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Abstract We cure the perturbative instability of the total-
inclusive-photoproduction cross sections of vector S-wave
quarkonia observed at high photon-proton-collision ener-
gies (

√
sγ p) in Next-to-Leading Order (NLO) Collinear-

Factorisation (CF) computations. This is achieved using
High-Energy Factorisation (HEF) in the Doubly-Logarithmic
Approximation (DLA), which is a subset of the
Leading-Logarithmic Approximation (LLA) of HEF which
resums higher-order QCD corrections proportional to
αn
s lnn−1(ŝ/M2) in the Regge limit ŝ � M2 with M2 being

the quarkonium mass and ŝ is the squared partonic-center-
of-mass energy. Such a DLA is strictly consistent with the
NLO and NNLO DGLAP evolutions of the parton distri-
bution functions. By improving the treatment of the large-ŝ
asymptotics of the CF coefficient function, the resummation
cures the unphysical results of the NLO CF calculation. The
matching is directly performed in ŝ space using the Inverse-
Error Weighting matching procedure which avoids any possi-
ble double counting. The obtained cross sections are in good
agreement with data. In addition, the scale-variation uncer-
tainty of the matched result is significantly reduced compared
to the LO results. Our calculations also yield closed-form
analytic limits for ŝ � M2 of the NLO partonic CF and
numerical limits for contributions to those at NNLO scaling
like α2

s ln(ŝ/M2).

1 Introduction

Historically the motivation for the study of the inclusive pro-
duction of quarkonia in hadron-hadron and lepton-hadron
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collisions was to gain novel information on the structure of
hadrons, see e.g. [1,2]. Much experimental and theoretical
effort has thus been devoted to it. We guide the reader to
reviews [3–8] from which one quickly realises that, unfor-
tunately, the leading mechanisms of inclusive-quarkonium-
production reactions generally remain unclear with several
models of the non-perturbative hadronisation of quarkonia
being used within the community.

To achieve a better understanding of the non-perturbative
dynamics of quarkonium production – whatever the moti-
vation behind – it is crucial to ensure some reliability of
the perturbative part. Whereas one understands now that
the quarkonium-transverse-momentum (pT ) distributions
receive large radiative corrections which need to be properly
dealt with,1 it has been rediscovered a few years ago that pT -
integrated cross sections – referred to here as “total” cross
sections – are plagued by perturbative instabilities [18–20].2

These were identified and cured within a strict NLO
Collinear Factorisation (CF) set up by two of us in the case
of pseudoscalar-quarkonium hadroproduction [20] and (S-
wave) vector-quarkonium photoproduction [23], which is
the focus of the present paper. The observed negative and
unphysical cross sections as well as the associated large
observed factorisation-scale, μF , dependence for both pro-
cesses at high energies were attributed to the subtraction of
the collinear divergences into the Parton Distribution Func-
tions (PDFs) in the MS scheme. In the latter scheme, we could
identify an over-subtraction of these divergences which then
yield negative partonic cross sections in regions where they
ought to be positive in NLO computations. To cure this prob-

1 This is due to the more favourable pT scaling of a class of real-
emission contributions [9–17].
2 This was initially noted in [21,22] and then simply forgotten.
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lem, we proposed [20] a new scale prescription, dubbed as
μ̂F , amounting to considering that NLO QCD radiative cor-
rections in the partonic high-energy limit (ŝ → ∞) should be
accounted for by the – positive definite3 – PDFs, as we reca-
pitulate in Sect. 2. In doing so, the resulting hadronic cross
sections then became positive and, in the photoproduction
case, relatively close to the data.

Having understood the origin of this instability, we won-
dered whether a theoretical setup going beyond the NLO
of CF such as High-Energy Factorisation (HEF) [26–29],
resumming the higher-order corrections to the CF coefficient
function which are enhanced by ln(ŝ/M2) at ŝ � M2, could
address the problem in a more general manner. We thus per-
formed a first study [30] of the simpler case of pseudoscalar-
quarkonium hadroproduction where the quarkonium is pro-
duced in a 2 → 1 partonic process at LO in αs .

HEF allows one to sum the series of higher-order cor-
rections to the CF coefficient function proportional to
αn
s lnn−1(ŝ/M2)which, in the context of the present study, we

refer to as the Leading-Logarithmic Approximation (LLA).
Since the resummation of high-energy logarithms affects
both the DGLAP evolution of the PDFs [31–33] and the
CF coefficient function, we have appropriately truncated the
LLA resummation in the CF coefficient function down to
the Doubly-Logarithmic Approximation (DLA), as described
in Ref. [30]. Doing so, one can use the standard fixed-order
PDFs consistently with the resummed CF coefficient func-
tions.

On the other hand, the HEF formalism is valid only up
to M2/ŝ-power-suppressed corrections. As such, it cannot
provide a good approximation to the CF coefficient func-
tion where M2 is not negligible with respect to ŝ. To avoid
this shortcoming, we use a matching procedure to smoothly
interpolate between the ŝ � M2 asymptotics obtained from
HEF and the NLO CF coefficient function at ŝ � M2.
In Ref. [30], we have proposed a version of the Inverse-
Error-Weighting (InEW) matching prescription, first intro-
duced in Ref. [34], which uses our perturbative knowledge
to assess the weight-determination procedure of InEW. As
a result, we have obtained perturbatively-stable predictions
for the pseudoscalar-quarkonium hadroproduction cross sec-
tions with a scale-dependence reduced in comparison to LO
CF predictions.

We emphasise that, like it has been observed for the case
of open-heavy-flavour production [35] as well as for the case
of ηc hadroproduction [30], both CF and HEF give similar
contributions to the matched cross section at realistic colli-
sion energies. This finding does not contradict the fact that

3 As we discussed in [20], we believe that NLO gluon PDFs at low
scales should be positive for quarkonium phenomenology to be well
behaved in line with [24]. However, see [25] for arguments in favour of
the possibility for negative PDFs.

existing kT -factorisation calculations for J/ψ photoproduc-
tion [36–38] agree well with the pT -differential data. All
existing phenomenological approaches to compute uninte-
grated PDFs used in such kT -factorisation studies, such as
the Kimber–Martin–Ryskin–Watt approach [39,40], Catani–
Ciafaloni–Fiorani–Marchesini evolution [41–43] or the Par-
ton Branching method [44] do not correspond to strict HEF
but rather to some form of smooth interpolation between
CF (DGLAP) and HEF (BFKL) evolutions. We consider
our matching approach to be more systematic than these
approaches because the ambiguity of the matching between
CF and HEF in our case is clearly exposed and can be quan-
tified. Also the matching approach has certain advantages
for going beyond LLA, which are the subject of our future
studies.

While the case of pseudoscalar-quarkonium hadropro-
duction might be considered as academical owing to the
obvious challenge to measure such a pT -integrated cross
section, experimental data exist for J/ψ photoproduction
[45–47] and further studies could be performed. Let us
cite data from AMBER [48] at CERN, those at the future
EIC, even for ϒ [23], and those at the LHC in ultra-
peripheral collisions up to TeV photon-proton collision ener-
gies [49,50]. In principle, inclusive J/ψ photoproduction
is an interesting source of information to constrain gluon
PDFs at low scale μF and low x . This is why we study
it here using HEF matched to CF to properly account for
the entire energy region among possible future measure-
ments.

The structure of the manuscript is as follows. In Sect. 2,
we review the computation of the total cross section of an S-
wave vector-quarkonium photoproduction in CF. In Sect. 3,
we explain how the HEF formalism is applied to this process
and present the cross checks we have performed. In Sect. 4,
the InEW matching procedure is described. Phenomenolog-
ical predictions for J/ψ and ϒ(1S) photoproduction and a
discussion of theoretical uncertainties are then presented in
the same section. Section 5 gathers our conclusion and an out-
look on other quarkonium-production processes. Appendix
A presents the technical details of the computation of the
pT -integrated HEF coefficient function used in the present
study and Appendix B provides the details of the computa-
tion and results for the ŝ � M2 asymptotics of NLO and
of α2

s ln(ŝ/M2) NNLO terms of the CF coefficient func-
tion.

2 S-wave-vector-quarkonium photoproduction:
collinear factorisation

As announced, our focus will be on the process of inclusive
photoproduction of a vector S-wave-quarkonium state, which
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we will denote Q:

γ (q) + p(P) → Q(p) + X, (1)

with the quarkonium mass M and p2 = M2 while q2 =
P2 = 0.

Assuming factorisation of the quarkonium-hadronisation
process from the initial-state proton and its remnants, one
can write down the CF formula for the total, pT -integrated,
cross section of the process of Eq. (1):

σ(
√
sγ p, M, zmax) =

ηmax∫

0

dη

η

dσ

d ln η
, (2)

with

dσ

d ln η

=
∑

i=g,q,q̄

dLi (η,
√
sγ p, M, μF )

d ln η
σ̂γ i (η, zmax, μF , μR),

(3)

where σ̂γ i is the CF partonic coefficient function for the par-
tonic channel γ (q) + i(p1) → Q(p) + X . Note that we
have chosen the dimensionless distance from the partonic
threshold,

η = ŝ − M2

M2 , (4)

as our convolution variable in Eq. (3). As usual, ŝ = (p1+q)2

is the squared center-of-mass energy in the partonic subpro-
cess. We also have that ηmax = (sγ p − M2)/M2 in Eq. (3).
The partonic luminosity factor in Eq. (3) is defined as:

dLi (η,
√
sγ p, M, μF )

d ln η
= M2η

sγ p
fi

(
M2

sγ p
(1 + η), μF

)
, (5)

where fi (x, μF ) is the (number density) CF PDF for a parton
of flavour i = g, q, q̄ in the proton, whose factorisation-
scale, μF , dependence is governed by the DGLAP evolution
equations.

Typically, in experimental measurements of J/ψ photo-
production, one places a cut on the elasticity kinematical
variable:

z = P · p
P · q , (6)

which represents the fraction of the large light-cone compo-
nent of the photon momentum carried away by the vector
meson. In the proton rest frame, it equivalently corresponds
to the vector-meson energy divided by the photon energy.
Indeed, one usually wishes to exclude from the inclusive data
the large-z region where exclusive production takes place and
one imposes z < zmax < 1. The presence of this cut is indi-
cated as dependence on zmax in Eq. (3) and below.

In the present paper, we will use the Colour-Singlet (CS)-
dominance approximation4 of the Non-Relativistic QCD
(NRQCD) factorisation hypothesis [51], where the CF coef-
ficient function for the quarkonium production is given by
the product of the CF coefficient function for the production
of a heavy quark–antiquark pair QQ̄ in the CS state with a
total spin S = 1 and a relative orbital momentum L = 0 and
the Long-Distance Matrix Element (LDME) describing the
hadronisation of the QQ̄ pair to the observable quarkonium
state. At LO in αs , only one partonic subprocess contributes
to the coefficient function:

γ (q) + g(p1) → QQ̄
[

3S[1]
1

]
(p) + g(k), (7)

while, at NLO in αs , besides the virtual contributions via
the interference of the one-loop and Born amplitudes of the
subprocess Eq. (7), the following real-emission subprocesses
also contribute:

γ (q) + g(p1) → QQ̄
[

3S[1]
1

]
(p) + g(k1) + g(k2), (8)

γ (q) + g(p1) → QQ̄
[

3S[1]
1

]
(p) + q(k1) + q̄(k2), (9)

γ (q) + q(p1) → QQ̄
[

3S[1]
1

]
(p) + q(k1) + g(k2). (10)

These NLO contributions have been computed for the first
time by Krämer in 1995 [52] and we have successfully repro-
duced [23] these results using the FDC code [12,53] based
on the phase-space slicing method [54] as well as by our
in-house implementation of the NLO calculation, based on
the dipole-subtraction method [55]. The partonic coefficient
function, which includes the process of Eq. (7) at LO and the
processes of Eqs. (8–10) as well as the one-loop correction
at NLO can be conveniently expressed as follows:

σ̂
(CF)
γ g (η, μF , μR, zmax)

= FLO

{
c0(η, zmax) + αs(μR)

2π

[
β0(nl )c0(η, zmax) ln

μ2
R

μ2
F

+ c(γ g)1 (η, zmax, nl ) + c̄(γ g)1 (η, zmax) ln
M2

μ2
F

]}
, (11)

σ̂
(CF)
γ q (η, μF , μR, zmax)

= FLO
αs(μR)

2π

[
c(γ q)

1 (η, zmax) + c̄(γ q)
1 (η, zmax) ln

M2

μ2
F

]
,

(12)

where

FLO = 16αα2
s (μR)e2

Q

9M2

〈O
[

3S[1]
1

]
〉

M3 ,

4 We stress that, in the present case, it amounts to simply consider
NRQCD at leading order in v2, Colour-Octet (CO) contributions being
parametrically NNLO in v2.
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Fig. 1 a Plots of the LO (c0, thick solid blue line, multiplied by 30
for visibility) and NLO (c(γ g)

1 , solid red line; c(γ q)
1 , solid magenta line;

c̄(γ g)
1 , dash-dotted red line; c̄(γ q)

1 , dash-dotted magenta line. Note that
the quark SFs are multiplied by CA/CF ) scaling functions entering

Eqs. (11) and (12) as functions of η. For the plot, we have set nl = 3
for the coefficient function c(γ g)

1 . b Plots of the gluon luminosity factor
Eq. (5) for M = μF = 3 GeV as a function of η for several values of√
sγ p using the MSTW 2008 NLO PDF central set [56] for illustration

with 〈O
[

3S[1]
1

]
〉 being NRQCD LDME [51] describing the

transition of the CS QQ̄
[

3S[1]
1

]
state to the observable

quarkonium state Q and eQ the electric charge of the heavy
quark in units of positron charge. At LO in v2, the CS
LDME is proportional to the squared potential-model radial
wave function, |R(0)|2, evaluated at the origin in the position

space: 〈O
[

3S[1]
1

]
〉 = 2CA(2J +1)|R(0)|2/(4π) with J = 1

being the total spin of the produced hadron, nl is the number
of quark flavours q lighter than the considered heavy-quark
Q. The dimensionless scaling functions (SFs) c0(η, zmax),
c1(η, zmax, nl) and c̄1(η, zmax) in Eq. (11) and Eq. (12) only
depend on the partonic energy variable η defined in Eq. (4)
and the kinematical cut on the variable z (Eq. (6)). In addi-
tion, the SF c(γ g)

1 depends on the number of light flavours nl
due to the qq̄ splitting in Eq. (9). Our definition of these SFs
differs from the original definition of Krämer [52] as well as
one of Ref. [23] by the usage of a different expansion param-
eter αs/(2π), rather than 4παs which has been used in Refs.
[23,52], as well as by the choice of the μF -dependent loga-
rithm ln(M2/μ2

F ) and the sign convention for c̄1. We stress

that when summed together they yield the very same σ̂
(CF)
γ i .

The partonic-energy dependence of the SFs defined above
is illustrated in Fig. 1a. The SF c0 is decreasing as 1/η2,
while all the NLO SFs tend to constant values in the high-
energy limit. The asymptotic value of the SF c(γ g)

1 (η, zmax =
0.9) turns out to be approximately −6.978 and that of
c̄(γ g)

1 (η, zmax = 0.9) is 24.76. In addition, the asymptotic
values of the SFs of the γ q channel are related to those in
the γ g channel via Casimir scaling, as shown in Fig. 1a.

With increasing collision energies,
√
sγ p, the partonic

luminosity factor, Eq. (5), evaluated at μF ∼ M ∼ 3 GeV,
no longer suppresses contributions of large values of η to
the integral Eq. (3) (see the Fig. 1b). Given the constant
behaviour of the NLO corrections to σ̂i at large η, the region
where η � 1 increasingly contributes to the cross section
at high

√
sγ p � M . This leads [23] to large negative NLO

corrections to the inclusive photoproduction cross section of
J/ψ since the asymptotic value of c(γ i)

1 is negative and to
a catastrophically strong μF dependence at

√
sγ p � M .

This signals the instability of the perturbative expansion of
this observable due to missing large higher-order corrections
at η � 1. All these features are clearly visible in the plot
in the Fig. 2a. Large negative NLO corrections are present
even in the case of bottomonium production (Fig. 2b). The
scale-variation band in Fig. 2 and all the other total-cross-
section plots below are obtained through the 5-point scale-
variation procedure, i.e. as an envelope of the cross sec-
tion curves with μF = μ0 · 2ζ1 and μR = μ0 · 2ζ2 taking
(ζ1, ζ2) ∈ {(0, 0), (0,±1), (±1, 0)}, where μ0 is the central-
scale choice, e.g. μ0 = M in Fig. 2. To obtain the numerical

value of the 〈O
[

3S[1]
1

]
〉 LDME we use the same values of

|R(0)|2 as used in the study [23]: 1.25 GeV3 for J/ψ and
7.5 GeV3 for ϒ(1S). The estimates of feed-down production
from excited states are also included in our plots using the
same method as in Ref. [23].

As a matter of fact, similar perturbative instabilities of
pT -integrated cross sections at high collision energies have
been observed in the 1990s in heavy-quarkonium physics as
soon as first NLO computations appeared [21,22] and then
were essentially forgotten. Their existence was restated in
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Fig. 2 Total inclusive photoproduction cross sections of J/ψ (a) and
ϒ(1S) (b) in CF at LO and NLO in αs and in NRQCD at LO in
v2 (CSM). The solid curves correspond to the default scale choice,
μF = μR = M , while the shaded bands correspond to the 5-point μF

and μR variation prescription described in the text. The dashed curve
corresponds to the NLO computation with μF = μ̂F and μR = M .
The experimental data in the left plot are taken from the H1 [45], FTPS
[46] and NA14 [47] collaborations

2010 [18] and discussed in some details in full NRQCD in
2015 for ηc and J/ψ [57]. Only in 2020, were a first con-
vincing diagnosis and a first solution with CF proposed for
ηc hadroproduction [20]. The case of J/ψ photoproduction
was then discussed in 2021 [23].

The solution proposed in Refs. [20,23] to cure these insta-
bilities is based on the fact that the partonic high-energy
limits of the scaling functions for all partonic channels are
related by Casimir scaling (see the Fig. 1a). As such, a unique
factorisation-scale choice for all channels can make all scal-
ing functions tend to zero at large η and thence remove the
large NLO corrections coming from the η � 1 region. It acts
as if they were effectively absorbed into the PDF evolution.
Considering Eqs. (11) and (12) at η → ∞, one finds such an
optimal-scale value for the photoproduction case:

μ̂F = M exp

[
c(γ q/g)

1 (η → ∞, zmax)

2c̄(γ q/g)
1 (η → ∞, zmax)

]
, (13)

which evaluates to μ̂F 
 0.869M for zmax = 0.9. Predic-
tions corresponding to this scale choice are plotted in Fig. 2
as well as in Fig. 5 with dashed lines.

The μ̂F prescription of Eq. (13) legitimately exploits the
factorisation-scale ambiguity of the fixed-order CF calcula-
tion. One could therefore explore the question of whether the
DGLAP evolution of the PDFs alone could correctly capture
the high-energy structure of higher-order QCD corrections
to the partonic cross section. In other words, if one reex-
presses the NLO calculation, done with PDFs at the scale
μF = μ̂F , in terms of PDFs at a different scale μF = M ,
will the higher-order corrections (NNLO and beyond) arising
from the perturbative expansion of the DGLAP evolution of

PDFs between the scales μ̂F and M reproduce the higher-
order corrections to σ̂i (η � 1, μF = M, μR, zmax) to be
obtained in an actual Nk>1LO computation of this object?
Unfortunately, the answer to this question is negative even in
the LLA, i.e. when only considering in σ̂i terms which are
proportional to αn

s lnn−1(1 +η) at η � 1. Indeed, the coeffi-
cients in front of these terms can not be correctly reproduced
by the DGLAP evolution alone. Instead, a more complicated
formalism like HEF is required to calculate and resum those
terms.

3 High-energy factorisation for S-wave-vector-
quarkonium photoproduction

3.1 Basic factorisation formula and coefficient functions of
HEF

In the resummation part of our calculation, we are going to
consider the general Nk≥1LO partonic subprocess:

γ (q) + g/q(p1) → QQ̄
[

3S[1]
1

]
(p) + X, (14)

with q2 = 0 and |qT | = 0 yielding to the following Sudakov
components5 of the photon momentum moving in the nega-
tive z direction such that q+ = 0 and q− > 0. Moreover, the

5 We define our Sudakov decomposition in terms of the dimension-
less vectors nμ

− = Pμ/P+ = (1, 0, 0, 1)μ and nμ
+ = (1, 0, 0,−1)μ,

where the components are given in the γ p center-of-mass frame, such
that n2± = 0, n+n− = 2. For any four-momentum kμ = (k+nμ

− +
k−nμ

+)/2 + kμ
T with n± · kT = 0, k± = n± · k and k2 = k+k− − k2

T .
The upper/lower position of indices ± does not have any meaning.
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Fig. 3 Typical Feynman diagram and Multi-Regge kinematics of emis-
sions in the CF coefficient function of the process Eq. (14) correspond-
ing to the partonic high-energy (η � 1) limit in the LLA. The dashed
line in the t channel represents a Reggeised gluon and the solid circles
represent Lipatov’s vertices, while the open circle corresponds to the
“off-shell” subprocess of Eq. (15)

momentum of the incoming collinear parton pμ
1 = x1Pμ is

such that |p1T | = 0, p−
1 = 0 and p+

1 = x1P+.
In the LLA at η � 1, the process Eq. (14) is factorised

into two stages, as depicted diagrammatically in Fig. 3.
First, the k+-ordered cascade of real emissions carries away
all but a tiny fraction of the initial p+

1 momentum, ξ . At
η � 1, ξ will be of order 1/η. This sequence of emis-
sions leads to the appearance of large logarithms scaling
like ln 1/ξ at each order in αs and is described in the HEF
formalism by the resummation factor Cgg(ξ,q2

T 1, μ
2
F , μ2

R)

or Cgq(ξ,q2
T 1, μ

2
F , μ2

R), depending on whether the emission
with largest k+ in the cascade was a gluon or a quark. We
stress that, in the LLA at leading power in O(1/η), all other
emissions should be of gluons. In the second stage, the QQ̄
pair is produced via the fusion of a Reggeised gluon (R+),
moving in the proton direction and carrying the four momen-
tum qμ

1 = ξ x1Pμ + qμ
T 1 and of the photon:

γ (q) + R+(q1) → QQ̄
[

3S[1]
1

]
(p) + g(k), (15)

where the final-state gluon is necessary by virtue of colour
and charge-parity conservation [58]. The corresponding HEF
coefficient function can be calculated using the following
prescription:

H(s̄, t̄, ū,qT 1 · pT ,q2
T 1)

= (q+
1 )2

4q2
T 1

nμ
−nν−Mμν = qμ

T 1q
ν
T 1

q2
T 1

Mμν, (16)

where the tensor Mμν is the squared QCD amplitude of the
process Eq. (7):

1. summed over the polarisations of the photon, quarkonium
and final-state gluon, but not contracted with respect to the
polarisation indices of the initial-state gluon in both the
amplitude and its complex conjugate

2. with the momentum of the initial on-shell gluon p1 simply
replaced by that of the off-shell Reggeised gluon, namely
q1.

3. accordingly, the Mandelstam variables for the subprocess
Eq. (15) are defined as s̄ = (q + q1)

2, t̄ = (q1 − p)2,
ū = (q − p)2.

The two equalities in Eq. (16) hold due to the Ward-
Takahashi-like6 identities qμ

1 Mμν = 0 and qν
1Mμν = 0

which are satisfied by the tensor Mμν of the process Eq. (7)
even with q2

1 < 0. The first equality in Eq. (16) uses the
simplest coupling between a Reggeised gluon and a “QCD”
gluon from the infinite tower of such couplings existing in
Lipatov’s EFT for multi-Regge processes in QCD [59]. The
second equality is referred to as the Gribov’s trick and shows
that a smooth q2

T 1 → 0 limit of Eq. (16) should exist.
All what is needed to perform LLA computations is the

coefficient function H at LO in αs for the process Eq. (15)
first derived in 2004 [36]. In our calculation, we will use a
more compact expression [37]:

H(s̄, t̄, ū,qT 1 · pT ,q2
T 1) = π3αα2

s e
2
Q

〈O[3S[1]
1 ]〉

M3
2048M2

27(M2 − s̄)2(M2 − ū)2(q2
T1 + M2 − t̄)2

×
[
(q2

T 1)4M2 + M2(s̄2 + s̄ū + ū2 − M2(s̄ + ū)
)2

+ (q2
T 1)3(M2(5s̄ + 3ū) − 7M4 − s̄ū)

+ (q2
T 1)2(s̄ū(ū − s̄) + M4(3ū − 11s̄)

+ M2(7s̄2 + 2s̄ū − 3ū2)) + q2
T 1s̄(s̄ū

2 + M4(ū − 6s̄)

+ M2(4s̄2 + s̄ū − ū2)) − 2(qT 1 · pT )((q2
T1)3M2

+ (q2
T 1)2(−7M4 − s̄ū + M2(3s̄ + 4ū))

+ q2
T 1(M4(−7s̄ + 2ū) − s̄2ū + M2(2s̄2 + s̄ū − 2ū2))

− M2(2M4(s̄ + ū) − 2M2ū(3s̄ + 2ū)

+ ū(3s̄2 + 4s̄ū + 2ū2))) − 2M2 (qT1 · pT )2

q2
T 1

((q2
T1)3

+ M2 s̄2 + (q2
T1)2(M2 + 2s̄)

+ q2
T 1(2M2 s̄ + s̄2 − 2t̄2))

]
,

(17)

where eQ is the electric charge of the heavy quark in units of
the positron charge. The HEF coefficient function satisfies
the following on-shell-limit property:

2π∫

0

dφ

2π
lim

q2
T 1→0

H(s̄, t̄, ū,qT 1 · pT ,q2
T 1) = (−gμν)

2
Mμν,

(18)

where φ is the azimuthal angle of qT 1 relative to pT , which
remains on the l.h.s. even after taking the limit q2

T 1 → 0. On

6 As opposed to Slavnov-Taylor identities usually applicable in non-
Abelian theories like QCD.
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the r.h.s. of Eq. (18), the usual on-shell kinematics (q2
1 = 0)

for the tensor Mμν of the process Eq. (7) is to be used as
q2
T 1 → 0.

As mentioned before, HEF allows one to resum a class of
logarithmically-enhanced QCD corrections to CF. As such,
the HEF partonic coefficient function can be used as a CF
partonic coefficient function and convoluted with usual PDFs
but this should in principle only be done in the region where
the high-energy leading-power approximation and the LLA
are applicable, i.e. η → ∞. The general HEF formula for
the CF partonic coefficient function for the process Eq. (14)
has the form [26–29]:

dσ̂
(HEF)
γ i

d� f
=

1∫

ξmin

dξ

ξ

∫
d2qT 1

π
Cgi (ξ,q2

T 1, μ
2
F , μ2

R)

×H(s̄, t̄, ū, (qT 1 · pT ),q2
T 1)

2M2ξ(1 + η)

δ(4)(q + q1 − p − k), (19)

where ξmin = 1/z/(1 + η), so that z ≥ 1/(1 + η). d� f is
the usual Lorentz-invariant phase-space volume element for
the final-state particles with momenta p and k. Integrating
out the momentum-conserving δ functions, one can derive
the following master formula for the z and pT -differential
partonic cross section:

dσ̂
(HEF,ln 1/ξ)
γ i

dzd2pT
= 1

2M2

∫
d2qT 1

π

1∫

ξmin

dξ

ξ
Cgi

(
ξ, q2

T1, μ
2
F , μ2

R

)

×dH(
ξ(1 + η), z, qT 1,pT

)
dzd2pT

, (20)

where

dH(y, z, qT 1,pT )

dzd2pT
= H(s̄, t̄, ū, (qT1 · pT ),q2

T 1)

2(2π)2yz

×δ

(
(1 − z)

(
M2y − M2 + p2

T

z

)
− (qT 1 − pT )2

)
, (21)

where y = ξ(1 + η) and the Mandelstam variables can be
expressed in terms of y, z, q2

T 1 and p2
T as:

s̄ = M2y − q2
T 1,

t̄ = −1

z

[
M2(yz − 1) − p2

T

]
,

ū = −1

z

[
M2(1 − z) + p2

T

]
.

(22)

Due to the remaining δ function in Eq. (21), one has the
identity:

qT 1 · pT
= 1

2z

[
p2
T + zq2

T 1 − M2(zξ(1 + η) − 1)(1 − z)
]
, (23)

which, together with Eq. (22), allows one to remove all
explicit scalar products of the transverse momenta from

Eq. (17) and express these purely as functions of p2
T , q2

T 1, η,
z and ξ .

To compute the HEF contribution to the total pT -
integrated-quarkonium-photoproduction cross section, one
simply has to integrate Eq. (20) and thus only Eq. (21) over
pT as it appears nowhere else. It turns out that the integration
over pT can be carried out in a closed analytic form at fixed z,
which is very useful for numerical calculations. We explain
the integration technique and give the corresponding analytic
result for the pT -integrated function Eq. (21) in Appendix A.

3.2 Strict LLA in ln(1 + η)

The resummation of ln(1/ξ) large logarithms to all orders in
αs in Eq. (20) is provided by the resummation functions Cgi
which, in the LLA in ln(1/ξ), have the following expansions
in powers of αs ln 1

ξ
:

Cgi (ξ,q2
T , μ2

F , μ2
R) =

∞∑
n=0

[
αs(μR) ln

1

ξ

]n
C(n)
gi (q2

T , μ2
F ).

(24)

Substituting this expansion into Eq. (20) and making the
change of integration variable ξ = y/(1 + η), one obtains:

dσ̂
(HEF,ln 1/ξ)
γ i

dzd2pT

= 1

2M2

∫
d2qT 1

π

∞∑
n=0

C(n)
gi

(
q2
T 1, μ

2
F

) 1+η∫

1/z

dy

y

× [αs(μR) (ln(1 + η) − ln y)]n
dH(

y, z,qT 1,pT
)

dzd2pT

= 1

2M2

∫
d2qT 1

π

∞∑
n=0

C(n)
gi

(
q2
T 1, μ

2
F

)

× [αs(μR) ln(1 + η)]n
1+η∫

1/z

dy

y

dH(
y, z,qT 1,pT

)
dzd2pT

−(n + 1)
αs(μR)

2M2

∫
d2qT 1

π

×
∞∑
n=0

C(n+1)
gi

(
q2
T 1, μ

2
F

)
[αs(μR) ln(1 + η)]n

×
1+η∫

1/z

dy

y
ln y

dH(
y, z,qT 1,pT

)
dzd2pT

+ . . . , (25)

where additional terms arising from the expansion of
(ln(1 + η) − ln y)n are denoted by the ellipsis.

If the function H decreases like a power law at large y ∼
(1 + η), which is true for the case at hand, then the integrals
over y converge and therefore only the first term in Eq. (25)
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is an expansion in [αs ln(1 + η)]n . In other words, it belongs
to the LLA in terms of ln(1+η), while other terms are further
αs-suppressed as they contribute to Nk>1LA with respect to
ln(1 + η). Summing the series Eq. (24) only for this first
term and extending the integration in y up to infinity, which
amounts to only adding power-suppressed corrections in η,
one obtains the following resummation formula in the strict
LLA in ln(1 + η):

dσ̂
(HEF,ln(1+η))
γ i

dzd2pT
= 1

2M2

∫
d2qT 1

π
Cgi

(
1

1 + η
, q2

T 1, μ2
F , μ2

R

)

×
∞∫

1/z

dy

y

dH(
y, z, qT 1, pT

)
dzd2pT

. (26)

In this approximation, there is no longitudinal integration
connecting the resummation part with the HEF coefficient
function (“projectile impact-factor” in the BFKL terminol-
ogy), which illustrates the connection of our formalism with
small-x resummation provided by the CGC/dipole-model
framework. The possibility to upgrade the latter framework
by restoring the above mentioned longitudinal-momentum
integral has been recently discussed [60]. We also note that
the development of the formalism to perform the NLL com-
putations in the original HEF framework [26–29] of Eq. (20)
was recently significantly advanced [61,62] with a clarifica-
tion of the mechanism of the cancellation of the divergences
at NLL. In Sect. 4.2, we will compare the numerical results
of the ln(1/ξ) and ln(1+η) LLA formalisms matched to the
NLO CF computation and will assess the phenomenological
relevance of the differences between them for the total cross
section of inclusive quarkonium photoproduction.

3.3 Resummation functions in the DLA

In the framework of CF at leading twist, there are two kinds
of large perturbative corrections which enter the cross sec-
tions at large

√
sγ p. First, there are the corrections enhanced

by logarithms of 1 + η and which we have discussed in
Sect. 3.1 and 3.2. These lead to the perturbative instability
of the quarkonium-production cross section. A second type
of large logarithms enters the DGLAP evolution of PDFs
as corrections enhanced by ln 1/z (z being the parton light-
cone momentum fraction) to the DGLAP splitting functions
[29,63–65] which are functions of z. Most of the existing fits
of collinear PDFs do not take into account these corrections
to the DGLAP splitting functions to all orders in αs because
the evolution of these PDFs is governed by the fixed-order
NLO or NNLO DGLAP splitting functions. The resumma-
tion of ln(1/z)-enhanced corrections in the PDF evolution
has proven to be a complicated task, requiring a non-trivial
matching of the BFKL to the DGLAP series [65,66] which
only relatively recently has led to significant improvements
in the quality of PDF fits [67,68].

In the case of pT -integrated quarkonium-production cross
sections, the perturbative instability of the cross section sets
in at relatively modest collision energies, see e.g. Fig. 2. The
fixed-order PDF evolution is still valid at these values of
x . The PDF uncertainties are thus relatively small and the
usage of high-energy improved PDFs [67] does not resolve
the instability of NLO cross section [23]. Instead, the cor-
rections leading to the perturbative instability come from the
high-energy behaviour of the coefficient function. Our goal
is thus to take them into account consistently with the fixed-
order NLO and NNLO PDF evolutions.

As we recently discussed [30], in order to achieve the goal
stated in the previous paragraph, one cannot use the full LLA
of HEF. Instead, one shall use the resummation functions Cgg
and Cgq of the HEF formalism in the DLA, which resums
terms scaling like

(
αs ln(1/x) ln(μ2

F/q2
T )

)n
to all orders in

perturbation theory via the Blümlein-Collins-Ellis formula
[69]:

C(DL)
gg (x,q2

T , μ2
F , μ2

R) = α̂s

q2
T

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

J0

(
2

√
α̂s ln

( 1
x

)
ln

(
μ2
F

q2
T

))
if q2

T < μ2
F ,

I0

(
2

√
α̂s ln

( 1
x

)
ln

(
q2
T

μ2
F

))
if q2

T > μ2
F ,

(27)

where α̂s = αs(μR)CA/π , and J0 (I0) are the Bessel func-
tions of the first (second) kind.7 Any corrections in the LLA
beyond this approximation will be inconsistent either with the
μF dependence or with the factorisation scheme on which
most of the existing NLO and NNLO PDFs are based, except
the specific PDFs coming from Refs. [67,68].

For the case of quark-induced channel, the resummation
factor in the LLA (and DLA) has to be modified as:

Cgq(x,q2
T , μ2

F , μ2
R)

= CF

CA

[
Cgg(x,q2

T , μ2
F , μ2

R) − δ(1 − x)δ(q2
T )

]
, (28)

which corresponds to the leading in k+ gluon emission8 being
replaced by the quark one, while in the t-channel only gluons
still propagate in the leading power (eikonal) approximation
with respect to x .

The DLA resummation factors Eqs. (27) and (28) have
the following remarkable properties:

μ2
F∫

0

dq2
T C(DL)

gg (x,q2
T , μ2

F , μ2
R) = δ(1 − x), (29)

7 Despite an apparent non-smoothness at q2
T = μ2

F , both functions
actually have the same series expansion in α̂s ln μ2

F/q2
T , which is con-

vergent for all q2
T .

8 Which is described by the “target impact factor” in BFKL formalism.
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μ2
F∫

0

dq2
T C(DL)

gq (x,q2
T , μ2

F , μ2
R) = 0, (30)

which can be most easily proven using their Mellin-space
representations. We will often rely on these properties in the
calculations below.

3.4 Numerical implementation of HEF and cross checks

To implement numerically the resummation formulae
Eqs. (20) and (26), we have to deal with the strong oscillatory
behaviour of the resummation function Eq. (27) at q2

T → 0.
Fortunately, the convergence properties of the integrals to be
computed can be significantly improved using the properties
of Eqs. (29) and (30). To this end, we add and then sub-
tract the small-qT limit of the HEF coefficient function H
multiplied by θ(μ2

F − q2
T 1) in Eq. (20) to get:

dσ̂
(HEF,ln 1/ξ)
γ i

dzd2pT
= 1

2M2

1∫

ξmin

dξ

ξ
δigδ(ξ − 1)

×
2π∫

0

dφ

2π

dH(ξ(1 + η), z,q2
T 1 = 0)

dzd2pT

+dσ̌
(HEF, ln 1/ξ)
γ i

dzd2pT
, (31)

dσ̌
(HEF, ln 1/ξ)
γ i

dzd2pT
= 1

2M2

1∫

ξmin

dξ

ξ

∫
d2qT 1

π
C(DL)
gi (ξ,q2

T 1, μ
2
F , μ2

R)

×
[
dH(ξ(1 + η), z,q2

T 1)

dzd2pT

−dH(ξ(1 + η), z,q2
T 1 = 0)

dzd2pT
θ(μ2

F − q2
T 1)

]
. (32)

The first integral over ξ in Eq. (31) is trivially removed due
to the δ function and this term reproduces the known LO CF
result, with the LO coefficient function equal to

c0(η, zmax) = 1

2M2FLO(1 + η)
zmax∫

0

dz
dH(1 + η, z,q2

T 1 = 0)

dz
. (33)

Due to the on-shell-limit property of the HEF coefficient
function of Eq. (18), Eq. (33) exactly reproduces the well-
known LO CF scaling function c0 [52].

The expression in square brackets in the LO-subtracted
HEF result, Eq. (32), tends to zero when q2

T 1 → 0. As such,
it damps the rapid oscillations of the resummation function,
Eq. (27), and facilitates the numerical evaluation of the inte-
gral Eq. (32).

The same procedure should be performed also with the
LLA ln(1 + η) resummation formula Eq. (26), yielding the

result:

dσ̂
(HEF,ln(1+η))
γ i

dzd2pT
= δigδ(η)

2M2

2π∫

0

dφ

2π

×
∞∫

1/z

dy

y

dH(
y, z,q2

T 1 = 0,pT
)

dzd2pT
+ dσ̌

(HEF,ln(1+η))
γ i

dzd2pT
,(34)

where

dσ̌
(HEF, ln(1+η))
γ i

dzd2pT
= 1

2M2

∫
d2qT 1

π

×C(DL)
gi

(
1

1 + η
, q2

T 1, μ2
F , μ2

R

) ∞∫

1/z

dy

y

[
dH(

y, z, qT 1,pT
)

dzd2pT

−dH(
y, z, q2

T 1 = 0, pT
)

dzd2pT
θ(μ2

F − q2
T 1)

]
. (35)

The first term in Eq. (34) is just a crude approximation
to the LO CF coefficient function, which corresponds to the
LLA ln(1 + η). It does not contribute at η � 1 and we
will discard it through the matching procedure described in
Sect. 4.1. The dσ̌

(HEF,ln(1+η))
γ i /dzd2pT in Eq. (35) is the LO-

subtracted HEF result for the strict ln(1 + η) resummation
which we will use in the matching procedure below.

Let us emphasise now an important cross check of the
resummation formalism that we have employed. The resum-
mation formulae Eq. (32) or Eq. (35), when expanded up
to O(αs), should reproduce the η � 1 asymptotics of the
NLO scaling functions in CF which we have already men-
tioned in Sect. 2. We were able to perform this expansion of
the scaling functions differential in z and p2

T within the HEF
formalism in an analytic form. We have found an excellent
agreement with numerical NLO CF results. This agreement
constitutes another non-trivial cross check of the HEF for-
malism at NLO, supplementing other such cross checks at
NLO for different processes [30,35,70,71] and at NNLO
[72–77]. Moreover, since the DLA for the resummation fac-
tors holds up to O(α3

s ), we were also able to numerically
compute the η � 1 asymptotics of the α2

s ln(1 + η) term in
the NNLO CF coefficient function for J/ψ inclusive photo-
production. We describe all these computations in detail in
Appendix B.

4 Matching HEF to NLO CF

4.1 Inverse-error-weighting matching

In order to combine the NLO CF estimate of σ̂γ i (η) – which
is the best source information we have on the behaviour of
this quantity for η not far from unity – to the corresponding
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HEF estimate at η � 1, we use the Inverse-Error-Weighting
(InEW) matching prescription. It has first been introduced in
Ref. [34] and later improved in our previous paper [30] where
we have provided a self-consistent scheme of estimation of
errors entering the InEW weights. The InEW matching is
based on a weighted sum of both CF and HEF partonic cross
sections such that

σ̂γ i (η) = w
(CF)
γ i (η) σ̂

(CF)
γ i (η) + w

(HEF)
γ i (η) σ̂

(HEF)
γ i (η), (36)

with the following prescription for the weight functions:

w
(CF)
γ i (η) =

(
�σ̂

(CF)
γ i (η)

)−2

(
�σ̂

(CF)
γ i (η)

)−2 +
(
�σ̂

(HEF)
γ i (η)

)−2 ,

w
(HEF)
γ i (η) = 1 − w

(CF)
γ i (η). (37)

Correspondingly, the local matching uncertainty in η fol-
lows from the matching procedure and reads:

�σ̂
(InEW)
γ i (η) =

[(
�σ̂

(CF)
γ i (η)

)−2 +
(
�σ̂

(HEF)
γ i (η)

)−2
]−1/2

.

(38)

Since the LL(ln 1/ξ ) resummation explicitly includes the
full η dependence of the LO CF contribution, as explained
in Eq. (31), taking into account that w

(CF)
γ i (η)+w

(HEF)
γ i (η) =

1, one finds that, for this resummation scheme, Eq. (36) is
equivalent to

σ̂γ i (η) = σ̂
(CF, LO)
γ i (η)

+
[
w

(CF)
γ i (η)σ̂

(CF, NLO)
γ i (η) + w

(HEF)
γ i (η)σ̌

(HEF)
γ i (η)

]
.

(39)

For the numerical computations below, we use the match-
ing formula Eq. (39) also in the case of the LL(ln(1 + η))
resummation. As explained by Eq. (34), for this resummation
scheme, the LO contribution in αs to the resummed coeffi-
cient function is different from the exact CF LO one and
therefore Eq. (39) is not strictly equivalent to Eq. (36). How-
ever, we have verified that, even in this case, the difference
of the matched cross sections produced by Eq. (39) relative
to Eq. (36) is below 3% because it arises from the power-
suppressed high-energy tail of σ̂

(CF, LO)
γ i (η).

An important motivation behind using InEW is to be able
to include, via the error estimates, �σ̂

(CF)
γ i and �σ̂

(HEF)
γ i , all

the available perturbative information on the effects missing
in each of the contributions in the corresponding limit [30].
Doing so, we aim to reduce as much as possible the arbitrari-
ness of the matching. The NLO CF contribution is obviously
missing any kind of NNLO corrections. At η � 1, the NNLO
corrections principally contain the high-energy logarithmic
term α2

s ln(1 + η) and contributions which are constant in η.
We estimate the first from our HEF resummed result and we
parameterise the second from the NLO CF result multiplied

by αs . We then combine our estimates of these higher-order
contributions in quadrature:

�σ̂
(CF)
γ i (η)

=
√(

α2
s (μR)C (LLA)

γ i (μF ) ln(1 + η)
)2 +

(
αs (μR)σ̂

(CF, NLO)
γ i (η)

)2
,

(40)

where the coefficient of the LLA term, C (LLA)
γ i , is obtained

from the expansion of the HEF resummed result Eq. (26) for
σ̂γ i up to NNLO:

C (LLA)
γ i (μF ) = FLO

(2π)2

[
c(γ i)

2 (∞, zmax)

+2CAc
(γ i)
1 (∞, zmax) ln

(
M2

μ2
F

)

+CAc̄
(γ i)
1 (∞, zmax) ln2

(
M2

μ2
F

)]
, (41)

where the asymptotic values of scaling functions c1, c2 and
c̄1 are computed numerically, using respectively Eq. (B.5),
Eq. (B.6) and Eq. (B.7) of Appendix B. We cannot compute
the coefficient that is constant at η � 1 of the NNLO cross
section so far as it belongs to NLL HEF. The second term
under the square root in Eq. (40) thus provides a generic
estimate of higher-order corrections to σ̂

(CF)
γ i which are non-

logarithmic in η. It is simply constructed from σ̂
(CF, NLO)
γ i ,

which is constant at η � 1, multiplied by αs as an estimate
of α2

s corrections.
On the other hand, our HEF calculation is done only in the

LLA. Corrections beyond LLA are thus missing. Let us also
stress that any HEF computation at any logarithmic accuracy
is accurate up to power corrections in η. It is therefore natural
to account for both uncertainties for the missing logarithms
and for the missing power corrections in η. Combining the
estimates of uncertainties from these two sources we get:

�σ̂
(HEF)
γ i (η)

=
√(

αs(μR)σ̂
(CF, NLO)
γ i (η)

)2 +
(
C (HEF)

γ i η
−α

(HEF)
γ i

)2

,

(42)

where the first term under the square root weighs roughly the
unknown NLLA corrections, whose perturbative expansion
starts from a constant O(α2

s ) term at η � 1, and the second
term stands for the power corrections in η missing in the HEF.
We compute the exponent α

(HEF)
γ i > 0 and the normalisation

factor C (HEF)
γ i numerically from the deviation of the known

NLO CF (O(αs)) coefficient function from its high-energy
limit: σ̂

(CF, NLO)
γ i (η) − σ̂

(CF, NLO)
γ i (∞).

The behaviour of the error estimates obtained as described
above together with the resulting InEW weight functions for
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Fig. 4 a (Top) matching uncertainties, �σ̂
(InEW)
γ i , (center) Error esti-

mates �σ̂
(CF)
γ i and �σ̂

(HEF)
γ i and (bottom) resulting InEW weights of

HEF contributions, w
(HEF)
γ i (η). b ln η integrand of the expression for

the total cross section, Eq. (3), with the LO CF, NLO CF, HEF and
matched approximations for σ̂γ i as well as the corresponding matching
uncertainty for two values of

√
sγ p , 500 GeV (top) and 20 GeV (bot-

tom). The plots for γ q channel are multiplied by a factor 8 for visibility

the HEF contributions is illustrated in the Fig. 4a. The transi-
tion between CF and HEF contributions happens around the
point where �σ̂

(CF)
γ i 
 �σ̂

(HEF)
γ i , which occurs at η 
 10

for the γ g channel which is dominant at high
√
sγ p and at

η 
 6 for the γ q channel. The bulk of the matching uncer-
tainty, Eq. (38), is concentrated in the neighbourhood of this
point as can be seen in Fig. 4a. The relative magnitude of
the CF and HEF contributions to the final result can be seen
in the Fig. 4b. For

√
sγ p < 1 TeV, the HEF contribution,

albeit being very significant, is still smaller than the CF one.
As a consequence, for all practically available energies, the
matching of HEF contributions to CF ones is necessary and
the HEF calculation alone cannot provide a reliable result.

4.2 Numerical results and theory uncertainties: the
dynamical scale choice

For the numerical computation of the cross sections, we have
used the multi-threaded version of the vegas Monte-Carlo
integration algorithm with cross checks using the suave
algorithm as implemented in the CUBA library [78]. The rel-
ative uncertainty of the integration for the total cross sections
is below 1%. To obtain the numerical results shown in this
section, we have used the CT18NLO PDF set [79] and the
corresponding value of αs(MZ ).

The numerical results for the total cross section of inclu-
sive J/ψ photoproduction as the function of the photon-
proton collision energy(

√
sγ p) are shown in the Fig. 5. We

first concentrate on the Fig. 5(a) where the results with the
default (conventional) scale choice, μF = μR = M , are
shown. The red hatched bands indicate the μR and μF scale
dependence about the central-scale result using the same 5-
point scale-variation prescription as in Fig. 2 in Sect. 2. The
key feature of the matched result in Fig. 5 is of course that
the scale-variation band does not have the pathological high-
energy behaviour of the fixed-order result shown in Fig. 2a.

We also plot in Fig. 5 a separate μF -variation band using a
green hatched band. The latter one shows that the μF depen-
dence of the matched cross section at high energy is dramat-
ically reduced in comparison to the μF dependence of the
LO result. This comes from the partial cancellation of the μF

dependence of the resummation factor of Eq. (27) and of the
PDF. The latter observation illustrates the consistency of the
DLA resummation scheme used for the present study with
PDF fixed-order evolution.

In Fig. 5, we also compare our HEF results, obtained with
the central μR and μF scale choices, for both the ln(1 + η)

(Eq. (35)) and the ln(1/ξ) (Eq. (32)) resummation matched
to NLO CF. The former is depicted by the solid red lines and
the latter by the dash-dotted red lines. As we have discussed
in Sect. 3.2, the result from the ln(1/ξ) resummation contains
some NLL contributions relative to the ln(1 + η) resumma-
tion. It appears that the difference between both results lies
well within the scale-variation band of the ln(1 + η) resum-
mation result (see the red hatched band of Fig. 5). This can be
seen as a hint that the NLL HEF corrections are under con-
trol in our matching approach. A stronger statement would
require matching a complete NLL HEF to (N)NLO CF com-
putations.

In Fig. 5, we also plot the matching uncertainty estimated
with the help of Eq. (38). It turns out to be comparable to
the residual μF uncertainty while being significantly larger
than the corresponding uncertainty estimated in our previous
study [30] of ηQ hadroproduction where it was found to be
negligible. This observation points at a stronger sensitivity
of the process at hands to the details of the matching proce-
dure due to the complicated non-monotonous shape of the
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Fig. 5 Total J/ψ-photoproduction cross section for z < 0.9 obtained
via the matching of our HEF-resummed results matched to NLO CF
ones using the default scale choice (a) and the dynamical scale choice

(b). The red solid line corresponds to the ln(1 + η) resummation and
the red dash-dotted line to the ln(1/ξ) resummation

functions involved (see the right panel of Fig. 4), which was
less of a problem in the computation for ηQ hadroproduction.
That being said, the matching uncertainty is still reasonably
small and the scale uncertainty remains the main source of
theoretical uncertainties. These are expected to be mitigated
only by increasing the perturbative accuracy of the compu-
tation.

The eye-catching drawback of the prediction in Fig. 5(a)
is the unphysically-looking dip in the red-hatched scale-
variation band for

√
sγ p between 20 and 100 GeV. This dip

arises from the large (negative) contribution of the loop cor-
rections to σ̂

(CF)
i j (η) at η 
 3 (Fig. 4b) whose μR depen-

dence is not compensated by the running of αs . This becomes
clearly problematic when μR < M as it was already dis-
cussed in [23]. In this region of relatively small η, the leading-
power approximation of HEF is certainly invalid and can not
be invoked to cure this issue. In addition, the region of large
η, where HEF is valid, does not sufficiently contribute such
that the η-integrated hadronic cross section obtained in our
matched computation be different enough from the NLO CF
result and thus be insensitive to this feature of the loop cor-
rection at moderate values of

√
sγ p. Perhaps, the inclusion of

threshold effects or high-energy resummation at subleading
power in η could solve this problem for μR < M which is
de facto used when varying the scale μR by a factor 2 about
the “conventional” choice M .

Yet, as discussed in [23], the natural scale for the reac-
tion which we discuss, whose Born contribution is a 2 → 2
scattering (Eq. (14)), is likely not M , even for pT -integrated
observables. It is rather the invariant mass of the partonic sys-
tem,

√
ŝ, as the quarkonium is never produced alone. Indeed,

in NRQCD, at least one non-soft gluon has to be emitted to
photoproduce a heavy-quark pair in the 3S[1]

1 state.
Therefore, it is natural to choose the average value of

√
ŝ

obtained from the LO CF subprocess, Eq. (7), for the central
values for the scales μR and μF . We find that our dynamical
scale ranges9 for the J/ψ case from 3 GeV at low energies
to 5 GeV for the highest hadronic energies(

√
sγ p) we will

consider and from 9.5 to 16 GeV respectively for the ϒ case.
With this dynamical-scale choice, μR values close to M/2

are not used at mid and large
√
sγ p. Consequently, the dip

in the scale-variation band simply disappears, see Fig. 5(b).
Let us stress that results with both central-scale choices, M
vs

√
ŝγ g , are compatible within the scale uncertainty. One

notable difference is indeed the disappearance of the dip, the
second is that the results of ln(1 + η) and ln(1/ξ) resum-
mations get closer to each other with the dynamical-scale
choice.

We recall that simply increasing the value of the scale in
the NLO CF computation does not help to solve the problem
of negative cross sections at high energy (Fig. 2). On the
contrary the values of the NLO CF cross section become
negative for μF > M . The scale choice μ̂F of Eq. (13), which
is optimal from the point of view of the NLO CF computation
[23], is smaller than M and leads to cross sections which lie at
the lower edge of the LO CF scale-uncertainty band. These
are clearly below our matching predictions even with the

9 The behaviour of
〈
ŝγ g

〉
as a function of

√
sγ p in the LO CF approxi-

mation of the CSM is well described by the following parametrisation:〈
ŝγ g

〉
(
√
sγ p) = M2 + (

κ1L + (
〈
ŝ
〉
∞ − M2)κ2L3

)
/(1 + κ2L3) with

L = ln
√
sγ p/M , and

〈
ŝ
〉
∞ = 25 GeV2, κ1 = 7 GeV2 and κ2 = 0.03

for M = 3 GeV while
〈
ŝ
〉
∞ = 250 GeV2, κ1 = 50 GeV2 and κ2 = 0.1

for M = 9.5 GeV.
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Fig. 6 Total inclusive photoproduction cross section of J/ψ (a) and ϒ(1S) (b) with z < 0.9 as a function of
√
sγ p in the DLA HEF(ln(1 + η))

matched to NLO CF with our dynamical-scale choice together with their scale variation (hatched band) and PDF uncertainties (solid bands)

corresponding scale uncertainty, see the dashed purple line
in both panels of Fig. 5(a) and (b).

Having discussed our parameter choices, we are now in
a position to present our final matched results. In Fig. 6,
we show our matched predictions with the dynamical-scale
choice for the total inclusive J/ψ (Fig. 6a) and ϒ(1S)

(Fig. 6b) photoproduction cross sections. We focus on the
DLA HEF ln(1 + η)-resummation computation matched to
NLO CF as described in Sect. 4.1 and use the dynamical-
scale prescription of Sect. 4.2. The scale-variation enve-
lope (see the red-hatched band) in Fig. 6 is computed with
the CT18NLO PDF set. We have also used the three PDF
sets which we used in our ηc-hadroproduction study [30],
MSHT20nlo_as118 [80],NNPDF31_nlo_as_0118 [81]
and NNPDF31sx_ nlonllx_as_0118 [67] with the
central scales.

From Fig. 6(a), one can see that our predictions repro-
duce well the shape of the

√
sγ p dependence and the magni-

tude of the H1 [45], FTPS [46] and NA14 [47] experimen-
tal data shown in the plot, unlike the pure NLO CF results,
shown in Fig. 2(a). Our improved study clearly shows that
the leading-v NRQCD contributions from the 3S[1]

1 state, or
equivalently the CSM, is sufficient to account for the J/ψ
data. Even though colour-octet contributions are not needed
here, given the large uncertainties of both our computation
and the experimental data, a substantial contributions from
these colour-octet states, expected from NRQCD NLO fits
[3] despite being NNLO in v2, cannot be excluded. In any
case, it will be necessary to consider them through HEF DLA
matched to NLO CF as they are likely plagued by the same
high-energy perturbative instability [22].

It is also worth noting that the PDF uncertainty of our
matched results are smaller than their scale uncertainty in the

region where experimental data are available. Results from
different PDF sets are roughly compatible with each other,
which shows that, in this region, the PDFs are reasonably con-
strained by the small-x DIS data from HERA and the problem
of the CF NLO computation (Fig. 2) really comes from the
poorly controlled high-energy behaviour of the coefficient
function σ̂γ i (η). The PDF uncertainty becomes comparable
to the scale uncertainty only above

√
sγ p ∼ 1 TeV. Future

experimental data at higher energies to be collected from
ultra-peripheral collisions at the LHC in the collider mode
[49,50] before possible LHeC or FCC-eh data [82], as well
as data at low energies from EIC [83,84] and fixed-target
experiments at the LHC [85,86], will allow for more precise
theory-data comparison. In the meantime, we are hopeful that
theoretical studies could be advanced to higher accuracy.

4.3 Comparison with the subtractive matching

In this section, we compare the results obtained above with
the help of the InEW matching with the results of the
subtractive-matching prescription:

σ̂γ i (η) = σ̂
(CF, LO)
γ i (η) + σ̂

(CF, NLO)
γ i (η)

+σ̌
(HEF,ln(1+η))
γ i (η) − σ̂

(CF, NLO)
γ i (∞). (43)

Such a matching is especially easy to implement for the case
of ln(1 + η) resummation because, as explained in Eq. (25)
and in Appendix B,

σ̌
(HEF,ln(1+η))
γ i (η) = σ̂

(CF, NLO)
γ i (∞) + O(α2

s ln(1 + η)),

and, therefore, for η → 0, σ̌
(HEF,ln(1+η))
γ i (η) → σ̂

(CF, NLO)
γ i

(∞), cancelling the last term in Eq. (43). In the opposite limit
η → ∞, the second and the last terms in Eq. (43) cancel each

123



  351 Page 14 of 23 Eur. Phys. J. C           (2024) 84:351 

Fig. 7 Comparison of the total J/ψ-photoproduction cross section for z < 0.9 obtained via the subtractive matching (dashed curves) vs. InEW
matching (solid curves) of our HEF-resummed results to the NLO CF ones using the default scale choice (a) and the dynamical scale choice (b)

other. Therefore, in both limits, there is no double counting
in Eq. (43).

The numerical results obtained with the subtractive-
matching prescription (43) are compared to the results
obtained with the InEW matching in Fig. 7. For the default-
scale choice, (Fig. 7a), the central curves for both results are
nearly equal (compare the solid and dashed lines in Fig. 7),
while for the dynamical-scale choice (Fig. 7b), the subtrac-
tive result is systematically 20% above the InEW central
curve. Such a deviation is on the order of the matching uncer-
tainty of the InEW result which illustrates the added value of
the InEW method which automatically provides a matching
uncertainty.

As what regards the scale uncertainty, for the default-scale
choice, M , the scale-variation band for the result obtained
with the subtractive matching is essentially the same than that
obtained with the InEW matching at large energies. For the
dynamical-scale choice, there is a slightly larger uncertainty
in the former case. In both cases, it is significantly smaller
than the LO uncertainty.

For
√
sγ p < 20 GeV, one however observes different

behaviours for scale variation bands with the subtractive and
InEW matchings (Fig. 7a) and for the unmatched NLO CF
one (Fig. 2a). Let us first recall that we expect the NLO CF
contribution to dominate in this low-energy region which
should mostly be sensitive to low partonic energies, thus low
η. The general trend of the InEW computation follows this
expectation with a downward fluctuation like the NLO CF
one although the cross section does not get negative because
of the small-weight HEF contributions which is positive in
this region. Such a fluctuation is however completely absent
in the subtractive-matching result. Indeed, the subtractive-
matching prescription still allows for significant σ̌

(HEF)
γ i (η)

down to low η where the HEF contribution is likely to be
inaccurate because αs(μR) ln(1+η) �� 1. In such a case, the
presence of such unsuppressed HEF contributions may look
as opportune as they completely make disappear the down-
ward bump. We however believe that it is a coincidence and
that the cure to this bump is to be found on the side of the
virtual corrections.

5 Conclusions and outlook

In the present paper, we have addressed the high-energy
perturbative instability of the total cross section of inclu-
sive photoproduction of vector quarkonia. We have assumed
colour-singlet dominance under NRQCD factorisation as
what regards the hadronisation of the QQ̄ pair into a quarko-
nium state. In other words, we have restricted our analysis to
the leading-v2 NRQCD contributions; these come from the
3S[1]

1 states of the QQ̄ pair.
The partonic cross section of the process, σ̂γ i , has been

obtained by matching the HEF partonic cross section in the
DLA which resums, at all order in αs , a subset of leading-
logarithmic terms scaling like αn

s lnn−1(ŝ/M2) in the ŝ �
M2 limit to the NLO CF partonic cross section. The HEF
resummation has been performed within the DLA in order
to remain strictly compatible with the DGLAP evolution of
the usual collinear PDFs. The matching has been performed
using the InEW matching prescription. We have found that
the matching is likely not the main source of the theoretical
uncertainties of our final results.

Our study leads to a solid conclusion that the resumma-
tion of high-energy logarithms in the coefficient function of
CF solves the perturbative instability of the NLO CF com-
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putation at
√
sγ p � M . It also yields an increase of the

cross section up to values compatible with experimental data
(within large experimental and theoretical uncertainties). In
addition, it significantly reduces the μF dependence of the
cross section in this region in comparison to the LO CF pre-
diction. Another important lesson which one should take
from the present paper, as well as from our earlier study
[30], is that, although the HEF contribution to the cross sec-
tion becomes very significant at high

√
sγ p � M , the NLO

CF contribution from
√
ŝγ i � M at

√
sγ p as large as 1 TeV

remain significant. In other words, predictions from HEF or
kT -factorisation taken alone [36,37] would not be sufficient.

Our results with the default-scale choice μF 
 μR 
 M
are now well behaved at high

√
sγ p (Fig. 5). However, as we

discussed in Sect. 4.2, we consider that using the invariant
mass of the partonic scattering as a dynamical scale choice
is better motivated since the CS 3S[1]

1 vector S-wave QQ̄
state is always produced in association with at least one hard
gluon. As such, the partonic invariant mass is always larger
than the quarkonium mass, M . Our final predictions are eval-
uated using this scale choice (Fig. 6) and they agree well with
the existing experimental data. Not only did negative cross
sections disappear and did the μF dependence decrease, but
also theory now fully agrees with data.

Our research program of studying quarkonium-production
cross sections with matched computations of HEF DLA
to NLO CF can be expediently continued in several direc-
tions, from resolving the same perturbative instabilities in
the J/ψ total inclusive hadroproduction [18,57] or exclu-
sive photoproduction [87–92] cross sections, to reconciling
the behaviour of quarkonium pT -distributions at moderate
pT � M with NRQCD. However, in order to improve the
predictive power of the proposed formalism and to reduce
its μR dependence, it is desirable to go beyond the DLA on
the resummation side, which consists in taking into account
both the next-to-DLA corrections to the resummation func-
tions Cgi , including the scheme-dependent factor R of Refs.
[26,27,29,93] which is equal to unity in the DLA, as well as
real-emission and virtual [94] NLO corrections to the HEF
coefficient functions.
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Appendix A: Derivation of the pT -integrated HEF coef-
ficient function

In order to integrate Eq. (21) overpT , we first split the integra-
tions over the azimuthal angle φ and p2

T . Due to the identity
(23), the φ dependence can be eliminated from the factor H
and, hence, the only φ-dependent factor under the angular
integral will be the δ function:

2π∫

0

dφ δ

(
1 − z

z
(M2(yz − 1) − p2

T ) − q2
T 1 − p2

T

+2|qT 1||pT | cos φ

)
= 2θ(D)√

D
, (A.1)

where

D = 4p2
T q

2
T 1 −

(
p2
T + q2

T 1 + 1 − z

z
(p2

T − M2(yz − 1))

)2

.

The requirement D > 0 leads to the following upper and
lower limits of the p2

T integration:

p2
T± = 1

q2
T 1

(
zq2

T 1 ± √
D1

)2
,

with D1 = q2
T 1(1−z)(M2(yz−1)−zq2

T 1). From the require-
ment D1 > 0, it follows that q2

T 1 ≤ M2(yz − 1)/z.
Parametrising p2

T = p2
T− + x(p2

T+ − p2
T−) with 0 ≤

x ≤ 1, one finds that the factor
√
D from Eq. (A.1) reduces

to 4
√
D1x(1 − x) while the rest of the dependence of the
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integrand on x is a rational function. Via a partial-fraction
decomposition of the rational dependence on x , the integral
is expressed as linear combination of

jn(a, b) =
1∫

0

dx√
x(1 − x)

1

(ax + b)n

= π√
b(a + b)

{
1 for n = 1

a+2b
2b(a+b) for n = 2

, (A.2)

and the pT -integrated coefficient function takes the form:

dH(y, z,q2
T 1)

dz
= 〈O[3S[1]

1 ]〉
M3

64παα2
s e

2
Q

27yz
(
τ(z − 1)2 + d2

1

)2 (
τ(z − 1)(2τ z + z + 1) − d2

1

)3

×
{
f1 ·

[
j1
(

4d1τ(z − 1), d2
1 − 2d1τ(z − 1)

+ τ(z − 1)(τ (z − 2) − 1)
)

+ z

1 − z

× j1
(

4d1τ z, (d1 − τ z)2 + τ
) ]

+ f2 · j2
(

4d1τ(z − 1), d2
1 − 2d1τ(z − 1)

+ τ(z − 1)(τ (z − 2) − 1)
)

+ f3 · j2
(

4d1τ z, (d1 − τ z)2 + τ
)}

,

(A.3)

where τ = q2
T 1/M

2, d1 = √
D1/M2 and

f1 = 2τ(τ + 1)(z − 1)3z
(
d2

1 − τ(z − 1)(τ z + 1)
)2

× [
d4

1 (τ + z) − d2
1 τ

(
τ
(
z
(
4z2 − 6z + 5

) − 2
)

+2τ 2(z − 1)z + (z − 2)z
) + τ 2(z − 1)

× (
τ
(
z
(
τ(z(z(3z − 8) + 8) − 2) + (z − 2)2) − 1

) − z
)]

,

f2 = −τ(τ + 1)(z − 1)2 (
d2

1 − τ(z − 1)(τ z + 1)
)2

× [
d6

1

(− (
z2 + 2τ(z − 1)

)) + d4
1 τ(z − 1)

× (
z2 + 2τ(z − 1)

)
(4τ z + z + 3)

−d2
1 τ 2(z − 1)2 (−6τ + 3τ 2z4 + 2(4τ + 1)

(
τ 2 + 1

)
z3

+(2τ((7 − 4τ)τ + 2) + 3)z2 + 2(1 − 8τ)τ z
)

−τ 3(z − 1)3(2τ z + z + 1)
(
2τ

(
z2 + z + 1

)
(z − 1)2

−z2 + τ 2z(z(z(z + 2) − 6) + 4)
)]

, (A.4)

f3 = τ z2 (
d2

1 − τ(z − 1)(τ z + 1)
)2

× [
d6

1

(
(z − 1)2 − τ((z − 2)z + 3)

)
+d4

1 τ(z − 1)
(−(z − 1)

(
z2 − 3

)
+4τ 2z((z − 2)z + 3) − τ(z − 3)(z(3z − 2) + 3)

)
−d2

1 τ 2(z − 1)2 (
9τ + (τ − 1)τ (5τ + 2)z4

+2τ(3 − 5(τ − 2)τ )z3+
2(τ (τ (7τ − 12) + 3) + 1)z2 + 12τ(2τ − 1)z − 3

)

+τ 3(z − 1)3(2τ z + z + 1)(τ (z(τ (z(τ ((z − 2)z + 2)

−(z − 6)z − 10) + 6) + 2(z − 3)) + 3) − 1)
]
.

If one computes the HEF coefficient function with a mini-
mum p2

T cut such that p2
T ≥ p2

T min, one simply has to replace
the lower limit of x integration in (A.2) by

xmin = max

(
0,

q2
T 1p

2
T min − (zq2

T 1 − √
D1)

2

2zq2
T 1

√
D1

)
. (A.5)

Integrals with such a cut also can be expressed in terms of
elementary functions.

Appendix B: Derivation of the high-energy asymptotics
of the NLO and NNLO CF scaling functions

In this Appendix, we perform the αs expansion of the HEF
resummation formula Eq. (35). As mentioned before, the
αs expansion of Eq. (32) is different from the expansion
of Eq. (35) only by the Nk≥1LLA terms which are out-
side the scope of the present study. To this end, we rewrite
θ(μ2

F −q2
T 1) = θ(M2 −q2

T 1)+ θ(q2
T 1 − M2)θ(μ2

F −q2
T 1),

assuming that M < μF , in Eq. (35) and use the series expan-
sions in αs of

C(DL)
gg (x,q2

T , μ2
F , μ2

R)

= α̂s

q2
T

[
1 + α̂s ln

(
1

x

)
ln

(
q2
T

μ2
F

)
+ O(α2

s )

]
, (B.1)

μ2
F∫

M2

dq2
T C(DL)

gg (x,q2
T , μ2

F , μ2
R)

= −α̂s ln

(
M2

μ2
F

)
− α̂2

s

2
ln2

(
M2

μ2
F

)
ln

(
1

x

)
+ O(α3

s ),

(B.2)

to obtain

dσ̌
(HEF,ln(1+η))
γ i

dzd2pT
= FLO

πM2

{(
αs(μR)

2π

)

×
[
dc(γ i)

1 (∞, z, ρ)

dzdρ
+ dc̄(γ i)

1 (∞, z, ρ)

dzdρ
ln

M2

μ2
F

]

+
(

αs(μR)

2π

)2

ln(1 + η)

[
dc(γ i)

2 (∞, z, ρ)

dzdρ

+2CA
dc(γ i)

1 (∞, z, ρ)

dzdρ
ln

(
M2

μ2
F

)

+ CA
dc̄(γ i)

1 (∞, z, ρ)

dzdρ
ln2

(
M2

μ2
F

)]
+ O(α3

s )

}
, (B.3)
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where ρ = p2
T /M2. For the asymptotics of the scaling func-

tions in Eq. (B.3), we obtain the following explicit formulae
in terms of the HEF coefficient function Eq. (17):

dc̄(γ i)
1 (∞, z, ρ)

dzdρ

= z(1 − z)Ci

8πM2FLO

2π∫

0

dφ

2π

(
lim

q2
T 1→0

H(s̄, t̄, ū, qT 1 · pT ,q2
T 1)

(1 − z + ρ)2

)
,

(B.4)

dc(γ i)
1 (∞, z, ρ)

dzdρ

= z(1 − z)Ci

8πM2FLO

∫
d2qT 1

πq2
T 1

×
[

M4H(s̄, t̄, ū,qT 1 · pT ,q2
T 1)[

(M2 + p2
T )(1 − z) + (qT1 − pT )2z

]2 − θ(M2 − q2
T1)

×
(

lim
q2
T 1→0

H(s̄, t̄, ū, qT1 · pT ,q2
T 1)

(1 − z + ρ)2

)]
, (B.5)

dc(γ i)
2 (∞, z, ρ)

dzdρ

= z(1 − z)CiCA

4πM2FLO

∫
d2qT 1

πq2
T 1

ln
q2
T1

M2

×
[

M4H(s̄, t̄, ū,qT 1 · pT ,q2
T 1)[

(M2 + p2
T )(1 − z) + (qT1 − pT )2z

]2 − θ(M2 − q2
T1)

×
(

lim
q2
T 1→0

H(s̄, t̄, ū, qT1 · pT ,q2
T 1)

(1 − z + ρ)2

)]
, (B.6)

where Ci = δigCA + δiqCF and the Mandelstam variables
are given by Eq. (22) with y = [(M2 +p2

T )(1 − z)+ (qT 1 −
pT )2z]/[M2z(1 − z)].

Equation (B.4) only involves a simple averaging over the
azimuthal angle and can be evaluated to (for CA = Nc = 3):

dc̄(γ g)
1 (∞, z, ρ)

dzdρ

=
16π2(1 − z)z(ρ2(z2 − z + 1)2

+ρ(z2 − 2z + 2)(z − 1)2 + (z − 1)4)

(ρ + 1)2
(
ρ + (z − 1)2

)2
(ρ − z + 1)2

. (B.7)

The qT 1 integrals in Eqs. (B.5) and (B.6) are finite in two
dimensions thanks to the cancellation of 1/q2

T 1 singularity
between both terms in the square brackets. As such, these
integrals can be easily evaluated numerically. Moreover, one
notices that the integrand of Eq. (B.5) is a rational function
of q2

T 1 and qT 1 · pT , which suggests the application of stan-
dard loop-integral techniques, such as Integration-By-Parts
(IBP) Reduction [95]. We use these techniques below in this
Appendix to obtain closed-form analytic result of the inte-
grals of Eq. (B.5).

In order to be able to split the integration of the first and
second terms in Eq. (B.5) we go to 2−2ε dimensions, which
will regularise the collinear divergences when the terms are
separated. The q2

T 1 integral in the second term can be easily
evaluated and Eq. (B.5) turns into

dc(γ i)
1 (∞, z, ρ)

dzdρ
= z(1 − z)Ci

8πM2FLO
[F1 − F2] , (B.8)

F1 =
∫

d2−2εqT 1

πq2
T 1

M4H(s̄, t̄, ū,qT 1 · pT , q2
T 1)[

(M2 + p2
T )(1 − z) + (qT 1 − pT )2z

]2 ,

(B.9)

F2 = − (M2)−ε

ε

∫
d�2−2ε

2π

(
lim

q2
T 1→0

H(s̄, t̄, ū, qT 1 · pT ,q2
T 1)

(1 − z + ρ)2

)
,

(B.10)

where s̄, t̄, ū are given by Eq. (22) with y = [(M2 +p2
T )(1−

z)+ (qT 1 −pT )2z]/[M2z(1 − z)] and d�2−2ε is an element
of the solid angle describing the direction of the vector qT 1

in 2 − 2ε dimensions.
It turns out not to be necessary to recompute the HEF

coefficient function Eq. (16) in 4 − 2ε dimensions for the
computation of the integrals Eqs. (B.9) and (B.10) because
the original finite integral (B.5) is two-dimensional. We have
redone the calculation with the 4 − 2ε-dimensional version
of H and have obtained the same results.

One has however to be careful with the evaluation of
Eq. (B.10) because the averaging over the directions of the
vector qT 1, which is done in this term after taking the limit
q2
T 1 → 0, has to be done in 2 − 2ε dimensions to stay con-

sistent with the evaluation of Eq. (B.9) within dimensional
regularisation. The source of the problem lies in the angular
integrations of the type:
∫

d�2−2ε

2π
(pT · qT 1)

2 = p2
Tq

2
T 1

π−1/2−ε

�(1/2 − ε)

×
π∫

0

dφ sin−2ε φ · cos2 φ = p2
Tq

2
T 1

2(1 − ε)

�2−2ε

2π
,

with �2−2ε = 2π1−ε/�(1 − ε) being the solid angle in
2 − 2ε dimensions. The ε dependence coming from these
terms leads to finite terms in F2, scaling like ε0, where ε has
been cancelled.

The dependence on qT 1 in the integrand of Eq. (B.9) is
rational and one finds the following three denominators in it:

D1 = (2 − z)q2
T 1 − 2(pT · qT 1) + p2

T + M2(1 − z),

D2 = z2q2
T 1 − 2z(pT · qT 1) + p2

T + M2(1 − z)2,

D3 = q2
T 1,

which are linearly dependent, since we have only two
linearly-independent scalar products q2

T 1 and pT · qT 1. The
appearance of linearly-dependent denominators is a com-
mon feature of quarkonium-related calculations. Due to this,
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one has to perform a partial-fractioning decomposition of
the integrand in Eq. (B.9). We can then split the integrand
into three parts, depending on the combinations (D1,D2),
(D1,D3) and (D2,D3). In each of these integral families, the
scalar products in the numerator can be uniquely expressed in
terms of linear combinations of the denominators. As such,
the resulting integals have positive or negative powers of
Di and these can then be reduced using IBP reduction codes,
such asLiteRed [96,97]. The resulting master integrals are
then evaluated using Feynman parameters in terms of Gaus-
sian hypergeometric functions 2F1 which can be expanded
in ε using the HypExp [98] package. We have also exten-
sively used various features of the FeynCalc framework
[99–101] on all stages of this computation.

With the procedure described above, one obtains the fol-
lowing result for the c1 coefficient differential with respect
to z and ρ = p2

T /M2 with CA = Nc = 3,

dc(γ g)
1 (∞, z, ρ)

dzdρ
= 8π2

{
c(R)

1 (z, ρ) + c(1)
1 (z, ρ) ln

[
z2(1 − z)2

(ρ + (1 − z)2)2

]
+ c(2)

1 (z, ρ) ln

[
(ρ + 1 − z)2

(1 − z)(ρ + 2 − z)

]

+ c(3)
1 (z, ρ)√

(1 + ρ)((2 − 3z)2 + (2 − z)2ρ)
ln

⎡
⎣ρ(2 − z) − (3 − 2z)z + 2 −

√
(ρ + 1)

(
ρ(z − 2)2 + (2 − 3z)2

)

ρ(2 − z) − (3 − 2z)z + 2 +
√

(ρ + 1)
(
ρ(z − 2)2 + (2 − 3z)2

)
⎤
⎦
⎫⎬
⎭ , (B.11)

and c(γ q)
1 (∞, z, ρ) = (CF/CA)c(γ g)

1 (∞, z, ρ), while the
rational part of the result is

c(R)
1 (z, ρ) = −2z

{
− 16(ρ + 1)6(ρ(ρ + 2) − 1)

+8(ρ(ρ + 4) + 9)z14

−4
(
ρ
(
6ρ2 + 46ρ + 135

) + 195
)
z13

+2(ρ(ρ(5ρ(3ρ + 44) + 942) + 1660) + 2011)z12

−(ρ(ρ(ρ(ρ(20ρ + 551) + 3762) + 8908) + 11638)

+13273)z11 + (ρ(ρ(ρ(ρ(ρ(7ρ + 361)

+4074) + 15298) + 23699) + 28573) + 31476)z10

−(ρ(ρ(ρ(ρ(ρ(ρ(ρ + 112) + 2289) + 14320)

+34205) + 40070) + 55265) + 56458)z9

+(ρ(ρ(ρ(ρ(2ρ(ρ(5ρ + 292) + 3394) + 26973)

+42734) + 46706) + 87812) + 78121)z8

+(ρ(ρ(ρ(ρ(ρ(ρ((ρ − 32)ρ − 1383) − 10257)

−24354) − 20442) − 40831) − 112901) − 83721)z7

+(ρ(ρ(ρ(ρ(ρ(ρ((25 − 7ρ)ρ + 1401) + 4754)

−5507) − 24167) + 30395) + 113588) + 69198)z6

+2(ρ + 1)(ρ(ρ(ρ(ρ(ρ(ρ(9ρ + 35) + 396) + 5184)

+17041) + 10711) − 21550) − 21826)z5

−(ρ + 1)2(ρ(ρ(ρ(ρ(ρ(24ρ + 355) + 4025)

+17018) + 21830) − 7645) − 20631)z4

+4(ρ + 1)3(ρ(ρ(ρ(ρ(8ρ + 181) + 1176) + 2368)

+396) − 1769)z3 − 4(ρ + 1)4(ρ(ρ(ρ(13ρ + 179)

+579) + 337) − 416)z2 + 16(ρ + 1)5

×(ρ(ρ(3ρ + 19) + 21) − 15)z}
/[

(ρ + 1)2

× (
ρ + (z − 1)2)2

(ρ − 2z + 1)2(ρ − z + 1)2

×(ρ − z + 2)
(
ρ(z − 2)2 + (2 − 3z)2)2

]
,

and the coefficients in front of the logarithmic terms read

c(1)
1 (z, ρ) = −z3

(ρ + 1)2
(
ρ + (z − 1)2

)2
(ρ − 2z + 1)4

× {
5(ρ + 1)4 + 4(2ρ + 1)z6 − (ρ + 1)

×(23ρ + 31)z5 + (ρ + 1)(ρ(12ρ + 77) + 89)z4

−2(ρ + 1)(ρ + 3)(ρ(ρ + 18) + 21)z3 + 2(ρ + 1)2

×(ρ(3ρ + 32) + 47)z2 − (ρ + 1)3(11ρ + 35)z
}
,

c(2)
1 (z, ρ) = z

(ρ + 1)2(ρ − 2z + 1)4(ρ − z + 1)2

×
{

2(ρ + 1)4 − 4(2ρ + 1)z6 + (7ρ(ρ + 2) − 9)z5

+(ρ((5 − 2ρ)ρ + 48) + 57)z4

+(ρ + 1)(ρ((ρ − 13)ρ − 69) − 87)z3 + (ρ + 1)2

×(ρ(5ρ + 36) + 59)z2 − 6(ρ + 1)3(ρ + 3)z
}
,

c(3)
1 (z, ρ) = z3

(ρ + 1)2(ρ − 2z + 1)4
(
ρ(z − 2)2 + (2 − 3z)2

)2

×
{
−16(ρ − 10)(ρ + 1)5 + 64(ρ(ρ + 4) + 9)z9

−32(ρ(ρ(3ρ + 23) + 64) + 96)z8

+4(ρ(ρ(ρ(10ρ + 119) + 245) + 461) + 1093)z7

+(ρ(ρ(ρ(618 − ρ(7ρ + 135)) + 7730) + 13133)

+3461)z6 + (ρ(ρ(ρ(ρ(23ρ − 397) − 8578)

−34546) − 45573) − 18289)z5 − 2(ρ + 1)

×(ρ(ρ(ρ((ρ − 7)ρ − 1392) − 10488) − 21697)

−12625)z4 + 2(ρ + 1)2(ρ(ρ(ρ(7ρ − 99) − 2827)

−10497) − 9200)z3 − 4(ρ + 1)3

×(ρ(ρ(9ρ − 112) − 1269) − 1912)z2

+8(ρ + 1)4(5(ρ − 11)ρ − 214)z
}
.

The coefficients c(1)
1 , c(2)

1 , c(3)
1 contain the denominator

(ρ − 2z + 1)−4 which is singular at the physical point ρ =
2z−1, while c(R)

1 is proportional to (ρ−2z+1)−2. Individual
terms may be divergent at this point. However, combining all
such terms in the complete expression of dc1/dzdρ given in
Eq. (B.11), the divergences cancel against each other and the
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Fig. 8 The numerical comparison of the asymptotic result (B.11) with
the scaling function computed by our numerical NLO code

limit at this point is actually finite,

lim
ρ→2z−1

dc(γ g)
1 (∞, z, ρ)

dzdρ

= π2

z8(z + 1)

{
z3[(z(z(z(z(12z(2z − 9) + 191) − 52)

−339) + 513) − 121) log(1 − z) − 8(z − 1)(z + 1)

×(z(z(2z(2z − 5) + 13) − 8) + 2) log(z)

+(z(z(z(z(4z(2z + 7) − 119) + 68) + 251) − 449)

+105) log(z + 1)
] + 2(z(z(z(z(z(z(4(z − 2)z + 85)

−243) + 267) + 40) − 333) + 245) − 55)z

+2(z(298z − 245) + 55) tanh−1(z)
}
,

where tanh−1(z) = ln [(1 + z)/(1 − z)] /2 is the hyperbolic
arc-tangent.

The numerical comparison of our result (B.11) with our
calculation of dc(γ g)

1 /(dzdρ) using dipole subtraction which
was already mentioned in Sect. 2, is shown in Fig. 8 for η =
1000. As one can see, the asymptotic result is in a good
agreement with numerical data. We also provide in Table 1
and in Fig. 9 the high-energy asymptotic numerical values of
scaling functions, obtained via direct numerical evaluation
of Eq. (B.4), Eq. (B.5) and Eq. (B.6) with a relative accuracy
about 10−3 using the regular algorithm cuhre implemented
in the CUBA library [78].

Equation (B.6) provides predictions for the non-trivial
NNLO scaling function c2 in the high-energy limit in the
LLA. In principle, it is possible to derive the closed-form
analytic result for the high-energy asymptotics of the NNLO
scaling function from it. However, such an analytic result
would be too cumbersome to present and due to Gram-
determinant singularities it may be more challenging to eval-
uate it numerically rather than the integral (B.6) itself. There-
fore, we limit ourselves to present here the numerical results

Fig. 9 High-energy asymptotics of z-differential scaling functions:
dc1/dz (solid line), dc̄1/dz (dashed line) and dc2/dz (thick solid line,
divided by 2CA)

for the z-differential but pT -integrated scaling function c2 in
Fig. 9 and in Table 1.

It is instructive to look at several limits of the obtained
results. The low-p2

T and high-p2
T asymptotics of c̄1 are,

ρ → 0 : dc̄1(∞, z, ρ)

dzdρ
= 16π2z

1 − z
+ O(ρ), (B.12)

ρ → ∞ : dc̄1(∞, z, ρ)

dzdρ

= 16π2z(1 − z)

ρ4 (1 − z(1 − z))2 + O(ρ−5),

(B.13)

while for the coefficient c1 we have,

ρ → 0 : dc1(∞, z, ρ)

dzdρ

= 8π2z

(1 − 2z)4

{
(64z7 − 256z6 + 116z5 + 653z4

− 1213z3 + 898z2 − 308z + 40)
z2

|2 − 3z|3

× ln

[− |2 − 3z| + 2z2 − 3z + 2

|2 − 3z| + 2z2 − 3z + 2

]

+
(

4z2 − 15z + 5
)
z2 ln

[
(z − 1)2

z2

]

+ 2
(
2z4 − 3z3 + 7z2 − 5z + 2

)
(1 − 2z)4

(2 − 3z)2(z − 1)

−
(
4z5 + 13z4 − 44z3 + 43z2 − 16z + 2

)
z − 1

× ln

[
(1 − z)2

z2 − 3z + 2

]}
+ O(ρ), (B.14)

ρ → ∞ : dc1(∞, z, ρ)

dzdρ
= 16π2(1 − z)z

ρ3(z − 2)2
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Table 1 Numerical results for the high-energy asymptotics of the dc2/dz, dc1/dz and dc̄1/dz scaling functions

z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dc2/dz 50.09 99.81 147.6 192.3 233.7 272.7 316.1 393.4 633.2

dc1/dz −0.7195 −1.394 −2.063 −2.820 −3.832 −5.573 −9.554 −20.65 −56.55

dc̄1/dz 5.267 10.55 15.90 21.39 27.20 33.74 42.02 54.57 78.93

×
{
z4 − 2z3 − z2 ln

[
(1 − z)z2

ρ(2 − z)2

]
− 4z + 4

}
+ O(ρ−4),

(B.15)

i.e. the coefficient c1 drops like 1/p6
T , while c̄1 ∼ 1/p8

T at
high-pT and high partonic energy.

Another interesting limit is z → 1 where both the (ρ-
differential) c0 and c̄1 tend to zero, while c1 tends to a non-
zero limit,

lim
z→1

dc1(∞, z, ρ)

dzdρ
= 16π2((ρ − 2)ρ((ρ − 2)ρ + 2) + 1)

(ρ − 1)4ρ(ρ + 1)3 ,

(B.16)

such that the vanishing of the LO QQ̄
[

3S[1]
1

]
photoproduc-

tion cross section at z → 1 is violated already at NLO and
may actually receive ln(1 − z) corrections at higher orders.
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