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Abstract Weexplore anovel class of Yang—Baxter deformed
AdSy4 x CP? backgrounds (J High Energy Phys 01:056,2021)
which exhibit a non-chaotic dynamics for (super)strings
propagating over it. We explicitly use the Kovacic’s algo-
rithm in order to establish non-chaotic dynamics of string
o models over these deformed backgrounds. This analysis is
complemented with numerical techniques whereby we probe
the classical phase space of these (semi)classical strings and
calculate various chaos indicators, such as, the Poincaré sec-
tions and the Lyapunov exponents. We find compatibility
between the two approaches. Nevertheless, our analysis does
not ensure integrability; rather, it excludes the possibility of
non-integrability for the given string embeddings.
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1 Introduction and summary

Understanding the chaotic behaviour [1-19] and the associ-
ated non-integrable structure in various examples of gauge/
gravity correspondence [20,21] has been an outstanding
problem for past couple of decades. While in most of these
cases one encounters a chaotic motion, there have been some
handful of examples that confirm non-chaotic behaviour of
the embedded super strings and hence rules out the possibility
of non-integrable dynamics in the stringy phase space.

Non-chaotic dynamics are therefore always special in
holographic dualities. The central idea behind these anal-
yses is to probe the classical phase space configuration
of (semi-)classical strings with various chaos indicators.
These indicators ensure whether the phase space allows a
Kolmogorov—Arnold—Moser (KAM) tori and thereby (quasi-
)periodic orbits [ 1-3]. Identification of these orbits in the first
place, is the key step towards unveiling an integrable structure
associated with the classical phase space.

On the other hand, one can use the notion of Kovacic’s
algorithm to analytically check the Liouvillian (non-)
integrability criteria for a classical 2d sigma model over gen-
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eral backgrounds based on a set of necessary but non suffi-
cient rules [4-6]. In this paper, we use both these methods
to explore classical (non-)chaotic dynamics of the associated
sigma models in the stringy phase space.!

Following the holographic duality [20,21], one can argue
that these semi-classical strings are dual to a class of single
trace operators in the large N limit of the dual QFT. This
would therefore enable us to conjecture about the integrabil-
ity of the dual QFT at strong coupling. It must be stressed that,
examples of integrable superstring sigma models within the
holographic dualities are scarce. In fact, the absence of any
systematic procedure to construct Lax pairs for these two-
dimensional field theories makes our tasks even more chal-
lenging. However, so far there are some handful of examples
starting with AdSs x S 5 and AdS, x CP3 where the classical
integrability can be established by means of Lax pair [26-30].
On the other hand, it is equally interesting to look for inte-
grable models which are deformations of the original sigma
models. Along this line, 8-deformations (a marginal defor-
mation) of the A/ = 4 super-Yang—Mills (SYM) theory [31],
which is dual to the type IIB super-string theory on AdSs x §°,
was studied in [32,33]. The deformed model was found to
be integrable [33] for real deformation parameters and non-
integrable [34] for complex deformation parameters.

The purpose of the present paper is to apply these con-
cepts to a novel class of Yang—Baxter (YB) deformed [35-
47] backgrounds those were obtained until recently by the
authors in [48-51]. These are the deformations of the orig-
inal AdS4 x CP3 background [52] where the deformation
is generated through classical r-matrices satisfying the YB
equation. However, unlike the undeformed case [27-29], the
integrable structures associated with these deformed class
of backgrounds are yet to be confirmed through systematic
analyses.

Classical r-matrices satisfying modified classical Yang—
Baxter equation (mCYBE) [53,54] have been applied to sym-
metric cosets [37] as well as AdSs x S° super-cosets [38—40].
For the later case, the type IIB equations were confirmed until
recently [43]. On the other hand, Abelian r-matrices satisfy-
ing CYBE were applied to AdSs x S° sigma models in [44]
which were further generalized for the non-Abelian case in
[55]. For classical r-matrices satisfying CYBE, the resulting
background is found to satisfy type IIB supergravity equa-
tions of motion.

Motivated by these AdSs x $3 examples, abelian r-
matrices satisfying CYBE have been applied to AdS, x CP3
sigma models until very recently [48—51]. In their construc-
tion, the authors consider various YB deformations of the
AdSy4 subspaces and/or the internal CP3 manifold. These

! It must be emphasized that, parallel to the Kovacic’s algorithm, there
exist other approaches to check the (non-)integrability of the sigma
models, such as the S-matrix factorization [22-25].
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resultinto a class of deformed ABJM models (as dual descrip-
tions) which we summarise below.

Depending on the type of YB deformations, one even-
tually generates a class of gravity duals [48-51] for (1) B-
deformed ABJM, (2) Noncommutative ABJM, (3) Dipole
deformed ABJM and (4) Nonrelativistic ABJM. It is worth
mentioning that three parameter S-deformed backgrounds
can also be obtained following a TsT (T-duality—shift—T-
duality) transformation of AdS4 x CP? [56]. On a similar
note, a three parameter dipole deformation as well as grav-
ity duals for noncommutative ABJM were also obtained by
applying TsT transformations on AdS,; x CP? backgrounds
[56]. Moreover, the TsT transformation on the AdS4 x Cp?
background generating the gravity dual of the nonrelativistic
ABIM has also been found in [51]. These guarantee that all
these YB deformed backgrounds are string backgrounds in
the type IIA supergravity.

In the present paper, we consider (semi)classical string
dynamics for each of these deformed backgrounds and cal-
culate their respective chaos indicators, namely, the Poincaré
section and the Lyapunov exponent (1) [1-3]. For an inte-
grable dynamical system that does not show chaos, the 2N
dimensional phase space consists of N dimensional hyper-
surfaces known as KAM tori. In these dynamical systems the
equations of motion describe a flow in the phase space which
are indeed nicely foliated trajectories. However, in order to
make the analysis simpler, a lower dimensional slicing of
the KAM tori is chosen. This later hypersurface is known
as the Poincaré section. The flow trajectories then contin-
uously cross the Poincaré section. When chaos sets in, the
nice shape of the KAM tori is destroyed. On the other hand,
the Lyapunov exponent (1) is an essential tool to determine
the chaotic behaviour of a dynamical system. It is the rate
of the exponential separation of initially close trajectories
in the phase space of the system with time. When the sys-
tem is non-chaotic, A decays to zero with time. Whereas for
a chaotic system, the initial separation between two nearby
trajectories grows exponentially. A non-zero positive value
of A is usually an indication of chaos.

In our analyses, we find no indications of chaotic dynam-
ics of the strings; the shapes of the KAM tori are never dis-
torted and the Lyapunov exponents decay to zero over time.
By implementing numerical algorithm, we test these latter
results for various possible values of the string energy as
well. Our numerical analyses are substantiated by analytical
computations. The analytical calculations make use of the
Kovacic’s algorithm which determines the Liouvillian (non-
)integrability of a homogeneous linear second order ordinary
differential equation with polynomial coefficients [4-6,18].
It must be stressed that, in our analysis, the Kovacic’s algo-
rithm rules out the possibility of non-integrability. The sys-
tem is likely to be integrable. However, in our case to ensure
the integrability we need to find the appropriate Lax pair
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which is not the focus of the present article. More details
about the analytical and numerical methodologies are pro-
vided in Appendices A and B, respectively.

The organization for the rest of the paper is as follows.
In Sect.2, we present the preliminary requisites to perform
our analyses for the rest of the paper. In Sect.3, we apply
the analytical as well as numerical algorithms to look for
indications of chaotic behaviours of the string sigma mod-
els for each of the four examples listed above. Finally, we
conclude in Sect.4. The two Appendices A and B describe
the analytical and numerical methods that have been used in
our analyses. The additional two Appendices A and B collect
several mathematical expressions that appear in the main text
of the article.

2 Basic set up

The starting point of our analysis will be the classical 2d
string sigma model which, in the conformal gauge, can be
written as [57]

1
Sp = —E/dtdo’ (nabGMN +€abBMN) BaXMabXN ,
(H

where 1,, = diag(—1, 1) is the world-sheet metric with
world-sheet coordinates (t, o). We choose the following
convention for the Levi-Civita symbol: €7 = —1. Note that,
the above action (1) is the Polyakov action in the presence of
non-trivial B-field.

The conjugate momenta corresponding to the target space
coordinates X can be computed from the action (1) as

oL
Pu = ﬁ = G X" + Bydo XV . 2)

The Hamiltonian of the system can be written as

1
H=puoX"—Lp= EGW(E)TX"E)TX” + BGX“B(,X”).
3)
Note that, the Hamiltonian (3) is indeed equal to the (t, 7)

component 77, of the energy—momentum tensor 7, whose
general expression can be derived from the action (1) as

1 1 .
Typ = E(G,uvaaxuabxv_Ehabhch,wacXMadXV> , @

where hy; = €2y, in the conformal gauge [14].
The Virasoro constraints imply that

Tio =T5r =0. (©)

3 Main results: analytical and numerical

The purpose of this section is to elaborate on the key ana-
lytical as well as numerical steps to check (non-)chaotic
dynamics of the string o-models within Yang—Baxter (YB)
deformed ABJM theories those are in accordance to the algo-
rithms described in Appendices A and B, respectively. Below,
we describe them in detail taking individual examples of the
YB deformed ABJM model.

3.1 B-deformed ABJIM

The Yang—Baxter (YB) deformed background dual to §-
deformed ABJM is obtained by deforming the CP? subspace
using Abelian r-matrices? [48] which results in the following
space-time line element

1 I
s}, cpr=—7dr?+ds7+ cos’ & (dof-+Msin” 01dg})

1
+ 5 sin’ (d9§ + Msin? ezdgog)
s 1 1 2
+ Mcos” € sin” & (dw + 3 cos 01dg; — 3 cos degoz)

+M sin* & cos® € sin” 6, sin” 6> (ﬁ1d¢1+7>2d¢2+;73d¢)2.
(6)

Notice that, in writing the metric (6) we switch off the
remaining coordinates of the AdS4. Here 7; (i = 1,2, 3) are
the YB deformation parameters.

The corresponding NS-NS 2-form field is given by

B=—Msin” £ cos’ & [%(2)924—)73 cos 6) cos” & sin” 0;dyr
A dg + % (=271 + 73 cos 61) sin® & sin” 6rdyr A do
+ % ()93 sin’ 6; sin” 6,
+ 292 + 73 cos6y) cos” & sin” 6; cos 6,

+(=291473 cos 6;) sin” & sin 6, cos 91>dg01 A d<p2:| ,
(7

2 The form of the r-matrix that leads to the three-parameter deformed
background (6) is chosen as [48]

r= pLAM; + 9Ly AM3 + 73L3 AL,
where L = —1/\/§L8 + +/2/3Li5 and L3, Lg, L5, M3 € su(4) ®

su(2) are Cartan generators.

@ Springer
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where
MU =14sin? & cos? & <)732 sin” 6; sin” 6,
S - 2 22
+ (292 + y3cos6>)” cos” € sin” 6

+ (=2y1 + y3cos 61)? sin® & sin’ 92) . )

Next we consider the winding string ansatz given by

t=1t(r), 6;=01(1),

¢ = 40,

O =0(t), &=E&(T),

¢1 =00, Y = g0, ©)

where «; (i = 2, 4, 6) are the winding numbers.
Using the above ansatz (9), the Lagrangian density in the
Polyakov action (1) can be written as

171. . 1/. .
Lp= —E[th—sz— Z(lecoszé—i—%zsinzs)

M 2
+ % cos? & ( sin? 6] + sin® & cos? 6;
+ 4)912 sin” 6; sin’ 6, sin* & cos® §>
M 2 R
+ % sin? & ( sin? 6 + cos2 & cos2 60 + 4)/22 sin? 01
x sin’ 6n sin’ & cos* %‘)
+ /\/llp’2 sin’ & cos? i—‘(l + )732 sin® 6 sin 65 sin’ & cos’ é)
+ M@y’ sin® & cos” &
X (cos 01 + 27173 sin? 0 sin” 65 sin” & cos? E)
— My’ sin® € cos” &
X (cos 0y — 2773 sinZ 0, sin? 6, sin’ & cos> S)
1
- 5M¢{ @) sin® £ cos” &
X (cos 01 cosr — 41 sin’ 6, sin” 65 sin” & cos? S)]

(10a)
1

1. . 1/. .

Ma?
+ TZ cos? & ( sin? 6] + sin? & cos? 6;
+ 4)?12 sin” 6; sin 6, sin* & cos? S)

2
Moy

+ sin? S( sin? 6, + cos? & cos? 6, + 4)722 sin2 6,
x sin® 0, sin’ & cos* S)
+ /\/lozé sin? & cos® 5(1 + )732 sin? 01 sin? (2 sin? & cos’ é)

+ Masag sin’ & cos® &

@ Springer

X (cos 01 + 2713 sin? §; sin? 6§, sin? & cos? 5)
— Maga sin® & cos? &
X (cos 0 — 273 sin’ 6, sin” 65 sin” & cos> S)

1 .2 2
— EMOQOM sin” & cos” &

X (cos 01 cosr — 417 sin? 6y sin? 6, sin? & cos® S)] .
(10b)

3.1.1 Analytical results

We begin our analysis by first finding the equations of motion
(eom) corresponding to the non-isometry directions 61, 6,
and £ from the Lagrangian density (10b). The results may
formally be written as

801 cos? & — 86, sin 26 — 9, M - Ty + M- T, =0,
(11a)

86 sin’ & + 86, sin2& — 99, M - Tg(;) -M- Te(zz) =0,
(11b)

32F — 4sin2¢ <9'22 - é%) M1V - M-TP =0,
(11c)

where

3o, M = —2M? sin® & cos® & sin 6
X (cos 6, cos® & (4)922 + P2 + 49275 cos 92)
4 29175 sin? 65 sin? s) , (12a)
9, M = —2M? sin” & cos? & sin 6>
.2 R
X (cos 0 sin 5(4)/1 +y35 — 4y1y3 cos 91)
— 2973 sin? 0 cos> g) , (12b)

9e M = —M?sin2& [(2)72 + 3 cos 92) cos* £ sin” 6,

+ P3cos’ & {2( — 4yp1 + p3 cos 91)
X oS 0 sin® () sin® &
.2 N
+ sin” 61 ()/3 sin“ 6y — 2 cos b»
X (4)?2 + 73 cos 62) sin? 5) }

—sin’ 6; (2)922 sin’ 2& + 3932 sin” £ sin’ 02)
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+sin 6, <2;>12 sin?2& —sin* &

x < — 291 + p3 cos 91)2>] ) (12¢)

The detailed expressions for the coefficients Tl.('j ) (J =
1,2,i = 01, 6, &) that appear in the above Egs. (11a)—(11c)
are provided in the Appendix C.

In the next step, we use (10a) to calculate the conjugate
momenta® associated with the isometry coordinates as

o8]

po e 0 o =0 (13)
T 47 RARPY S

where ®; = {¢1, P2, ¥}.
From (13) it is clear that the requirement of the conserva-
tion of the momenta, J,~,4 given as

d0:J; =0, (15)

is trivially satisfied. Moreover, the conservation of energy
(0 E = 0) requires us to choose the gauge t = 1.

In addition, using (3), (9) and the eoms (11) it is easy
to check that’ the Hamiltonian of the system is indeed con-
served on-shell, namely

0 Trq =0, (16)

which satisfies the consistency requirement of the Virasoro
constraints. On the other hand, using (4) and (9) we observe
that the non-diagonal component of the energy—momentum
tensor (774 ) is also conserved trivially, namely 0, 77, = 0.
The dynamics of the string is described by the eoms (11a)—
(11c). In order to study the string configuration methodically,
we first choose the 6, invariant plane in the phase space given
by
0, ~ 0, Mg, :=6, =0. (17)
Notice that, the above choice (17) trivially satisfies the 6>
eom (11b). On the other hand, the remaining two eoms (11b)

3 Here we use the standard definition of the conjugate momenta as
P, = 9L p/dq;, where g; are the canonical coordinates.

4 Here we define the charge as

1 2

Ji= 7/ do P, (14)
2na’ Jo

where P; are the conjugate momenta.

> This is an easy but lengthy calculation. Here we avoid writing this
very long expression in order to avoid cluttering.

and (11c¢) become

—

851 coszs — 89@ sin 2§ — 8/91\J\7~ Te(ll) + M. T9(12) =0,

(18a)
326 +4sin 2667 — M- T,V — M- 1 =0,
(18b)
where
s -1
M= <1 + (2)72 + 73)? sin® 6 sin” & cos® E) , (19a)
2
o (2)92 + )93) sin® & cos* £ sin 26,
g M = — 5 (19b)
(1 + (2792 + 73)2 sin? 0 sin? & cos? 5)
2
(2)72 + 7 ( — 14 3cos 25) sin & cos® & sin? 6;
M = — 5
<1 + (2)72 + 73)2 sin? 6 sin? & cos* S)
(19c¢)
TQ(IU = —4cos’ ¢ [a% sin” 0) + o sin® &
2
+ sin? & <<a4 — ap COS 01>
+4a6<oz2 cosf — om))], (194d)
Ta(lz) = o3 sin 20; (4 cos” & — sin® 2¢)
+ 205 sin? 2¢ sin 0y (o4 — 20t6) , (19¢)
Ts(l) = 45in? & cos? é( — oe% cos? 01 + 2ap04 cos 01 — af
— dapag cos b + 40[40!6)
—4(0[% sin? @} cos” & +a§ sin? 2&), (19f)
TEQ) = —2[0[% ( sin 4& cos? 6 — 2sin” 0 sin 25)
+ sin4& <2a2 cos 0 (2056 — Ot4) + (054 — 2a6)2)] .
(19¢)

In the next step, in order to utilize the Kovacic’s algo-
rithm to the string configuration in the reduced phase-space
described by (18a) and (18b), we make the choice
61 ~0, Ty =6,~0. (20)

Equation (20) indeed satisfies (18a), and the remaining
eom (18b) can be recast in the form

£+ Agpsindé =0, 1)

@ Springer
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where
1
App = E[(x% + 2a2(2a6 — 054) + (054 — 20(6)2] . (22)

In order to proceed farther, we consider infinitesimal fluc-
tuation (n) around the 6; invariant plane in the phase space.
Considering terms only upto O(7), we may re-express (18a)
as

81 cos? £ — 8§ sin2& f + (80{2 cos’ é(az cos’ £
+ oy (ot4 — 2016) sin® é)

- 812, + )73)2 sin* & cos® £ (402 + <a2 — au)?

+ dag (az —a) )1 = 0. 23)

where & is the solution to (21).
In order to study (23), we make the change in variable as

cos§ =z. (24)

Using (24) we can convert (23) to a second order lin-
ear homogeneous differential equation, known as the Lamé
equation [7], as

n"(2) + B(2)n'(z) + A(2)n(z) =0, (25)
where
_ @ 2
B(Z)_'Zf(z)+'z’ (262)
f2) = &sin’E = (E + %(85‘ — 8%+ 1))(1 -,
(26b)

A(z) = (ozz(azz2 + (a4 — 2a6) (1 — 22))

— 2y + y3) (4o + (@2 — aa) (a2 — a4

4 2\2 1
+40l()))Z (1 —Z ) ) . m . (260)

In our subsequent analysis we choose the string energy £ = 1
in (26b).

We can farther express (25) in the Schrodinger form (A3)
by using the change in variable (A2). The result may formally
be written as

2B'(z) + B*(z) — 4A(2)
4

W' (2) + 0*(z) = = Vpp(2),

27)

@ Springer

where the potential is given by

VBD = {8052 (- 1)(“212 — (&% = 1) (e2 — 20)
272 2 2/~ A A \2
—z7(z = 1)" (a2 — a4 + 206)" (272 + 73) )
X (2 +(1—822+ 814)ABD>
—|—z_2< — 44627 4+ (— 2+ 2727 — 64z* +407°)
2
ABD) — [21_2{4(2 — 372 4+ 3z%)
+4(2 — 1522 + 11z* + 42%) App
+ (2 - 272% + 2112* — 6322°

+ 102478 — 896710 4 320z12)ABD” }

1
X 5 (28)

4(2 = 1) (824 = 822+ 1) Ap +2)

In order to find the solution to (27), we first notice that
the value of & cannot be zero since this implies that one
of the two-spheres in the C P> space in (6) vanishes. This
restricts our analysis to a particular subspace of the C P>
space. However, since we want to take into consideration
the entire metric space, we exclude this possibility. Hence,
0 < |z| < 1. This argument allows us to expand the potential
VD in z. In the leading order in z, (27) is found to have the
form

W' () +w*@2) =C. (29)

where

~ 4 -8 27 6

&= 04 oo + 27ARp + . (30)
2Agp + 4

The solution to (29) is found to be

0@ =/E unn [ /G (+C1)]. (31)

where C; is an arbitrary integration constant.
Now from (28) we observe that the potential has poles of
order 2 at the following values of z:

- v2,/ Agp(Asp — 2)

z==l1, ,
Agp

_+l
LEE

1, 2,/ Asp (Asp — 2) »
= 5 + Aon . (32)
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On the other hand, from (28) the order at infinity of Vpp
is found to be 2. Thus Vgp satisfies the condition Cd.(iii)
of the Kovacic’s classification discussed in Appendix 1. On
top of that, for small values of z the solution (31) is indeed a
polynomial of degree 1. This matches one of the integrability
criteria as put forward by the Kovacic’s algorithm discussed
in Appendix A.

In order to support our analytic result, below we numer-
ically check the non-chaotic dynamics of the propagating
string.

3.1.2 Numerical results
In our numerical analysis, we use the ansatz (9) together with

the choice o; = 1 (i = 2, 4, 6) of the winding numbers. The
resulting Hamilton’s equations of motion can be written as

deformation parameters are set as 7, = p3 = 0.01, 0.8.
In addition, we choose the initial conditions as 6;(0) = 0
and pg(0) = 0. Given this initial set of data, we generate
a random data set for an interval £(0) € [0, 1] which fixes
the corresponding pyg, (0) in accordance with that of the con-
straint (3).

Itis important to note that the other deformation parameter
y1 disappears from the numerical simulation since we switch
off the 6>, pg, variables in the phase space. This is also visible
form the Hamilton’s eoms (33a)—(33d), which do not depend
on the choice of y;.

We plot all these points on the {£, pg} plane every time
the trajectories pass through 6; = 0 hyper-plane. For the
present example, the phase space under consideration is four
dimensional, namely it is characterized by the coordinates

{61, po,, &, pe). Poincare sections in this case show regu-

01 = 4pg, sec’ &, (33a)
£=pe, (33b)
 cos?£sindy ( — 4cos6; cos2 & + 4sin2 & + 2 + 3)2 cost (61/2) sin4(2§)>

b, = S (33¢)

16(1 + (292 + 73)2 cos* £ sin2 6 sin? g)
. N
pe = , (330)
128(1 + 272 + 73)? cos# £ sin? 6y sin® é)
where

N1 = 1629 + 73)% cos® £(—1 + 3 cos(2€)) sin’ 6; sin® &
+ 3229 + 73)% cos 6 cos’ £(—1
+ 3 cos(2§)) sin® 01 sin’ &
+ (292 + 73)% cos® £(—6 + 2 cos(26) + cos(26; — 2§)
+ 2 cos(2&) + cos(20] + 2£)) sin? 01(5siné — 3sin(3£))
—8(1 + (272 + p3)* cos* &
x sin? 0; sin® €) sin(4€)
— 16cos0; (1 + (292 + 73)° cos* & sin” 6; sin” £) sin(4&)
+4(1 4+ 292 + 73)% cos* £ sin® 0 sin® &)
(4sin® 6y sin(2§) — 2 cos” 6 sin(4&)) — 512pj,
sec? £(1 + Q29+ 393)2 cos*£sin0; sin®€)> tan &, (34)

It must be stressed that, in writing the Hamilton’s eoms
(33), we set 0, = pg, = 0.

In order to obtain the corresponding Poincaré sections, we
solve the Hamiltonian’s eoms (33a)—(33d) subjected to the
constraints (3) and (B2). These are plotted in the left column
of Fig. 1. The energy of the string is fixed at some partic-
ular value £ = Ey = 0.01, whereas the values of the YB

lar patches indicating a foliation in the phase space (cf. left
column of Fig. 1).

In order to calculate the Lyapunonv exponent (i), we
choose to work with the initial conditions £ = Ey =
0.01 together with {6;(0) = 0,&(0) = 0.008, ps, (0) =
0.009, pe(0) = 0} which are consistent with (3). When
7> = y3 = 0.8, the initial conditions are set to be {0;(0) =
0,£(0) = 0.013, ps, (0) = 0.007, pg(0) = 0} while we
keep the energy to be fixed at E = Ey = 0.01. With this
initial set of data, we study the dynamical evolution of two
nearby orbits in the phase space those have an initial separa-
tion AXg = 1077 (cf. (B1) ). In the process, we generate a
zero Lyapunov exponent at large ¢ as shown in the right col-
umn of Fig. 1. This observation indeed exhibits a non-chaotic
dynamics of the super string in the phase space. Moreover,
we also verified the above conclusion by permitting higher
values of the string energy as shown in Fig. 2 below.

3.2 Noncommutative ABJM
Noncommutative ABJM corresponds to a gravity dual that is

obtained by applying YB deformation to its AdS4 subspace.
The corresponding Abelian r-matrix is constructed using the
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-0.02

Pg

Fig. 1 Numerical plots of the Poincaré sections (Left column) and
Lyapunov exponents (Right column) for S-deformed ABJM. Here
we set the energy of the string Eg = 0.01. The top plots are for
72 = p3 = 0.01 and the bottom plots are for 72 = y3 = 0.8. The

=15}

A
0.020
0.015

0.010

- 'K

A
0.020

0015

0.010

- L

) 10 20 30 40 50

t

Poincaré sections are nicely foliated KAM tori and the Lyapunov expo-
nent decays to zero for large time ¢, indicating non-chaotic dynamics
of the string

Fig. 2 Additional plots of the Poincaré sections for S-deformed ABJM. On the left plot we set Eg = 1, 7» = p3 = 0.5. The plot on right

corresponds to Eg = 0.5, 7, = 73 = 0.1

momenta operators along AdS4.® The resulting space-time

6 The form of the r-matrix is taken to be

r= Up1APpP2,

where p; and p; are the momentum operators along the x; and x;
directions, respectively. The B-field (36) results in the noncommutativ-
ity [x1, x2] ~ w in the x; — x plane [49].

@ Springer

metric is given by [49]

1 dr?
ds? = - <r2 (—dt2+M (dxf+dx§>) +r—2> +dsgps
1
dsg.ps = &% + 7 cos” £(d07 +sin® 61d97)

1
+7 sin® £(d63 + sin® 6,d¢p3)
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1 1 2
+<§ cos 01d¢ —5 cos 62d¢2+d¢> sin? & cos’ £,

(35)
which is accompanied by a NS—NS two form
M4 2,4
B="""" 0t nax?, Mo =1+%, (36)

where ¢, x1, x5 and r are the coordinates of AdS4 background
and p is the YB deformation parameter. We set » = 1 for the
rest of our analysis.

In the next step, we consider the winding string ansatz of
the form

t=t(r), 61 =01(1), O =060(r), &§=E§(1),
$1 = a0, ¢ =40,
Y =060, X| =080, X2 =A|00, 37

whereo; (i = 2, 4, 6, 8, 10) are the winding numbers. Notice
that, with the above ansatz (37) the contribution of the B-field
in the Polyakov action (1) vanishes.

In the next step, using (35) and (37), the Polyakov action
(1) can be expressed as’

11, ., 1. 1.
Lp=—3 [Zﬂ —£2— 2912 cos’ & — 2922 sin” &

M
+ 7 (F +27)
¢/2
+ Tl cos’ é?(sin2 61 + cos® 0 sin’ 5)

2
o5

+ e sin? & (sin” 6, + cos® 6> cos” &)
+ sin £ cos? & {1//'2 + ¢y cos Oy — phy’ cos b

1
—§¢;¢é cos 6 cos 92}i| (38a)

171. . 1. 1.
= ~3 |:Zt2 —52 — Zef c0s2$ - 2922 Sinzg

M
+ T(aé +ajy)

2
o
+ ZZ cos? g( sin? ) + cos> 6 sin> £)

2
o
+ 74 sin’ 3;( sin’ 6, + cos? 65 cos? .§)

+ sin? & cos? & [aé + apa cos 0y

1
—0t406 COS By — 50120{4 cos 01 cos 92}:| . (38b)

7 Notice that, the information of the deformation parameter (u) is
encoded in M ((36)) which in turn modifies the Hamiltonian (3).

3.2.1 Analytical results

The equations of motion corresponding to the non-isometry
coordinates 01, 6 and & can be computed from (38b) as

6, — 2 tan & éél + orp sin 6 (az cos? & cos 61

+ (o4 cos 6 — 206) sin’ € ) = 0, (39a)
52 + 2cot& ééz + o4 Sin 6 <a4 sin® & cosby
+ (Ol2 cosf + 2a6) cos? g) =0, (39b)

8 + sin 2¢ (0] — 63) + 20 sin 46 — 2a4c06 cOS 05 sin 4&
— oy cos B sin4& (Ol4 costy — 2a6)
1
+ o3 ( — sin® 0y sin 2¢ + 3 cos? 0y sin 4¢)
1
+ a (sin® 6 sin 2& + 3 cos® 6 sindg) = 0. (39¢)

The conjugate momenta corresponding to the coordinates
{t, ®;} with (i = ¢1, ¢2, ¥, x1, x2) can be computed as

E

oLp i JdLp
ot ' 09;

Using (14) it is trivial to check that the corresponding
charges are indeed conserved.

0:E =0 (int = t gauge), 0Py, =0. 41

Next, following the same line of arguments as in the pre-
vious Sect.3.1.1 (cf. Eq. (16)), we may easily verify that the
energy—momentum tensor satisfies the Virasoro consistency
conditions

0:Tr = 0,
atha = 0,

on-shell ,
trivially . 42)

The string configuration is described by the three equa-
tions of motion (39a)—(39c¢). In order to study this configura-
tion systematically, we choose the following invariant plane
in the phase space:
6, ~0, g, =6, ~0. (43)
Notice that, the choice (43) automatically satisfies the 6, eom
(39b). The eoms corresponding to #; and & then reduce to

6 — Zéél tan & 4+ ay sin 0 [az cos 0y cos? &
+ sin® & (a4 — 206)] = 0, (44a)

o e

8¢ + sin 2§ 6] + sin4& | 2ag + > 20406
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— op cos 01 (Ol4 — 20(6)]

1
+ ag[ — sin’ 6 sin 2¢ + = sin 4¢ cos’ 91] —0. (44b)

In the next step, in order to utilize the Kovacic’s algo-
rithm to the string configuration in the reduced phase-space
described by (44a) and (44b), we make the choice
6 ~0, Iy, =6; ~0. (45)

This choice satisfies (44a) trivially, and we are left with
the following eom:

£+ Ancsindé =0, (46)

where
1 1
Anc = g [2056 (016 —a4) —a (014 — 2066) + 5 (OI% +OQ%)] . (47)

We now consider small fluctuations (1) around the invari-
ant plane 6. This results the normal variational equation
(NVE) of the form

N — 2§ tané n—+ Olz[olz cos2§ + (oz4 — 2a6) sin? é ];7 =0,
(48)
where £ is the solution to (46).

In order to study the NVE (48), we introduce the variable
z such that

CosE = 7. (49)

With (49) we may recast the NVE (48) as
1 f/(z) g /
n(z) + (Zf(z) + Z)n ()

[6%) ) ) ~
+m(azz +(a4—2cx6)(1 —z ))n(z) =0, (50)

where

f(2) = &%sin’E = (E - %(824 — 82+ 1))(1 -9,

(S

E being the constant of integration equal to the energy of the
string. We set E = 1 in our analysis.

Next, we convert (50) into the Schrodinger form by using
(A2). The resulting equation can be written as

2B'(z) + B*(z) — 4A(2)

o' (D) +w*(z) = 1

= Unc(@), (52)

@ Springer

where Vnc(2) is the Schrodinger potential and

A2) = %(azzz + (@ = 2ae)(1 = 29)) (53a)
(SR 2
B() = (mz) v Z). (53b)

The Schrodinger potential Vnc(z) can be written as

Nne
VNe = e’ (54)
where
Nie = 122 = 2) + A = 54+ 53622

+ 1624~ 147 + 26322 — 208" + 602°)

+ 4ANC[ — 30 + 1872 — 280z* + 120z°

+ 209(—1 4+ 922 — 162* + 82°)

+ 1602(z2 — 1) (222 — (22 — Dag — 2a6)] ,

(55a)

Dne = 4(1 — 29?2 + (1 — 82% + 8z Anc)?. (55b)

In order to find the solution to (52), we now expand the
potential V¢ for small values of z following the same argu-
ment that was presented in the previous Sect. 3.1. The result-
ing w(z) equation may be written as

@' (z) + 0 (z) = Ca,

~ 6+ 27 4 -2

Gym + 27 Anc + 4az(aq — 206) (56a)
22 + Anc)

whose solution may be expressed as

@) =G unh[\/& @ +C)). (57)

where C, is an arbitrary constant.
Now the Schrodinger potential V¢ given by (54) has
poles of order 2 at

1 V2/Anc(Ane = 2)

= =1 =4—,/2—
z . Z 5 "
\/—_
L il 2y V2 Anc(Anc = 2) . (58)
2 Anc

On the other hand, the order at infinity of Vnc is deter-
mined to be 2. These satisfy the criterion Cd.(iii) of the
Kovacic’s algorithm as discussed in Appendix A. Also, for
small z the solution (57) is indeed a polynomial of degree 1.
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These information together ensure the analytic integrability
of the system.

3.2.2 Numerical results

In order to numerically study the integrability of the string
configuration, we use the ansatz (37) together with the choice
a; = 1 of the winding numbers.

The resulting Hamilton’s equations of motion are obtained
as

él = 4pg, seczé , (59a)
£=pe, (59b)
Do, = 3 cos” & sin Gl(sm & — cos b cos é) , (59¢)

pPg = 5 cos & sin“ 6 sin& — cos > sin4&
— 8pj, sec” £ tan g) , (59d)

where we set 8, = pg, = 0 in the rest of our analysis.

For numerical simulation, we set the following values of
the Yang—Baxter deformation parameter: © = 0.01, 0.8.

Figure 3 shows the corresponding Poincaré sections when
the energy of the string is £ = Ey = 0.4. Note that, we take
the initial condition as 61(0) = 0, ps(0) = 0. We gener-
ate a random data set by choosing £(0) € [0, 1] which fixes
the initial momenta pg, (0) following the Hamiltonian con-
straints (3) and (B2). The &, pg cross-section is obtained by
collecting the data every time the trajectory passes through
the 6; = 0 plane.

In order to plot the Lyapunov exponent (i) (Fig. 3),
we set the initial conditions as {#;(0) = 0,£(0) =
0.11, pg, (0) = 0.17, p£(0) = 0} together with AXy = 1077
in (B1). For © = 0.8 the initial conditions are changed
to 61(0) =0,8(0) =0.11, py,(0) = 0.22, p£(0) = 0. The
energy of these orbits are fixed at E = Ey = 0.4 such
that, when put together, they satisfy the Hamiltonian con-
straints (3) and (B2). In the process, we finally generate a
vanishing Lyapunov exponent at large time (¢) exhibiting a
non-chaotic motion. The validity of the above conclusions
is further checked by plotting the Poincaré section for other
values of the string energy, as shown in Fig. 4.

3.3 Dipole deformed ABJM

Gravity dual of dipole deformed ABJM is obtained by con-
sidering a three parameter YB deformation of AdS4 x CP3.
The associated r-matrix is constructed combining the genera-

tors of both the AdS4 and CP3 subspaces.® The corresponding
line element is given by [49]

L ) 2 2 r? 2 dr? 2
ds? = 1 - (—dx0+dx1>+mdx2+r—2 +dt
3

1
+ 1 cos’ & (d912 + sin® 6 d<p12>
1
+ ;sin’¢ (d9§ + sin? 92d<p§)
+ ! (ICOSGd 1cos@d —i—dw)z
I f32 ) 1491 5 2492
x sin’ & cos’ &, (60)

together with the NS-NS fluxes

1
B=—- f32 rdxz
4\1+f

1 1
A (5 cosO1dg; — 7 cos O dgr + dl/f) sin& cos& ,

/3

% sin(2) . 61)

We also set the Yang—Baxter deformation parameters as
u1 = no = 0, u3 = w. Here, {r, xg, x1, xo} are the Ad Sy
coordinates. On the other hand, {&, 01, 6>, ¢1, 2, ¥} are the
coordinates of internal C P3 manifold. In the following anal-
ysis, we choose xo = f,x; = constant and r = 1.

In our analysis, we choose to work with the winding string
ansatz of the form

t=1t(tr), 01 =01(1), O =060(1), &=E&(1),
@1 = w0,
@ = Pro, Y =y0, xX2=mo, (62)

where a», 2, y»2 and 1, are the string winding numbers.
Using the above ansatz (62) we may write the Lagrangian
in the action (1) as

1T1. . 1. 1.
Lp= __[_ﬂ — & — 207 cos’§ — 203 sin’ ¢

214 4
xéz q‘){z cos® &
41+ £ 4

8 The r-matrix can be written as
r= p2 A (1Lls 4+ poL + pu3Ms)

where L = —1/4/3Lg + «/2/3 L5 and L3, Lg , L15, M3 € su(4) @
su(2) are Cartan generators. Here 111, (2 and 3 are deformation param-
eters in the theory [49]. For this particular choice of the r-matrix, the
deformation is along the x, direction in the AdS4 and along the angular
direction (g1, @2, ¥) in CP3.
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Fig. 3 Numerical plots of the Poincaré sections (left column) and Lya-
punov exponents (right column) for non-commutative ABJM. Here we
set the energy of the string £y = 0.4. The top plots are for © = 0.01

while the bottom plots are for © = 0.8. The Poincaré sections are nicely
foliated KAM tori in the phase space and the Lyapunov exponent decays
to zero for large time ¢, indicating non-chaotic dynamics of the string
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Fig. 4 Additional plots of the Poincaré sections for non-commutative ABJM. On the left plot we set Eg = 1 and u© = 0.5 whereas, the plot on

the right corresponds to Eg = 0.45, . = 0.1

2 2
0
X <sin2 01 + ] écosz 1)
1+ f3
2 i
N @5 sin” & (sin2 6+ cos? & 00522 02)
4 1+ f3
sin® & cos? &

> (WZ — Lt 4 cos 0, cos s
1+ f 2

+ ¢y cos O — Pl cos 02)] (63a)
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sin? & cos? & ( s 1 5 0 0
—_— — —ap B2 cos b1 cos
I f32 12) S %2k2 1 2

+ a2y2 cos b1 — Bays cos 02)] . (63b)

3.3.1 Analytical results

The eoms resulting from the variations of 61, 6, and & in
(63b) can be computed as’

2
0= 4(1 + %sin22§)(cos§él —2sin£ £ 6;)

— 4oy cos & sin® £ (2, — P2 cos 6) sin 0
+ 2a5(1 + p? sin® £) cos® £ sin 26 , (64a)
2
0= 2(1 + MT sin22§>(sin§§2 - ZCosgééz)
+ 2B, siné cos’ é.;‘(27/2 ~+ ap cos b

2
— B> cos 62) sin 0, + ,B%(l + % sin? 25) sin & sin 26, ,

(64b)
I,LZ 2 . . .

0= (1 + sin? 25) (165 + 2sin2& (912 — 62

— B2sin? 6, — o? sin” 0)))

sin 4&
> (47/22 - /LGg + a% cos? 0
+ ,322 cos? 0r — 4By cos 0
+ 22 c0s 6, (22 — B cos 92)) . (64¢)

We observe that the conjugate momenta corresponding
to the coordinates {¢, ®;} with (i = ¢1, ¢2, ¥, x3) can be
computed as

E=2L o 2 pp="2F o, (65)

which are indeed found to be conserved
0:E =0 (inf = t gauge), 9Py, =0. (66)

Now using the definition (4) of the energy—momentum
tensor Typ, it is easy to check that

a‘L'T‘L"L’ :07
athrr =07

on-shell ,
trivially . (67)

9 Ttis interesting to note that the order of the YB deformation parameter
that appear in the eoms is indeed O(u?) and no term of O(u) appears
in the eoms. This is because the B field does not contribute to the eoms
due to the choice of the ansatz (62).

In the next step, we study the dynamics of the string gov-
erned by the eoms (64). In our analysis we first choose the
6, invariant plane in the phase space defined as

6~0 g =6, ~0. (68)

This choice trivially satisfies the 6> eom (64b), and the
remaining two eoms (64a), (64c) reduce to

2
0= 4(1 + MT sin22$)(cos§§1 — ZSinEéél)
— 4oy cos & sin’ EQ2yy — B2) sin by

+ 205 (1 + p? sin® £) cos® £ sin 26 , (69a)

2 2
0= (1 + MT sin’ 2.;%) (16 + 2sin 2¢ (9'12 — a3 sin”6)))
sin4&
2
+ B3 — 4Bay2 + 202001202 — B2) ).

(4)/22 - ;ﬁnﬁ + Ol% cos?

(69b)
The dynamics of the string in the reduced phase space,

governed by (69a) and (69b), can be studied by further choos-

ing the 6} invariant plane defined as

61 ~0, Tl =6 ~0. (70)

While is choice trivially satisfies (69a), (69b) reduces to the
form

2 2
16(1 + MT sin? 2§> £+ (App — p?n3)sindé =0, (71)
where

1
App = 5(4)/22 + o3+ B3 — 4Payr + 2002y — ﬂz)) .
(72)
Next we consider infinitesimal fluctuation (§6; ~ n)

around the 0} invariant plane. This results in the normal vari-
ational equation (NVE) equation which can be written as

2
(1 + “Tsinhg)(cossﬁ—%inéém)

+ a%(l + ,uz sinzé) cos?’a,g —a2(2y2 — Br) cos & sin’ 5)
n=20. (73)

Using the change in variable cos & = z we may recast (73)
in the form

1"(2) + B(@)n'(2) + A(z) = 0, (74)
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where

_ @ 2
o= (75a)
Az) = (X%Zz(l + MZ(I — Zz)) — 2y — B — ZZ) ’

(1 + u212<1 — zz))f(z)
(75b)
fz) = E2sinE

A 2.2
— E+m—m(8z4—8z2+l)
32
B 12 App
128

x (1—2).

(—1287% + 25620 — 1527* + 24z2)>

(75¢)

In (75¢) E is the energy of the propagating string and we
choose £ = 1 without any loss of generality. Also notice
that, in deriving (75¢) we series expand (71) for small values
of the YB parameter u and keep terms upto O(u?).

We can further recast (74) in the Schrodinger form (A3)
using (A2). The resulting equation can then be written as

2B'(z) + B%(z) — 4A(2)

@' (2) + @*(2) = 7

=Vop(2),

(76)
where Vpp(z) is the Schrodinger potential whose exact form
is quite complicated and we avoid writing the detailed expres-
sion here. However, we can expand this potential Vpp(z) for
small p as well as small z. The latter expansion is justified

whenever we work with the full CP? metric (60). The final
form of (76) can be computed as

o' (2) + 0*(z) ~ Cs, 77

where

& _96 + 27 App + 64az 8, — 1282y n

(—288App — 94 + 38413 — 32028213 + Gdanyand)p?

there are poles of order 2 of the potential Vpp(z) at'”

z==x1, z=z i=1,...,4, (80)
and the order at infinity of Vpp(z) is 2. Thus the criterion
Cd(iii) of the Kovacic’s algorithm, discussed in Appendix A,
is satisfied. From these results we can infer that the system
is indeed integrable.

3.3.2 Numerical results

We now explore the non-chaotic dynamics of the string con-
figuration using numerical methods. In order to do so, we note
down the corresponding Hamilton’s equations of motion'!

61 = 4py, sec? £, (81a)
£=rp:. (81b)
cos* £(—2 — p? + p? cos(2§)) sin(26) + sin 0y sin? (2§)
Por = 8 + 2722 sin2 (28) ’
(81c)
. N
PE = 8@+ 2 sin?26))2 (81d)

where we denote

N,y = ( —32(3 — 21* + 4cos By + cos (261)) cos(2£)
—8(8+ pu? —p? cos(4§))2p§I sect g

+ 8+t —u? cos(4§))2 sin’ 91> cosEsing.  (82)

In order to obtain the Poincaré sections, we set the energy
as E = Ey = 0.35 while the rest of the data is chosen as
01(0) = 0 and p¢(0) = 0. Given this initial data, we generate
a random data set for pg, (0) by choosing £(0) € [0, 1] such
that the constraints (B2) are satisfied. We also set the values
of the winding numbers in (62) as oy = fo = yr = m = 1.

+0uh.

T 2(32 + App)

(32 + App)?
(78)

The general solution to (77) may be obtained as

w(z) = \/a tanh (\/a (z + C3)) , (79)

where Cs is the integration constant. Note that, for small z the
solution (79) is indeed a polynomial of degree 1. Moreover,
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In our numerical analysis, the YB parameter is set to be,
@ = 0.01 and 0.8. As in the previous cases, the Poincaré sec-
tions (Fig. 5) are obtained by plotting all the points those are

10 The detailed expressions of the poles at z; are not important in our
discussion. Hence we avoid writing their forms here.

11" We choose, 6, = po, = 0 as before.
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Fig. 5 Numerical plots of the Poincaré sections (Left column) and Lya-
punov exponents (Right column) for dipole deformed ABJM. Here we
set the energy of the string Eg = 0.35. The top plots are for © = 0.01
while the bottom plots are for © = 0.8. The Poincaré sections can

on the {§, p¢} plane which correspond to trajectories passing
through the 0; = 0 hyper-plane.

In order to calculate the Lyapunov exponent (1), we set
the initial conditions as 61(0) = 0, ps(0) = 0, §(0) = 0.1
and pg, (0) = 0.23 those are compatible with the Hamilto-
nian constraint (B2). The initial separation between the two
nearby trajectories is set to be AXy = 107 as before, which
eventually results in a zero value for the Lyapunov (Fig. 5)
for large ¢t. For YB parameter value u© = 0.8, the initial
data are set to be 61(0) = 0, p:(0) = 0, §(0) = 0.2 and
Pe, (0) = 0.22.

Clearly, the nicely foliated KAM tori trajectories in the
phase space along with the vanishing Lyapunov exponent
indicate non-chaotic dynamics of the superstring propagat-
ing in this deformed background. We further plot Poincaré
sections corresponding to two different energies (E = 0.55
and E = 1) of the string in Fig. 6. In these cases we observe
that the KAM tori trajectories are nicely foliated as well,
ruling out the chaotic behaviour of the string configuration.

be seen to be undistorted foliations of KAM tori in the phase space
and for large time ¢ the Lyapunov exponent decays to zero. These are
indications of the non-chaotic dynamics of the string configuration

3.4 Nonrelativistic ABJM

The gravity dual of nonrelativistic ABJM is obtained by con-
structing Abelian r-matrices using Cartan generators of both
AdSy as well as CP? subspaces.!? The corresponding line
element is given by [49]

1 dr?
ds? = 1 <—2r2dx+dx_ + r2dx? + o /\/lrzdx_%_)

2
cp3>

1
ds? py = dg% + i cos? £(dO? + sin? 0;d¢p?)

+ ds

1
+ sin® £(d63 + sin® 6,d¢3)

1 1 ?
+ (5 cosO1d¢g; — 3 cos Brdgy + dl//)

12 The r-matrix is written as
r= p_ A (L3 + oL 4 pu3Ms),
where p; are the YB deformation parameters and p+ = (po £p2) / V2

are the light-cone momenta corresponding to the light-cone coordinates

(86) [49].
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Fig. 6 Additional plots of the Poincaré sections for dipole deformed ABJM. On the left plot we set Eg = 1 and . = 0.5, and on the right plot we

set Eg = 0.55, u = 0.1

sin? & cos’ &, (83)
where

M= 2+ 7+ 17,

r
fi = ——=psinfycosé&,

22
r
= ——uzsinbrsin& |
f2 Zxﬁzue » sin§

fa LZ (2uz — 1 cosfy + ppcosbhy)siné cosé . (84)

W)

The corresponding B-field may be written as

1
B =— —rcos& (f1sinf; — fzcosbysin€)dxy Ndo;

V2

1
— —rsiné (fzcosfrcosé + forsinbr) dxi Ades

V2

+ %r sin(2€) fadxy Ndyr. (85)

The light-cone coordinates x4 appearing in (83) and (85)
are given by

_ L 0 2)
X+ 7 (x +x7). (86)

Notice that, in (83) u; (i = 1,2, 3) are the Yang—Baxter
(YB) deformation parameters of the theory. Also, the metric
(83) corresponds to a Schrodinger space-time with dynamical
critical exponent 2. In the following analytical and numerical
analyses, we choose the AdS4 coordinates as xo = ¢, 7 = 1
and x; =constant.

We now work with the winding string ansatz of the form

Xy = x+(t), 01 291(7)’ 02 292(7:)7 E :%‘(‘L’),
1 = a0, b2 = aq0 Y =a¢0, X_=nT.
(87)
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Here o3, a4, ag and n; are the winding numbers of the
string.

Using (87), the Lagrangian in the Polyakov action (1) can
be written as

[ M
Lp = ——|:—)'C_2,_

. 1/. .
1 —52 - —(012 cos? & +922 sin2§>

4
+ Tl cos® & (sin” 0 + sin® £ cos? ;)

2
+ % sin’ 5( sin” 6 + cos> & cos’ 62)

+sin2 £ cos? £ (W + ¢l cos By — Ly cos s

1 e
— §¢>1¢2 cos 61 cos 02)

/
- ﬂfmr cos&(fisinf) — f3sin& cos ;)

V2

- &)&Jr sin&(f2sin6; + f3 cos & cos )%

V2

l’///
+ ﬁ)&.{.fﬁ sin 25
1 . 1/. .
[%xi . 7 (012 cos’ & + 03 sin® E)

(88a)

2
062

+ TZ cos® £(sin” 01 + sin® £ cos” ;)
062

+ 74 sin? E(sin2 0, + cos” & cos? 62)

+ sin? & cos? & <a§ + a0 cos B — g cOS B

1
— Eoezom, cos 6] cos 92):|

- 25@ cos&(fisinf; — f3sin& cos ;)

V2

— ﬂfq_ sin S(fz sin9, + f3 cosé& cos 92)

V2
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o6 . .
+ =%k, fysin2&. (88b)

V2

Notice that, even with the ansatz (87), there exists a non-
trivial contribution of the B-field in the dynamics of the string
unlike the previous cases in Sects. 3.1, 3.2 and 3.3.

3.4.1 Analytical results

We first use (88b) to compute the eom corresponding to the
coordinate x. The result can be written as

d
M—xy+ X+

& (/\/t 4B.j) = 0,

(89)

where By (+ = x4, j = ¢1, 92, ¥) are the components of
the B field in (85) which also appear in the Lagrangian (88b).

We can get rid of the first term in the LHS of (89) by
choosing

xp =61, (90)

We can always set & = 1 without loss of any generality.
Equation (90) shows that x is indeed the world-sheet time.
However, the vanishing of the second term in the LHS of (89)
results in the following constraint equation:

g[wg sin2 6, — 2 sin® ) sin 2&
+ (2u3 — 1 cos By + up cos 92)2 cos 25]
+ él [u% sin 20, coszé + 1 sin 61 (2u3
— 1 cosby + ppcosby)sin 25]
+6, [M% sin 26, sin’ &
— w2 sin6y (23 — 1 cos By + p cosBy) sin 2&] = 0.

oD

Next we again use (88b) to derive the eoms correspond-
ing to the 61, 6> and & coordinates. The results are formally
written as
0=8cos& 6 — 16sin& £6; — sinzécos’g‘ sin 61

(16leol6 — 8oy cos B + 8uiaq cos 6

— (p1 + 8a2) (=213 + g cos 0 — up cos )
+ 8(—2ar06 + aparg COS 92))

+cos§‘sm2€1(8ulag+4a2 cos $+,u /2)
0 = 8siné& 6, + 16cos& £6,

(92a)

+ siné& cos® &sin 6, (16,u2a6

— 8ur0i4 cos Oy + 8uoan cos b1
— (12 + 8ag) 23 —

— 8(—2a406 — ap0t4 COS 91))

1 cosb) + ppcosbr)

+ sin £ sin 20, Bpoas + dog sin® £ + p3/2),  (92b)
0=& +sin2£(67 — 63) + Tx (92¢)
where
Te =223 — pu1 cos 01 + o cos )

2 2
+ 2u3 — 1 cosfy + wy cos 92)/32) sin 4&

g [0%)
X <—l————cos€1+700562

+ 2sin4& (aé — 0406 COS Oy
1
— E cos 01 (—2ar g + apag cOS 92))

—i—sté{ (ozz cos? 0 cos® £ — aj cos® 6, sin S)

2

— R(u% sin? ) — 75 sin’ 6)

— (p1aa sin 6 — poay sin® 6r)
o2
— 72 ( sin® 01 + sin® & cos? 91)

2
+ % ( sin? 65 + cos? & cos? 92) } . (93)

2

Using (88a) we next calculate the momenta conjugate to
the isometry coordinates as

EEEI—ZMX_F,
Po = 2P 0, (O = (d1h0, ¥} 94)
q)i—aq')i— s = 192, .

Using (14) and (89) it is easy to check that the correspond-
ing charges (J) are conserved:

E =0 (on-shell), 0:Pp, =0. (95)

We may now compute the energy—momentum tensors
using the definition (4). It is easy to check that'?

8‘[T‘L"[ = R,
0 Tzo =0,

(96)
CD)

13 Notice that, in order to avoid clutter in the resulting expressions —
which are rather large — from here on we set ] = py = w3 = W
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where

R = %[—coszgsinél 91{4M+2(M —4) cos 0

(16+64)(1—cos2E)+2(u+8) cos 01 + 2(u + 8) cos By cos 2&)

.. 1 .
0:4g+§sin25912+9;, (100b)

where

(3 + cos 6 cot? &) sin &

%1:

ZSinE((u 1 8)(cos20; — 1) +2c0os 26(—3 + cos01) (8 — 3 + (1 + 8) cos 25)) sin” 01 (3 — cos 61)? cos 2€

(101)

T = %(—3 + cos fp) sin4& + cos? 6 sin & cos® &+ 2u<2 + (=3 +cos 91)) cos B sin& cos® &

’u_z _ 2 3¢ _ ) . _l 2y .2 .
+ 8( 34cos0;)”+1)cos’Esing — psin” O; sin 2§ 8cosé (8 + ”) sin“ Oy sin &

+ sin’ 5(8 +9u® — 2(—8 + 24 + 3u>) cos O + (8 + 161 + u?) cos? 91)} .

(102)

— 4pcos2E — (4— ,u)(cos(@l —28) + cos(B; + 2§)
— cos(6y — 28) — cos(6 + 25))}

+sin2 £ éz[ —4(=2p + (1 — 4) cos by

405 6y) cos? £ sin By — 2 sin 20y (—4 + ju sin> g)}
— sin& cos& é{z(u — 4)(cos 20, — cos 265)

+ 4(—2 + cos @] — cos 92)( —2(u+4)

+ (1 — 4)(cos 6 — cos 92)) Cos 2§ }] . (98)

However, the Virasoro consistency conditions d; Ty, = 0
require us to set R = 0 in (98). Using this latter requirement
and (91) we may now solve for & algebraically and substitute
the resulting solution into the eoms (92a) and (92b) corre-
sponding to #; and 6>, respectively. The resulting eoms are
obvious and we avoid writing them here. Moreover, if we
choose the 6, invariant plane in the phase space described as

6~0, Tlg:=6,~0, (99)

then we observe that the resulting 6> eom (92b) (after £ sub-

stitution) is satisfied trivially. The other two & substituted
eoms (92a) and (92c) then reduce to

0 = 8cos& 6 + 8sin2¢ sin 6 9]2 o,
2
+ cos & sin 204 (8/1, + 4cos2$ + 7)
—cosé sin? & sin 26, (8,u(cos 01 +2)+8(1—p)

+ 10(=3 + cos 1) (1 + 8)) , (100a)
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In the next step, we make the following choice of the 6;
invariant plane in the phase space:
61 ~0, Ty =6, ~0, (103)
which clearly satisfies (100a). Subsequently, the & eom
(100b) can be written in the form

£+ Anrsin4é =0, (104)
where

8 — 16 + pu?
ANg = % . (105)

Now from (91) and (98) we notice that, for the successive
choices of the invariant planes in the phase space, namely (99)
and (103), £ = 0. Moreover, this solution must be consistent
with (104). Since 0 < & < 7, the possible solutions of (104)
can be expressed as

ni

§=T, 0<n<4,neZ. (106)

We now consider infinitesimal fluctuations (861 ~ n)
around the 6; invariant plane. The resulting NVE can then
be written as

1 - -
5 — §<2sin2§(4 — 1) —8cos?E — 16u — ;ﬂ)n ~ 0,
(107)
where £ is given by (106). Also notice that, in writing the

above NVE (107), we have neglected the second term in the
R.H.S of (100a) since this term is O(1%).
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Next, with the given solutions (106), (107) can easily be
solved. The solutions can formally be written as

n(r) = Cjcos (\/ Co ‘L’) + C; sin (\/Co 7:) , (108)
where
s> +16pu+8), forn=0
1,,2
7 (u”+8u), forn =1
Co=11 s (109)
gBu +16pn —38), forn =2
%(MQ—I-SM), forn =3,

and C; and C; are constants of integration.
Clearly, these solutions (108) are Liouvillian which reflect
the underlying non-chaotic dynamics of the string.

3.4.2 Numerical results

We now check the integrability of the string configuration
numerically using the methodology discussed in Appendix B.

Using the embedding (87) together with oy = o4 = g =
n1 = 1, the resulting Hamilton’s equations can be computed
asl4

(110a)
(110b)

6 = 4 pg, seczé ,
£ =pe,
1
128

+ 211 cos? € sin 6y (i1 cos 0 cos” & + (w2 + 2u3)

Do, = < — 16 cos® &sin(20;)

sin” £) + 4sin(26;) sin”(2€) +N3> , (110¢)

1
~ 128
+ 2(ua — i cos ) (u2 + 4us — g cosb;)
X cos’ &sin& +32cosé sin3§

+ 32cos? 6; cos & sin’ & —2cosé siné(u% sin” 6;

De < — 32cos’ Esing — 32 cos? 9 cos® Esin&

+ (u2 — 111 €08 01) (142 + 443 — 11 cos 6y sin &)

+ NG — 512pj, sec” & tan & + 23 sin(4g)> , (110d)

where the detailed expressions for the functions N3 and Ny
are given in Appendix D.

As in our previous cases, we set 6 = py, = 0 throughout
the rest of the analysis. The Poincaré sections, plotted in the
left column of Fig. 7, are obtained by setting £ = Eg =
0.3 (The plots corresponding to other values of the energy

14 In order to perform the numerical analysis, we choose to work with
the original coordinates and set xop = 7(7) and x, = n;7, with n; = 1.

E = 0.95, E = 0.55 are shown in Fig. 8). We as well
set the following values of the YB deformation parameters:
ur = w2 = p3 = 0.01, 0.8. On top of that, the initial
conditions are chosen as 61(0) = 0.1 and ps(0) = 0. The
random data set for pg, (0) is then generated by choosing
£(0) € [0, 1]. The Poincaré section is obtained by collecting
the data set {&, ps} every time the orbits pass through the
01 = 0 hyper-plane.

In order to calculate the Lyapunov exponent (1), plot-
ted in the right column in Fig. 7), the corresponding initial
conditions are chosen as {61 (0) = 0.1,£(0) = 0.1, p£(0) =
0, pg, (0) = 0.159} such that the Hamiltonian constraints (3),
(B2) are satisfied. The initial separation between the orbits
as defined in (B1) is fixed at AXg = 107 as before. This
finally yield a zero Lyapunov exponent at large time, like
in the previous three examples. This shows a non-chaotic
motion for the dynamical phase space under consideration.
For YB parameter value 0.8, the initial conditions are set to be
{61(0) = 0.1,£(0) = 0.256, p£(0) = 0, py, (0) = 0.093}.
Thus we find consistency between the analytical and the
numerical analyses and the string indeed undergoes non-
chaotic dynamics.

4 Final remarks and future directions

We confirm the non-chaotic dynamics for a class of Yang—
Baxter (YB) deformed AdS; x CP? (super) string sigma
models. The deformed backgrounds that we considered in
our analysis are in fact dual to various deformations of the
ABJM model [52] at strong coupling [48-51,56]. These
backgrounds are generated through the Yang—Baxter (YB)
deformations: there exist classical r-matrices that satisfy
classical YB equation [35,36].

Interestingly, the YB deformed backgrounds can be gen-
erated by a TsT transformation [56] on AdS; x CP?
background with real deformation parameters. Our analysis
reveals the absence of non-integrability for the given string
embedding, which is consistent with the aforementioned fact
as well as the analysis done by authors in [33] for the real
B-deformation of A'=4 SYM. On the other hand, one loses
integrability for the complex deformation parameter [34].

The primary motivation for our study stemmed from the
absence of any systematic analysis of the integrable struc-
tures of these class of deformed backgrounds. This is in stark
contrast to the undeformed AdS; x CP? case where both
analytical and numerical confirmations of the integrability
of string sigma models have been established [27-29].

In our investigation, we have used both analytical as well
as numerical methods. For our analytical computations, we
have used the famed Kovacic’s algorithm [4-6,18] which
checks the Liouvillian (non-)integrability of linear homo-
geneous second order ordinary differential equations of the
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Pg

Fig. 7 Numerical plots of the Poincaré sections (Left column) and Lya-
punov exponents (Right column) for non-relativistic ABJM. Here we
set the energy of the string Eo = 0.3. The top plots are for u; = pup =
n3 = 0.01 while the bottom plots are for ;1 = o = uz = 0.8. The
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Poincaré sections are undistorted foliations of KAM tori in the phase
space and for large time ¢ the Lyapunov exponent decays to zero. These
are indications of the non-chaotic dynamics of the string configuration

o
sl

@;;\ f
)

Fig. 8 Additional plots of the Poincaré sections for non-relativistic ABJM. On the left plot we set Eg = 0.95 and it = o = 3 = 0.55, and on

the right plot we set Eg = 0.55, 1 = o = u3z = 0.1

form (A1) via a set of necessary but not sufficient criteria.
In our analysis, we have been able to recast the dynamical
equations of motion of the propagating string in the form of
(A1) and checked the fulfilment of the criteria put forward
by the algorithm. This established the non-chaotic dynamics
of the string in the corresponding deformed backgrounds.
Our analytical results have been substantiated by numeri-
cal analysis where we estimated various chaos indicators of
the theory, namely, the Poincaré section and the Lyapunov

@ Springer

exponent. In our computations, using the standard Hamil-
tonian formulation [1-19], we explicitly checked that the
shapes of the KAM tori never get distorted as we increase the
YB deformation parameters in all the four cases. At this point,
we must mention that the nice foliations of the Poincaré sec-
tions that we observed in Figs. 1, 3, 5 and 7 do not necessarily
guarantee that the system is non-chaotic for the entire range
of values of the parameters in the theories — string energy
(E) and various Yang—Baxter deformation parameters — as
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was observed earlier, e.g., in [8,15]. In order to establish our
claim, we take additional set of values of the above mentioned
parameters and find that our reults are indeed consistent. The
corresponding plots are given in Figs. 2, 4, 6 and 8. Also,
the Lyapunov exponent decays to zero with time. These two
results allow us to conclude that the phase space of the prop-
agating string does not show any chaotic behaviour, thereby
establishing consistency with our analytical results. Never-
theless, our analyses do not prove integrability following the
traditional Lax pair formulation; rather, it disproves non-
integrable structure for certain physical stringy configura-
tions.

The (semi)classical strings, those probe these YB deformed
backgrounds, are dual to a class of single trace operators in
some sub-sector(s) of these deformed ABJM models. Our
analysis, therefore points towards an underlying integrable
structure associated with these deformed ABJM models. A
systematic analysis of the Lax pairs would further strengthen
this claim.

From the perspective of the deformed ABJMs, a similar
investigation on the dilatation operators should shed further
light on an integrable structure associated with the dual quan-
tum field theory. This would be an interesting future direction
to look for which would eventually take us into a new class
of Gauge/String dualities those are associated with an under-
lying integrable structure.
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Appendix A: The Kovacic’s algorithm

The Kovacic’s algorithm is a systematic method to deter-
mine whether a second-order linear homogeneous differen-
tial equation of the form

n"(2) + M(2)n'(2) + N(@)n(z) =0, (AD)
where M (z), N (z) are polynomial coefficients, are integrable
in the Liouvillian sense. This implies the existence of the
solutions of (A1) in the form of algebraic functions, trigono-
metric functions and exponentials.

We here discuss only the necessary details regarding the
formalism as the detailed mathematical analysis is rather
involved. One wishes to find the relation among M (z), M'(z)
and N (z) that makes the DE (Al) integrable. In order to
achieve this, we start from the change in variable of the form

n(2) = exp [/dz<w(z) - MZ(Z)>].

Equation (A2) permits us to express (A1) in the following
form:

(A2)

2M'(2) + M2(z) — 4N (2)
4

w (@) +w(z) = V() = . (A3)

Now the group of symmetry transformations, G, of the
solutions of the DE (A1) is a subgroup of SL(2,C): G C
SL(2, C). The following four cases are of interest [6,18]:

(1) The subgroup is generated by

g=<z 1%), a.beC.

In this case w(z) is a rational function of degree 1.
(ii) The subgroup is generated by

c 0 0 ¢
gz(om)’ gz(—l/cO)’ cet.

In this case w(z) is a rational function of degree 2.
(iii) G is a finite group, excluding the above two possibili-
ties. In this case w(z) is a rational function of degree
either 4, 6, or 12.
(iv) The group G is SL(2, C). If the solution w(z) at all
exists, they non-Liouvillian.
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There exists a set of three necessary but not sufficient
conditions for the rational polynomial function V(z) which
are compatible with the above group theoretic analysis. These
can be enumerated as follows [4,5]:

Cd.(i)) V(2) has pole of order 1, or 2n (n € Z™). Also, the
order of V(z) at infinity'3 is either 2n or greater than
2.
Cd.(i1) V(z) either has pole of order 2, or poles of order 2n+ 1
greater than 2.
Cd.(iii) V(z) has poles not greater than 2 and the order of V(z)
at infinity is at least 2.

If any one of these criteria is satisfied, we are eligible to
apply the Kovacic’s algorithm to the DE (A1). We then need
to determine whether w(z) is a polynomial function of degree
1,2,4,6,or 12 in which case (A1) turns out to be integrable.
On the contrary, if none of the above criteria is satisfied,
the solution to (A1) is non-Liouvillian and ensures the non-
integrability of the DE (Al).

Appendix B: Numerical methodology

In the present work, we focus on two chaos indicators namely,
the Poincaré section and the Lyapunov exponent [1-3]. For
the familiarity of the reader, below we briefly elaborate on
them and outline basic steps to calculate these entities in a
holographic set up.

The signatures of integrability or non-integrability can be
differentiated by looking into the phase space dynamics of
the system. Integrable systems do not exhibit chaos and the
trajectories are (quasi)periodic at equilibrium points. Non-
integrable systems, on the other hand, are associated with
the phase space that could be mixed showing (quasi)periodic
orbits for some initial conditions and chaotic for others.

For a 2N dimensional integrable phase space, there are
N conserved charges Q;, those define an N dimensional
hypersurface in the phase space known as the KAM tori.
For such systems, the phase space trajectory flows are com-
plete and they appear with a nicely foliated picture of the
phase space. Different initial conditions give rise to different
sets of trajectories in the phase space those are in the form of
the tori. In numerical investigations, Poincaré sections!© (see
left panels of Figs. 1, 3, 5, 7) are essentially the footprints of
such foliations in the phase space [2]. As the strength of the

15 Here we define the order at infinity of a polynomial as the difference
between the highest power of its argument in the denominator and that
in the numerator. This convention is different from that used in [18]
where the difference is replaced by subtraction.

16 1t is a lower dimensional slicing hypersurface of an N dimensional
foliated KAM tori.
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non-integrable deformation increases, most of these tori get
destroyed and one essentially runs away from the foliation
picture. This results into a chaotic motion and Poincaré sec-
tions loose its structure, eventually becoming like a random
distribution of points in the phase space.

Lyapunov exponents (see right panels of Figs. 1, 3, 5, 7),
on the other hand, are the signature trademarks of a chaotic
motion. They encode the sensitivity of the phase space tra-
jectories on the initial conditions and are defined as'? [1-3]

AX(Xo, 1)

EAX(X0.0) (B)

1
A= 1lim 1lim -1Io
t—>00 AXg—0 t

where, AX is the infinitesimal separation between two tra-
jectories in the phase space. For integrable trajectories, those
pertaining to a particular KAM tori, the corresponding A
approaches zero at late times. On the other hand, it exhibits
a nonzero value for chaotic orbits.

To calculate the above entities in a string theory set up, one
has to start with the 2D string sigma model description in (1).
Given the conjugate momenta (2) and the Hamiltonian (3),
we study the corresponding Hamilton’s equations of motion
(for a given string embedding) those are subjected to the
Virasoro (or the Hamiltonian) constraints of the form [1]

HZTUQO,
Tro =

or ~0. (B2)

The above constraints (B2) are always satisfied during
the time evolution of the system. The initial data that satisfy
(B2) are used to find solutions to the Hamilton’s equations
of motion corresponding to different backgrounds those are
listed above. These solutions are what we call the phase space
data those are finally used to explore the chaos indicators
mentioned above.

Appendix C: Expressions for the coefficients in (11)

Tg(ll) = —40[% (a% sin? 01 cos® &+ cos? 01 sin® 2“;‘/4)

— 4sin? £ cos” & (a% cos® 6 + aj cos®

+ dapag cos 01 — 2apa4 cos 01 cos B — dagog cOS 92>

— sin? 01 sin® 6 sin* 2&
17 For a 2N dimensional phase space, there are in principle 2N Lya-
punov exponents satisfying the constraint, leiv 1 Ai = 0. In this paper,

however, we compute the largest positive Lyapunov among all these
possible ones.
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x ()7120‘% + 220471 2 + PR + 200671 73
A 82D 22
+ 204061273 + V3 a6) — dog sin” 2§ . (CD)
T,% = a}(4cos? & — sin® 26 + p{ sin” 6y sin* 2¢) sin 26y
+ (@472 + oz6)?3)2 sin 26; sin? 6, x
sin? 28 + 20 [a4 (sin 61 cos 6> sin? 2&
+ Y172 sin 26, sin” 6, sin* 2€) + ag sin® 2¢
X (=25in 6] + 175 sin 26, sin? 6, sin> 25)] . (€2)
T9(21) = —40[% cos2 & ( cos2 01 sin? &
+sin?0; (1 + 4)712 cos? & sin* & sin? 02)) + 8anay
cos? & sin? &(cos B cosby — Y1y sin? 0; sin? 6 sin® 28)
— 4052 sin? & ( cos? 6, cos? &
+sin? 6, (1 + 49, sin” 0; sin’ & cos” 5))
— 8arag sin? & cos> E(Z cosb1 + 7173 sinZ
) .2 2
sin“ 6, sin 2’;‘) + 8agag sin” & cos” £(2 cos br
— 7 sin? 6 sin’ 6 sin’ 2€)
— af sin? 26(4 + P sin® 0y sin® 65 sin? 2£) . (C3)
2 A N
T, = —(Pfa3 + 271 psaaes
+ P2a2) sin® 6; sin 26, sin® 26 — 20 sin® 2 sin 6,
X (cos 01 + 2917 sin 2¢ sin® 6; cos 92>
— 4o sin 26, sin* (1 + 477 sin” 6 cos* £)

— 2a4a6 sin” 26(2 sin 65 + P> 73 sin” 6) sin 26, sin” 2§) .
(C4)

' A R R .
TE( ) —<y]2a% + 2717200004 + )/22012 + V32°‘§

+ 271730006 + 2)92)930!4066> sin® 01 sin® 6, sin? 28
— 404% sin® 0 cos? & — 40& sin’ 0, sin® €
+ sin? 25( — 4a% — oz% cos? 0 — cxf cos? 6

+ 20p04 cOS 61 cos B — dapag cos B + dagog cos 92> .
(C5)

T;z) = —2(0{% (32)912 sin’ & cos® & cos 2¢ sin” 6; sin” 6,
— 25sin? 01 sin 2 + cos? 01 sin 45)
+ 20 sin 4& [a4 ( — cos 01 cos Oy
+ 2917, sin” 0; sin” 6, sin” 2%’)

+ 20 ( cosf1 + 7173 sin® 0; sin? 65 sin® 2&)]

+ 2sin2& [ai ( cos? 6, cos 2& + sin? 0

x (1+ 292 sin® 2€ cos 2 sin® 4y ))

— dagog cos 2 < costh — s sin® 6 sin’ 6 sin’ 25)
+ 202 c0s 26 (2 + P2 sin® ) sin? 6 sin zgr)]) . (C6)

Appendix D: Detailed expressions of A3 and AV in (110c),
(110d)

The expression for A3 in (110c) is given by

M Mo My M Ms

Ny = M Ms |
TTD T ep: ' 2p Dy D2

(D)

where

M = cos4f§sin01 ( — 8\/§+2M2 + 43

+2p1 cos O + g cos(0) — 26)
+8v2 cos(2&) — 2up cos(2E) — 4z cos(2€)

+ w1 cos(6 + 2%'))
X (/,L% sin? 6y + (w2 + 213 — g cos6p)? sin® 5) ,
_ 2 2.2 2
Dy = 164 cos 5[#1 sin 91+(u2—2u1(u2+2u3)c0501
2 .2 -2 -2
+ ey cos 91) sin é} + p3(p2 + pu3) sin”(2§),

Mo =1 csct & ((2(//4 + 2,u3) sin 0 + uy cot? & sin(291))

x (256 + 4y} cos? & sin? 6
+ (m2 +2u3 — picos )

(= 8V2+ 12 + 213 — i cos ) Sinz(zg))2> ’

D, = (/Lz + 213 — |41 COS (91)2 coszé
+ 16 cs02$ + M% cotzé sin” 6y ,

M3 = [ 0052§<—8«/§+2u2+4u3

+ 2401 cos Oy + 1 cos() — 2&) + 8+/2 cos(2€)
— 212 c08(28) — 4z cos(28)

+ 1 cos(6) + 25)) sin 01 (128E

+2uf cos® £ (sin” 0y + cos® 0 sin® &)
—%@ﬁ—m—mmm+mg

+2p1 (= 42 + po +2u3) cos 6) sin2(2§)> ,
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M= cos’§ (M cos” & sin(201)+2(2+243) sin 0 sin” 5) X (64E + cos? S(M% sin® 01 + (u2 — 1 cos 01) (12
X (128E + 43 — pi cos0y) sin® &) + u3 sin® (2€)
+ 2% cos? £( sin% 0 + cos? 6 sin® £) - 2\6(“2 + 243 — 111 cos 1) Sin2(2€)>
- %((8‘/5 - M2 = 2#3)(#2 +2u3) X (Z(Mz — [L] COS 91)
+2u1( = 4v2 + 2 + 2u3) cos 6 sin2(2§)> , % (12 + 4p3 — 11 cos 0y ) cos’ & sin&

—2cosé& siné(u% sin® 0; + (uz — JL1 COS 91)
Ms = g cos’ & (ua + 213 + py cos by cot £) s ,
x (u2 +4pz — g cos0y) sin” &) + 23 sin(4$)> ,
X (u% cotzz‘} — 21 (2 + 2u3) cot B csc Oy
) Moy = (64E + cos? é(u% sin2 0, + (2 — w1 cos6y)
+ (/Lz + 2,u3) csc? 6y + u% csc? S) sin 01 5 s
X (w2 +4us — p1 cos 6y ) sin® ) + p5 sin®(2§)

2 2 2 .2, 2 2
X (4,u1cos § + pycot” 0y sin”(28) —2\6(#24-2#3 — picoso) sin2(2§')>

+ 2701 (4v/2 — po — 243) cot By esc 6 sin? (2€)
x (2 — 1 cos@
+ csc? 01 (256 E ( (12 = pu1 cos 1)

) X (2 + 43 — w1 cos 6 cos3$sin.§
— (8v2 = 2 — 2p13) (2 +2u3)sm2(25))> : a4 ) )
—2cos&sin&(uysin® 0 + (u2 — w1 cos ;)
D3 = plcot’ & + (m2 +2u3 — g cos 91)2 cos? & csc? 6,

X (u2 +4us — 1 cos 6;) sin® €) + 23 sin(4$)> ,
+ 16.csc? 01 csc? E.
Mip= (2 cos? ’;‘(,u% sin® 6 +(m2+2u3—pm cos 91)2 sin? S))
The expression for N in (110d) is given by

X (2(u2 — JL1 COS 91)(,uz + 43 — pq cos 91) 00535

2 . . .
N4:%+&+Ai;_&;_m M“’ sms—ZCos%'smS(,u%smzel+(M2—M100501)
D2 D D Dy D b x (12 + 43 — i cos6y) sin” §)
D2) 2 3 1 cos 6
+ 2013 sin(4€) — 42 (12 + 23 — 1 cos 61) sin<4s>> :
where
My = (64E + cos? & (uf sin® 6 + (u2 — py cos by)
) . 2 2
Mg = 165sin” 0, sm(2$)(u2 + 23 — (1 cos 91) csc & « (m 4 4ps — uy cos 91) sin? 5) +M§ sin?(2£)
X ((“2 +2u3 — 1 cos01)(— 8v2 + o — 2\6(#2 +2u3 — py cosby) sin2(2$)>

+2u3 — iy cos ) cos® £ + 64E csc? £ 3
x (2(@2 — picos) (2 +4u3 — py cos ) cos” &

+ [L% c0t2$ sin? 01) sin’ 2¢),
x sin€ —2cosé& sing(u% sin? 6 + (2 — picosoy)
My = (M% sin20) + (112 + 213 — 1 cos6y)” sin’ g) sin(2€) x (U2 + 43 — i cos 6y) sin® ) + 2043 sin(4&)

—4v2 + 2pu3 — g cos6r) sin(4 )
X (128E + 243 cos® £ (sin? 61 + cos® 0 sin® £) (122 + 205 = 4 1) sin4)

1
- 5((8\5 — 2 = 2u3) (12 + 2u3)

+2um(— 42+ oy + 23) cos 6;) sinz(zg)) ,
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