0.3 MV/m for the Phase I experi-
ment. Hence, by selecting the exact field condition of Eq. (2),
the cyclotron precession frequency is modified such that the
relative angle between the momentum vector and the spin
remains unchanged if η = 0; the spin is “frozen”.

2.1 Sensitivity to the muon EDM

Using Eq. (1) and assuming that �β · �E = 0, �β · �B = 0
and |E | � c| �β × �B| (as evident from the aforementioned
0.3 MV/m � 1 GV/m), the spin precession angular veloc-
ity due to a non-zero EDM is:

�ΩEDM = η

2

e

m
�β × �B, (3)

Note that the coordinate system used here and throughout
this work is such that it follows the reference particle orbit
(similar to [20,21]) as sketched in Fig. 2b. The initial orien-
tation of the spin �S = (Sθ , Sρ, Sz) in spherical coordinates
is

Φ0 = arctan

(
Sρ

Sθ

)
, Ψ0 = π

2
− arccos (Sz) , (4)

where | �S| = 1, Φ is the azimuthal spin phase, i.e., in the
plane of the orbit, and Ψ is the complementary angle to the
polar angle.

From the assumption that the E-field and the B-field are
perpendicular to each other and to the muon velocity, the only
sizeable component of �ΩEDM is the radial component,

ΩEDM
ρ = Ψ̇ = 2c

�
βθ Bzdμ, (5)

where we have replaced η with the expression for dμ.

In Phase I and Phase II we will store muons with βθ =
0.256 (p = 28 MeV/c) and 0.764 (p = 125 MeV/c),
respectively, in a magnetic field of strength Bz = 3 T. This
results in angular velocities for an EDM equal to the annual
statistical sensitivity of the muon EDM measurement [22]
of:

Ψ̇I = 21.15 rad/s for dμ = 3 × 10−21 e·cm, (6)

Ψ̇II = 1.26 rad/s for dμ = 6 × 10−23 e·cm. (7)

The radius of the orbit is ρ0 = 31 mm for the first phase
and 134 mm for the second. The required frozen spin field
is Ef = 287 kV/m and Ef = 1.92 MV/m for Phase I and II
respectively.

3 The spin motion of muons in the experiment

As a starting point to the analysis of possible systematic
effects we derive an approximate analytical expression for
the spin motion in the field configuration characteristic of
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Fig. 2 Representations of the reference frames used throughout the
paper. a Cartesian reference frame used to describe the E-field in the
particle rest frame. The origin of the (x, y, z) reference frame coincides
with the centre of a given muon orbit, where the z axis is parallel to the
field of the main solenoid and the xy plane lies in the orbit plane. The
origin of the primed reference frame is at the centre of the cylindrical
electrodes, where z′ runs parallel to the central axes of the inner and
outer electrodes (anode and cathode). The angle δ is the angle between

the central axes of the electrodes and the main solenoid. b The curvi-
linear (Frenet–Serret) reference coordinate system used to derive the
motion of the spin in the EM fields of the experiment. The axis θ fol-
lows the momentum of the muon and z is always parallel to the main
solenoid magnetic field Bz . The vector �S is the normalised particle spin.
The angle Φ is the azimuthal spin phase (in the plane of the orbit), and
Ψ is the complementary angle to the polar angle

the frozen-spin technique. For this purpose we approximate
the magnetic field of the solenoid in the region of the storage
ring as a uniform magnetic field oriented along the z-axis;
the weakly-focusing field by the first-order approximation of
a field generated by a circular coil; and, the electric field as a
radial field produced by the potential difference between two
infinite coaxial cylindrical electrodes. We then parameterise
the most important and most likely imperfections of these
fields and estimate their effect on the spin precession in the
following sections.

3.1 Spin precession around the radial axis

The longitudinal position of a particle with charge e, mass
m, and velocity c �β is given by the solution of:

z̈ = e

γm

(
Ez + cβθ Bρ(z) + cβρBθ (z)

)
, (8)

where Bρ(z) ≈ z ∂Bρ(ρ0)

∂z = z∂z Bρ(ρ0), and we assume that
a constant non-zero z-component of the electric field exists.
In general, the last term βρBθ (z) � βθ Bρ(z) as βρ is prac-
tically zero for stored particles and Bθ is zero if there is no
electrical current flowing through the area enclosed by the
orbit. Therefore, the term is ignored in the further discussion
and the solution of the differential equation becomes that of
a harmonic oscillator with longitudinal displacement

z(t) = z0 cos(ωbt + ϕ0) + 1

∂z Bρ

Ez

cβθ

, (9)

where ωb is the angular velocity of the longitudinal betatron
oscillation, and z0 is the amplitude of the longitudinal dis-
placement. It can be expressed in terms of the field gradient

index n = ρ0
B0

∂z Bρ as ωb = ωc
√
n, where ωc = −eB0/γm

is the cyclotron angular velocity, ρ0 is the radius of the nom-
inal orbit, and B0 is the magnetic field of the main solenoid.
The particles in the storage ring also experience a horizontal
betatron oscillation (in the plane of the orbit), with angular
velocity ωh = ωc

√
1 − n, that corresponds to oscillations

in Bz and does not directly lead to spin precession mimick-
ing the EDM signal. In a compact storage ring configuration
ωh ≈ ωc since n � 1, such that a small difference between
these two frequencies leads to a slow precession of the muon
orbit whose effects are explored in Sect. 4.2.

The relative precession of the spin due to the coupling of
the AMM to the radial magnetic field of the weakly-focusing
field is

ΩWF
ρ = −ea

m
Bρ(z(t))

≈ −ea

m

[
∂z Bρz0 cos(ωbt + ϕ0) − 1

cβθ

Ez

]
, (10)

where the index ρ denotes the radial component of �Ω.

Another source of radial precession that has to be consid-
ered is the radial magnetic field in the reference frame of the
muon due to a non-zero longitudinal electric field in the lab-
oratory reference frame. For a non-zero longitudinal electric
field, |Ez | > 0, we obtain

Ω Ez
ρ = − e

mc

(
a − 1

γ 2 − 1

)
βθ Ez, (11)

for the radial component only, by applying the T-BMT equa-
tion.

Further, a radial spin precession could also be caused by
a radial B-field BK

ρ due to residual currents in coils or eddy
currents induced by the short, Δtpulse ≈ 100 ns, magnetic
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pulse used to kick muons onto a stable orbit, see Fig. 1.
This field can be described by a superposition of periodic
oscillations,

BK
ρ (t) =

∫ ∞

0
Aρ(ω) cos(ωt + b0(ω))dω, (12)

where Aρ(ω) is the oscillation amplitude as a function of the
angular frequency ω and b0(ω) is an arbitrary frequency-
dependent phase. Possible systematic effects due to such
oscillations are explored in detail in Sect. 4.1.

Combining Eqs. (10) and (11), and including the term for
an arbitrary radial magnetic field BK

ρ (t) as in Eq. (12), one
obtains the total angular velocity of the radial precession due
to the AMM around the ρ-axis

ΩAMM
ρ = −ea

m

[
1

c

(
1 − 1

a(γ 2 − 1)
− 1

β2
θ

)
βθ Ez

+∂z Bρz0 cos(ωbt + Φ0) + BK
ρ (t)

]
. (13)

We are interested in the average angular velocity over
many muon orbits. In this case, the average due to the beta-
tron oscillations is zero, as 〈cos(ωbt)〉 = 0 for t � ω−1

b . In
general, the azimuthal velocity βθ and the longitudinal elec-
tric field Ez are not correlated, thus the average over time of
their product is the product of their averages

〈
ΩAMM

ρ

〉 = − ea

mc

〈(
1 − 1

a(γ 2 − 1)
− 1

β2
θ

)
βθ

〉
〈Ez〉

−ea

m

〈
BK

ρ (t)
〉
. (14)

Note that here Ez is a static uniform field and BK
ρ is an

arbitrary time-dependent field. Effects of their time stability
and spatial uniformity are discussed in Sect. 4.1.

Although the average of the betatron oscillations is zero,
oscillations can still occur around two perpendicular axes,
potentially leading to the accumulation of a geometrical, also
known as Berry’s, phase [23]. Additionally, potential system-
atic effects may arise from the approximation t � ω−1

b .

These sources of systematic effects are explored in more
detail in Sect. 3.5.

3.2 Azimuthal spin precession

When the muons circulate in the storage ring, they oscil-
late longitudinally (along the z-axis) around an equilibrium
orbit (betatron oscillation). The equilibrium orbit is perpen-
dicular to the longitudinal magnetic field. In the absence of
other fields the betatron oscillation results from the weakly-
focusing field. Due to this betatron motion, the momentum
vector of the particle is not at all times perpendicular to the
longitudinal magnetic field, leading to a non-zero projection
of the magnetic field along its trajectory. This component of

the field is proportional to the angle, ζ = π/2 − � ( �β, �B),

between the muon momentum and the plane of the equilib-
rium orbit. In turn, tan ζ = pz/pθ ≈ sin ζ and pz oscillates
as pz = pz0 sin(ωbt). The muon is therefore exposed to an
oscillating azimuthal field,

Bθ (t) = −Bz sin ζ ≈ −Bz
pz0

pθ

sin(ωbt), (15)

where the momentum

pz0 = ecβ∂z Bρz0

∫ π
2ωb

0
cos(ωbt)dt = ecβz0

ωb
∂z Bρ, (16)

is the z-component of the momentum at the nominal orbit
plane (at z = 0). This also means that there will be a non-
zero z-component of the velocity, given by

βz(t) = pz0

pθ

βθ sin(ωbt). (17)

If the radial electric field Eρ is correctly set to the value Ef

required for the frozen-spin technique, then there will be no
oscillations around the azimuthal θ -axis as the electric field
perfectly counteracts the precession induced by the coupling
of the AMM to the longitudinal field of the solenoid. How-
ever, if Eρ �= Ef there will be imperfect cancellation of the
g − 2 precession around θ that is proportional to the mean
excess radial component Eex = Eρ − Ef affecting the muon
dynamics, namely

ΩΔE
θ = e

m

(
a − 1

γ 2 − 1

)
βz(t)

c
Eex. (18)

In a realistic scenario where the orbit centre is displaced from
the E-field central axis, the radial component Eρ would be
position and momentum dependent. This is explored in the
next Sect. 3.3.

Taking into account Eq. (15), we can approximate the
angular velocity of the spin precession along the azimuthal
θ -axis to

Ω
β·B
θ = e

m

(
aγ

γ + 1

)
β2

θ Bθ (t), (19)

due to the term which is second-order with respect to the
velocity ( �β · �B) �β in the Thomas-BMT equation, where Bθ (t)
could have contributions from a residual magnetic field BK

θ

due to the magnetic kick or induced eddy currents, similar to
the time-dependent radial field shown in Eq. (12).

In summary, we combine Eqs. (17), (18), and (19), and
include an arbitrary azimuthal B-field, BK

θ (t), for the total
azimuthal angular velocity,

ΩAMM
θ = e

m

pz0

pθ

sin(ωbt)

[(
a − 1

γ 2 − 1

)
βθ

c
Eex

−
(

aγ

γ + 1

)
β2

θ Bz

]
− ea

m
BK

θ (t), (20)
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due to the AMM. Averaged over t � ω−1
b results in

〈
ΩAMM

θ

〉 = −ea

m
〈BK

θ (t)〉. (21)

On the closed orbit, the average azimuthal magnetic field
〈BK

θ 〉 is equal to zero when no current flows through the area
enclosed by the muon orbit. Despite the fact that

〈
ΩAMM

θ

〉 = 0,

it remains informative to identify and quantify the primary
sources of oscillations. Furthermore, when these oscillations
are combined with those around the other two axes, it is
possible that a geometric phase may accumulate, as discussed
in Sect. 3.5.

3.3 Description of the electric field in the storage-ring
region

The radial electric field Eρ, essential for the frozen-spin con-
dition, may not be constant along the muon orbit. This might
occur if the axes of the electrodes are not aligned with that
of the solenoid field or if the muon orbit is not centred to the
axes of the electrodes.

To determine the components of the electric field in the
muon reference frame, we consider a purely radial electric
field generated by perfectly coaxial cylindrical electrodes
with radii A and B with A < B. In the reference frame
(x ′, y′, z′) of the electrodes (see Fig. 2a),

�E ′(x ′, y′, z′) = V

log B
A

⎛
⎜⎜⎜⎜⎜⎝

x ′
(x ′)2+(y′)2

y′
(x ′)2+(y′)2

0

⎞
⎟⎟⎟⎟⎟⎠ , (22)

where z′ is parallel to the solenoid axis, which might be
displaced with respect to the centre of the muon orbit. By
applying a rotation, R(δ), around the y′-axis by an angle δ,

we transform the electric field,

�E = Rz(δ) �E ′(R−1
z (δ)�r + �r0), (23)

in the rest frame of the muon, where �r0 = (x ′
0, y

′
0, 0) is the

displacement between the centre of the muon orbit and the
position of the electrode’s axis. Due to the cylindrical sym-
metry of the E-field around its central axis, we can always
select the reference frame such that arbitrary displacements
can be represented in this manner. Therefore, the electric field
in the reference frame defined by the longitudinal magnetic
field may be written as

�E(x, y, z) = V

log B
A

⎛
⎜⎜⎜⎜⎝

x
r2 cos δ

y
r2

− x
r2 sin δ

⎞
⎟⎟⎟⎟⎠ , (24)

where y = y′ + y′
0, x = x ′

0 + x ′ cos δ − y′ sin δ, and r2 =
x2 + y2.

The average of the radial electric field over the circular
orbit of the muon,

Ẽρ = 〈Eρ〉φ = 1

2π

∫ 2π

0
Eρ(ρ, φ, z)dφ, (25)

can be obtained most easily by representing �E(�r) in cylin-
drical coordinates and integrating over the angle φ, shown
in Fig. 2a. To consider the spin motion due to the cyclotron
motion in the electric field, we approximate the radial com-
ponent,

Eρ(t) ≈ Ẽρ + 1

2

(
Eρ,max − Eρ,min

)
cos(ωct + b0), (26)

where Eρ,max and Eρ,min are the maximal and minimal val-
ues of the electric field along a muon orbit and b0 is the initial
phase of the muon position along the orbit.

Note that Eq. (25) is valid only in the case of a circular
orbit. In this case, it can be shown numerically that

〈E(ρ, z)〉φ = 〈
E ′(ρ, z)

〉
φ

, (27)

which means that a tilt of the concentric assembly of inner and
outer electrodes with respect to the main B-field axis does
not influence the average frozen-spin condition and, more
importantly, does not change the net Ez component. Another
significant consequence of this finding is that displaced muon
orbits would still experience the same average radial com-
ponent as the nominal orbit, ensuring that displacements do
not influence the storage of muons.

As the centripetal force due to the B-field is about a factor
103 larger than that due to the E-field, and the expected mis-
alignment between the centre of the orbit and the centre of
the inner electrode is small, the circular orbit approximation
holds well. Another source for non-circular orbits is a non-
uniform magnetic field, Bz, which is discussed in Sect. 4.1.

3.4 EDM-like spin precession

The signature of an EDM is the time-dependent asymme-
try between decay positrons emitted along or opposite the
B-field (z-axis), which is proportional to the change in the
projection of the spin along the z-axis. The angular velocity
of Eqs. (13) and (20) projected along the z-axis is

�ΩAMM · ẑ = ΩAMM
ρ cos(ωz t + Φ0)

+ΩAMM
θ sin(ωz t + Φ0), (28)

where

ωz = − e

m

[
aBz −

(
a + 1

1 − γ 2

)
β

c
Ẽρ

]
(29)

is the angular velocity of the precession around z due to an
imperfect cancellation of the g − 2 precession and ẑ is the
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unit vector along z. Note that this equation holds for a two-
dimensional motion and is only an approximation for three
dimensions. A more thorough study of the three dimensional
case can be found in [24]. In reality, Eρ will oscillate, accord-
ing to Eq. (26), with frequency ωc, due to the changing dis-
tance between the muon and the centre of the electrodes gen-
erating the electric field. Bz will oscillate with frequency ωb

due to the variation of the weakly-focusing field. In a well-
tuned frozen-spin experiment, ωz is much smaller than ωb

and ωc, and the rotation of the spin around z can be approx-
imated with a constant angular velocity using the average
values of Eρ and Bz . The total longitudinal rotation of the
spin with respect to the momentum is

Ψ (t) =
∫ t

0

�ΩAMM
(
t ′
) · ẑ d t ′. (30)

To verify the validity of the equation derived for the total
longitudinal rotation corresponding to the EDM signal, we
have set up a Geant4Monte Carlo simulation of the storage
ring region of the experimental setup. While Geant4 is not
a usual choice for storage ring simulations it was deemed
optimal for this experiment as the detectors, field generat-
ing elements (coils, electrodes), and muon orbit are in close
proximity and very much interlinked. Though the available
integration algorithms in Geant4 are non-symplectic, the
effects on the tracked position, momentum, and spin direc-
tion are smaller than the effects from running the simulations
with 1 × 10−7 mbar air pressure within the experimental vol-
ume. Additionally, testing the code with asymptotically small
step sizes in the range of 0.01 mm to 2.0 mm converged to a
stable solution for small step size on the nominal orbit, indi-
cating that the direction of the muon spin as a function of time
did not show significant variations with changes in step size
within this range. In a future extension of this study we plan
to verify the spin and beam dynamics analytical estimations
by independent high-precision simulations.

The EM field in the simulation is read from fieldmaps
generated by finite element simulations using the software
ANSYS Maxwell3D [25]. The effects of finite spacing
between points on a regular grid on which the EM field is
defined have a significantly larger impact than the choice of
integration scheme and step size. The optimisation of the EM
field generation as well as the verification of the simulation
and derivation of analytical equations are shown in detail in
Appendix A.

3.5 Spin precession due to geometric phases

The geometric phase, also known as Berry’s phase, is a phase
difference acquired over the course of a cycle in parame-
ter space when the system evolves adiabatically [23].1 Such

1 Note that an equivalent effect exists also in classical mechanics [26].

cycles in the parameter space can occur due to the periodic
oscillations of stored muons in the non-uniform electric and
magnetic fields of the experimental device. In classical par-
allel transport, the phase accumulation is equal to the solid
angle subtended by a vector on the spherical surface in param-
eter space. For quantum parallel transport in fermions, where
the vector is the spin moving through the B-field space, the
geometric phase is half of that [27].

Let us assume that there are two oscillations around the
perpendicular axes x and y with a time dependent angular
velocity in the form

(Ωx ,Ωy) = (
Ax cos(ωx t), Ay cos(ωyt + b0)

)
. (31)

Integrating the expressions with respect to time, the accumu-
lated phase as a function of time is

ax (t) = 1

ωx
Ax sin(ωx t), and

ay(t) = 1

ωy
Ay sin(ωyt + b0), (32)

where ωx and ωy are the angular frequencies of the oscilla-
tions, Ax and Ay are the peak angular velocities of the spin
precession around the respective axis, and b0 is the differ-
ence in their phases at time t = 0, which corresponds to the
end of the magnetic pulse used to store the muons on a stable
orbit. The peak angular velocities,

AB = −ea

m
Bmax, (33)

AE = e

mc

(
1

γ 2 − 1
− a

) ( �β × �E
)

max
, (34)

of the spin precession are proportional to the amplitude of
oscillation of the EM field in the reference frame of the par-
ticle.

In the case of small oscillations, the surface of the unit
sphere can be approximated with a plane and the enclosed
solid angle can be approximated with the area enclosed by
the curves. The area under parametric curves,

A(t) = 1

2

∫
(ax ȧy − ayȧx )dt, (35)

is calculated using Green’s theorem. In the case where ωx �=
ωy one obtains

A(t;ωx , ωy, b0) = 1

2

Ax Ay

ωxωy

∫ (
ωy cos(ωy t + b0) sin(ωx t)

−ωx cos(ωx t) sin(ωy t + b0)
)
dt

= 1

4

Ax Ay

ωxωy

[
ωx − ωy

ωx + ωy
cos((ωx + ωy)t + b0)

−ωx + ωy

ωx − ωy
cos((ωy − ωx )t + b0)

]
,

(36)
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for the integral, which for resonant oscillations, ω = ωx =
ωy, is

A(t;ω, b0) = − t

2ω
Ax Ay sin(b0), (37)

resulting in an angular velocity

Ȧ(ω, b0) = − 1

2ω
Ax Ay sin(b0). (38)

Another approach to obtain Eq. (37) is by using the method
of averages and performing a second-order approximation of
the exact Thomas-BMT equation, as done in the works of
Carli and Haj Tahar [20,28,29].

By using Eqs. (36) and (37) one can calculate the phase
accumulation as a function of time in the case of two periodic
oscillations along the perpendicular axes. It can be seen that
the geometric phase becomes larger with decreasing differ-
ences between the frequencies of the two oscillations. In the
case of equal frequencies, the phase accumulation is linear
with time and proportional to the product of the peak angu-
lar velocities of the spin precession around the two axes. In
the case of equal frequencies, the geometric phase is zero
when the two oscillations are in phase (b0 = 0) and is max-
imal when they are out of phase (b0 = π/2). The validity of
geometrical phase calculations was verified by Monte Carlo
simulations and is presented in Appendix A.4.

An example of a potential geometric-phase effect for the
muon EDM experiment is resonant oscillations of the spin
around the longitudinal and radial axes due to the cyclotron
motion of muons in the electric field for the frozen-spin tech-
nique. This can happen when the centre of the muon’s orbit is
offset from the centre of the electric field, combined with an
angular misalignment of the axis of the coaxial electrodes and
that of the solenoid field, as outlined in Eq. (23). The angu-
lar misalignment would lead to oscillations in Ez in the rest
frame of the muon and the offset of the orbit to a changing Eρ.

Despite the null net (g − 2) precession over a cycle and null
net precession due to the Ez component in the muon reference
frame, indicated in Eq. (27), small oscillations around the z-
and ρ- axes will occur at the cyclotron angular frequency
ωc, potentially leading to a systematic effect discussed in
Appendix A.4.

3.6 Other sources of spin precession

Other effects that could lead to a precession of the spin come
from the muon motion in the curvature of space-time due to
Earth’s gravitational field, and a possible influence of syn-
chrotron radiation. Although these effects are negligible we
have included their estimates for completeness.

3.6.1 Gravity

There are two effects of gravity that lead to a spin precession
that could mimic an EDM. The direct contribution [30,31],

ΩGR = 2γ + 1

γ + 1

β

c
ge, (39)

results from general relativity, where ge is the gravitational
acceleration at the surface of the Earth. The second contribu-
tion is due to an effective restoring force from either the elec-
tric or magnetic field that prevents the particles from falling.
The E-field that is necessary to counteract the gravitational
attraction of the earth is

Eg = −2γ 2 − 1

γ

m

e
ge. (40)

The magnitude of Eg for both experimental phases is below
30 nV/m.

In the muon EDM experiment case, both the direct and
indirect effects of gravity lead to angular velocity of the
spin precession on the order of 10 nrad/s, or more than
seven orders of magnitude below the statistical sensitivity.
The influence of gravity on the spin precession of muons
in storage rings are also calculated in [32] and estimate the
systematic effect at the same order of magnitude. Therefore,
we consider gravitational effects as negligible and will not
discuss them further.

3.6.2 Synchrotron radiation

The muons will lose energy when circulating in the storage
ring due to synchrotron radiation. This will not lead directly
to spin precession, but could result in depolarisation. The
power emitted by synchrotron radiation can be calculated by
applying the relativistic Larmor formula,

Pγ = 1

6πε0

e4

m2c
γ 2βθ Bz . (41)

For the Phase I and Phase II experiments this results in an
average emission of 1.46µeV/µs and 23.0µeV/µs, respec-
tively. Such rate of reduction in the muon kinetic energy is
negligible and would not lead to any measurable effect.

Synchrotron radiation can also cause gradual polarisation
of the particles (Sokolov–Ternov effect) with respect to their
velocity, i.e., longitudinal in our coordinate system, accord-
ing to P ≈ 1 − e−t/τp . The polarisation is perpendicular to
both velocity and acceleration, thus along the magnetic field
responsible for the bending. The characteristic time τp is [33]

τp = 8

5
√

3

m2c2ρ3
0

e2h̄γ 5
. (42)

For the parameters of the Phase I and II experiments the
characteristic time amounts to τp ≈ 1020 s, to be compared
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with the typical measurement time of 10−5 s. Therefore, spin-
flip synchrotron radiation is not a concern for the experiment.

4 Spatial and temporal non-uniformity of the EM field

In this section, we provide calculations for specific devia-
tions from the ideal homogeneous EM-fields, EM-field non-
uniformity, that lead to false EDM signals. Such signals can
be observed by AMM-induced spin precession around the
radial or azimuthal axes. The latter can occur if there is a non-
zero azimuthal magnetic field component in the rest frame of
the particle. This requires a net current flowing through the
area enclosed by the muon orbit. All electric supply current
leads are designed such that the net current flow is expected
to be zero in the experimental setup. Therefore, special atten-
tion is given to the sources of radial spin precession. In this
context the two most significant sources of systematic effects
are: (i) a z-component of the electric field, and (ii) a time-
varying radial B-field component.

Another possible source of a false EDM signal that is
explored is the effect of a time-variable magnetic field that
leads to a longitudinal shift of the average orbit position.
Finally, we derive limits on the deviations of the fields
from their nominal values and their orientations, specifying
requirements for the realisation of the experimental setup.

4.1 Field non-uniformity

Muons on the nominal orbit experience only a B-field along
the z-axis, of about 3 T, and a purely radial E-field, such that
the effect of any anomalous magnetic moment is cancelled
and the relative angle between spin and momentum is con-
stant. Any deviation of the fields from this ideal configuration
or from the nominal orbit induces spin motion.

In the following analysis, we exploit that arbitrary motions
can be represented as a sum of oscillations around mutu-
ally perpendicular axes to describe the effects of dynamic
and geometric phases. For oscillations with a period much
shorter than the measurement time of several muon lifetimes,
the mean of the dynamic phase around each axis would tend
to zero; the accumulation of a geometric phase remains pos-
sible.

The phase accumulation due to geometric phases can be
calculated using Eq. (37). We can distinguish three types of
geometric phases that can be observed: (i) due to oscillations
in the spin direction caused by oscillations in the B-field
along two perpendicular axes, (ii) due to oscillations in the
spin direction caused by oscillations in the E-field along two
perpendicular axes, (iii) due to the coupling of oscillations in
the B- and E-fields. The phase accumulation due to oscilla-
tions with given frequencies can be calculated using Eqs. (36)
and (37) by substituting the B- or E-field oscillation ampli-

tude in Eq. (33) or (34), respectively. A concrete analysis in
the case of the Phase I muEDM experiment is given in the
discussion, Sect. 5.1.

For low-frequency oscillations ω � τ−1
μ one has to con-

sider dynamic phase accumulation as well. In this case, a
systematic effect can occur if an oscillation of a field in
the muon reference frame is correlated with the injection
time. As the measurement variance scales with the number
of detected decay positrons, which will decrease exponen-
tially with time, earlier times will have larger weight on the
final asymmetry.

For a measurement window L , the weighted average of
an oscillation with unit amplitude and angular frequency ω,

weighted over the number of muons at a given time t after
injection is

W (ω) =
(∫ L

0
e−t/τ∗

μdt

)−1 ∫ L

0
cos(ωt + b0)e

−t/τ∗
μdt,

(43)

where the first multiplier on the left-hand side is a normali-
sation factor. The boosted muon lifetime is τ ∗

μ = γ τμ with
τμ � 2.197µs. For L � τ ∗

μ Eq. (43) reduces to

WL(ω; b0) = cos(b0) + γ τμω sin(b0)

1 + (γ τμω)2 . (44)

For all further analysis we assume b0 = 0 and WL(ω) =
WL(ω; 0), as we are interested in low frequency signals that
could mimic an EDM.

In the case of spin precession due to the AMM cou-
pling with the radial component of a time-varying magnetic
field Bρ(z(t)) = ∫ ∞

0 Aρ(ω) cos(ωt + b0)dω expressed as
in Eq. (12), the requirement that the angular velocity is less
than a fraction F of the experimental sensitivity is

ea

m
Aρ(ω)WL(ω) ≤ FΨ̇ , (45)

where F ∈ (0, 1) is an arbitrarily chosen factor.2 The limit
as a function of dμ then becomes

Aρ(ω) ≤ F
1

WL(ω)

2mc

eah̄
βθ Bzdμ. (46)

Calculations of the limit on the radial B-field in the rest frame
of the muon for the muEDM experiment are given in Sect. 5.1.

In cases where the radial B-field amplitude is too large
muons will not be stored. In order to derive a limit on the max-
imum combination of amplitude and oscillation frequency,

2 Here we use F = 1/4 to allow for up to 16 independent systematic
effects, each at a quarter of the statistical sensitivity. This ensures that the
total systematic uncertainty remains on par with statistical uncertainty,
given that uncertainties are combined quadratically in the final analysis.
Such a choice is naturally arbitrary and depends on the requirements of
the particular experiment.
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we approximate the muon motion due to the oscillating B-
field by a harmonic oscillator, hence, the following relation
between amplitude and position holds

Aρ(ω)

zmax
= ∂z Aρ(ω) = ω2

ω2
c

B0

ρ0
, (47)

following a similar calculation to the one used for betatron
oscillations (see Eq. (9)), and assuming a constant gradient
of Bρ along z. Therefore, the amplitude of the oscillations of
the radial B-field are bounded according to

Aρ(ω) ≤ zmax
ω2

ω2
c

B0

ρ0
, (48)

in the muon rest frame corresponding to the maximum lon-
gitudinal displacement zmax. Thus, we obtain the conditions
for which the muon will not be stored in the storage ring and
therefore will not contribute to the measurement signal.

4.2 Longitudinal electric field and alternating injections

Analogously to the derivation of a limit on the phase accumu-
lation due to dynamical phases in an oscillating radial B-field
(Eq. (46)), we can derive a limit,

Ez(ω) ≤ F

(
e

mc

(
1

γ 2 − 1
− a

)
WL(ω)

)−1 2c

h̄
Bzdμ (49)

for that induced by a longitudinal E-field Ez using Eq. (11).
The most stringent limit on Ez is reached at low fre-

quencies approaching a constant value for ω → 0. This
limit can be relaxed considerably by taking advantage of
the CP-violating nature of the EDM. Alternating periodically
between clockwise (CW) and counter-clockwise (CCW) par-
ticle motion in the storage ring, with otherwise identical con-
ditions, permits cancellation of systematic effects in the mea-
sured asymmetry arising from Ez-induced dynamical phase
accumulation. This can be achieved by switching the polar-
ity of the currents generating the magnetic field, thus invert-
ing the direction of the magnetic field, and correspondingly
reversing the injection direction of the muons.

Being proportional to �β × �B, the EDM signal maintains
its sign and is unchanged between the alternating injection
modes. The systematic effect related to a z-component of the
E-field is proportional to �β × �E . As the z-axis is defined
to be aligned with the direction of the main B-field, Ez will
change sign between injections and so too the systematic
effect. Thus, in the ideal setup, the systematic effect will be
cancelled by summing the CW and CCW signals, while the
EDM signal will double. However, the spin-phase build-up
due to the longitudinal electric field might be different for
the two injection modes for a variety of reasons that we will
explore in more detail here.

Expanding Eqs. (13) and (28), the projection of the angu-
lar velocity due to a net non-zero longitudinal electric field

(along z) that is less than a fraction F of the experimental
sensitivity is

− ea

mc

(
1 − 1

a(γ 2 − 1)
− 1

β2
θ

)
βθ |Ez | cos(ωz t + Φ0)

∣∣∣∣
CW

CCW

≤ F
2c

h̄
βθ Bzdμ. (50)

The evaluation bar denotes that we take the difference of the
CW and CCW signal, where the parametersγ, βθ , Ez, ωz and
Φ0 take the values corresponding to the two injection modes.
Note that βθ and γ are functions of the muon momentum p,
and ωz = ωz(Bz, Eρ, p).

As a consequence, four parameters need to be kept under
strict control between CW and CCW injections to fully can-
cel the false signal: the particle momentum distribution for
CW and CCW; the spin precession angular velocity around
z, which is proportional to a linear combination of Bz and
βθ Eρ; the average initial phase Φ0 of the spin in the trans-
verse plane over the ensemble of injected particles; the aver-
age longitudinal component Ez along the CW and CCW tra-
jectories. The false EDM depends on the product of these
parameters, therefore one cannot constrain a given parame-
ter independently of the others. Specific constraints are dis-
cussed in Sect. 5.

To cancel the effects of Ez by alternating the direction of
circulation of the muons, it is necessary to ensure that on
average the particles experience similar Ez at a given time
after injection. This requirement not only constrains the time
stability and spatial uniformity of the applied electric field,
but also the initial position and time evolution of the muon
orbit which define the trajectory occupied within the field.

A possible source of time dependent changes of the muon
orbit comes from the weakly-focusing field. The simplest
configuration of such field comprises a single current loop,
where the current flows in the opposite direction to that of
the main solenoid. This arrangement generates a gradient
∂z Bρ, which is used to store muons in the z-direction. In
conjunction with this, a radial gradient ∂ρBz arises, leading
to a variation of the longitudinal B-field as a function of the
distance from the centre of the weakly-focusing coil.

If the centre of a particle’s orbit deviates from the coil cen-
tre, the particle will encounter a stronger field and a smaller
turning radius in one portion of the orbit and inversely on the
opposite side. Consequently, this generates a minor phase
accumulation around the centre of the focusing field with
each cyclotron revolution (illustrated in Fig. 7). This is an
instance of a magnetron oscillation,

ωm = ω2
b

2ωc
, (51)

which is well described for Penning traps [34].
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Interestingly, the magnetron oscillation can be thought of
as being caused by the difference between the cyclotron and
horizontal betatron3 oscillations

ωc − ωh = ωc(1 − √
1 − n) = ωc

n

2
+ O(n2)

= ω2
b

2ωc
+ O(n2), (52)

where for n � 1 the higher order terms in the Taylor expan-
sion can be neglected.

The magnetron oscillation does not directly generate a
false EDM signal, but it could lead to different positioning
of CW and CCW orbits. If there is a significant field compo-
nent Ez, the averages over time seen by the muon for the two
injections might be unequal, thus failing to cancel the sys-
tematic effect. This is discussed in greater detail in Sect. 5.2.

4.3 Longitudinal shift of the average orbit

The systematic effects discussed so far concern the preces-
sion of the spin within the muon’s reference frame. However,
radial B-fields, external to the weakly-focusing field, could
lead to a rotation in the momentum vector, thereby generating
an EDM-like signal. The magnitude of this effect can be sig-
nificantly higher than the spin precession by approximately
(γ a)−1 times (≈800 for the Phase I experiment).

In the storage ring, the particle orbit is in a weakly-
focusing field characterised by a ∂z Bρ gradient. While a
constant external radial B-field would merely alter the z-
equilibrium position of the orbit and not cause a system-
atic effect, a radial field with amplitude B ′

tr fluctuating in
time could result in a drift of position, generating a system-
atic effect. The maximum amplitude of this longitudinal drift
dl = B ′

tr/∂z Bρ, where the prime denotes that the B ′
tr is the

magnetic flux density in the laboratory reference frame.
The motion of the muon,

z̈ = − e

γm
cβθ

[
z∂z Bρ + B ′

tr cos(ωt)
]
, (53)

depends on the combined effect of the weakly focusing field
∂z Bρ and the transient field B ′

tr cos(ωt) with the oscillation
frequency ω = 2π f. The solution of (53),

z(t) = uB ′
tr

u∂z Bρ + ω2 cos(ωt) + z0 cos(ωbt + φ0), (54)

is similar to Eq. (9), where u = e
γm cβθ . Considering only

the first term with oscillations due to the transient field, and
substituting ωb = u∂z Bρ, it is convenient to define the lon-
gitudinal pitch angle,

Pl = żtr(t)

cβθ

= − e

γm

ω

ω2
b + ω2

B ′
tr sin(ωt), (55)

3 In the context of Penning traps the horizontal betatron frequency is
commonly referred to as the reduced cyclotron frequency.

as the ratio of longitudinal to azimuthal velocity. The time
derivative,

Ṗl = − e

γm

ω2

ω2
b + ω2

B ′
tr cos(ωt), (56)

yields the rate of change relevant for calculating the potential
systematic effect. We calculate an upper limit for this effect
due to longitudinal drift of the muon orbit, by taking the
weighted average of Ṗl,

ṖW = e

γm

ω2

ω2
b + ω2

B ′
trWL(ω) ≤ F

2c

h̄
βθ Bzdμ. (57)

This results in a limit,

B ′
tr ≤ F

[
e

γm

ω2

ω2
b + ω2

WL(ω)

]−1
2c

h̄
βθ Bzdμ, (58)

as a function of ω and the betatron frequency ωb. Specific
limits for this orbit-drift-effect, which could result from the
magnetic kick and thereby induced eddy currents are derived
and discussed in Sect. 5.

Note that Eq. (58) gives the limit on B ′
tr(ω) for a specific

ω. The residual tail from the magnetic kick will contain a
wide frequency spectrum. Therefore, the spin rotation due to
the integral over ω,

e

γm

∫ ∞

0

ω2

ω2
b + ω2

B ′
tr(ω)WL(ω) dω ≤ F

2c

h̄
βθ Bzdμ, (59)

has to be constrained.
We can also derive limits on B ′

tr(ω) such that

max(ztr(t)) ≤ zmax,

where zmax is defined in Sect. 4.1 as the maximum longitu-
dinal displacement for stored muons, similar to Eq. (48) that
gives the relationship between B-field oscillation amplitude
and frequency in the muon rest frame for stored muons. With
Eq. (54) for cos(ωt) = 1 and cos(ωbt + φ0) = 1, we obtain

B ′
tr ≤ (zmax − z0)

γm

ecβθ

(ω2
b + ω2). (60)

For low frequencies ω → 0 the equation reduces to zmax −
z0 ≥ B ′

tr/∂z Bρ, leading to the expected result that the control
of the maximum displacement due to external radial fields
can be established through the strength of the weakly focus-
ing field.

5 Discussion

Following from the analysis of Sect. 4, we have carried out
Monte Carlo studies to identify and investigate several severe
systematic effects that, if not properly controlled, would
limit the maximum achievable sensitivity for the muon EDM
experiment. These are effects related to the accumulation of
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geometrical phases. Effects arising from a non-zero average
electric field along the solenoid axis in the muon reference
frame were introduced in Sect. 4.1, and results from the asso-
ciated studies are presented in Sects. 5.1 and 5.2. The trans-
verse precession of the orbit around the axis of symmetry
of the weakly-focusing field (magnetron oscillations) were
shown in Sect. 4.1 and the case study for the Phase I exper-
iment is given in Sect. 5.2.2. Finally, the limits due to the
movement of the average orbit due to a changing external
radial magnetic field, theoretically explored in Sect. 4.3, are
shown in Sect. 5.3.

All calculations were performed assuming the parame-
ters of the Phase I muon EDM experiment, unless explic-
itly stated otherwise. Phase I aims to achieve a sensitiv-
ity of σ(dμ) = 3 × 10−21 e·cm. We choose to set limits
for each individual systematic effects to a fraction of the
experimental sensitivity, F = 1/4. The muon momentum
is p = 28 MeV/c corresponding to βθ = 0.26. The main
magnetic field is Bz = 3 T, and the weakly focusing field
has a gradient ∂z Br = 80 mT/mm at the radius of the nomi-
nal orbit. Throughout this discussion we assume a worst-case
scenario where all time-dependent systematic effects are cor-
related to the injection time and the initial parameters (polar-
isation, momentum, etc.) have a systematic offset between
CW and CCW injections.

5.1 Limits on geometrical phases and EM field
non-uniformity

We first deal with geometrical phases induced by non-
uniformity in the B-field according to the framework set up in
Sect. 4.1. To place limits on the field non-uniformity induc-
ing geometrical phases we assumed the worst case where the
oscillations are maximally out of phase and the oscillations
around the two perpendicular axes have the same amplitude.
The limits on the amplitude of the oscillation as a function
of the oscillation frequency are shown in Fig. 3 (depicted
as the coloured area above the (AB)2 dashed line). The cal-
culations were performed using Eq. (38) requiring that the
rate of geometrical phase accumulation is a fraction F of the
experimental sensitivity

Ȧ(ω) = Ax Ay

2ω
sin(b0) ≤ F

2c

h̄
βθ Bzdμ, (61)

where Ax = Ay = −eaBmax/m and the initial phase
b0 = π/2. For reference, the region of expected betatron
oscillation amplitudes and frequencies is presented with a
blue rectangle.

The geometric phase accumulation due to a combined B-
field and E-field non-uniformity is shown in the same figure
with a dotted line labelled AB AE at the level of 0.5% of
the radial E-field required for the frozen spin state, corre-
sponding to Emax = 1.4 kV/m. The limit was calculated
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Fig. 3 Limits deduced for a worst case false EDM signal in the Phase I
experiment due to resonant B-field oscillations as a function of the oscil-
lation frequency and its amplitude (maximum deviation from the nom-
inal) in the muon reference frame. The dash-dot line corresponds to the
inverse of the muon decay time (2.2µs), the dashed vertical line shows
the expected angular velocity corresponding to the betatron oscillations
(150 ns period) and the dotted one to the cyclotron oscillations (2.5 ns
period). The blue rectangle shows the possible values for the weakly-
focusing field oscillation amplitude and frequency range. The second
abscissa shows the spatial frequency, giving the number of periods per
meter travelled by the muons and calculated as f = ω/(2πβc)

using Eq. (61), where Ax = −eaBmax/m and Ay is given by
Eq. (34).

The main source of a time-variable radial magnetic field
is the split coil pair used to kick the particles into a stable
orbit. The nominal current pulse is a half-sine pulse with
100 ns half-period, producing a radial magnetic field of a few
hundred µT peak in the storage region. A real pulse will not
follow exactly the half-sine and will exhibit ringing with a
finite decay time. Another source of a slowly decaying radial
magnetic-field components could be eddy currents induced
by this pulse in the electrode system or the bore of the main
solenoid.

For low-frequency oscillations, especially when tending
to zero, one has to consider dynamic phase accumulation,
where the limits on the amplitude of the B-field oscillations
are given by Eq. (46). The limits from this source of sys-
tematic effects are given in Fig. 3 with a grey area labelled
“Bρ oscillations”. The same reasoning can be applied to the
azimuth component of the magnetic field, but the expected
amplitude of the Bθ oscillations is negligible.

Not all combinations of oscillation frequency and ampli-
tude of the B-field lead to stored muons. Using Eq. (48)
and imposing that the oscillation amplitude of the muon
zmax ≤ 50 mm we obtain the red exclusion area (labelled
“Not stored”) in Fig. 3. The 50 mm limit on the longitudinal
oscillation amplitude is due to the positioning of the split coil
pair of the magnetic kicker. Particles would only be able to
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be stopped within the region where the radial magnetic field
generated by the current pulse is such that the Lorentz force
ec �β × �B counteracts the longitudinal motion, which is in
between the two current loops.

Systematic effects can only be caused by Bρ-field com-
ponents, when limiting our considerations to the B-field, as
only these will lead to an EDM-like spin precession. How-
ever, dynamic phase effects related to the electric field can
be significant if the muon orbit deviates from circular and the
electrode system is tilted with respect to the central solenoid
axis. In this case, the mean longitudinal component of the
electric field over a cyclotron rotation would not be zero, as
concluded from Eq. (27). Assuming a 1 mrad tilt of the elec-
trode system, the eccentricity, e = √

1 − a2/b2, where a and
b are the semi-major and semi-minor axis of the ellipse, of the
muon orbit has to be kept below e ≤ 0.1. This corresponds
to a uniformity of the z-component of the B-field within
±15 mT (depicted as “Bz uniformity” in Fig. 3). Effects of
Bz non-uniformity resulting in, e.g., magnetron oscillation
are discussed in Sect. 4.2.

From the results shown in Fig. 3, we can see that the geo-
metric phases that are caused by B-field variation in time
impose weaker limits compared to other uniformity con-
siderations. The observation of a false EDM-signal due to
oscillations of the spin around the radial axis is also not pos-
sible, as the oscillations with significant amplitude would not
correspond to stored muons. The unavoidable betatron oscil-
lations due to the weakly-focusing field do not violate the
calculated constraints and will not lead to a significant false
EDM-signal.

Nevertheless, the presence of a radial B-field that is exter-
nal to the weakly-focusing field would cause a shift in the
longitudinal position of the average muon orbit. The system-
atic effects related to a possible shift of the orbit equilibrium
position with time are expanded upon in Sect. 5.3.

Figure 4 shows the limit derived from the geometric phase
due to oscillations of the radial and longitudinal electric-field
components in the muon reference frame, using Eq. (61),
where Ax = Ay = AE is defined by (34).

The expected false EDM signal due to Ez oscillations
was calculated using Eq. (49). The limit on Ez uniformity is
shown in Fig. 4 as grey area. All limits were calculated con-
sidering only a single direction of circulation of the muons,
i.e., only CW or CCW.

The analysis of the electric field uniformity shows that
the maximum allowed non-uniformity at the betatron fre-
quency is 0.4% of the electric field Ef required to freeze
the spin to the momentum. Such a time-dependent varia-
tion of the electric field in the muon reference frame can
occur due to the fringe field from the end regions of the elec-
trodes. Studies using finite-element methods (FEM) show
that this effect can be mitigated by using sufficiently long,

Fig. 4 The worst case limits on the E-field oscillation frequency and
amplitude (maximum deviation from the nominal) given as a fraction of
Ef . The dashed vertical line shows the angular velocity corresponding to
the betatron oscillations and the dotted one to the cyclotron oscillations.
The dashed-dotted vertical line corresponds to the inverse muon lifetime
and, coincidentally, roughly to the g − 2 precession frequency without
frozen-spin. The grey area is the limit of the longitudinal E-field as a
result of the dynamical phase accumulation. The blue and red shapes
show the parameter space for tilted electrodes and displaced muon orbit
for solid or striped electrodes, respectively

i.e. 500 mm, electrodes, which would result in negligible
fringe fields (Ez ≤ 0.02 V/m) in the storage region.

The resonance between radial and longitudinal E-field
oscillations caused by a tilt in the electrode system and a
displacement of the muon orbit could cause the build up of
geometric phases (discussed also in Sect. 3.5). Assuming a
1 mrad tilt of the electrodes with respect to the central axis
of the solenoid the muons will experience an oscillating field
Ez at the cyclotron frequency with amplitude 0.3 kV due to
the projection of the radial electric field along the z-axis. If
the orbit center is displaced from the central axis of the elec-
trodes, the muons will also experience an oscillating radial
E-field at the cyclotron frequency. The amplitude of the oscil-
lation depends on the magnitude of the displacement and is
approximately 10 kV for 1 mm displacement. One can show
that the combined effect of the tilt and displacement results
in a geometric phase build-up equivalent to both oscillations
having an amplitude of 1.7 kV. This equivalent case (1.7 kV
amplitude at ωc) is contained in the blue region in Fig. 4
(lower limit of Ez/Ef). Orbit displacement of 3 mm would
result in 30 kV radial E-field oscillation, which, combined
with the 0.3 kV Ez oscillation, is equivalent to both hav-
ing 3 kV amplitude. This case is also contained in the blue
region (upper limit of Ez/Ef). Note that both the tilt and the
displacement used for the calculation are larger than the lim-
its imposed by consideration of other sources of systematic
effects. This means that even in the worst-case scenario the
accumulation of geometric phase due to a displacement of
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the muon orbit with respect to the centre of the electric field
is negligible.

Another scenario for the generation of geometric phases
is explored by assuming the same tilt, but an electrode sys-
tem composed of individual discrete wires instead of a solid
cylinder, discussed in Appendix B. This would create non-
uniformity in the radial electric field, which, in the muon ref-
erence frame, will oscillate with a multiple of the cyclotron
frequency. The red shape in Fig. 4 shows the additional
parameter space occupied in this scenario, due to the addi-
tional source of geometric phase accumulation at the given
multiple of ωc. As the limit on field amplitude of the geomet-
ric phase effect increases with increasing frequency, a setup
with a segmented electrode is not excluded due to systematic
considerations. Potential benefits of this electrode type are
also explored in Appendix B.

5.2 Systematic limits on a longitudinal electric field

By far the main source of a systematic effect in the frozen-
spin technique would come from a non-zero z-component
of the electric field. While this can be significantly miti-
gated by employing counter-rotating beams, it follows from
Eq. (50) that the combination of four parameters need to
be kept constant between CW and CCW injections: (i) the
particle velocity βθ , (ii) the spin precession angular veloc-
ity around the longitudinal axis ωz, which is proportional
to the linear combination of Bz and βθ Eρ, (iii) the average
initial phase Φ0 of the spin in the transverse plane over the
ensemble of injected particles, and (iv) the average longitu-
dinal component Ez along the CW and CCW trajectories.
Note that the overall systematic effect is proportional to the
product of these parameters. Therefore, improvements in the
control of a single parameter are effective up to a point, after
which one must constrain the rest as well. For example, even
controlling βcw

θ and βccw
θ to an excellent precision, the effect

of a non-zero Ez could still be significant due to differences
between Φcw

0 and Φccw
0 .

To untangle the problem, first we assume that 〈Ecw
z 〉 =

−〈Eccw
z 〉 = Ez . Then we express Ez from (50) as:

Ez = FΨ̇

− ea
mc

[(
1 − 1

a(γ 2−1)
− 1

β2
θ

)
βθ cos(ωz t + Φ0)

] ∣∣∣cw

ccw

,

(62)

giving the maximum permissible Ez that would lead to a
false EDM signal equal to the threshold of F = 1/4 of the
experimental sensitivity.

The first parameter βθ places constraints on the level of
control of the difference in momentum Δp = pCW− pCCW for
the two injection schemes. For the Phase I muon EDM exper-

iment, using 28 MeV/c surface muons, it is reasonable to aim
for momentum control that ensures no more than Δp = 0.5%
difference in the mean value of the momentum for injections
of CW and CCW beams. Note that such a difference not
only leads to a difference in βθ , but also in ωz . Thus, we
need to specify the limit on Ez at a given time t. Here we
conservatively choose a time around the end of the measure-
ment t = 5τμ or 11µs. With this constraint, it is possible
to place a limit on the difference between the initial phases
Φcw

0 and Φccw
0 . The maximum permitted longitudinal E-field

as a function of the difference of initial phases is shown in
Fig. 5a. A further reduction of the initial phase difference
below 25 mrad will become ineffective as it reaches the limit
set by the control of the momentum.

A determination of the initial phase can be achieved by a
dedicated g − 2 precession measurement, by observing the
spin precession without an electric field. We may tune the
value of the initial phase using a Wien filter in the secondary
beamline. The stability of the radial electric field in the muon
reference frame can be measured by applying E = −Ef

to the electrodes and measuring the frequency stability of
ΩAMM � 2ea| �B|/m.

The limits on Φcw
0 − Φccw

0 and Δp constrain the initial
condition for muon storage. However, in the case where the
spin is not perfectly frozen, the spin phase will evolve with
time. For the phase accumulation to remain the same for
both injections, the radial electric field in the muon refer-
ence frame must be the same within some limits. The same
holds for the longitudinal B-field as ωz depends on the linear
combination between Bz and Ẽρ.

The maximum longitudinal E-field component permissi-
ble in the muon reference frame as a function of the dif-
ference in Bz or Ẽρ is shown in Fig. 5b, where ΔM =
2(Mcw − Mccw)/(Mcw + Mccw), and M ∈ {Bz, Ẽρ}. The
calculation was performed at the fixed limit of the momentum
and the initial phase difference for the two injection schemes,
0.5% and 25 mrad, respectively. The imperfect cancellation
of the systematic effect due to a longitudinal electric field is
proportional to cos(ωz t), hence a function of storage time.
Assuming that the longitudinal electric field is strictly pro-
portional to the radial E-field and hence the longitudinal B-
field, an improved control of better than ΔM ≤ 0.01% will
not further reduce the effect, as the limiting factor becomes
the initial phase and the momentum difference.

Finally, under the assumption that the longitudinal E-
field is unchanged between injection modes, we can place
a limit of Ez ≤ 10−4Ef . This corresponds to Δp = 0.5%,

Φcw
0 − Φccw

0 = 25 mrad and ΔẼρ = 0.1%. The stability of
the B-field can be controlled to an order of magnitude better
than ΔBz = 0.01% (300µT) and does not contribute sig-
nificantly to this limit. One could tighten the limit on some
parameter, in an attempt to relax the limit on Ez, however,
the contribution of the others will then become more signif-
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Fig. 5 Limit on the longitudinal E-field, Ez, when considering alter-
nating CW/CCW injections, where the difference in mean momentum
averaged over all injected muons for injections of CW and CCW beams
is fixed at Δp = 0.5%. aShows the limit as a function of the initial phase
difference Φcw

0 − Φccw
0 . The horizontal dashed line indicates the limit

coming from Δp, keeping all other parameters equal between the two
injection modes. The brown area is the constraint coming from the dif-

ference in initial phase at Δp = 0%. The green area and its thick dashed
line edge show the combined limit of the two effects. b Shows the limit
as a function of the difference in E- or B-field for CW and CCW orbits,
calculated at various times. ΔM = 2(Mcw − Mccw)/(Mcw + Mccw),

where M ∈ {Bz, Ẽρ}, while the difference in initial phases was fixed
at 25 mrad

Fig. 6 The measured false EDM df
μ due to difference in the aver-

age electric field in the longitudinal direction between CW and CCW
injections. The solid horizontal line shows the target sensitivity and the
dashed horizontal line is one quarter of that value. The vertical dotted
line is at β = 0.256 (Phase I) and the vertical dashed line is at β = 0.770
(Phase II)

icant. For example, reducing Δp by an order of magnitude
to 0.05% and Φcw

0 − Φccw
0 by 2.5 times to 10 mrad leads to

a relaxed limit of Ez ≤ 5 × 10−4Ef .

5.2.1 Variation in the longitudinal electric field

So far, we have assumed that the absolute value of the average
Ez over time and over all measured muons is the same for

the two injection modes, or 〈Ecw
z 〉 = −〈Eccw

z 〉, which is
only true if the muon trajectories for CW and CCW overlap
perfectly. The false EDM signal measured as a function of the
muon velocity and the difference in the average longitudinal
electric field in the muon reference frame is shown in Fig. 6.
For Phase I of the experiment this difference should be limited
to 〈Ecw

z 〉 + 〈Eccw
z 〉 ≤ 2 × 10−6Ef .

Taking into account all considerations, we can place a limit
on the maximum z-component of the electric field allowed in
the muon reference frame of Ez ≤ 10−4Ef , or approximately
〈Ecw,ccw

z 〉 ≤ 28 V/m and its maximum change between
the two injections

∣∣〈Ecw
z 〉 + 〈Eccw

z 〉∣∣ ≤ 0.56 V/m for the
Phase I muon EDM experiment. The corresponding values
for the Phase II experiment are 〈Ecw,ccw

z 〉 ≤ 2.9 V/m and∣∣〈Ecw
z 〉 + 〈Eccw

z 〉∣∣ ≤ 0.15 V/m.

5.2.2 Slow drift of the muon orbit

One possible reason for differences between the absolute
values of 〈Ecw

z 〉 and 〈Eccw
z 〉 is the magnetron oscillation

of the muon, discussed in Sect. 4.2. For a typical Phase I
cyclotron frequency of ωc = 2.47 rad/ns and betatron fre-
quency ωb = 0.073 rad/ns, the magnetron frequency is
ωm = 0.11 × 10−3 rad/ns corresponding to a period of
5.8µs.

We explore this effect through a Monte Carlo simulation
using Geant4. The initial z-position of each particle was
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Fig. 7 Precession of the muon orbit around the centre of the weakly-
focusing field (magnetron oscillations). Left: Time evolution of the orbit
of a single muon (line) and its centre (cross) around the centre of the

focusing field (dot). Right: Precession of the mean centre of the orbits
of an ensemble of muons for CW and CCW injections

drawn from a Gaussian distribution with mean 0 mm and
10 mm standard deviation. The transverse position was uni-
formly distributed along a circle with radius equal to the
nominal radius of the muon storage orbit, i.e. 31 mm, and
centred at (x0, y0) = (2, 0) ± (3, 3)mm. The momentum of
the particles is sampled from Gaussian distribution with mean
and standard deviation (28.0 ± 0.3) MeV/c. The sampling
approximates conditions in which the muons are injected in
the experiment slightly off the nominal orbit. The simula-
tions were performed with positive and negative B-field to
study the orbit precession for the CW and CCW cyclotron
motion. The mean position of the centre of the orbits as a
function of time is shown in Fig. 7.

The observed magnetron oscillation period is consistent
with the prediction of 5.8µs. From Eq. (51), the sign of the
magnetron oscillation follows the sign of ωc, which can be
seen in Fig. 7 as well. The direction of the drift of the orbit
center changes between CW and CCW circulation. Another
observation from the simulations performed is that, even
though the initial muons start with random displacements
from the central axis of the weakly focusing field and a dis-
tribution of momenta, the mean orbit centre follows a circular
path with 2 mm radius starting at the (2, 0) mm position. Thus
showing, that the mean position of the muon orbits at the
beginning of the measurement (after the end of the nominal
magnetic kick) is sufficient to describe the mean magnetron
motion.

The magnetron oscillation does not directly lead to a sys-
tematic effect, however, it might invalidate the assumption
that 〈Ecw

z 〉 = −〈Eccw
z 〉 as the muons in the two injection

schemes could sample a different volume and therefore a
different longitudinal E-field. This effect can be mitigated
by ensuring that the mean centre of the orbits coincides with
the central axis of the weakly focusing field. Another miti-

gation strategy is to limit the ∂x Ez and ∂y Ez gradients, such
that the longitudinal electric field is sufficiently uniform. One
can estimate the limits on those gradients by approximating

〈Ecw
z 〉 = Ecw

0 +
∫ 2π

0

[
(x0 + ρ0 cos φ)∂x Ez

+(y0 + ρ0 sin φ)∂y Ez
]
dφ

= Ecw
0 + x0∂x Ez + y0∂y Ez, (63)

where (x0, y0) is the offset of the orbit center from the central
electrode axis and Ecw

0 is a constant term in Ez(�r). Then

〈Ecw
z 〉 + 〈Eccw

z 〉 = δx ∂x Ez + δy ∂y Ez, (64)

where δx = |xcw
0 |− |xccw

0 | and δy = |ycw
0 |− |yccw

0 |, and not-
ing that Ecw

0 = −Eccw
0 due to the coordinate axis z following

the B-field direction.
Assuming a maximum systematic offset between the mean

centre of CW and CCW orbits of δx = δy = 1 mm
implies that (∂x Ez, ∂y Ez) ≤ 0.56 kV/m/m for Phase I.
Given in terms of a fraction of the frozen-spin field this is
(∂x Ez, ∂y Ez) ≤ 0.2%Ef m−1.

5.3 Systematic limits on a transient radial magnetic field

As elaborated on in Sect. 4.3, a transient radial magnetic field
with angular frequency ω and amplitude B ′

tr could introduce
a systematic effect by rotating the momentum vector at a rate
Ṗl around the radial axis, thus mimicking an EDM signal. The
constraints on a single frequency oscillating radial magnetic
field with oscillation amplitude B ′

tr as a function of its angular
frequency ω are calculated using Eq. (58), where we require
that ṖW ≤ FΨ̇ = Ψ̇ /4, and where ṖW is the Ṗl weighted
over the exponential decay of the muons.

Using Eq. (60) we deduce a limit by requiring that the tran-
sient magnetic field does not lead to a too large displacement
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Fig. 8 Limit on the amplitude of a transient radial magnetic field B ′
tr

with oscillation frequency ω/2π. For frequencies in the range between
200 kHz and 10 MHz the limit reaches a plateau at 140µT. The betatron
frequency ωb is shown with a vertical dashed line, and the rest-frame
muon lifetime τμ is shown with a dash-dot line. The grey exclusion area
is calculated using Eq. (60) for zmax = 50 mm and z0 = 40 mm. The
thick black dashed line shows the combined limits from zmax and ṖW

of the muon along z leading to a loss of the muons. The maxi-
mum amplitude of longitudinal oscillations, zmax = 50 mm,

is defined by the maxima of the radial magnetic field in the
weakly focusing field area. Limiting the maximum accept-
able amplitude due to the betatron oscillations to z0 = 40 mm
leaves 10 mm for the peak displacement due to disturbances
by B ′

tr.The limits on the oscillation amplitude of B ′
tr as a func-

tion of its frequency are shown in Fig. 8. For frequencies in
the range between 200 kHz and 10 MHz the limit reaches a
plateau at 140µT. This corresponds to longitudinal oscilla-
tions of the mean orbit with 0.2 mm amplitude.

The limit presented in Fig. 8 is valid in the case of an
external B-field oscillating at a single frequency. In reality,
i.e. the residual transient field from the magnetic kick, the
signal will contain a spectrum of frequencies. One has to then
consider the integral over the effect of B ′

tr(ω) as in Eq. (59).
For simplicity we take the ratio

B ′
tr(ω)

B ′
L(ω)

= ṖW(ω)

FΨ̇
, (65)

where B ′
L(ω) is the external B-field that satisfies the equation

ṖW(ω) = FΨ̇ , and Ψ̇ is the limit angular velocity of spin
precession by an EDM equal to the statistical sensitivity of
the experiment. This ratio can be thought of as what fraction
of the limit angular velocity is induced by an external field
B ′

tr at a given oscillation frequency ω. The integral of the
ratio must be less than 1 to limit the combined effect of a

signal with a spectrum of frequencies,∫ ∞

0

B ′
tr(ω)

B ′
L(ω)

dω ≤ 1. (66)

The relationship B ′
tr(ω) can be obtained from the inverse

Fourier transform of BK
ρ (t) (see Eq. (13)). Its integral after

weighing with 1/BL gives the fraction of the contribution to
the imposed limit of Ψ̇ /4.

A potential systematic effect associated with a z shift
in the average orbit is a change in the acceptance of the
upstream and downstream detectors. While we anticipate
that identification of the z direction of the emitted positrons
will remain unaffected, this aspect nevertheless requires a
more comprehensive investigation. A more detailed discus-
sion of detection-related systematic effects will be covered
in an upcoming publication.

The limits shown in Fig. 8, result in specifications for the
magnetic kicker used to rotate the momentum of injected
muons into a stable orbit. To avoid systematic effects, it is
necessary to limit the amplitudes below 0.1 mT to 1 mT in
the frequency band between 30 kHz and 30 MHz, which will
be measured using a laser-based Faraday rotation magne-
tometer, similar as described in [35]. Note that even in the
case of a too large residual transient magnetic field from the
kicker, its precise knowledge would allow us to correct for
the systematic effect.

6 Conclusions

In this study, we have presented analytical equations that
describe in detail the precession arising from the AMM in
the EM fields integral to the setup of the proposed muon
EDM experiment at PSI. Our findings were verified using
Geant4 Monte Carlo simulations that utilised realistic field
maps generated by Ansys Maxwell.

We identified that the most relevant systematic effects
stem from radial magnetic fields that vary with time and a
non-zero longitudinal component of the electric field, i.e.,
parallel to the magnetic field. The effects of the longitu-
dinal E-field can be largely mitigated by employing the
CP-violating nature of the EDM by alternating periodically
between CW and CCW particle motion in the storage ring.
This can be achieved by switching the polarity of the cur-
rents generating the magnetic field, thus inverting the direc-
tion of the magnetic field, and correspondingly reversing the
injection direction of the muons. The degree of this cancel-
lation depends on the initial conditions of the experiment
– the muon momentum distribution, the initial polarisation
direction, the EM field setup and the overlap between the
counter-rotating orbits.

We also provide a qualitative description of the geomet-
ric phase, accumulating as a result of spin oscillations in
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a non-uniform EM field. We found that systematic effects
of substantial magnitude can only arise due to resonances
between oscillations around two orthogonal axes, and only if
the relative phase between the two oscillations is non-zero.
One such effect may originate from the cyclotron motion in
the electric field if the axis of this rotational-symmetric field
is displaced and tilted with respect to the muon orbit’s cen-
tral axis. Geometric phase accumulation due to oscillations
with considerably different periods, such as cyclotron and
betatron oscillations, has negligible impact.

The study presented here is a key contribution to the ongo-
ing effort to search for the muon EDM at PSI. While specific
calculations were presented for the initial phase of the experi-
ment, the analytical derivations were kept sufficiently general
so as to serve future upgrades aiming for higher sensitivity.
The discussed systematic effects could also be relevant for
other planned storage-ring EDM searches.
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Appendix A: Verification using Geant4 spin tracking

A.1 General considerations

To verify the analytical equations, a model of the experimen-
tal setup proposed was developed using the Geant4 Monte
Carlo simulation toolkit. The EM fields of the experiment can
be calculated analytically or interpolated from field maps.

The field maps are generated by the ANSYS Maxwell3D
FEM software. The simulation has three major EM field com-
ponents:

1. The main solenoid magnetic field, with a constant value
along z, or a field map supplied by FEM simulations.

2. Radial electric field given by Eq. (24) with the option to
add a constant or uniform component in the z direction or
FEM simulated field map.

3. Weakly-focusing field modelled in ANSYS as a single
circular coil with radius R = 65 mm.

Muons start with zero momentum in the z direction, since
this is the initial condition for a stored muon. The simulation
tracks the spin orientation in the reference frame of the muon
and records it as a function of time. It can also track the
direction with respect to a reference frame defined by the
experimental setup, e.g. the solenoid magnet.

In terms of simulation requirements, the experimental
setup of the muon EDM experiment is situated at the fron-
tier between accelerator/storage ring physics and detector
physics. The storage ring is fully contained within a single
solenoid, and the beam focusing is performed by a circu-
lar coil. To maximise sensitivity, all positron detectors are
located as close as possible to the stored muons. Thus, the
use of the Geant4 toolkit is highly motivated as it provides
an easy implementation of complex electromagnetic fields
together with the detector geometries. However, its tracking
(equation of motion integrator) is mainly developed for the
purposes of single-pass systems. In the case of the muon
EDM experiment, the muons travel a significant distance
within the storage ring before decaying. The Phase I experi-
ment muons perform 880 turns per muon lifetime, equivalent
to about 180 m. Therefore, before proceeding with the ver-
ification of the analytical equations, the capabilities of the
Geant4 simulation for accurate tracking and interpolation
of EM field grids were tested.

A.2 Verification of tracking and interpolation

To track the muons inside the storage ring volume, the Monte
Carlo code requires the values of the EM fields at arbitrary
positions in space, whereas all practically useful methods
can only provide those on a grid. We have implemented a
Catmull–Rom cubic spline [36] to interpolate the field at a
point from a regular 3-dimensional field map. To benchmark
the performance of the interpolator, we use an exact analyti-
cal solution of the B-field of a circular current loop [37] and
calculate the field on a regular grid with step sizes from 0.1
to 2 mm. The numerical simulations were then launched with
a 28 MeV/c muon starting from a fixed position, which was
then tracked through the field once using its exact analytical
expression or by interpolating it from the regular grid field
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Fig. 9 Time evolution of the spin angle difference as a function of the
grid size for the B-field (left) or E-field (right). The expected signal
should be in the order of 21µrad/µs and 1.3µrad/µs for the Phase I
and Phase II experiment, respectively. E-field grid size of 0.2 mm and

B-field grid size of 0.5 mm ensure sufficiently low deviations while still
maintaining reasonable map size. Note that the curves appear like uni-
formly filled shapes due to very high frequency cyclotron oscillations

maps. The difference in spin phase out of the orbit plane Ψ

was calculated between the simulations using the interpo-
lated field, or the exact solution. The results are shown in
Fig. 9 (left, for the B-field, right, for the E-field cases). All
grid sizes tested below 2 mm result in an acceptable B-field
approximation in relation to the expected Phase I or even
Phase II target sensitivities, 21µrad/µs and 1.3µrad/µs,
respectively. The same study was done for the E-field inter-
polation by generating field maps with grid size from 0.1 to
1 mm from the exact analytical solution for coaxial cylindri-
cal electrodes. As the spin of muons at that momentum is
more sensitive to the E-field, the necessary grid spacing that
ensures a good approximation is 0.2 mm or lower.

The sixth-order Dormand–Prince integration routine of
Geant4 [9] was used for the tracking of muon position and
spin throughout the simulations. To determine the optimal
step size of the integrator, we performed tracking simulations
with step sizes of fractions of

√
2 from 0.014 to 2.82 mm. The

irrational numbers for the step size were chosen so as to avoid
effects due to resonances between the integration step and
field map grids. The smallest step size generates more than
104 integration steps per rotation and was used as a reference.
For all integration step sizes studied, the deviation of the spin
phase Ψ from the reference trajectory was below 0.1 nrad/µs
or four orders of magnitude below the signal at the statistical
sensitivity of the Phase II experiment. However, a step size
of

√
2/2 mm was chosen for future tracking, as it still results

in a sufficiently short simulation time.
With this, the verification of the tracking and interpolation

performance of the simulation is completed. We have pro-
ceeded to verify the ability of the FEM software to generate
field maps that agree with the exact solutions for idealised

coil and electrode shapes and the descriptive power of the
derived analytical equations of spin motion.

A.3 Verification of analytical equations

A model of the experimental setup was created in ANSYS
Maxwell3D with a solenoid consisting of one main coil
and two shimming coils on each side. The coil parameters
(current density, radius, position, length, etc.) were obtained
from a best fit of a measured field map of the superconducting
solenoid that will be used in the Phase I muon EDM exper-
iment. The circular coil that produces the weakly-focusing
field is positioned in the centre of the solenoid. It produces
a field that in the centre of the coil points in the opposite
direction to that of the main solenoid, which serves as a
potential well in which muons are stored. The simulation
also includes a coaxial cylindrical electrode system (20 mm
inner and 40 mm outer electrode radii) that provides the radial
electric field for the frozen-spin condition. The FEM software
is then used to calculate the field produced by the coils and
electrodes and to output it on a regular grid.

A comparison between the analytical equations derived
and the Geant4 spin tracking is shown in Fig. 10. The
fields used were either provided by exact analytical solu-
tions for the weakly-focusing coil and coaxial electrodes or
field maps from numerical simulations. The initial coordi-
nates of the muon at the moment of storage were arbitrarily
chosen (values specified in the caption of Fig. 10) for illus-
tration purposes. The electric field was set at such a value
as to have imperfect cancellation of the (g − 2) precession.
Both the inner and outer electrodes that generate the coaxial
E-field are tilted around the same pivot with respect to the
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Fig. 10 Comparison between the analytical Eq. (30) and the Geant4
spin tracking simulation. The initial parameters are arbitrarily set to
�S0 = (−0.89,−0.46, 0.00), �p0 = (0.84, 0.55, 0.00) × 26.8 MeV/c
and �r0 = (−16.95, 22.10, 5.00) mm. The muon momentum is inten-
tionally not set ideally to the ideal muon momentum for the frozen-spin
field of Ef = 280 kV/m in order to highlight the ωz oscillations of
the spin. The three plots depict different timescales of the spin motion
and show uncompensated (g−2) precession (top), betatron oscillations
(middle), and cyclotron oscillations (bottom)

z-axis by δ = 0.01◦ to highlight the cyclotron oscillations.
Simulations were performed for the 1000 m track length, or
about 7 muon lifetimes.

The comparison shows very good agreement between
the analytical equations and the Geant4 spin tracking per-
formed using field maps or exact solutions. The weakly-
focusing field gradient ∂z Bρ (needed to calculate the field
index n in Eq. (30)) was calculated using an exact solution
of a perfect circular current loop [37] at position ρ = ρ0 and
z = 0. This description of the weakly-focusing field pro-
vides good estimates of the field strength and the betatron
frequency. The difference between the exact and numerical
approaches for field generation is negligible throughout the
whole simulation time, demonstrating the good agreement
between the two, also when using realistic field maps from a
physical coil (62 mm radius and 5 mm × 5 mm square cross
section) generated by the finite-element method.

A.4 Verification of geometric-phase equations

For the verification of the equations derived for the calcula-
tion of the geometric phase accumulation, we consider two
different cases: resonant and non-resonant oscillations.

A.4.1 Resonant oscillations

Two periodic oscillations along perpendicular axes with
equal angular frequencies can occur due to the cyclotron
motion of muons inside the E-field used for the frozen-spin
technique. Consider the case described in Eq. (23), where
there is an angle between the common axes of the electrodes
and the solenoid magnetic field, and the centre of the muon
orbit is displaced by �r0 with respect to the centre of the electric
field. Equation (27) shows that in this case, the net (g − 2)

precession over a turn would be zero. The net precession
due to the longitudinal E-field component seen in the muon
reference frame would also be zero. However, the spin will
cause small oscillations around the longitudinal and radial
axes with the cyclotron angular frequency ωc. A geometric
phase will be observed if the displacement of the orbit �r0 is
such that both oscillations are out of phase.

To calculate the resulting geometric phase accumulation,
we use Eq. (37), where ω = ωc. The amplitudes Az and Aρ

are the maximum spin precession angular velocity resulting
from the oscillations in the z and radial E-field components.
Using the Thomas-BMT equation and Eq. (24) they can be
approximated as

Az = − ea

mc

[
1 − 1

a(γ 2 − 1)

]
βθ

max(Ez) − min(Ez)

2
and

(A.1)

Aρ = − ea

mc

[
1 − 1

a(γ 2 − 1)

]
βθ

max(Eρ) − min(Eρ)

2
.

(A.2)

The Geant4 simulation of the experimental setup was
prepared with exaggerated parameters to highlight the phase
accumulation effect to verify (37). The coaxial electrodes
are tilted at 15 mrad and the centre of the muon orbit is dis-
placed by 5 mm. The radial E-field is lower than that required
for the frozen-spin condition to allow for a residual (g − 2)

precession. The phase between the two oscillations is set to
the worst-case scenario, i.e. π/2. The comparison between
the equations and the spin tracking simulation is shown in
Fig. 11a. For the purpose of comparison, we assume clas-
sical parallel transport, since the simulation software is not
capable of simulating quantum behaviour. In reality, phase
accumulation will be half of the value obtained.

A.4.2 Non-resonant oscillations

To validate Eq. (36), the same simulation conditions as the
previous comparison were used, but with an additional oscil-
lating radial B-field. Spin oscillations caused by the B-field
coupled with those in Ez that are due to the 8.7 mrad tilt of
the electrode system. The source of the radial field in the
simulation is the anti-Helmholtz pair of coils, which is a

123



Eur. Phys. J. C           (2024) 84:262 Page 21 of 24   262 

Fig. 11 Accumulation of Berry’s phase due to oscillations of the spin
around perpendicular axes. a Shows the case of equal oscillation fre-
quencies (resonant oscillations) around the two axes caused by changing
E-field in the muon reference frame. b Shows the Berry phase for the

superposition of B-field oscillations with different frequencies (non-
resonant oscillations) coupling to the E-field oscillations due to the
cyclotron motion of the muon

realistic scenario as in practice such radial oscillations can
be induced by a residual B-field from the magnetic kick. The
B-field in the comparison is generated by superposition of
two currents of the form I (t) = I0 sin(ωt + b0) with dif-
ferent amplitudes and initial phases and angular velocities
at ±5% of the cyclotron angular velocity (2.3 rad/ns). The
amplitudes of the two sinusoidal components are 10 A and
5 A, which is more than an order of magnitude higher than
the expected residual current after the magnetic kick. This is
done to highlight the geometric phase effect, as otherwise it
would be negligible. The effect is also enhanced by setting
the tilt of the electrode system to such a large value, again
for the purpose of illustrating the geometric phase effect.

The results of the comparison are presented in Fig. 11b.
A very good agreement between theoretical prediction and
spin-tracking simulations is observed on the microsecond
scale (g−2 precession) and the nanosecond scale (cyclotron
oscillations) over about 10 muon lifetimes. The overall
behaviour of the geometric phase is captured by the ana-
lytical equations, though there are small differences between

the predicted and observed beating patterns in case of the
B-field coupling. The oscillation amplitude of the radial B-
field generated from the magnetic kick was calculated at the
(x, y, z) = (ρ0, 0, 0) position, whereas the muon experi-
ences longitudinal and horizontal betatron oscillations, thus
resulting in a slightly different B-field. Despite this approx-
imation, the agreement between the simple calculation and
the detailed spin tracking is satisfactory. Other sources of
difference between the analytical and simulation approaches
could come from the discretisation of the B-field used in
the numerical simulation, which introduces additional high-
frequency noise, and from the calculation of the cyclotron
frequency, which is proportional to be B-field. In the ana-
lytical calculation we have used the 3 T main solenoid field,
which does not include the effects of the weakly-focusing
coil or the variable field due to the kick. Differences could
also be due to the motion of the muons in space, since the
generated field is the sum of two sines, but the field in the rest
frame of the particle would have higher- and lower-frequency
terms.
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Appendix B: Striped electrode system

The limits shown in Sect. 3.3 place stringent constraints on
the alignment and shape of the electrode system. Although
the simplest way to achieve a radial E-field is to employ a
coaxial cylindrical structure, these limits could be achieved
more easily with a more complex setup, e.g. inner and outer
electrode geometries that are composed of individual wires
instead of a uniform cylindrical foil.

Such a setup would introduce radial non-uniformity along
the circular muon orbit, which could lead to the accumu-
lation of a geometric phase. However, as seen in Fig. 3,
the limits on the electric field uniformity are quite relaxed
for high-frequency oscillations. For example, separating the
electrodes into 100 longitudinal strands would create radial
field non-uniformity. If there is a tilt of the electrode sys-
tem, that would translate to an Ez non-uniformity as well.
However, the frequency of the E-field oscillations due to
this non-uniformity will be at about 40 GHz. At such high
frequency oscillations of the radial component on the level
of even 50% would produce a negligible geometrical phase
accumulation. Note, however, that the geometrical phase cal-
culations assume adiabatic processes and such extreme con-
ditions might violate that assumption. FEM simulations of
the electric field generated by an electrode segmented into
segmented into 60 parts, each consisting of a 1 mm diame-
ter wire and a grounded electrode segmented into 120 wires
show that the amplitude of the high-frequency field oscilla-
tions are less than 1% even for a displacement of 6 mm of
the centre of the muon orbit. The transverse cross section of
the electric field and the displaced orbit are shown in Fig. 12.

Fig. 12 Radial electric field for 20 mm inner charged electrode radius
and 40 mm outer grounded electrode radius when the electrodes are
composed of 1 mm diameter wires. The outer electrode has 120 and
the inner 60 wires. The inner electrode high-voltage is −6200 kV. The
black circle shows a 6 mm displaced orbit

The geometrical phase effect of such an electrode structure
is shown by the red ellipsoid in Fig. 4.

The main reason to prefer a wired electrode setup is that
in practice it would be easier to construct uniform electrodes
compared to using cylindrical foils. One can devise a setup
where the wires are connected to piezoelectric actuators that
allow for very fine control of the position. The actual posi-
tion of the wire can then be measured with sub-micrometer
precision using optical or capacitive distance sensors. The
produced electric field can then be precisely simulated using
finite-element methods.

Another advantage of a striped system is the reduced mate-
rial budget, which would increase the path length of decay
positrons and reduce their scattering. Compared to a cylindri-
cal foil, it would also lead to significantly less eddy currents
from the magnetic kick.
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S. Hwang, S. Incerti, A. Ivanchenko, V.N. Ivanchenko, F.W. Jones,
S.Y. Jun, P. Kaitaniemi, N. Karakatsanis, M. Karamitros, M. Kelsey,
A. Kimura, T. Koi, H. Kurashige, A. Lechner, S.B. Lee, F. Longo,
M. Maire, D. Mancusi, A. Mantero, E. Mendoza, B. Morgan, K.
Murakami, T. Nikitina, L. Pandola, P. Paprocki, J. Perl, I. Petrović,
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