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Abstract The enforcement of the unimodularity condition
in a gravity theory by means of a Lagrange multiplier leads,
in general, to inconsistencies upon quantization. This is so,
in particular, when the classic linear splitting of the met-
ric between the background and quantum fields is used. To
avoid the need of introducing such a Lagrange multiplier
while using the classic linear splitting, we carry out the
quantization of unimodular gravity with extra Weyl sym-
metry by using Becchi–Rouet–Stora–Tyutin (BRST) tech-
niques. Here, two gauge symmetries are to be gauge-fixed:
transverse diffeomorphisms and Weyl transformations. We
perform the gauge-fixing of the transverse diffeomorphism
invariance by using BRST transformations that involve anti-
symmetric ghost fields. We show that these BRST trans-
formations are compatible with the BRST transformations
needed to gauge-fix the Weyl symmetry, so that they can
be combined in a set of transformations generated by a sin-
gle BRST operator. Newton’s law of gravitation is derived
within the BRST formalism we put forward as well as the
Slavnov–Taylor equation.

1 Introduction

Unimodular gravity – see Refs. [1] and [2], for introductions
– solves [3–7] a part of the so-called Cosmological Constant
problem, for in that gravity theory the vacuum energy does
not gravitate. Indeed, all the field configurations in unimod-
ular gravity have got determinant equal to −1.

There exists sundry approaches to the quantization of uni-
modular gravity, e.g., Refs. [8–16]. It is not known whether
they give rise to the same quantum theory on a Minkowski
background, for they involve different sets of ghosts. This is
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an open problem, as it is their equivalence to quantum Gen-
eral Relativity when the Cosmological Constant is not set to
zero.

It has been shown recently – see Ref. [17] – that the uni-
modularity condition cannot be implemented in the path inte-
gral by using a Lagrange multiplier unless the unimodularity
condition be equivalent to imposing a linear constraint on the
graviton field. This fact precludes the use of the classic lin-
ear splitting of the gravity field into background metric and
graviton field if the unimodularity condition is to be enforced
by using a Lagrange multiplier. As also shown in Ref. [17] the
problem goes away if the so-called exponential splitting [18]
is used. We think that it is quite a drawback to have a formal-
ism where the classic linear splitting – which is standardly
used in General Relativity – cannot be employed. This is so
even sidestepping the issue that even in General Relativity the
exponential parametrization may not yield the same quantum
theory as the linear splitting: the exponential parametrization
is not a field redefinition of the linear splitting – see Ref. [19]
and Refs. therein.

In Refs. [9,11,14] and [16] the unimodularity condition is
imposed by using a Lagrange multiplier and thus those for-
malisms do not make sense for the linear splitting of the met-
ric. In Refs. [8,12,13] and [15] the exponential parametriza-
tion is implemented already at classical level and prior to
quantization. The BRST formalism put forward in Ref. [10]
admits any kind of parametrization in terms of background
and quantum fields – the linear and exponential parametriza-
tions, in particular – for no Lagrange multiplier is introduced.
Indeed, in Ref. [10], building on Refs. [20] and [21], the
unimodularity condition is solved, prior to quantization, by
expressing the unimodular metric, ĝμν , in terms of an uncon-
strained tensor field gμν as follows

ĝμν(x) = gμν(x)

|g|1/D(x)
. (1.1)
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D is the space-time dimension. Several properties of the for-
malism set up in Ref. [10] have been analyzed leading to
sound results – see Refs. [22,23] and [24], for recent pub-
lications. Let us recall that because of Eq. (1.1) the clas-
sical action of unimodular gravity has two gauge symme-
tries: transverse diffeomorphisms and Weyl transformations
of gμν . This is why the gravity theory in question is called
Weyl invariant unimodular gravity.

As we have pointed out above, the BRST formalism put
forward in Ref. [16] breaksdown at the quantum level if the
classic linear splitting of the gravity field is employed. This
is the parametrization originally considered in Ref. [16].
Of course, the inconsistency disappears if the exponential
parametrization is used. The question arises as to whether this
formalism can be modified so that the classic linear splitting
can be utilized consistently.

The purpose of this paper is to show that, by using
Eq. (1.1), the framework of Ref. [16] can be combined with
part of the formalism of Ref. [10] so that the linear splitting
of the gravity field works at the quantum level: no Lagrange
multiplier is needed here to enforce the unimodularity con-
dition. That this combination works is non trivial since the
implementation of Eq. (1.1) introduces an additional gauge
symmetry – a Weyl symmetry – in the theory. This gauge
symmetry leads to additional BRST transformations which
might clash with BRST transformations arising from the
transverse gauge transformations as defined in Ref. [16]. Let
us point out that in the unimodular gravity with Weyl invari-
ance formalism -see [2] and references therein – the gravity
field entering the path integral measure is gμν in (1.1), not the
unimodular metric ĝμν(x). Hence, the linear splitting must
be applied to gμν , not to ĝμν(x).

The layout of this paper is as follows. In Sect. 2 we dis-
cuss the Becchi–Rouet–Stora–Tyutin (BRST) quantization
of our unimodular theory. This second section contains sev-
eral subsections since our unimodular theory has two gauge
symmetries, namely, transverse diffeomorphisms and Weyl
transformations. In Sect. 2.1, we carry out the gauge-fixing
of the invariance under transverse diffeomorhisms by adapt-
ing to our case the BRST formalism of Ref. [16]. Section
2.2 is devoted to the analysis of the gauge-fixing of the Weyl
symmetry by using BRST methods. In this latter subsec-
tion, we show the compatibility of the BRST transforma-
tions associated to transverse diffeomorphism and the BRST
transformations coming from the Weyl transformations. We
prove that the two BRST operators, each generating one of
those two BRST transformations, can be combined into a
single BRST operator. This single operator gives rise to the
full BRST invariance of the theory. In Sect. 2.3, we give
the full BRST invariant action of the theory. In Sect. 2, we
compute the free graviton propagator and show that it prop-
agates physical free gravitons into physical free gravitons as
befits a quantum theory of gravitons. We make a consistency

check of the BRST formalism we have put forward by obtain-
ing, in Sect. 4, Newton’s potential. In Sect. 5, we derive the
Slavnov–Taylor equation, and the corresponding linearized
Slavnov–Taylor operator, for cohomological techniques will
be needed to obtain sensible renormalized radiative correc-
tions: as we shall discuss, dimensional regularization does
not preserve the BRST symmetry of the theory.

2 BRST quantization

In 4 space-time dimensions, the classical action of the uni-
modular theory with Weyl invariance reads

Sclass = 2
∫

d4x R
[
ĝ
]
, (2.1)

where ĝμν is defined in terms of the unconstrained field gμν

in Eq. (1.1), gμν being the dynamical field variable. R
[
ĝ
]

above denotes the Ricci scalar for unimodular metric ĝμν .
The action in Eq. (2.1) has two gauge symmetries acting

on gμν : it is invariant under transverse diffeomorphisms and
under Weyl transformations. The infinitesimal transverse dif-
feomorphisms1 xμ → xμ + ξ

μ
T , with ∂μξ

μ
T = 0, are defined

as follows:

gμν → gμν + δgμν, δgμν = ∇μξT
ν + ∇νξ

T
μ, (2.2)

where ξT
μ ≡ gμνξ

ν
T and ∇μ is the covariant derivative for

gμν . The infinitesimal Weyl transformations read

gμν → gμν + δgμν, δgμν = 2θgμν,

θ being an infinitesimal scalar field. Notice that these trans-
formations leave ĝμν , as defined in Eq. (1.1), invariant by
construction.

Before going ahead, let us show that the transformation in
(2.2) generates an infinitesimal transverse diffeomorphism
of ĝμν :

δĝμν = δ

(
gμν

(−g)1/4

)
= 1

(−g)1/4

(
δgμν − 1

4g
gμνδg

)

= 1

(−g)1/4

(
∇μξT

ν + ∇νξ
T
μ − 1

2
gμν∇μξ

μ
T

)
(2.3)

= ∇̂μξ̂T
ν + ∇̂ν ξ̂

T
μ,

where ξ̂T
μ = ĝμνξ

ν
T and ∇̂μ is the covariant derivative with

regard to ĝμν . The previous variation of ĝμν leaves its deter-

1 Bear in mind that infinitesimal transverse diffeomorphims are the
infinitesimal version of coordinate transformations with determinant
equal to 1. Under these coordinate transformations the determinant,
g(x), of gμν is a scalar so that ĝμν and gμν are tensors – making Sclass
an invariant – under such changes of coordinates.
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minant invariant, since ∇̂μξ
μ
T = ∂μξ

μ
T for a unimodular met-

ric. Indeed

δĝ = ĝĝμνδĝμν = −ĝμν
(
∇̂μξ̂T

ν + ∇̂ν ξ̂
T
μ

)

= −2∇̂μξ
μ
T = −2∂μξ

μ
T = 0. (2.4)

Below we shall use

δgμν = −∇μξν
T − ∇νξ

μ
T , δĝμν = −∇̂μξν

T − ∇̂νξ
μ
T , (2.5)

which are equivalent to Eqs. (2.2) and (2.3), respectively

2.1 BRST formalism for the transverse diffeomorphisms

In this subsection we shall adapt the formalism put forward in
Ref. [16] to case at hand, i.e., the metric, ĝμν , will be unimod-
ular from the very beginning, its transverse diffeomorphisms
being generated by the transverse diffeomorphisms of gμν –
see Eqs. (2.2), (2.3) and (2.4) – and the transversality of ξ

μ
T

is not with regard to the covariant derivative of gμν , but with
regard to the partial derivative. This entails a modification,
though minor, of the formalism in Ref. [16], for transversality
in Ref. [16] – see its Eq. (1.8) – is with regard to the covariant
derivative of the metric; this metric being unimodular only
after having solved for the Lagrange multiplier.

Although only a minor modification of the formalism in
Ref. [16] is needed for our transverse diffeomorphisms, we
shall give all the relevant details to make this subsection self-
consistent and to set the notation.

Let BD denote the BRST operator with ghost num-
ber 1 and let us introduce the transverse ghost fields cμ

T
(Nghost(c) = 1) and cν

T (Nghost(c) = −1), where Nghost

stands for the ghost number. The action of BD on gμν reads

BDg
μν = −∇μcν

T − ∇νcμ
T , (2.6)

which in turn – see Eq. (2.3) – induces the following BRST
transformation of ĝμν :

BDĝ
μν = −∇̂μcν

T − ∇̂νcμ
T . (2.7)

Equations (2.6) and (2.7) are the BRST counterparts of
the transformations in Eq. (2.5), respectively. Note that ∇μ

denotes the covariant derivative with regard to gμν .
We should keep in mind that when a linear splitting of gμν

into background, gμν , and quantum, hμν , fields is carried out,

gμν = gμν + hμν,

the BRST transformation in Eq. (2.6) boils down, by defini-
tion, to

BDgμν = 0,

BDhμν = BDgμν = ∇μc
T
ν + ∇νc

T
μ

= ∇μ(gνρc
ρ
T) + ∇ν(gμρc

ρ
T) + cρ

T∇ρhμν

+(∇μc
ρ
T)hρν + (∇νc

ρ
T)hρμ. (2.8)

∇μ is the covariant derivative with regard to gμν .
The action of the BRST operator on the ghost fields is

defined to be

BDc
μ
T = ∇̂ν(c

ν
Tc

μ
T ), (2.9)

BDc
μ
T = ibμ

T , (2.10)

BDb
μ
T = 0. (2.11)

bμ
T is the transverse Nakanishi-Lautrup auxiliary field. Let

us recall that

∇̂μc
μ
T = ∂μc

μ
T = 0, ∇̂μc

μ
T = ∂μc

μ
T = 0 and that

∇̂μb
μ
T = ∂μb

μ
T = 0. (2.12)

The reader should always bear in mind that, for any vector
field Vμ,

∇̂μV
μ = ∂μV

μ,

since ĝμν has determinant equal to −1.
Taking into account the previous definitions and that

∇̂ν(c
ν
Tc

μ
T ) = cν

T∇̂νc
μ
T = cν

T∂νc
μ
T , (2.13)

it is easy to show that BD is nilpotent:

B2
D = 0.

Once we have defined the action of the BRST operator
on the fields, we may try to use, in a naïve way, the BRST
quantization procedure and add to the classical lagrangian
the following BRST-exact object

L(D)
ghost = −iBD

[
ĝμνc

ν
T∂λĝ

λμ
]
, (2.14)

to define the path integral. But this will not do for the ghost
fields we have introduced are constrained fields and we do
not know its integration measure. To overcome this difficulty
we shall solve the constraints as done in Ref. [16]. Indeed, the
constraints in Eq. (2.12) can be solved by introducing three
unconstrained, antisymmetric tensor fields cνμ, cνμ and bνμ

and express cμ
T , cμ

T and bμ
T in terms of the former as follows

cμ
T = ∇̂νc

νμ, cμ
T = ∇̂νc

νμ, and bμ
T = ∇̂νb

νμ. (2.15)

Notice that ∇̂νcνμ = ∂νcνμ, and so on, since the metric ĝμν is
unimodular; however, we have decided to keep the covariant
derivative for ĝμν to render any comparison with the results
in Ref. [16] straightforward.
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We may now define the path integral of the theory by
integrating over de unconstrained fields cνμ, cνμ and bνμ.
But, unfortunately that path integral will not be well defined
because the use of Eq. (2.15) will give rise to a new gauge
invariance: the substitutions

cνμ → cνμ + ∇̂ρd
ρνμ, cνμ → d

νμ + ∇̂ρd
ρνμ

,

bνμ → bνμ + ∇̂ρb
ρνμ (2.16)

do not change the values of cμ
T , cμ

T and bμ
T , respectively, if

cρνμ, d
ρνμ

and bρνμ are antisymmetric tensor fields. This
gauge invariance comes from the mismatch between the 3
independent components of, say, cμ

T and the 6 independent
components of cρνμ. We shall fix this mismatch, and remove
the corresponding gauge invariance, by gauge-fixing. This
gauge-fixing will demand the introduction of new ghosts –
called second generation ghosts, which will be antisymmetric
tensor fields of rank 3. This second generation ghosts will
give rise in turn to a new gauge symmetry, which will lead
to the introduction of a third generation of new ghosts –
rank 4 antisymmetric tensors. This process is called ghost
for ghost process. As we shall see below the ghost for ghost
process stops after introducing the rank 4 tensor ghosts if
the dimension of space-time is 4, but this is not so if the
dimension of space-time is greater than 4. We thus conclude
that the field content of the quantum theory depends on the
spacetime dimension.

2.1.1 BRST variations of the first generation ghosts

Let us work out the action of the BRST operator BD on the
first generation ghosts cνμ, cνμ and bνμ, which are the rank
2 antisymmetric tensor fields introduced in Eq. (2.15).

Let Vμν1...νn a rank n+1 antisymmetric tensor field. Then
the following result

∇̂μV
μν1...νn = ∂μ

(
Vμν1...νn

)

leads to

BD

(
∇̂μV

μν1...νn
)

= ∇̂μ

(
BDV

μν1...νn
)
.

Taking into account the previous equation and Eqs. (2.9)
and (2.15), one gets

∇̂ν

(
BDc

νμ − cν
Tc

μ
T

) = 0.

The general solution to this equation reads

BDc
νμ = cν

Tc
μ
T + i∇̂ρd

ρνμ.

The symbol dρνμ denotes a new ghost which is an antisym-
metric tensor field of rank 3 and it is called a second gener-
ation ghost.

We are now ready to define the action of BD on the first
generation ghost, antighost and auxiliary field:

BDc
νμ = cν

Tc
μ
T + i∇̂ρd

ρνμ,

BDc
νμ = ibνμ,

BDb
νμ = 0. (2.17)

respectively. Notice that the two last equations above are
consistent with Eqs. (2.10) and (2.11), respectively.

Let us express L(D)
ghost in Eq. (2.14) in terms of the first

generation ghosts:

L(D)
ghost,1 ≡ L(D)

ghost = −iBD

[
ĝμν∇̂ρc

ρν · ∂λĝ
λμ

]

= ĝμν∇̂ρb
ρν · ∂λĝ

λμ + 2i∇̂(μ∇̂ρcν)ρ · ∇̂ρc
ρν · ∂λĝ

λμ

+2i ĝμν∇̂ρc
ρμ · ∂λ∇̂(λ∇̂ρc

μ)ρ. (2.18)

The symbol (μ1, μ2...) stands for full symmetrization so that
already symmetric objects are left invariant.

2.1.2 Second generation ghosts and BRST transformations

We have already discussed in the last paragraph of Sect. 2.1
that the transformations in Eq. (2.16) are gauge symmetries
of the theory, the fields dρνμ, d

ρνμ
and bρνμ being referred

to as second generation ghosts. It is apparent that the ghost
Lagrangian in Eq. (2.18) is invariant under the changes in
Eq. (2.16). Notice that in the previous subsection the field
dρνμ has shown up already in the BRST transformations of
the first generation ghost cνμ – see Eq. (2.17).

To remove the gauge invariance generated by the need of
second generation ghosts one introduces gauge-fixing con-
ditions. The gauge-fixing conditions we choose read

∇[ρcνμ] = 0 and ∇[ρcνμ] = 0. (2.19)

The Lagrange multiplier BRST doublets needed to imple-
ment them in the Lagrangian are

(dρνμ, cρνμ) and (bρνμ, cρνμ), (2.20)

respectively. The symbol [μ1, μ2...]denotes antisymmetriza-
tion with regard to the indices so that antisymmetric indices
are left invariant. Note that the gauge-fixing term for the
gauge transformation of bνμ is obtained using the BRST
transformation of cνμ.

Let us now introduce the BRST transformations of the
second generation ghosts. The first equation in (2.17) and
the requirement that B2

D = 0 leads to the following equation
to be satisfied by BDdρνμ:

∇̂ρ

(
iBDd

ρνμ + cρ
Tc

ν
Tc

μ
T

) = 0.
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The general solution to this equation runs thus:

BDd
ρνμ = icρ

Tc
ν
Tc

μ
T − ∇̂σ t

σρνμ. (2.21)

The symbol tσρνμ stands for a new ghost field which is a
rank 4 antisymmetric field, i.e., a third generation ghost.

We are now ready to define the action of the BRST oper-
ator on the second generation ghosts:

BDd
ρνμ = icρ

Tc
ν
Tc

μ
T − ∇̂σ t

σρνμ,

BDd
ρνμ = cρνμ,

BDb
ρνμ = cρνμ,

BDc
ρνμ = BDc

ρνμ = 0. (2.22)

The new fields cρνμ and cρνμ constitute BRST doublets with
d

ρνμ
and bρνμ, respectively. Recall Eq. (2.20) and the key

point that indices are raised and lowered with the unimodular
metric ĝμν .

Furnished with the gauge-fixing conditions in Eq. (2.19)
and the BRST transformations in Eq. (2.22), we are ready to
introduce a ghost Lagrangian that removes the gauge sym-
metry arising from the introduction of second generation
ghosts, i.e., the gauge invariance under the transformations
in Eq. (2.16):

L(D)
ghost,2 = i

2
BD

[
d

ρνμ∇̂ρcνμ + bρνμ∇̂ρcνμ

]

= i

2

[
cρνμ∇̂ρcνμ − ∇̂ρd

ρνμ · BD
(
ĝνσ ĝμκ

)
cσκ

− ∇̂ρdρνμ ·
(
cν

Tc
μ
T + i∇̂σd

σνμ
)

+ cρνμ∇̂ρcνμ

− ∇̂ρb
ρνμ · BD

(
ĝνσ ĝμκ

)
cσκ −i∇̂ρbρνμ · bνμ

]
.

(2.23)

2.1.3 Third generation ghosts and their BRST
transformations

At least one gauge symmetry still occurs in our theory – we
have not discussed the Weyl symmetry yet. This gauge sym-
metry is generated by rank 4 antisymmetric fields and arises
from the invariance of the ghost Lagrangian in Eq. (2.23)
under the following transformations

dρνμ → dρνμ − ∇̂σ tσρνμ,

d
ρνμ → d

ρνμ + ∇̂σ t
σρνμ

, bρνμ → bρνμ + ∇̂σbσρνμ,

cρνμ → cρνμ + ∇̂σ cσρνμ, b
ρνμ → cρνμ + ∇̂σ cσρνμ.

(2.24)

The fields tσρνμ, tσρνμ, bσρνμ, b
σρνμ

, cσρνμ and cσρνμ,
which generate the previous gauge transformations will be
promoted to ghost fields becoming third generation ghosts.

To remove the gauge invariance of the Lagrangian under
the gauge transformations in Eq. (2.24), we shall introduce –
as done in Ref. [16] – the following gauge-fixing conditions:

∇[σdρνμ] = 0, ∇[σdρνμ] = 0 and ∇[σbρνμ] = 0.

(2.25)

The Lagrange multiplier BRST doublets used to implement
the previous gauge-fixing conditions are the following

(tσρνμ, dσρνμ), (cσρνμ, dσρνμ) and (cσρνμ, bσρνμ),

respectively.
In the previous list, we have not included any gauge-fixing

conditions for cρνμ and cρνμ since they will be generated, via
the action of the BRST operator, by the gauge-fixing terms in
the Lagrangian that implement the gauge-fixing conditions
for bρνμ and d

ρνμ
, respectively – see Eq. (2.27) below.

Let us define next the BRST transformations for the third
generation ghosts tσρνμ, tσρνμ, bσρνμ, cσρνμ and cσρνμ. Let
us begin with the BRST transformation of tσρνμ. Since we
must have B2

D = 0, Eq. (2.21) leads to

∇̂σ

(
BDt

σρνμ − icσ
Tc

ρ
Tc

ν
Tc

μ
T

) = 0.

The general solution to this equation reads

BDt
σρνμ = icσ

Tc
ρ
Tc

ν
Tc

μ
T .

No new ghosts occur this time since, in 4 dimensions, no
rank 5 antisymmetric tensor exists. We are now in the right
position to define the BRST transformations

BDt
σρνμ = icσ

Tc
ρ
Tc

ν
Tc

μ
T , BDt

σρνμ = id
σρνμ

,

BDc
σρνμ = idσρνμ, BDc

σρνμ = ibσρνμ,

BDd
σρνμ = BDd

σρνμ = BDb
σρνμ = 0. (2.26)

The gauge-fixing conditions in Eq. (2.25) and the BRST
transformations in Eq. (2.26) lead to the following part of
the BRST invariant Lagrangian which carries out the gauge-
fixing of the symmetries in Eq. (2.24):

L(D)
ghost,3 = −i

6
BD

[
−tσρνμ

(
∇̂σdρνμ + α

4
dσρνμ

)

+cσρνμ∇̂σdρνμ + cσρνμ∇̂σbρνμ

]

= 1

6

[
− d

σρνμ∇̂σdρνμ − α

4
d

σρνμ
dσρνμ

+ i∇̂σ tσρνμ ·
(
icρ

Tc
ν
Tc

μ
T − ∇̂λt

λρνμ
)

+ dσρνμ∇̂σdρνμ + icσρνμ∇̂σ cρνμ
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+ bσρνμ∇̂σbρνμ + icσρνμ∇̂σ cρνμ

+ i∇̂σ t
σρνμ · BD

(
ĝρκ ĝντ ĝμλ

)
dκτλ

− i∇̂σ c
σρνμ · BD

(
ĝρκ ĝντ ĝμλ

)
d

κτλ

− i∇̂σ c
σρνμ · BD

(
ĝρκ ĝντ ĝμλ

)
bκτλ

]
. (2.27)

2.1.4 The ghost gauge-fixing Lagrangian for the transverse
diffeomorphisms

The gauge invariance of the theory under transverse diffeo-
morphisms is fully gauge-fixed in a BRST invariant way by
considering a ghost Lagrangian, L(D)

ghost, which is the sum of

L(D)
ghost,1, L(D)

ghost,2 and L(D)
ghost,3 given in Eqs. (2.18), (2.23) and

(2.27), respectively.
Next, following Ref. [16], we shall express L(D)

ghost in terms
of the Hodge duals of ghosts fields: Hodge duals with regard
to the unimodular metric gμν . Let us now defined these Hodge
duals:

cμν = (1/2)εμνρσCρσ ,

dμνρ = εμνρσ Dσ ,

tμνρσ = εμνρσ T .

and(
cμν

bμν

)
= −(1/2)εμνρσ

(
Cρσ

Bρσ

)
,

(
tμνρσ

d
μνρσ

)
= −εμνρσ

(
T
D

)
,

(
d

μνρ

cμνρ

)
= −(1/2)εμνρσ

(
Dσ

Cσ

)
,

(
cμνρσ

dμνρσ

)
= −εμνρσ

(
C
D

)
,

(
bμνρ

cμνρ

)
= −(1/2)εμνρσ

(
Bσ

Cσ

)
,

(
cμνρσ

bμνρσ

)
= −εμνρσ

(
C
B

)
.

Hence, we get

L(D)
ghost = L(D)

ghost,1 + L(D)
ghost,2 + L(D)

ghost,3, (2.28)

where

L(D)
ghost,1 = −1

2
ĝμνε

ρνστ ∇̂ρB
στ · ∂λĝ

λμ

− i

2
εχτρσ ενκαβ ĝχ(μ∇̂ν)∇̂τCρσ · ∇̂κCαβ · ∂λĝ

λμ

+ i

2
ĝμνε

νρστ ∇̂ρC
στ · εκαβ(μ∂λ∇̂λ)∇̂κCαβ,(2.29)

L(D)
ghost,2 = iC

σ ∇̂ρCρσ + 3i

4
εκμνλ∇̂ρD

σ · ∇̂[ρCκσ ] · ∇̂μCνλ

+2∇̂[λDσ ] · ∇̂λDσ

−iCσ ∇̂ρCρσ + Bσ ∇̂ρBρσ − 2i ĝμλ∇̂[ρDσ ]

·CμσBDĝλρ + 2i ĝμλ∇̂[ρBσ ] · CμσBDĝλρ,

(2.30)

and

L(D)
ghost,3 =

[
D∇̂μDμ + αDD + D∇̂μD

μ + iC∇̂μC
μ

+ iC∇̂μC
μ + B∇̂μBμ

− 1

4
∇̂σ T · ∇̂[σCνμ]

(∇̂μCλρ · ∇̂νCλρ

− 4∇̂λCμρ · ∇̂νCλρ + 2∇̂λCμρ · ∇̂λC
ν
ρ

− 2∇̂λC
μρ · ∇̂ρC

νλ
) − i∇̂μT · ∇̂μT +

(
i∇̂μT · Dν

+i∇̂μC · Dν + i∇̂μC · Bν
)
BDĝμν

]
. (2.31)

L(D)
ghost above can be obtained from the corresponding expres-

sion in Ref. [16] by choosing in the latter the unimodular
metric ĝμν as the spacetime metric.

In Table 1, the reader may find a summary of the action
of BD on the Hodge duals introduced above

2.2 Gauge-fixing the Weyl invariance and the complete
BRST operator

Let us recall that in our formalism, in the path integral defin-
ing our theory, we must integrate over the unconstrained field
gμν , not over ĝμν . Also recall ĝμν is defined in terms of gμν

by Eq. (1.1). Now, it is the unimodular metric ĝμν , the met-

ric that enters L(D)
ghost and, hence, L(D)

ghost depends on gμν only

through ĝμν . It then follows thatL(D)
ghost has a gauge symmetry,

the following Weyl symmetry:

gμν(x) → gμν(x)+δWgμν(x), δWgμν(x)=2θ(x)gμν(x),

(2.32)

where θ is an arbitrary scalar field.
The Weyl symmetry we have just mentioned has to be

removed from the action in the path integral, lest the path
integral be ill defined. We shall do so by using the BRST
formalism.

Since one of the purposes of this paper is to make consis-
tent the formalism of Ref. [16] with the classic linear split-
ting of the gravitational field, we shall introduce that splitting
now:

gμν = gμν + hμν, (2.33)

and define the BRST transformations so that they are adapted
to the splitting in question. In the previous equation gμν is

123



Eur. Phys. J. C (2024) 84 :209 Page 7 of 12 209

Table 1 BRST transformations of the Hodge duals. Nghost stands for the ghost number

1st generation 2nd generation 3rd generation

Nghost = 0 BDBμν = 0 BDBμ = Cμ BDB = 0

Nghost = 1 BDCμν = − 1
2 εμνρσ c

ρ
Tc

σ
T + i

(
∂μDν − ∂νDμ

)
BDCμ = 0 BDC = i D

Nghost = −1 BDCμν = i Bμν BDCμ = 0 BDC = i B

Nghost = 2 – BDDμ = i
3! εμνρσ cν

Tc
ρ
Tc

σ
T + ∂μT BDD = 0

Nghost = −2 – BDDμ = Cμ BDD = 0

Nghost = 3 – – BDT = − i
4! εμνρσ c

μ
T c

ν
Tc

ρ
Tc

σ
T

Nghost = −3 – – BDT = i D

the background gravitational field and hμν is the quantum
gravitational field.

Now, let R (Nghost(R) = 1) denote the ghost associated to
the Weyl transformation in Eq. (2.32), R (Nghost(R) = −1)
the corresponding antighost field and L (Nghost(L) = 0)
the Nakanishi-Lautrup auxiliary field. Let BW denote the
BRST operator for the Weyl symmetry in Eq. (2.32). Then,
we define the action of BW on the fields as follows

BWgμν = 0, BWhμν = 2R
(
ḡμν + hμν

)
,

BW R = 0,BW R = L , BW L = 0. (2.34)

We will also need the action ofBW on the first generation,
the second generation, the third generation ghosts and the
correspondingNakanishi-Lautrup auxiliary fields introduced
in the previous subsections. We define this action to be equal
to zero. Hence, we have

BW Bμν = 0, BWCμν = 0, BWCμν = 0,

BW Dμ = 0,

BW Dμ = 0,BWTμν = 0, BWTμν = 0, BW D = 0,

BW D = 0, (2.35)

which are the fields entering the ghost Lagrangian in
Eq. (2.28), in addition to the unimodular metric ĝμν .

Obviously, B2
W = 0 – recall that R is a Grassmann field.

Equations (1.1) and (2.34) imply

BW ĝμν = 0. (2.36)

The fields R, R and L are scalar fields and, hence, the
action on these fields of the BRST operator, BD , associated
to the transverse diffeomorphisms reads

BDR = cρ
T∂ρR, BDR = cρ

T∂ρR, BDL = cρ
T∂ρL ,

where it is important to always bear in mind that cμ
T =

−εμνρσ ∇̂νCρσ .

Let us show now that B2
D = 0 on R, R and L . Let F stand

for any of those fields, then

B2
DF =BD(cρ

T∂ρF) = (BDc
ρ
T)∂ρF − cρ

T∂ρBDF

= cν
T∂νc

ρ
T∂ρF − cν

T∂ν(c
ρ
T∂ρF) = 0.

We have taken into account that cρ
T is a Grassmann field and

that Eqs. (2.9) and (2.13) hold.
Next, let us define the following linear operator

B = BD + BW (2.37)

acting on the fields we have introduced so far.
Let us now prove that B is a BRST operator, i.e., that

B2 = 0. Since we already know that B2
D = 0 and B2

W = 0,
all that is left for us to do is show that

BDBW + BWBD = 0. (2.38)

Taking into account Eqs. (2.8) and (2.34), one gets

BDBWhμν = 2gμνc
ρ
T∂ρR − 2BDhμν,

BWBDhμν = −2gμνc
ρ
T∂ρR + 2BDhμν.

BDBW R = BDL = cρ
T∂ρL ,

BWBDR = BW
(
cρ

T∂ρR
) = −cρ

T∂ρL .

That BWcμ
T = 0 leads immediately to the conclusion that

Eq. (2.38) holds when acting on R and L . Now, recall that
BW annihilates the first generation, the second generation,
the third generation ghosts and the correspondingNakanishi-
Lautrup auxiliary fields, and that BD acting on those very
fields only involves the fields in question and the unimodu-
lar metric ĝμν – this metric being invariant under the Weyl
transformations of gμν. Hence, Eq. (2.38) also holds for the
fields we have just mentioned.

We are now ready to carry out the BRST gauge-fixing of
the Weyl gauge symmetry in Eq. (2.32) in a way which is
consistent with the BRST gauge-fixing of the transverse dif-
feomorphisms. Indeed, we shall add to L(D)

ghost in Eq. (2.28)
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– which does the gauge-fixing of the transverse diffeomor-
phism invariance – the following term

L(W )
ghost = B

[∇μR · ∇μ(
L − α′h

)]
= BD

[∇μR · ∇μ(
L − α′h

)]
+ BW

[∇μR · ∇μ(
L − α′h

)]
= ∇μig

[
cρ

T∇ρR
] · ∇μ(

L − α′h
) − ∇μR · ∇μ[

cρ
T∇ρL

]
+ α′∇μR · ∇μ[

2∇ρ
cT
ρ + cρ

T∇ρh

+ 2∇σ
cρ

Thρσ

] + ∇μL · ∇μ(
L − α′h

)
+ 2α′(4 + h

)∇μR · ∇μ
R + 2α′∇μR · R∇μ

h, (2.39)

where h = gμνhμν and ∇μ is the covariant derivative with
respect to gμν .

Notice that L(W )
ghost is exact with regard to the complete

BRST operatorB in Eq. (2.37), a must if the full power of the
BRST formalism is to be taken advantage of. But what about
L(D)

ghost in Eq. (2.28)? The answer is in the affirmative. Indeed,

L(D)
ghost,1 in Eq. (2.18), L(D)

ghost,2 in Eq. (2.23) and L(D)
ghost,3 in Eq.

(2.27) can be also expressed as follows

L(D)
ghost,1 = − iB

[
ĝμν∇̂ρc

ρν · ∂λĝ
λμ

]

L(D)
ghost,2 = i

2
B

[
d

ρνμ∇̂ρcνμ + bρνμ∇̂ρcνμ

]

L(D)
ghost,3 = −i

6
B

[
−tσρνμ

(
∇̂σdρνμ + α

4
dσρνμ

)

+cσρνμ∇̂σdρνμ + cσρνμ∇̂σbρνμ

]
,

This is a consequence of the fact that, as we have seen above,
the action of BW on any of the fields entering the definition
of L(D)

ghost,1, L(D)
ghost,2 and L(D)

ghost,3 yields zero. We thus con-
clude that fixing the gauge for the Weyl symmetry does not
introduce any modification of L(D)

ghost as given in Eqs. (2.28),
(2.29), (2.30) and (2.31).

2.3 The complete BRST invariant action

In the previous subsections we have achieved, by using the
BRST formalism, a complete gauge-fixing of the two gauge
symmetries of our theory. Let us now quote the full action,
S, of our theory. This action reads

S = Sclass + 2
∫

d4x L(D)
ghost + 2

∫
d4x L(W )

ghost. (2.40)

Sclass , L(D)
ghost and L(W )

ghost are given in Eqs. (2.1), (2.28) and
(2.39), respectively.

3 The free graviton propagator propagates gravitons
into gravitons

In this section we shall put to work the actionS, in Eq. (2.40),
and work out the free graviton propagator, first, and, then,
show that the graviton propagator propagates free gravitons
(i.e., helicity-two states) into free gravitons.

Let the background field gμν in Eq. (2.33) be the
Minkowski metric with signature (−,+,+,+). Then, the
free part of S needed for the computation of the free gravi-
ton propagator reads

∫
d4x

{1

4
hμν�hμν + 1

2

(
∂μh

μν
)2 + 1

4
hμν∂

μ∂νh

− 1

32
h�h + 1

2
εμνρσ ∂νBρσ · ∂λh

λμ + Bμ∂νB
νμ

+ B∂μBμ + α′L�h − L�L − D
μ (

�Dμ − ∂μ∂νDν

)
+ D∂μDμ + ∂μD

μ · D + αDD
}
. (3.1)

Hence, the free graviton propagator is obtained by inverting
the following matrix

hρσ Bρσ Bρ B L

hμν Vh,h 2εκλρσ pλδ
(ν
κ pμ) 0 0 −4α′ p2ημν

Bμν −2εμνκ(ρ pσ) pκ 0 i4ηρ[μ pν] 0 0
Bμ

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −i4ημ[ρ pσ ] 0 −i4pμ 0

⎞
⎟⎟⎟⎟⎟⎟⎠B 0 0 i4pρ 0 0

L −4α′ p2ηρσ 0 0 0 4p2

,

where Vh,h = −p2ημ(ρησ)ν +2p(μην)(σ pρ) − 1
2 (pμ pνηρσ

+pρ pσ ημν)− 1
8 p

2ημνηρσ . For the free graviton propagator
of our theory, we have obtained the following result:

〈hμ1ν1(p)hμ2ν2 (−p)〉
= i

p2 − iε

{
A1 (ημ1μ2ην1ν2 + ημ1ν2ην1μ2 ) + A2ημ1ν1ημ2ν2

+ A3
1

p2 − iε
(ημ1ν1 pμ2 pν2 + ημ2ν2 pμ1 pν1)

+ A4
1

p2 − iε
(ημ1μ2 pν1 pν2 + ημ1ν2 pν1 pμ2 + ην1μ2 pμ1 pν2

+ ην1ν2 pμ1 pμ2 ) + A5
1

(p2 − iε)2 pμ1 pν1 pμ2 pν2

}
, (3.2)

with

A1 = −1

2
, A2 = 3 + 32α′2

8(1 + 8α′2)
, A3 = −1,

A4 = 1

2
, A5 = 2.
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Now, the quantum state of a physical free graviton of
momentum pμ is described by the following of plane-wave

w(p)
μν (x) = εμν(p) e

ipx , (3.3)

where εμν(p) is the polarization, which is symmetric,
transverse(i.e., pμεμν(p) = 0) and traceless (i.e.,ημνεμν

(p) = 0. It can be easily shown that the previous physical
graviton plane-wave is a solution to the equations of motion
of the free action in (3.1). Then, the propagation of previous
graviton wave is given by

∫
d4y

{
− i

∫
d4q

(2π)4 〈hμ1ν1(q)hμ2ν2 (−q)〉 eiq(x−y)
}

w
(p)
μ2ν2 (y),

which in turn yields the following physical free graviton
plane-wave:

− i

p2 − iε
εμν(p) e

ipx . (3.4)

We thus see that physical gravitons are propagated into phys-
ical gravitons. This result has a standard physical explana-
tion. Indeed, the result in (3.4) comes in its enterity from the
following part of the propagator in (3.2)

−
1
2 (ημ1μ2ην1ν2 + ημ1ν2ην1μ2)

k2 .

And, it is well known [25] that the numerator of the previous
expression is the sum of two summands. One is the projector
onto the two dimensional space of physical polarizations, and
reads

∑
λ=−,+

ε(λ)
μ1ν1

(p)ε(−λ)
μ2ν2

(p). (3.5)

λ labels the two helicities of the physical graviton. The other
summand yields a vanishing contribution when contracted
with physical free graviton waves. Obviously, the expression
in (3.4) comes completely from the action on εμν(p) eipy of
the projector in (3.5), as demanded by unitarity [25].

Notice that the result in (3.4) and the corresponding anal-
ysis are the same as in General Relativity. Also notice that
non-physical modes like

(pμεν(p) + pνεμ(p)) eipy,

where pμεμ(p) = 0, do not propagate, by means of the uni-
modular propagator above, into the physical graviton modes
in (3.3).

We have exhibited that the unimodular theory defined by
the action in (2.40) is a theory of gravitons, which only have

two physical polarizations. Further, the analysis carried out
above indicates that the construction of the Fock space of the
free theory by using the BRST charge – say, Q – obtained
from the free action in (3.1) will lead to the conclusion that
the free graviton states in (3.3) will be annihilated by Q, and,
thus, they are physical sates, while all the other states will
be either Q-exact (i.e., physically irrelevant) or non-physical
(i.e., not annihilated by Q).

4 Obtaining Newton’s law

In this section we shall show that Newton’s law can be
obtained when matter is coupled to our unimodular gravity
theory, which is a check that we have a theory of gravitons
interacting with matter.

In unimodular gravity, the graviton field hμν couples to
the traceless part of the energy-momentum tensor T̂μν ≡
Tμν − ημν T ρ

ρ /4. This is equivalent to saying that it is the
traceless part of graviton field, ĥμν = hμν −ημνh/4, the one
which couples to the energy-momentum tensor Tμν . Hence,
to retrieve the gravitational Newton’s potential from unimod-
ular gravity it is useful to compute the free two-point Green
function of ĥμν . This Green function can be obtained from
Eq. (3.2) and it reads

〈ĥμ1ν1(p)ĥμ2ν2(−p)〉
= i

p2

{
− 1

2
(ημ1μ2ην1ν2 + ημ1ν2ην1μ2 − ημ1ν1ημ2ν2)

− 1

p2 (ημ1ν1 pμ2 pν2 + ημ2ν2 pμ1 pν1

+ 1

2

1

p2 (ημ1μ2 pν1 pν2 + ημ1ν2 pν1 pμ2 + ην1μ2 pμ1 pν2

+ ην1ν2 pμ1 pμ2) + 2
1

p4 pμ1 pν1 pμ2 pν2

}
. (4.1)

The Gravitational Newton’s potential can be obtained by
computing, in the non-relativistic limit, the amplitude,M, of
the process in which one graviton is exchanged between two
scalar particles with masses M1 y M2. The Feynman diagram
describing this process is in Fig. 1. The amplitude in question
is given by

M = − i

4
T (1)

μν (p1, p
′
1)〈ĥμν(k)ĥρσ (−k)〉T (2)

ρσ (p2, p
′
2),

(4.2)

where pi y p′
i are the initial and final momenta, respectively,

of the i particle, i = 1, 2. Hence, the transferred momentum
k is given by k = p1 − p′

1 = p′
2 − p2 y M2

i = −p2
i = −p′2

i .

In Eq. (4.2) T (i)
μν (pi , p′

i ) denotes the on-shell lowest order
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Fig. 1 The exchange of one graviton

contribution of the energy-momentum tensor between the
states with momenta pi y p′

i . T
(i)
μν (pi , p′

i ) is given by

T (i)
μν (pi , p

′
i ) ≡ 〈p′

i |Tμν |pi 〉 = piμ p
′
i ν + pi ν p

′
iμ + 1

2
k2ημν,

which in the non-relativistic limit – hence kμ = (0, �k) – reads

T (i)
μν (pi , p

′
i ) = −2M2

i ημ0ην0.

We thus conclude that, in the non-relativistic, limit the ampli-
tude M is equal to

Mnonrel = −iM2
1 M

2
2 〈ĥ00(k)ĥ00(−k)〉,

where 〈ĥ00(k)ĥ00(−k)〉 is given in Eq. (4.1) and kμ = (0, �k).
Now, the Fourier transform of the Newton’s potential is

given by

Ṽ (�k) = Mnonrel

2M12M2
= − i

4
M1M2〈ĥ00(k)ĥ00(−k)〉.

From Eq. (4.1), we get 〈ĥ00(k)ĥ00(−k)〉 = −i/2k2 so
that

Ṽ (�k) = −1

8

M1M2

�k2
,

which precisely the Fourier transform of the Newton’s poten-
tial one finds in elementary textbooks, in the unit system
where G = 1/(32π).

5 The Slavnov–Taylor equation and the linearized
Slavnov–Taylor operator

As was discussed by the authors of Ref. [16] the construc-
tion of their BRST formalism involving antisymmetric ten-
sor ghosts is such that the field content of the resulting BRST
invariant theory depends on the dimension of spacetime. We
have also analyzed this issue right below Eq. (2.16). It is
then clear that dimensional regularization does not provide a
BRST invariant regularization of the field theory in 4 dimen-
sional spacetime – nor in any other spacetime dimension.

Since no regularization method that preserves general covari-
ance, while keeping the spacetime dimension equal to 4, is
known, one is lead to the conclusion that one has to take
advantage of the algebraic renormalization techniques – see
Ref. [26] – to keep the BRST symmetry of the renormal-
ized theory under control. The implementation of algebraic
renormalization techniques begins with the derivation of the
formal Slavnov–Taylor equation, which is to be satisfied
by the 1PI functional, and continues with the formulation,
and solution, of a cohomology problem for the linearized
Slavnov–Taylor operator. In this section, we will just obtain
the Slavnov–Taylor equation for the 1PI functional and define
the linearized Slavnov–Taylor and its cohomology problem.
Since the theory is not renormalizable by power counting,
the solution of this cohomology problem will demand the
use of the highbrow algebraic cohomological and homolog-
ical methods reviewed in Ref. [27] and this lies quite outside
the scope of our paper.

Let us begin the derivation of the formal Slavnov–Taylor
equation. Let S be the action in Eq. (2.40). Let � generically
denote the fields of our theory. These fields are

hμν, Bμν, Bμ, B,Cμν,Cμ,C,Cμν,Cμ,C, Dμ, D, Dμ,

D, T, T , R, R and L .

Then, the generating functional of the complete Green func-
tions of our theory reads

Z
[
Jμν, jμν, ...

] =
∫

D�
[Dghost

]
eiS+i

∫
d4x C, (5.1)

where

C = Jμνhμν + jμνBμν + jμBμ + j B + f L + ωμνCμν

+ ωμCμ + ωC + Cμνω
μν

+ Cμωμ + Cω + qR + Rq + k
μ
Dμ + kD

+ Dμk
μ + Dk + χT + Tχ + ξμνBhμν + φBL

+ ρμνBCμν + τBR + σBR + ρμBDμ + ρBT .

Recall that B is the complete BRST operator in Eq. (2.37).
Notice that we have included external fields coupled to the
BRST variations

Bhμν, BL , BCμν,BR, BR, BDμ and BT,

for those variations are composite operators.
Taking into account that, by definition, the external fields

Jμν , jμν ,.... are annihilated by B and so it is S, we conclude
that

〈 ∫
d4x

(
JμνBhμν + jμCμ + fBL − ωμνBCμν

− iωD + i Bμνω
μν + i Bω
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− qBR + qBR + k
μ
BDμ + Cμk

μ

− χBT + i Dχ
)〉 = 0. (5.2)

where 〈A〉 ≡ ∫ D� A·exp [iS + iC)]. The previous equation
is obtained by applying B to both sides of Eq. (5.1).

Equation (5.2) can be recast into the following form

[ ∫
d4x

(
Jμν δ

δξμν
+ jμ

δ

δωμ + f
δ

δφ
− ωμν δ

δρμν

− iω
δ

δk
+ iωμν δ

δ jμν
+ iω

δ

δ j
− q

δ

δτ
+ q

δ

δσ

+ k
μ δ

δρμ
− kμ δ

δωμ
− χ

δ

δρ
+ iχ

δ

δk

)]
Z = 0. (5.3)

Let J be given by

J = Jμνhμν + jμνBμν + jμBμ + j B + f L + ωμνCμν

+ ωμCμ + ωC + Cμνω
μν + Cμωμ + Cω + qR

+ Rq + k
μ
Dμ + kD + Dμk

μ + Dk + χT + Tχ.

Then, the 1PI functional of our theory is defined as usual:

� [�] = W
[
Jμν, jμν, ...

] −
∫

d4x J,

where W [Jμν, jμν, ...] is such that

Z
[
Jμν, jμν, ...

]
/Z [0] = exp

(
iW

[
Jμν, jμν, ...

])

Using these definitions is not difficult to show that Eq. (5.3)
is equivalent to the following equation

∫
d4x

[ δ�

δhμν

δ�

δξμν
+ δ�

δBμ

Cμ + δ�

δL

δ�

δφ
+ δ�

δCμν

δ�

δρμν

+ i
δ�

δC
D + i

δ�

δCμν

Bμν + i
δ�

δC
B + δ�

δR

δ�

δτ
+ δ�

δR

δ�

δσ

+ δ�

δDμ

δ�

δρμ
+ δ�

δDμ

Cμ + δ�

δT

δ�

δρ
+ i

δ�

δT
D

]
= 0.

This is the Slavnov–Taylor equation. This equation governs
the BRST equation at the quantum level.

By expanding � [�] in powers of h̄, one reaches the con-
clusion that the Slavnov–Taylor equation implies that the
one-loop contribution, �1 [�], to � [�] must satisfy the lin-
earized Slavnov–Taylor equation, which reads

��1 [�] = 0, (5.4)

where � is the so-called linearized Slavnov–Taylor operator:

� =
∫

d4x
[ δ�0

δhμν

δ

δξμν
+ δ�0

δξμν

δ

δhμν
+ Cμ

δ

δBμ
+ δ�0

δL

δ

δφ

+ δ�0

δφ

δ

δL
+ δ�0

δCμν

δ

δρμν
+ δ�0

δρμν

δ

δCμν

+ i D
δ

δC
+ i Bμν

δ

δCμν

+ i B
δ

δC
+ δ�0

δR

δ

δτ

+ δ�0

δτ

δ

δR
+ δ�0

δR

δ

δσ
+ δ�0

δDμ

δ

δρμ
+ δ�0

δρμ

δ

δDμ

+ Cμ
δ

δDμ

+ δ�0

δT

δ

δρ
+ δ�0

δρ

δ

δT
+ i D

δ

δT

]
,

where

�0 = S +
∫

d4x
[
ξμνBhμν + φBL + ρμνBCμν + τBR

+σBR + ρμBDμ + ρBT
]
.

and S is given in Eq. (2.40).
It can be shown that the linearized Slavnov–Taylor oper-

ator is nilpotent

�2 = 0.

and it has ghost number equal to 1. Hence, any one-loop
anomalous breaking, A, of the linearized Slavnov–Taylor
equation – thus breaking the BRST symmetry – must satisfy

�A = 0, A 	= ��,

A being a (infinite) linear combination of monomials in the
fields and their derivatives which has ghost number equal to
1. � is also a linear combination of monomial of the fields
and their derivatives but it has got zero ghost number. The
solution to this problem is a very involved one and lies well
beyond the scope of paper. If the BRST symmetry can be
restored at one-loop – i.e, A = 0, one has to face the very
same type of cohomology problem at two loops, and so on.

6 Conclusions

The main conclusion of the paper is that a modification of the
BRST transformations of Ref. [16] can be combined with the
BRST transformations arising from the extra Weyl symmetry
of our unimodular theory into a set of transformations gener-
ated by a single BRST operator. In principle, that this combi-
nation be feasible is a non trivial fact, for it involves different
types of BRST transformations. We obtained the full gauge-
fixed action of the theory and use it to compute the Newton’s
potential and the Slavnov–Taylor equation, the latter gov-
erns full BRST symmetry of the theory at the quantum level.
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Let us point out that the derivation of the Slavnov–Taylor
equation is a must. Indeed, there is no known regulariza-
tion method that preserves the symmetries of the theory and
therefore non BRST invariant counterterms must be intro-
duced to compensate for the breaking of BRST invariance
due to the regularization and/or renormalization process one
uses. Recall that the ghost content of the theory depends on
the spacetime dimension: dimensional regularization does
not furnish a BRST invariant regularized theory. Also recall
that the construction of those non BRST invariant countert-
erms and the analysis of their consistency is guided by the
cohomology of the linearized Slavnov–Taylor operator.

A final comment, in Ref. [28] another way of fixing the
transverse gauge invariance of unimodular gravity is intro-
duced. In [28] the unimodularity condition of the gravity field
is introduced by using a Lagrange multiplier so that, again,
the linear splitting of the gravity field leads to a meaning-
less quantum theory – the exponential parametrization would
save the day. It is plain that the formalism developed in the
previous sections can be combined easily with the BRST for-
malism in [28] without the need of a Lagrange multiplier. In
other words the formalism of [28] can be adapted appropri-
ately to quantize unimodular gravity with Weyl invariace.
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