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Abstract A longstanding issue is the classical equivalence
between the Jordan and the Einstein frames, which is consid-
ered just a field redefinition of the metric tensor and the scalar
field. In this work, based on the previous result that the Hamil-
tonian transformations from the Jordan to the Einstein frame
are not canonical on the extended phase space, we study the
possibility of the existence of canonical transformations. We
show that on the reduced phase space – defined by suitable
gauge fixing of the lapse and shifts functions – these trans-
formations are Hamiltonian canonical. Poisson brackets are
replaced by Dirac’s brackets following the Bergman-Dirac’s
procedure. The Hamiltonian canonical transformations map
solutions of the equations of motion in the Jordan frame into
solutions of the equations of motion in the Einstein frame.

1 Introduction

Dicke, in a pioneering article [1], stressed that physics is
invariant under re-definition of unit of measurement. This
very fact implies that physics should be invariant under Weyl
(conformal) transformation of the metric coefficients. The
starting frame, where we consider the metric tensor, is called
Jordan frame (JF), while the frame obtained by the Weyl
(conformal) transformation of the original metric is called
Einstein frame (EF) [2–4]. Many people believe that the pas-
sage from the Jordan to the Einstein frames is only a field
redefinition at classical level [5–11] as well as at quantum
level [12–17]. In this last case, there are people claiming
that the two frames are inequivalent [18–21]. The equations
of motion in the Jordan frame have been found completely
equivalent to those one in the Einstein frame [22–26].

In order to show a concrete example, we consider a special
case of scalar-tensor Brans–Dicke theory [27]. In the Jordan
frame the action is [4]:

a e-mail: ggionti@specola.va (corresponding author)

S =
∫
M
d4x

√−g

(
φ 4R − ω

φ
gμν∂μφ∂νφ −U (φ)

)

+2
∫

∂M
d3x

√
hφK . (1)

The equations of motion for the metric tensor are:

Rμν − 1

2
gμνR = ω

φ2

[
∂μφ∂νφ − 1

2
gμνg

αβ∂αφ∂βφ)

]

+ 1

φ

[
∇μ∇νφ − gμν�φ − 1

2
gμνU (φ)

]
,

(2)

and for the scalar field:

(3 + 2ω)�φ = φ
dU

dφ
− 2U (φ). (3)

Weyl (conformal) transformations of the metric:

g̃μν = (16πGφ) gμν, φ̃ = φ, (4)

define the passage from Jordan frame, see Eq. (1), toEinstein
frame:

S̃ =
∫
M
d4x

√−g̃

[
1

16πG
R̃ − 2ω + 3

(16πG)2φ2 g̃
μν∂μφ∂νφ

−V (φ)] + 1

8πG

∫
∂M

d3
√
h̃ K̃ , (5)

where:

V (φ) ≡ U (φ)

(16πGφ)2 . (6)

Equivalence of the Jordan and the Einstein frames means
that if the following couple

(
gμν(x), φ(x)

)
(7)
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is solution of the equations of motion (2)–(3) in the Jordan
frame, then the corresponding couple, obtained through Weyl
(conformal) transformation

(
g̃μν(x), φ(x)

)
(8)

is solution of the equations of motion derived from the action
(5) in the Einstein frame. One way for proving the previous
statement is to go to the Hamiltonian formalism and show that
the transformations from the Jordan to the Einstein frames
are Hamiltonian canonical.

In the literature several authors claimed [28–30], or par-
tially proved [31,32], that the Hamiltonian transformations
from the Jordan to the Einstein frame are canonical trans-
formations. Therefore the Dirac’s constraint analysis either
of the Brans–Dicke theory [28] or a generic f (R) theory
has been carried out making a transformation from the Jor-
dan to the Einstein frame. In virtue of the assumed canon-
icity of the Hamiltonian transformations from the Jordan to
the Einstein frames, the constraint algebra of the secondary
first class constraints in the Jordan frame is just the same
of Einstein’s geometrodynamics [33]. We showed, see [34–
36], that the Hamiltonian transformations from the Jordan
to the Einstein frames cannot be considered canonical trans-
formations strictly speaking. In the Einstein frame there are
Poisson brackets, among “non-conjugate” variables, which
are not zero [34–36]:

{Ñ (x), π̃φ(x ′)} = 8πGN (x)δ(3)(x − x ′)√
16πGφ(x)

�= 0. (9)

As it is well known, the lapse N and the shifts Ni are gauge
variables related to the coordinate displacements between
two space-like surfaces. We have shown that also in the
Hamiltonian formalism of mini-superspace model of flat
FLRW universe the transformations from the Jordan to the
Einstein frames are not canonical transformations [35]. As
a further check of non-canonicity, we have transformed the
Hamiltonian function from the Jordan to the Einstein frames.
We derived the equations of motions both in the Jordan and
in the Einstein frames using the respective Hamiltonians. In
the Einstein frame, on the equations of motions, we applied
the transformations from the Einstein to the Jordan frames.
In this way, we get two sets of equations of motions in the
Jordan frame. We confronted and contrasted these two sets
and found that all the equations of motion are equivalent
modulo constraints, except the equation of motion for the
lapse function. This very fact suggested us to gauge-fix the
lapse function both in the Jordan frame and in the Einstein
frame. We implemented the gauge-fixing condition as sec-
ondary constraint and noticed, as expected, that these sec-
ondary constraints become second class constraints with the
primary constraints. Introducing Dirac’s brackets, we derived

the equation of motions and solved strongly the second class
constraints. Therefore, we end up with a reduced phase space
in which the lapse N and the related momentum are not
a dynamical variables anymore. The transformations from
the Jordan to the Einstein frames, restricted on this reduced
phase-space, is now Hamiltonian canonical. The same rea-
soning can be implemented in the field theory case. There,
we have to gauge-fix the lapse N and the shifts Ni . The trans-
formations from the Jordan to the Einstein frame continue to
be Hamiltonian canonical.

The paper is organized as follows: in Sect. 2 we study the
Hamiltonian Weyl (conformal) transformations for Brans–
Dicke theory in a flat Friedmann–Lemaître–Robertson–
Walker (FLRW) mini-superspace case; in Sect. 3 we show
that this transformation is Hamiltonian canonical on the
reduced phase space defined by gauge fixing the lapse func-
tion.

In Sect. 4 we generalize the previous considerations in the
field theory case with the Arnowitt–Deser–Misner (ADM)
formalism. In this case too, see Sect. 5, we show that the
transformation from JF to EF is Hamiltonian canonical on
the reduced phase space. Here we gauge fixed both the lapse
and the shifts functions. We argue on the very issue whether
a Hamiltonian canonical transformation, between two sys-
tems, implies a physical equivalence and conclude in Sect. 6.

2 Hamiltonian Weyl (conformal) transformations in
FLRW Universe

In this section and in the following we consider a flat mini-
superspace FLRW model; the metric tensor is defined as:

g = −N 2(t)dt ⊗ dt + a2(t)dxi ⊗ dxi (10)

where N (t) is the lapse function and a(t) the scale fac-
tor. N (t) is a real dynamical variable [37], and not only a
Lagrange multiplier [38]. Starting from the action (1) we
obtain the following Lagrangian in the JF [39]:

LFLRW = −6aȧ2

N
φ− 6a2ȧ

N
φ̇+ ωa3

Nφ
(φ̇)2−Na3U (φ). (11)

Remember that in this FLRW case, assuming ω �= −3/2, the
Brans–Dicke total Hamiltonian in the JF is [36]:

HT = N

[
− ωπ2

a

12aφ(2ω + 3)
− πaπφ

2a2(2ω + 3)

+ φπ2
φ

2a3(2ω + 3)
+a3U (φ)

]
+λNπN ≡ NH+λNπN ,

(12)
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we refer to Appendix A.1 for the conformal invariant case
ω = −3/2.

In this particular case the equations of motion are:

Ṅ ≈ {N , HT } ≈ λN , (13)

π̇N ≈ {H, HT } ≈ −H, (14)

ȧ ≈ {a, HT } ≈ − N

2a(2ω + 3)

(
ωπa

3φ
+ πφ

a

)
, (15)

π̇a ≈ {πa, HT } ≈ − N

2a2(2ω + 3)

×
(

ωπ2
a

6φ
+ 2πaπφ

a
− 3φπ2

φ

a2

)
− 3Na2U (φ), (16)

φ̇ ≈ {φ, HT } ≈ N

2a2(2ω + 3)(
−πa + 2φπφ

a

)
, (17)

π̇φ ≈ {πφ, HT } ≈ − N

2a(2ω + 3)(
ωπ2

a

6φ2 + π2
φ

a2

)
− Na3 dU

dφ
. (18)

The Weyl (conformal) transformations (4) preserve the
ADM structure:

g̃ = −Ñ 2(t)dt ⊗ dt + ã2(t)dxi ⊗ dxi , (19)

provided the following redefinitions of the lapse and scale
factor (the scalar field is unchanged):

Ñ = N (16πGφ)
1
2 , ã = (16πGφ)

1
2 a , φ̃ = φ. (20)

If we apply this transformations to Eq. (11) we obtain the
Lagrangian in the EF:

L̃FLRW = − 1

Ñ (16πGφ)

[
6̃a ˙̃a2

φ − (2ω + 3)̃a3φ̇2

2φ

]

−Ñ ã3V (φ). (21)

The total Hamiltonian in the EF is (see [36]):

H̃T = Ñ ã3

[
−2πGπ̃2

a

3̃a4 + 8πGπ̃2
φφ2

(2ω + 3)̃a6 + V (φ)

]

+̃λN π̃N ≡ Ñ H̃ + λ̃N π̃N , (22)

(we always assume ω �= −3/2, and refer to Appendix A.2
for the particular case ω = −3/2). The equations of motion
in the EF are:

˙̃N ≈ {Ñ , H̃T } ≈ λ̃N , (23)
˙̃πN ≈ {π̃N , H̃T } ≈ −H̃ , (24)

˙̃a ≈ {̃a, H̃T } ≈ −Ñ
4πGπ̃a

3̃a
, (25)

˙̃πa ≈ {π̃a, H̃T }

≈ Ñ

[
− (2πG)π̃2

a

3̃a2 + 3(8πG)π̃2
φφ̃2

(2ω + 3)̃a4 − 3̃a2V (φ̃)

]
,

(26)

˙̃φ ≈ {φ̃, H̃T } ≈ Ñ
(16πG)π̃φφ̃2

(2ω + 3)̃a3 , (27)

˙̃πφ ≈ {π̃φ, H̃T } ≈ −Ñ

[
16πGπ̃2

φφ̃

(2ω + 3)̃a3 + ã3 dV (φ̃)

dφ̃

]
. (28)

The remaining relations among the canonical variables in
the EF and in the JF are [4,31,34,35]:

π̃a = πa

(16πGφ)
1
2

, π̃φ = 1

φ
(φπφ − 1

2
aπa),

π̃N = πN

(16πGφ)
1
2

. (29)

As we extensively discussed in [36], the transformations
between JF and EF, see Eqs. (20) and (29), are not Hamilto-
nian canonical transformations on the phase space defined
by the canonical variables and their conjugate momenta
(extended phase space). The Poisson brackets among conju-
gate variables in the EF, expressed as function of the canon-
ical variables in the JF, are:

{
Ñ , π̃N

} = 1, {̃a, π̃a} = 1,
{
φ, π̃φ

} = 1. (30)

Instead the Poisson brackets among non conjugate variables
should be zero. This is certainly true for:

{
Ñ , ã

} = 0,
{
Ñ , π̃a

} = 0,
{
Ñ , φ

} = 0

{̃a, π̃N } = 0, {̃a, φ} = 0,
{̃
a, π̃φ

} = 0,

{φ, π̃N } = 0, {φ, π̃a} = 0, {π̃N , π̃a} = 0, (31)

but there are also Poisson brackets among non conjugate
variables which does not vanishes:

{
Ñ , π̃φ

} =
{
N (16πGφ)

1
2 ,

1

φ
(φπφ − 1

2
aπa)

}

= 8πGN

(16πGφ)
1
2

�= 0. (32)

{
π̃N , π̃φ

} =
{

πN

(16πGφ)
1
2

,
1

φ
(φπφ − 1

2
aπa)

}

= − 8πGπN

(16πGφ)
3
2

�= 0. (33)

Therefore the set of Weyl (conformal) transformations, see
Eqs. (20) and (29), is not a Hamiltonian canonical map on the
extended phase space. We explicitly discussed this in [36],
see also Fig. 1. It is not possible to pass from the equations
of motion in the EF to the equations of motion in JF (and
viceversa) simply using the relations (20) and (29).
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HT HT

JF eqs. of mot. EF eqs. of mot.

JF ←→ EF

Fig. 1 On the extended phase space we transform HT (the total Hamil-
tonian in the JF) into H̃T (the total Hamiltonian in the EF) using the
relations between variables and conjugate momenta in the two frames,
see (20) and (29). It is not possible to pass from the equations of motion
in the JF to the equations of motion in EF (and vice-versa) simply using
the relations (20) and (29), for more details see [36]

Once we apply these transformations on the EF equations
of motion (23)–(28) we obtain the following:

Ṅ ≈ λ̃N

(16πGφ)
1
2

− N 2

2a2(2ω + 3)

(
πφ

a
− πa

2φ

)
, (34)

π̇N ≈ −H + NπN

2a2(2ω + 3)

(
πφ

a
− πa

2φ

)
, (35)

ȧ ≈ − N

2a(2ω + 3)

(
ωπa

3φ
+ πφ

a

)
, (36)

π̇a ≈ − N

2a2(2ω + 3)

(
ωπ2

a

6φ
+ 2πaπφ

a
− 3φπ2

φ

a2

)

−3Na2U (φ), (37)

φ̇ ≈ N

2a2(2ω + 3)

(
−πa + 2φπφ

a

)
, (38)

π̇φ ≈ − N

2a(2ω + 3)

(
ωπ2

a

4φ2 − 7π2
φ

2a2 + πaπφ

2aφ

)

−Na3 dU

dφ
+ Na3

2φ
U (φ). (39)

Looking at these transformed equations we note that: (i) the
equations for ȧ, π̇a, φ̇ coincide with JF Eqs. (15), (16), (17);
(ii) the equation for π̇N corresponds to the original JF Eq.
(14) only for πN = 0; (iii) using the Hamiltonian constrain
the equation for π̇φ can be written as:

π̇φ ≈ − N

2a(2ω + 3)

(
ωπ2

a

6φ2 + π2
φ

a2

)
− Na3 dU

dφ
+ H

2φ
, (40)

it corresponds to the original JF Eq. (18) modulo the Hamil-
tonian constraint; (iv) the equation for Ṅ corresponds to the
original JF Eq. (13) only for a very particular choice of λ̃N :

λ̃N = (16πGφ)
1
2

[
λN + N 2

2a2(2ω + 3)

(
πφ

a
− πa

2φ

)]
.

(41)

We have already seen in Eq. (29) that:

π̃N = πN

(16πGφ)
1
2

,

if the extended Hamiltonian H̃T is obtained applying the
Hamiltonian transformations from the Jordan to the Einstein
frame, then λ̃N = (16πGφ)

1
2 λN . This formula is not equiv-

alent to (41), which is another way to check that the trans-
formations from the Jordan to the Einstein frames are not
Hamiltonian canonical, strictly speaking, on the extended
phase space.

3 Gauge fixing in the FLRW case

We show here how it is possible to prove the canonicity of the
transformation (29) between JF and EF performing a gauge
fixing on the lapse function N . On the reduced phase space
defined by this gauge fixing, the transformation is Hamilto-
nian canonical.

3.1 Jordan frame

We start with a particular gauge fixing condition for the lapse
function in the JF:

N = c0, (42)

here and in the following, c0 = c0(x) is an arbitrary func-
tion of the coordinates. We implement this condition as a
secondary constraint:

N − c0 ≈ 0. (43)

In order to avoid ambiguities, we remark, here and in the
following, that (43) does not mean that we are fixing the value
of the lapse function. The lapse function continues to be an
independent variable on the extended phase space.

Note that the Hamiltonian constraint remains a first class
constraint even after the introduction of the new secondary
constraint:

{N − c0, H} ≈ 0. (44)

On the contrary, the first class constraint πN ≈ 0 becomes
now a second class constraint after gauge fixing:

{N − c0, πN } ≈ 1. (45)

Therefore, in this particular case, we have two second class
constraint:

χ0 ≡ N − c0, and χ1 ≡ πN . (46)
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Imposing the second class constraint to be preserved on
the constraint surface, we get:

χ̇0 ≈ {N − c0, HT } ≈ 0, (47)

which implies λN ≈ 0, and:

χ̇1 ≈ {πN , HT } ≈ 0, (48)

which is automatically preserved since H ≈ 0.
Following the Dirac procedure described in [40,41] we

introduce the second class constraint matrix [40]:

Cαβ ≡ {χα, χβ}. (49)

and we obtain:

Cαβ =
(

0 1
−1 0

)
, and C−1

αβ =
(

0 −1
1 0

)
. (50)

We are now ready to introduce the Dirac brackets (DB), they
are defined starting from the Poisson brackets and the inverse
of the second class constraint matrix [40,41]:

{ ·, · }DB ≡ { ·, · } − { ·, χα}C−1
αβ

{
χβ, · } . (51)

Equations of motion are derived employing Dirac brackets.
Afterward, we strongly impose the second class constraints
and reduce the degrees of freedom.

The equations of motion for a, φ, πa and πφ , are:

ȧ ≈ {a, HT }DB

≈ − N

2a(2ω + 3)

(
ωπa

3φ
+ πφ

a

)
, (52)

π̇a ≈ {πa, HT }DB

≈ − N

2a2(2ω + 3)

(
ωπ2

a

6φ
+ 2πaπφ

a
− 3φπ2

φ

a2

)

−3Na2U (φ), (53)

φ̇ ≈ {φ, HT }DB

≈ N

2a2(2ω + 3)

(
−πa + 2φπφ

a

)
, (54)

π̇φ ≈ {πφ, HT }DB

≈ − N

2a(2ω + 3)

(
ωπ2

a

6φ2 + π2
φ

a2

)
− Na3 dU

dφ
. (55)

Strongly imposing the second class constraints N = c0 and
πN = 0, see Eqs. (46), we get the equations of motion on the
reduces phase space:

ȧ ≈ − c0

2a(2ω + 3)

(
ωπa

3φ
+ πφ

a

)
, (56)

π̇a ≈ − c0

2a2(2ω + 3)

(
ωπ2

a

6φ
+ 2πaπφ

a
− 3φπ2

φ

a2

)

−3c0a
2U (φ), (57)

φ̇ ≈ c0

2a2(2ω + 3)

(
−πa + 2φπφ

a

)
, (58)

π̇φ ≈ − c0

2a(2ω + 3)

(
ωπ2

a

6φ2 + π2
φ

a2

)
− c0a

3 dU

dφ
. (59)

3.2 Einstein frame

Gauge fixing in the JF (42) implies the following gauge fixing
in the EF:

Ñ = c0(16πGφ)
1
2 , (60)

this condition is implemented introducing an additional sec-
ondary constraint:

Ñ − c0(16πGφ)
1
2 ≈ 0. (61)

Also in this frame the first class constraint π̃N ≈ 0
now becomes a second class constraint after gauge fixing,
because:

{Ñ − c0(16πGφ)
1
2 , π̃N } ≈ 1. (62)

Here also the Poisson bracket between the Hamiltonian
constraint defined in Eq. (22) and the new gauge fixing con-
straint, see Eq. (61), is different from zero:

{Ñ − c0(16πGφ)
1
2 , H̃} = −c0 (16πGφ)3/2 π̃φ

2(2ω + 3)̃a3 ≡ −η �= 0

(63)

where we introduced η.
It looks that also H̃ is now a second class constraint. How-

ever, a linear combination of Hamiltonian constraint and the
primary constraint defines a new Hamiltonian constraint

H̃ ′ ≡ H̃ + η π̃N , (64)

which stays first class

{Ñ − c0(16πGφ)
1
2 , H̃ ′} = −c2

0(16πG)2φπ̃N

4(2ω + 3)̃a3 ≈ 0, (65)

The new total Hamiltonian is:

H̃ ′
T = Ñ H̃ ′ + λ̃N π̃N . (66)

We remain with two second class constraints:

χ̃0 ≡ Ñ − c0(16πGφ)
1
2 , and χ̃1 ≡ π̃N . (67)

These constraints are preserved if:

˙̃χ0 ≈
{
Ñ − c0(16πGφ)

1
2 , H̃ ′

T

}
≈ 0, (68)
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which implies λ̃N ≈ 0, and:

˙̃χ1 ≈ {
π̃N , H̃ ′

T

} ≈ 0, (69)

which is automatically verified since H̃ ′ ≈ 0. The dynamics
stays confined on the reduced phase space defined by the
second class constraints.

The matrix of the (irreducible) second class constraints is:

Cαβ ≡
(

0 1
−1 0

)
, and C−1

αβ ≡
(

0 −1
1 0

)
. (70)

Now we have to evaluate only four equations of motion,
since, after gauge fixing (67), Ñ and π̃N are not anymore
independent dynamical variables. Always using Dirac brack-
ets -defined in Eq. (51) – we get:

˙̃a ≈ {̃
a, H̃ ′

T

}
DB ≈ −Ñ

4πGπ̃a

3̃a
, (71)

˙̃πa ≈ {
π̃a, H̃

′
T

}
DB

≈ Ñ

[
− (2πG)π̃2

a

3̃a2 + 3(8πG)π̃2
φφ̃2

(2ω + 3)̃a4 − 3̃a2V (φ)

]

−3c0 (16πGφ)3/2 π̃φπ̃N

(2ω + 3)̃a4 , (72)

φ̇ ≈ {
φ, H̃ ′

T

}
DB

≈ Ñ
(16πG)π̃φφ2

(2ω + 3)̃a3 − c0 (16πGφ)3/2 π̃N

(2ω + 3)̃a3 , (73)

˙̃πφ ≈ {
π̃φ, H̃ ′

T

}
DB

≈ {
π̃φ, H̃ ′

T

}
−

{
π̃φ, Ñ − c0(16πGφ)

1
2

}
C−1

01

{
π̃N , H̃ ′

T

}

≈ −Ñ

[
16πGπ̃2

φφ̃

(2ω + 3)̃a3 + ã3 dV (φ)

dφ

]

+ c0π̃φπ̃N

(2ω + 3)̃a3

3

2
(16πGφ)1/2 16πG

− 16πGc0

2 (16πGφ)1/2 H̃
′. (74)

Strongly imposing the second class constraints Ñ = c0(16π

Gφ)
1
2 and π̃N = 0, see Eqs. (67), and H̃ ′ = 0 we get the

equations of motion on the reduced phase space:

˙̃a ≈ −c0(16πGφ)
1
2

4πGπ̃a

3̃a
, (75)

˙̃πa ≈ c0(16πGφ)
1
2

[
− (2πG)π̃2

a

3̃a2 + 3(8πG)π̃2
φφ̃2

(2ω + 3)̃a4

−3̃a2V (φ)

]
, (76)

φ̇ ≈ c0(16πGφ)
1
2
(16πG)π̃φφ2

(2ω + 3)̃a3 , (77)

HT HT

Eqs. of mot. Eqs. of mot.

JF ←→ EF

JF ←→ EF

Fig. 2 On the sub-manifold defined by the vanishing of the second
class constraints the equations of motion in the EF (75)–(78) can be
mapped into the equations of motion in the JF (56)–(59), and vice-
versa, using the transformations (29) together with the Hamiltonian
constraint H ≈ 0 defined in Eq. (12). This is a clear consequence of
the canonicity of the Weyl (conformal) transformation between JF and
EF on the sub-manifold (reduced phase space) defined with the gauge
fixing conditions

˙̃πφ ≈ −c0(16πGφ)
1
2

[
16πGπ̃2

φφ̃

(2ω + 3)̃a3 + ã3 dV (φ)

dφ

]
. (78)

Since the lapse and its conjugate momentum are not any-
more dynamical variables, the Hamiltonian transformation
from the JF to the EF (29) is reduced to four independent
dynamical variables, on which it is completely canonical (see
(30)–(33)).

A clear consequence of Hamiltonian canonical equiva-
lence between JF and EF on the reduced phase space is the
mathematical equivalence between JF and EF also at the level
of the equations of motion, see Fig. 2.

4 Hamiltonian Weyl (conformal) transformations in the
general case

The Arnowitt–Deser–Misner decomposition [42] is based on
the assumption that the topology of the Space-Time (M, g)
is M = R ×  [43], the metric tensor is defined as:

g = −(N 2 − Ni N
i )dt ⊗ dt + Ni (dx

i ⊗ dt + dt ⊗ dxi )

+hi j dx
i ⊗ dx j , (79)

where N ≡ N (t, x) is the lapse function, Ni ≡ Ni (t, x)
are the shifts functions and hi j ≡ hi j (t, x) is the three-
dimensional metric tensor on the three-dimensional surface
.

The ADM Lagrangian density LADM associated to the
action (1) is:

LADM = √
h

[
Nφ

(
(3)R + Ki j K

i j − K 2
)

− ω

Nφ

(
N 2hi j DiφDjφ − (φ̇ − Ni Diφ)2

)

+2K (φ̇ − Ni Diφ) − NU (φ) + 2hi j Di N D jφ

]
,

(80)

123
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where Ki j is the extrinsic curvature defined as follows [43]:

Ki j = 1

2N

(
−∂hi j

∂t
+ Di N j + Dj Ni

)
. (81)

The total Hamiltonian HT , in the JF with ω �= − 3
2 (see

Appendix B.1 for the ω = − 3
2 case, and also [44]) is defined

[34] as:

HT =
∫

d3x
(
λNπN + λiπ

i + NH + NiHi
)

, (82)

where H is the Hamiltonian constraint [34]:

H = √
h

{[
−φ 3R + 1

φh

(
π i jπi j − πh

2

2

)]

+ω

φ
DiφD

iφ + 2Di Diφ +U (φ)

+ 1

2hφ

(
1

3 + 2ω

)
(πh − φπφ)2

}
, (83)

and we defined πh ≡ π i j hi j . Hi are the momentum con-
straints

Hi = −2Djπ
j i + (Diφ)πφ . (84)

The Weyl (conformal) transformations (4) define the pas-
sage from the Jordan frame to the Einstein frame for Brans–
Dicke theory. In general, one imposes that the ADM-metric
in the Einstein frame is still

g̃ = −(Ñ 2 − Ñi Ñ
i )dt ⊗ dt + Ñi (dx

i ⊗ dt + dt ⊗ dxi )

+h̃i j dx
i ⊗ dx j . (85)

Provided the following redefinitions of the variables:

Ñ = N (16πGφ)
1
2 , Ñi = Ni (16πGφ),

h̃i j = (16πGφ)hi j , φ̃ = φ, (86)

we easily obtain the ADM Lagrangian density L̃ADM in the
EF starting from (80):

L̃ADM =
√
h̃

16πG

[
Ñ

(
(3) R̃ + K̃i j K̃

i j − K̃ 2
)

−2ω + 3

2Ñφ2

(
Ñ 2h̃i j D̃iφ D̃ jφ − (φ̇ − Ñ i D̃iφ)2

)

−16πGÑV (φ)

]
. (87)

The total Hamiltonian H̃T in the EF, see [34], is:

H̃T =
∫

d3x
(̃
λN π̃N + λ̃i π̃

i + ÑH̃ + ÑiH̃i
)

, (88)

where

H̃ =
√
h̃

16πG

[
−3 R̃ + (16πG)2

h̃

(
π̃ i j π̃i j − π̃2

h

2

)

+ (ω + 3
2 )

φ2 D̃iφ D̃
iφ + 64(πG)2φ2

h̃(ω + 3
2 )

π̃2
φ

]
+

√
h̃V (φ),

(89)

and

H̃i = −2D̃ j π̃
j i + D̃iφπ̃φ, (90)

(see Appendix B.2 for the ω = − 3
2 case).

We have already studied the Hamiltonian analysis of
Branse–Dicke theory [34,35], see also [44–50]. There it
was shown that the Weyl (conformal) transformations from
the Jordan to the Einstein frame (4) in this ADM case for
momenta are:

π̃N = πN

(16πGφ)
1
2

, π̃ i = π i

(16πGφ)
,

π̃ i j = π i j

(16πGφ)
1
2

, π̃φ = 1

φ
(φπφ − πh), (91)

where πh ≡ π i j hi j .
The transformations (86)–(91) are not Hamiltonian canon-

ical transformations on the extended phase space [34,35]. In
fact, the Poisson brackets among the conjugate variables in
the Einstein frame, expressed as function of the canonical
variables in the Jordan frame, are equal to the delta function:
{
Ñ (x), π̃N (x ′)

} = δ(3)(x − x ′),{
Ñi (x), π̃

j (x ′)
}

= δ
j
i δ

(3)(x − x ′),{
h̃i j (x), π̃

kl(x ′)
}

= δki δ
l
jδ

(3)(x − x ′),
{
φ(x), π̃φ(x ′)

} = δ(3)(x − x ′), (92)

while the Poisson brackets among non-conjugate variables
are, in general, zero, e.g. [31]:

{
Ñ (x), π̃ j (x ′)

}
= {

Ñi (x), π̃N (x ′)
} =

{
π̃ i (x), π̃φ(x ′)

}

= {
Ñ (x), Ñ j (x

′)
} =

{
π̃N (x), π̃ j (x ′)

}

=
{
Ñ (x), h̃i j (x ′)

}
=

{
Ñ (x), π̃ i j (x ′)

}
=

{
π̃ i (x), φ(x ′)

}

= {
Ñ (x), φ(x ′)

} =
{
Ñi (x), h̃

i j (x ′)
}

=
{
Ñh(x), π̃ i j (x ′)

}

= {
Ñi (x), φ(x ′)

} = {
π̃N (x), h̃i j (x

′)
} =

{
π̃N (x), π̃ i j (x ′)

}

=
{
π̃ i (x), π̃ i j (x ′)

}
=

{
π̃ i (x), h̃i j (x

′)
}

= {
π̃N (x), φ(x ′)

}

= {
h̃i j (x), φ(x ′)

} = {
h̃i j (x), π̃φ(x ′)

} =
{
π̃ i j (x), φ(x ′)

}

=
{
π̃ i j (x), π̃φ(x ′)

}
= 0, (93)
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but in the following cases,

{Ñ (x), π̃φ(x ′)} = 8πGN (x)δ(3)(x − x ′)√
16πGφ(x)

�= 0,

{Ñi (x), π̃φ(x ′)} = 16πGNi (x)δ
(3)(x − x ′) �= 0,

{π̃N (x), π̃φ(x ′)} = −8πGπN (x)δ(3)(x − x ′)√
(16πGφ(x))3

�= 0,

{π̃ i (x), π̃φ(x ′)} = − π i (x)

(16πGφ2)
δ(3)(x − x ′) �= 0, (94)

the Poisson brackets among non-conjugate variables are not
zero.

5 Gauge fixing in the general case

The strategy suggested by Eq. (94), as we proceeded in
Sect. 3, is to gauge fix the lapse N and also the shifts Ni

field-variables and implement these gauge fixing conditions
as a secondary constraints. These secondary constraints make
the momenta conjugated to the lapse πN and to the shifts
πi second class constraints. Lapse and shifts continue to be
canonical variables as they appear in the definition of the
Poisson brackets. After having defined the Dirac’s brack-
ets associated to these second class constraints [40], we can
solve explicitly the second class constraints and express the
lapse N , the shifts Ni and their conjugated momenta πN and
πi as functions of the other field variables. In this way, we
reduced the degrees of freedom of our system to a reduced
phase space. On this phase space, we will explicitly show
that the Hamiltonian conformal (Weyl) transformations from
the Jordan to the Einstein frames are Hamiltonian canonical
transformations.

5.1 Jordan frame

We start with the gauge-fixing conditions for a Brans–Dicke
theory [34] in the JF

N = c0 , Ni = ci , (95)

being c0 = c0(x) and ci = ci (x) arbitrary functions. Imple-
menting them as a secondary constraints,

N − c0 ≈ 0 , Ni − ci ≈ 0 , (96)

we, immediately, notice that the primary first class constraints
[34]

πN ≈ 0 , π i ≈ 0 , (97)

becomes second class constraints. In fact, we have

{N (x) − c0, πN (x ′)} ≈ δ(3)(x − x ′),

{Ni (x) − ci , π
j (x ′)} = δ

j
i δ(3)(x − x ′). (98)

The Poisson brackets of the secondary gauge-fixing con-
straints with the secondary first class constraints in the JF
[34] are:

{N − c0,H} ≈ 0 , {N0 − c0,Hi } = 0, (99)

{Ni − ci ,H} ≈ 0 , {Ni − ci ,Hi } = 0. (100)

This is enough to check that the Hamiltonian constraint
H and the momentum constraints Hi [34] remain first class
constraints. Summarising the second constraints are:

χ0 ≡ N − c0, χi ≡ Ni − ci ,

χ4 ≡ πN , χi+4 ≡ πi . (101)

These constraints are preserved if:

χ̇0 ≈ {N − c0, HT } ≈ 0, (102)

which implies λN (x) ≈ 0, and if:

χ̇i ≈ {Ni − ci , HT } ≈ 0, (103)

which implies λi (x) ≈ 0. The other two constraints:

χ̇4 ≈ {πN , HT } ≈ 0, (104)

χ̇i+4 ≈ {π i , HT } ≈ 0, (105)

are automatically preserved since Hi ≈ 0 and H ≈ 0.
The next step of the Dirac’s procedure for constrained

systems [40] is to define the Dirac’s brackets using second
class constraints (101); the inverse of second class constraint
matrix, defined in Eq. (49), is:

C−1
αβ ≡

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 −I

1 0 0 0
0 I 0 0

⎞
⎟⎟⎠ , (106)

where I is a 3 × 3 identity matrix.
The Dirac’s brackets (DB) are defined, through the Pois-

son brackets, following Eq. (51). Then, we derive the equa-
tions of motion using these brackets and afterwards we
strongly impose the second class constraints [40]. It is very
straightforward to check that, due to the particular structure
of the Dirac’s brackets (51) the constraint algebra, among
the secondary first class constraints, does not change if we
replace the Poisson brackets with the Dirac’s ones:

{Hi (x),H j (x
′)}DB = {Hi (x),H j (x

′)},
{Hi (x),H(x ′)}DB = {Hi (x),H(x ′)},
{H(x),H(x ′)}DB = {H(x),H(x ′)}. (107)

Now we are ready to write the equations of motion using
Dirac’s brackets. As in the finite dimensional case, (N ,

123
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Ni , πN ,π i ) are not anymore dynamical variables, as con-
sequences of the gauge fixing. The dynamics stays confined
on the surface defined by second class constraints (96)–(97)
using Dirac’s Brackets.

The equations of motion, using Dirac’s brackets, for the
other dynamical variables are the same, as it is easily to see,
as those obtained using Poisson brackets. Starting with hi j ,
we have

ḣi j ≈ {hi j , HT }DB

≈ Di N j + Dj Ni + 2N

φ
√
h

(
πi j − πh

2
hi j

)

+ N

φ
√
h

(πh − φπφ)

(2ω + 3)
hi j . (108)

The equations of motion for the relative momenta π i j are

π̇ i j ≈ {π̇i j , HT }DB

≈ −N
√
hφ

(
(3)Ri j − hi j

2
(3)R

)

+√
h
(
Di D j − hi j Dk Dk

)
(Nφ)

+ Nhi j

2φ
√
h

(
π i jπi j − π2

h

2

)
+ N

φ
√
h

πhπ
i j

−√
h
Nω

φ
DiφD jφ − √

h
Nω

2φ
hi j DkφD

kφ

+√
hhi j DkN Dkφ

+√
h
(
Di ND jφ + D j NDiφ

)

−
√
h

2
hi j NU (φ)

+ hi j

4
√
hφ

(
N

2ω + 3

) (
πh − φπφ

)2

− π i j

√
hφ

(
N

2ω + 3

) (
πh − φπφ

)

+Dk

(
Nkπ i j

)
− 2N√

hφ
π iqπ

j
q

−(DkN
i )πk j − (DkN

j )πki . (109)

The equation of motion for φ turns to be

φ̇ ≈ {φ, HT }DB

≈ Ni Diφ − N√
h(2ω + 3)

(
πh − φπφ

)
. (110)

Finally, the equation of motion for πφ is

π̇φ ≈ {πφ, HT }DB

≈ √
hN (3)R + N

φ2
√
h

(
π i jπi j − πh

2

2

)

+
√
hNω

φ2 DiφD
iφ + 2

√
hDi

(
Nω

φ
Diφ

)

−2
√
h(Di Di )(N ) − N

√
h
dU

dφ
+ Di (N

iπφ)

+ N (πh − φπφ)2

2
√
hφ2(2ω + 3)

+ N (πh − φπφ)πφ√
hφ(2ω + 3)

. (111)

Once we have calculated the equations of motion using
Dirac’s brackets, we impose strongly the second class con-
straints (96)–(97) and implement them into Eqs. (108)–(111)
to get the equations of motion defined on submanifold of the
second class constraints:

ḣi j ≈ 2c0

φ
√
h

(
πi j − πh

2
hi j

)

+ c0

φ
√
h

(πh − φπφ)

(2ω + 3)
hi j , (112)

π̇ i j ≈ −c0
√
hφ

(
(3)Ri j − hi j

2
(3)R

)

+c0
√
h
(
Di D j − hi j Dk Dk

)
(φ)

+ c0hi j

2φ
√
h

(
π i jπi j − π2

h

2

)
+ c0

φ
√
h

πhπ
i j

−√
h
c0ω

φ
DiφD jφ − √

h
c0ω

2φ
hi j DkφD

kφ

−
√
h

2
hi j c0U (φ)

+ hi j

4
√
hφ

(
c0

2ω + 3

) (
πh − φπφ

)2

− π i j

√
hφ

(
c0

2ω + 3

) (
πh − φπφ

)

+ck Dk

(
π i j

)
− 2c0√

hφ
π iqπ

j
q , (113)

φ̇ ≈ ci Diφ − c0√
h(2ω + 3)

(
πh − φπφ

)
, (114)

π̇φ ≈ c0
√
h (3)R + c0

φ2
√
h

(
π i jπi j − πh

2

2

)

+c0

√
hω

φ2 DiφD
iφ + 2c0

√
hDi

(
ω

φ
Diφ

)

−c0
√
h
dU

dφ
+ ci Di (πφ)

+ c0(πh − φπφ)2

2
√
hφ2(2ω + 3)

+ c0(πh − φπφ)πφ√
hφ(2ω + 3)

. (115)

5.2 Einstein frame

The analogous of the gauge-fixing conditions (95) in the EF
are obtained using the transformation (86):

Ñ = c0 (16πGφ)
1
2 , Ñi = ci (16πGφ) . (116)

123
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First notice that the gauge conditions in the Jordan frame
(95) fix the gauge condition in the Einstein frame. These, as
above, are implemented as secondary constraints

Ñ − c0 (16πGφ)
1
2 ≈ 0 , Ñi − ci (16πGφ) ≈ 0. (117)

As in the Jordan frame, see Eqs. (98), the primary first
class constraints becomes second class constraints [34]:

{Ñ (x) − c0 (16πGφ)
1
2 , π̃N (x ′)} ≈ δ(3)(x − x ′),

{Ñi (x) − ci (16πGφ(x)) , π̃ j (x ′)} ≈ δ
j
i δ

(3)(x − x ′).
(118)

The Poisson brackets of the secondary gauge-fixing con-
straints with the secondary first class constraints in the JF,
case ω �= − 3

2 , are

{Ñ (x) − c0(16πGφ(x))
1
2 , H̃(x ′)}

≈ − (16πGφ(x))
3
2 c0π̃φ(x)δ(3)(x − x ′)

4
√
h̃(x)(ω + 3

2 )
, (119)

{Ñ (x) − c0(16πGφ(x))
1
2 , H̃i (x ′)}

≈ −8πG φ(x) c0 Diφ(x)δ(3)(x − x ′)
(16πGφ(x))

1
2

, (120)

{Ñi (x) − ci (16πGφ(x)), H̃(x ′)}
≈ −128ci π̃φ(x)δ(3)(x − x ′)(πG φ(x))2√

h̃(x)(ω + 3
2 )

, (121)

{Ñi (x) − ci (16πGφ(x)), H̃ j (x ′)}
≈ −(16πG)ci D

jφ(x)δ(3)(x − x ′). (122)

It looks that the Hamiltonian constraintH and the momen-
tum constraintsHi are made second class by these secondary
gauge constraints, a phenomenon already observed in (63).
Since we have implemented gauge condition only to reduce
the redundant variables of the momenta associated to the
lapse N and the shifts Ni , we expect, as in Eq. (64), that
some linear combinations of the Dirac’s constraints with a
suitable re-definitions of the Hamiltonian and momentum
constraints will keep them still first class. Elementary con-
siderations, as in Sect. 3, suggest to re-define the Hamiltonian
and momentum constraints as

H̃′ ≡ H̃ + ηN π̃N + γi π̃
i ,

H̃i ′ ≡ H̃i + ηi π̃N + ρ i
k π̃k, (123)

where:

ηN ≡ (16πGφ(x))
3
2 c0π̃φ(x)

4
√
h̃(x)(ω + 3

2 )
, (124)

ηi ≡ 8πG φ(x) c0 Diφ(x)

(16πGφ(x))
1
2

, (125)

γi ≡ 128ci π̃φ(x)(πG φ(x))2√
h̃(x)(ω + 3

2 )
, (126)

ρ i
k ≡ (16πG)ck D

iφ(x). (127)

It is straightforward to check that now H̃′ and H̃i ′ are

first class constraints, while πN , π i , Ñ − c0 (16πGφ)
1
2 and

Ñi − ci (16πGφ) are second class constraints. Therefore, if
we re-define, as in (101), the second class constraints

χ̃0 ≡ Ñ − c0 (16πGφ)
1
2 , χ̃i ≡ Ñi − ci (16πGφ) ,

χ̃4 ≡ π̃N , χ̃i+4 ≡ π̃ i . (128)

The inverse of the second class constraint matrix, C̃αβ ≡
{χ̃α, χ̃β}, is still

C̃−1
αβ ≡

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 −I

1 0 0 0
0 I 0 0

⎞
⎟⎟⎠ , (129)

as in the JF (106). Now the new total Hamiltonian H̃
′
T is

H̃
′
T =

∫
d3x

(̃
λN π̃N + λ̃i π̃

i + ÑH̃′ + ÑiH̃i ′) . (130)

Imposing that the gauge fixing constraints (128) be pre-
served on the constraint surface, we get

˙̃χ0(x) ≈
{
Ñ (x) − c0(16πGφ(x))

1
2 , H̃

′
T

}
≈ 0, (131)

which implies

λ̃N (x) ≈ 0 . (132)

In a similar way imposing

˙̃χ i (x) ≈
{
Ñi (x) − ci (16πGφ(x)), H̃

′
T

}
≈ 0, (133)

it follows

λ̃i (x) ≈ 0 . (134)

The remaining second class constraints χ̃4 ≡ π̃N , χ̃i+4 ≡
π̃ i are automatically preserved, as it is easy to see. Therefore
the total Hamiltonian H̃

′
T reduces to the ADM Hamiltonian

H̃
′
ADM ≡ ∫

d3x
(
ÑH̃′ + ÑiH̃i ′).

We define the Dirac’s brackets following (51), where, now,
the inverse of second class constraint matrices C̃−1

αβ is given
by (129), and immediately, by the very definition of first class
constraints, observe, as for (107),

{H̃′
i (x), H̃

′
j (x

′)}DB = {H̃′
i (x), H̃

′
j (x

′)},
{H̃′

i (x), H̃
′
(x ′)}DB = {H̃′

i (x), H̃
′
(x ′)},

123
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{H̃′
(x), H̃′

(x ′)}DB = {H̃′
(x), H̃′

(x ′)}. (135)

Now we can write the equations of motion, in the Einstein
frame, using Dirac’s brackets

˙̃hi j ≈ {̃hi j , H̃ ′
ADM }DB

≈ D̃i Ñ j + D̃ j Ñi + (32πG)Ñ√
h̃

(
π̃i j − π̃h

2
h̃i j

)
,

(136)

and

˙̃π i j ≈ {π̃ i j , H̃
′
ADM }DB

≈ − Ñ
√
h̃

16πG

(
(3) R̃i j − 1

2
(3) R̃ h̃i j

)

+ (16πG)Ñ

2
√
h̃

h̃i j
(

π̃ pk π̃pk − π̃2
h

2

)

−2
(16πG)Ñ√

h̃

(
π̃ ik π̃

j
k − 1

2
π̃hπ̃

i j
)

− h̃i j
√
h̃ Ñ

2
V (φ)

+
√
h̃

16πG

(
D̃i D̃ j Ñ − h̃i j D̃k D̃k Ñ

)

+
√
h̃ D̃k

(
1√
h̃
Ñ k π̃ i j

)
− π̃ki D̃k Ñ

j − π̃k j D̃k Ñ
i .

(137)

The equation of motion for φ is:

φ̇ ≈ {φ, H̃
′
ADM }DB

≈ 8(πG)φ2

√
h̃
(
ω + 3

2

) π̃φ Ñ + Ñi D̃
iφ. (138)

Finally, the evolution equation for π̃φ results to be

˙̃πφ ≈ {π̃φ, H̃
′
ADM }DB

≈ −
√
h̃

8πG

(
ω + 3

2

)
Ñ

φ3 D̃
iφ D̃iφ

+
√
h̃

8πG

(ω + 3
2 )

φ2 D̃i Ñ D̃iφ

+
√
h̃

8πG

(
ω + 3

2

)
Ñ

φ2 D̃
i D̃iφ

−8Ñ (πG)φπ̃2
φ√

h̃
(
ω + 3

2

) + D̃i (Ñi π̃φ

)

−
√
h̃ Ñ

dV (φ)

dφ
. (139)

Strongly imposing the second class constraints defined in
(128), we eliminate (Ñ , Ñi , π̃N , π̃ i ) as dynamical variables.
Substituting the constraints into the previous equations of
motion (136)–(139) we get:

˙̃hi j ≈ 16πG
(
c j D̃iφ + ci D̃ jφ

)
, (140)

˙̃π i j ≈ −c0 (16πGφ)
1
2
√
h̃

16πG

(
(3) R̃i j − 1

2
(3) R̃ h̃i j

)

+ (16πG)c0 (16πGφ)
1
2

2
√
h̃

h̃i j
(

π̃ pk π̃pk − π̃2
h

2

)

−2
(16πG)c0 (16πGφ)

1
2√

h̃

(
π̃ ik π̃

j
k − 1

2
π̃h π̃

i j
)

−h̃i j
√
h̃c0 (16πGφ)

1
2

2
V (φ)

+ c0

√
h̃

2 (16πGφ)
1
2

[
− D̃iφ D̃ jφ

2φ
+ D̃i D̃ jφ

−h̃i j
(

− D̃kφ D̃kφ

2φ
+ D̃k D̃kφ

)]

+(16πG)
√
h̃ck D̃k

(
1√
h̃

φπ̃ i j
)

−(16πG)π̃ki c j D̃kφ − (16πG)π̃k j ci D̃kφ, (141)

φ̇ ≈ c0(16πGφ)
3
2

2
√
h̃
(
ω + 3

2

) π̃φφ + (16πGφ) ci D̃
iφ, (142)

˙̃πφ ≈ − c0

√
h̃

(16πGφ)
1
2 φ2

(
ω + 3

2

)
D̃iφ D̃iφ

+ 2c0

√
h̃

(16πGφ)
1
2 φ

(
ω + 3

2

)
D̃i D̃iφ

−c0(16πGφ)
3
2 π̃2

φ

2
√
h̃
(
ω + 3

2

) + 16πGci D̃
i (φπ̃φ

)

−c0

√
h̃ (16πGφ)

1
2
dV (φ)

dφ
. (143)

Similarly to the flat FLRW case, the lapse and the shifts –
and their conjugate momenta – are not anymore dynamical
variables. Therefore, the Hamiltonian transformation from
the JF to the EF frames (86)–(91) is reduced to fewer dynam-
ical variables, on which it is completely canonical (see Eqs.
(92)–(94)).

6 Discussion and conclusions

The aim of this article is to clarify several issues and assump-
tions present in the literature.

Firstly, we stressed that it is not true that the Hamiltonian
transformations from the Jordan to the Einstein frame are
canonical on the extended phase-space. In order to make them
Hamiltonian canonical, we have to gauge-fix the lapse func-
tion N and the shifts functions Ni . This gauge-fixing makes
the primary first-class constrains second class and they can
be solved provided that the Dirac’s brackets are defined. On
the reduced phase-space obtained in this way the Hamilto-
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nian transformations from the Jordan to the Einstein frame
are canonical.

If two classical theories are related by a canonical trans-
formation, the symplectic two form is preserved. This is
equivalent to say that the Poisson brackets among phase-
space variables remains unchanged. Two Hamiltonian theo-
ries connected by canonical transformations are not neces-
sarily physical equivalent. We show two examples of Hamil-
tonian canonical transformation between two physically dif-
ferent systems.

In fact, if we consider the case of an uni-dimensional har-
monic oscillator of massm and frequency ω the Hamiltonian
function is:

H = p2

2m
+ mω2

2
q2. (144)

If we apply the following Hamiltonian canonical transforma-
tion [51,52]

q =
√

2P

mω
sin Q, (145)

p = √
2mωP cos Q, (146)

the Hamiltonian function (144) in the new variables (Q, P)

is:

H = ωP . (147)

Since the energy, in this system, is conserved, and then a
constant of motion E , we get:

P = E

ω
. (148)

Therefore

Q̇ = ∂H

∂P
= ω , (149)

then

Q = ωt + α , (150)

α being an integration constant. Replacing in (145) we obtain:

q(t) =
√

2E

mω2 sin(ωt + α). (151)

It is well know that symmetries of a mechanical system
are the generators of Hamiltonian canonical transformations
[51]. They turn to be automorphisms, which preserve the
structure of the equations of motion. The transformations
(145)–(146) are not a symmetries of the system, so they do
not map a physical system into an equivalent one, from a

physical point of view. In fact (145)–(146) map the harmonic
oscillator (144) into a particle moving with constant veloc-
ity (150). Transformations (145)–(146) change the physical
system, mapping it into one whose equations of motion, cfr.
Eq. (149), are easier to solve. This is also, in our opinion, what
is happening, at the end, in the Hamiltonian transformations
from the Jordan to the Einstein frame: we map our theory
into the Einstein frame, where things get easier to solve.

A second example is the Hamiltonian canonical transfor-
mations between the Jordan frame and the anti-Newtonian
frame [35]. This anti-Newtonian frame is defined by the anti-
Newtonian (or anti-gravity) transformations [53–57]. In fact,
[35] the following set of anti-Newtonian (or anti-gravity)
transformations

Ñ∗ = N , π̃N∗ = πN ,

Ñ∗
i = Ni , π̃∗i = π i ,

h̃∗
i j = (16πGφ)hi j , π̃∗i j = π i j

(16πGφ)
1
2

,

φ̃∗ = φ, π̃∗
φ = 1

φ
(φπφ − πh), (152)

are Hamiltonian canonical transformations on the extended
phase space without making any gauge-fixing.

The physics of these transformations is synthesized, in
two dimensions, by the following metric

ds2 = −dt2 + λ2dx2. (153)

When λ > 1 this metric corresponds to a space-time where
the limiting velocity is less than the velocity of light. The
light-cone structure squeezes as λ 
 1; which corresponds to
a situation in which space-like distances enhance over time-
like distances. In the limit λ → ∞, we have that the limit
velocity goes to zero (c → 0). This corresponds to Carroll
gravity and represents the case of strong gravitational fields,
in which the gravitational constant G becomes very large,
G → ∞, and the limit velocity vanishes, c → 0 [53,54].
Clearly, the Brans–Dicke theory in the Jordan frame and the
corresponding theory in the anti-Newtonian frame represent
two different system.

The gauge-fixed Hamiltonian transformations from the
Jordan to the Einstein frames are canonical but only map
solutions of the equations of motion in the Jordan frame into
solutions of the equations of motion in the Einstein frame.
Pairwise, the Hamiltonian canonical “anti-Newtonian” trans-
formations map the solutions of the equations of motion of the
Branse–Dicke theory in the Jordan frame into the solutions
of the equations of motion of an alternative theory of gravity
in the anti-gravity frames. The Jordan-Einstein frames trans-
formations and the anti-Newtonian transformations can be
seen as generators of solutions of the equations of motion. In
fact, a solution of the equations of motion in a frame could
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be used to derive a solution of the equations of motion of the
correspondent theory in the related frame.

These considerations suggest us to stand with part of the
scientific community that are in favor of considering the Jor-
dan frame as the physical frame. The question is still debated
and a solution has not been found yet [14,21,58–65]. At this
point, the check of whether or not the physical observables,
calculated separately in the Einstein and Jordan frame, repro-
duce the same result in both frames, should throw light on
the physical equivalence of Jordan and Einstein frames. This
very point is still quite controversial [7,24,66–73]. We have
not tackled this topic in our analysis and we plan to discuss
it in a future work.

Acknowledgements We thank Jack Wisdom for useful discussions.

Data availability This manuscript has no associated data or the data
will not be deposited. [Authors’ comment: This manuscript is a theo-
retical work and has no associated data.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

A Brans–Dicke theory in flat FLRW universe for
ω = −3/2

A.1 Gauge fixing in the JF

In the particular case ω = −3/2 Brans–Dicke theory (1) is
invariant under Weyl conformal transformations. As a con-
sequence of this symmetry there is an additional primary
constraint [35,36]:

Cφ ≡ 1

2
aπa − φπφ. (154)

The total Hamiltonian in the JF is:

H (−3/2)
T = N

[
− π2

a

24aφ
+ a3U (φ)

]
+ λNπN + λφCφ

= NH (−3/2) + λNπN + λφCφ. (155)

After gauge fixing (42), we note that Cφ remains a first

class constraint, since: {Cφ, N − c0} ≈ 0, {Cφ, H (−3/2)
T } ≈

N
2 H (−3/2) ≈ 0 and {Cφ, πN } ≈ 0, and similarly the Hamil-

tonian constraint: {H (−3/2)
T , N −c0} ≈ 0 and {H (−3/2)

T , N −
c0} ≈ πN .

In this ω = −3/2 case, we have the same two secondary
constraints χ0 ≡ N − c0, and χ1 ≡ πN , see Eq. (46), and
the corresponding Dirac brackets (51).

We verify that, also considering the total Hamiltonian
defined in Eq. (155),

the systems remains on the reduces phase space defined
by the secondary constraints (46) if:

χ̇1 ≈
{
N − c0, H

(−3/2)
T

}
≈ 0, (156)

which implies λN ≈ 0, and if:

χ̇2 ≈
{
πN , H (−3/2)

T

}
≈ 0, (157)

which is automatically verified. N and πN are not anymore
dynamical variables, therefore, we have to evaluate only four
equations of motion using the Dirac brackets:

ȧ ≈
{
a, H (−3/2)

T

}
DB

≈ − Nπa

12aφ
+ λφa

2
, (158)

π̇a ≈ {πa, H
(−3/2)
T }DB

≈ − Nπ2
a

24φa2 − 3Na2U (φ) − λφπa

2
, (159)

φ̇ ≈ {φ, H (−3/2)
T }DB ≈ −λφφ, (160)

π̇φ ≈ {πφ, H (−3/2)
T }DB

≈ −N
π2
a

24aφ2 − Na3 dU (φ)

dφ
+ λφπφ

≈ −N
π2
a

24aφ2 − 2Na3U (φ)

φ
+ λφπφ, (161)

where in the last line we used:

φ
dU (φ)

dφ
= 2U (φ), (162)

see Eq. (3) for ω = −3/2.
Strongly imposing the second class constraints N = c0

and πN = 0, see Eqs. (46), we get the equations of motion
on the reduces phase space in the particular case ω = −3/2:

ȧ ≈ − c0πa

12aφ
+ λφa

2
, (163)

π̇a ≈ − c0π
2
a

24φa2 − 3c0a
2U (φ) − λφπa

2
, (164)

φ̇ ≈ −λφφ, (165)

π̇φ ≈ −c0
π2
a

24aφ2 − 2c0a3U (φ)

φ
+ λφπφ. (166)
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A.2 Gauge fixing in the EF

Using the Weyl (conformal) transformations defined in (29)
it easy to pass from the total Hamiltonian in the JF, see
Eq. (155), to the total Hamiltonian in the EF:

H̃ (−3/2)
T = Ñ ã3

[
−2πGπ̃2

a

3̃a4 + V (φ̃)

]
+ λ̃N π̃N + λφC̃φ

= Ñ H̃ (−3/2) + λ̃N π̃N + λ̃φC̃φ. (167)

The additional primary constraint in the EF becomes:

C̃φ = −φπ̃φ. (168)

Also in this case the gauge fixing in the EF is implemented
introducing the secondary constraint:

Ñ − c0(16πGφ)
1
2 ≈ 0, (169)

see also Eq. (61).
Here, the Hamiltonian constraint remains first class, since:

{H̃ (−3/2), Ñ − c0(16πGφ)
1
2 } = 0, (170)

and also:

{H̃ (−3/2), C̃φ} = −ã3φ
dV (φ)

dφ
= 0. (171)

since in the EF φ
dV (φ)
dφ

= 0.

On the contrary, C̃φ appears now to be second class, due
to the gauge fixing constraint:

{Ñ − c0(16πGφ)
1
2 , C̃φ} = c0(16πGφ)

1
2

2
. (172)

However, it is always possible to redefine the conformal con-
straint as:

C̃φ − c0(16πGφ)
1
2

2
π̃N , (173)

obtaining a first class constraint:

{Ñ − c0(16πGφ)
1
2 , C̃φ − c0(16πGφ)

1
2

2
π̃N } ≈ 0. (174)

Therefore, the total Hamiltonian introduced in Eq. (167),
in this case, is now redefined as:

H̃ ′(−3/2)
T = Ñ H̃ (−3/2) + λ̃N π̃N

+̃λφ

[
−φπ̃φ − c0(16πGφ)

1
2

2
π̃N

]
. (175)

Also in this case, the only two irreducible second class

constraints in EF are: χ̃0 ≡ Ñ −c0(16πGφ)
1
2 and χ̃1 ≡ π̃N ,

see Eq. (67). The definition of the Dirac brackets coincides
with the one of the ω �= −3/2 case, see Sect. 3.2. Evolu-
tion remains confined in the reduced phase space defined
secondary constraints if:

˙̃χ0 ≈
{
Ñ − c0(16πGφ)

1
2 , H̃ ′(−3/2)

T

}
≈ 0, (176)

which implies λ̃N ≈ 0, and if:

˙̃χ1 ≈
{
π̃N , H̃ ′(−3/2)

T

}
≈ 0, (177)

which is automatically verified.
We have to consider only four equations of motion evalu-

ated using the Dirac brackets:

˙̃a ≈
{̃
a, H̃ ′(−3/2)

T

}
DB

≈ −Ñ
4πGπ̃a

3̃a
, (178)

˙̃πa ≈
{
π̃a, H̃

′(−3/2)
T

}
DB

≈ Ñ

[
− (2πG)π̃2

a

3̃a2 − 3̃a2V (φ)

]
, (179)

˙̃φ ≈
{
φ̃, H̃ ′(−3/2)

T

}
DB

≈ −̃λφφ̃, (180)

˙̃πφ ≈
{
π̃φ, H̃ ′(−3/2)

T

}
DB

≈
{
π̃φ, H̃ ′(−3/2)

T

}

−
{
π̃φ, Ñ − c0(16πGφ)

1
2

}
C−1

01

{
π̃N , H̃ ′(−3/2)

T

}

≈ −Ñ ã3 dV (φ)

dφ
+ λ̃φπ̃φ − λ̃φc0

2

16πG

(16πGφ)
1
2

π̃N

+c0

2

16πG

(16πGφ)
1
2

H̃ (−3/2). (181)

Strongly imposing the second class constraints Ñ =
c0(16πGφ)

1
2 and π̃N = 0, see Eq. (67), we get the equa-

tions of motion on the reduced phase space:

˙̃a ≈ −c0(16πGφ)
1
2

4πGπ̃a

3̃a
, (182)

˙̃πa ≈ c0(16πGφ)
1
2

[
− (2πG)π̃2

a

3̃a2 − 3̃a2V (φ)

]
, (183)

˙̃φ ≈ −̃λφφ̃, (184)
˙̃πφ ≈ λ̃φπ̃φ. (185)

In this ω = −3/2 case too, the equations of motion in the
EF (182)–(185) can be transformed in the equations in the JF
(163)–(166) – and vice versa – using the Weyl (conformal)
transformation (29).

This is a clear consequence of the Hamiltonian canonical
equivalence between JF and EF on the reduced phase space.
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B Brans–Dicke theory in ADM spacetime for ω = −3/2

B.1 Gauge fixing in the JF

In the ADM field theory case too, there is and additional first
class constraintCφ due to invariance under Weyl (conformal)
transformations for ω = −3/2. The total Hamiltonian in the
JF is [35,43]:

H (−3/2)
T =

∫
d3x

(
λNπN + λiπ

i + λφCφ

+NH(−3/2) + NiHi (−3/2)
)

, (186)

where λN = λN (x), λi (x), and λφ(x) are Lagrange multi-
pliers, πN , π i and Cφ are primary Dirac’s constraints, Cφ

being:

Cφ = π i j hi j − φπφ. (187)

The Hamiltonian constraint H, see [35], is

H(−3/2) = √
h

{[
−φ 3R + 1

φh

(
π i jπi j − πh

2

2

)]

− 3

2φ
DiφD

iφ + 2Di Diφ +U (φ)

}
, (188)

and the momentum constraints Hi (−3/2)

Hi (−3/2) = −2Djπ
j i + Diφπφ. (189)

As we stressed several times the gauge-fixing conditions,
also for the ω = − 3

2 Brans–Dicke theory, in the JF are

N = c0 Ni = ci , (190)

which are implemented as secondary constraints:

χ0 ≡ N − c0 ≈ 0 , χi ≡ Ni − ci ≈ 0 . (191)

The previously correspondent primary first class constraints
[34]

χ4 ≡ πN ≈ 0 , χi+4 ≡ π i ≈ 0 , (192)

become second class constraints since:

{N (x) − c0, πN (x ′)} ≈ δ(3)(x − x ′)
{Ni (x) − ci , π

j (x ′)} = δ
j
i δ

(3)(x − x ′). (193)

Imposing the second class constraints to be preserved we
have:

χ̇0 ≈ {N − c0, HT } ≈ 0, (194)

which implies λN (x) ≈ 0, and:

χ̇i ≈ {Ni − ci , HT } ≈ 0, (195)

which implies λi (x) ≈ 0. The other two second class con-
straints:

χ̇4 ≈ {πN , HT } ≈ 0, (196)

χ̇i + 4 ≈ {π i , HT } ≈ 0, (197)

are automatically preserved.
The equations of motion, calculated with the Dirac’s

Brackets and substituting the second class constraints (191)–
(192) imposed strongly, are:

ḣi j ≈ {hi j , HT }DB

≈ λφhi j + 2c0

φ
√
h

(
πi j − πh

2
hi j

)
, (198)

π̇ i j ≈ {π i j , HT }DB

≈ −λφπ i j − c0
√
hφ

(
(3)Ri j − hi j

2
(3)R

)

+c0
√
h
(
Di D j − hi j Dk Dk

)
(φ)

+ c0hi j

2φ
√
h

(
π i jπi j − π2

h

2

)
+ c0

φ
√
h

πhπ
i j

−√
h
c0ω

φ
DiφD jφ − √

h
c0ω

2φ
hi j DkφD

kφ

−
√
h

2
hi j c0U (φ)

+ck Dk

(
π i j

)
− 2c0√

hφ
π iqπ

j
q , (199)

φ̇ ≈ {φ, HT }DB ≈ −λφφ + ci Diφ, (200)

π̇φ ≈ {πφ, HT }DB

≈ λφπφ + c0
√
h (3)R + c0

φ2
√
h

(
π i jπi j − πh

2

2

)

+c0

√
hω

φ2 DiφD
iφ + 2c0

√
hDi

(
ω

φ
Diφ

)

−c0
√
h
dU

dφ
+ ci Di (πφ). (201)

B.2 Gauge fixing in the EF

Under Weyl (conformal) transformations, we easily obtain
the total Hamiltonian in the EF [35]:

H̃ (−3/2)
T =

∫
d3x

(̃
λN π̃N + λ̃i π̃i + λ̃φC̃φ

+ÑH̃(−3/2) + Ñ iH̃(−3/2)
i

)
, (202)
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here we have, see always [35]:

C̃φ = −φπ̃φ, (203)

H̃(−3/2) =
√
h̃

16πG

[
−3 R̃ + (16πG)2

h̃

(
π̃ i j π̃i j − π̃2

h

2

)]

+
√
h̃V (φ), (204)

and:

H̃(−3/2)
i = −2D̃ j π̃

j
i . (205)

As remarked in the case ω �= − 3
2 , see Eq. (116), the

gauge-fixing conditions happen to be:

Ñ = c0 (16πGφ)
1
2 , Ñi = ci (16πGφ) , (206)

and, as usual, we implement them as secondary Dirac’s con-
straints:

Ñ − c0 (16πGφ)
1
2 ≈ 0 , Ñi − ci (16πGφ) ≈ 0. (207)

They continue to make, as in the previous cases (see
Eq. (98) and Eq. (118)), the primary first-class constraints,
π̃N (x) ≈ 0 and π̃ j (x) ≈ 0, second class:

{Ñ (x) − c0 (16πGφ)
1
2 , π̃N (x ′)} ≈ δ(3)(x − x ′),

{Ñi (x) − ci (16πGφ(x)) , π̃ j (x ′)} ≈ δ
j
i δ

(3)(x − x ′).
(208)

It is quite straightforward to check that, contrary to what
happens in the case ω �= − 3

2 in the Einstein frame, see
Sect. 5.2, Hamiltonian and momentum constraints are clearly
first class (there is no need of a re-definition):

{Ñ (x) − c0 (16πGφ)
1
2 , H̃(−3/2)(x ′)} ≈ 0,

{Ñi (x) − ci (16πGφ(x)) , H̃(−3/2)(x ′)} ≈ 0

{Ñ (x) − c0 (16πGφ)
1
2 , H̃(−3/2)

i (x ′)} ≈ 0,

{Ñi (x) − ci (16πGφ(x)) , H̃(−3/2)
i (x ′)} ≈ 0. (209)

But, we notice the following:

{Ñ (x) − c0 (16πGφ)
1
2 , C̃φ} ≈ c0 (16πGφ)

1
2

2
,

{Ñi (x) − ci (16πGφ(x)) , C̃φ} ≈ ci (16πGφ) , (210)

that is C̃φ looks, “apparently”, second-class Dirac’s con-
straint. If we re-define C̃φ as

C̃ ′
φ ≡ −φπ̃φ − c0 (16πGφ)

1
2

2
π̃N − ci (16πGφ) π̃ i , (211)

C̃ ′
φ stays first class as it is quite easy to check.

Therefore, the new total Hamiltonian H̃
′(−3/2)
T is:

H̃
′(−3/2)
T =

∫
d3x

(̃
λN π̃N + λ̃i π̃i + λ̃φC̃

′
φ

+ÑH̃(−3/2) + Ñ iH̃(−3/2)
i

)
. (212)

As we did in the Sect. 5.2, we re-define the second class
constraints as:

χ̃0 ≡ Ñ − c0 (16πGφ)
1
2 , χ̃i ≡ Ñi − ci (16πGφ) ,

χ̃4 ≡ π̃N , χ̃i+4 ≡ π̃ i . (213)

Imposing also here the gauge-fixing conditions (207) to be
preserved, we have:

˙̃χ0 ≈
{
Ñ (x) − c0(16πGφ(x))

1
2 , H̃

′(−3/2)
T

}
≈ 0, (214)

which gets λ̃N (x) ≈ 0, and analogously from:

˙̃χ i ≈
{
Ñi (x) − ci (16πGφ(x)), H̃

′(−3/2)
T

}
≈ 0, (215)

it follows λ̃i (x) ≈ 0. Note that, also in this case, ˙̃χ4 and ˙̃χ i+4
are automatically preserved.

As usual, the second class Dirac’s constraint matricesCαβ

is:

C̃−1
αβ ≡

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 −I

1 0 0 0
0 I 0 0

⎞
⎟⎟⎠ . (216)

The equations of motion, calculated with Dirac’s brackets
and imposing strongly the second class constraints are:

˙̃hi j ≈ {̃hi j , H̃
′(−3/2)
T }DB

≈ 16πG
(
c j D̃iφ + ci D̃ jφ

)

+ (32πG)c0 (16πGφ)
1
2√

h̃

(
π̃i j − π̃h

2
h̃i j

)
, (217)

˙̃π i j ≈ {π̃ i j , H̃
′(−3/2)
T }DB

≈ −c0 (16πGφ)
1
2
√
h̃

16πG

(
(3) R̃i j − 1

2
(3) R̃ h̃i j

)

+ (16πG)c0 (16πGφ)
1
2

2
√
h̃

h̃i j
(

π̃ pk π̃pk − π̃2
h

2

)

−2
(16πG)c0 (16πGφ)

1
2√

h̃

(
π̃ ik π̃

j
k − 1

2
π̃h π̃

i j
)

−h̃i j
√
h̃c0 (16πGφ)

1
2

2
V (φ)

+ c0

√
h̃

2 (16πGφ)
1
2

[
− D̃iφ D̃ jφ

2φ
+ D̃i D̃ jφ
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−h̃i j
(

− D̃kφ D̃kφ

2φ
+ D̃k D̃kφ

)]

+(16πG)
√
h̃ck D̃k

(
1√
h̃

φπ̃ i j
)

−(16πG)π̃ki c j D̃kφ − (16πG)π̃k j ci D̃kφ, (218)

φ̇ ≈
{
φ, H̃ ′(−3/2)

T

}
DB

≈ −̃λφφ, (219)

˙̃πφ ≈
{
π̃φ, H̃ ′(−3/2)

T

}
DB

≈ λ̃φπ̃φ. (220)

We stressed several times that, once we impose strongly
the second class constraints, we can solve explicitly them and
reduce the degrees of freedom of the phase space. Then, the
transformation from the Jordan to the Einstein frame, on this
reduced phase space, is Hamiltonian canonical transforma-
tion also in the case ω = − 3

2 . As a corollary, we can map the
equations of motion in the JF into the equations of motion in
the EF (and vice-versa).
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