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Abstract Cosmic inflation can enter an ultraslow-roll
(USR) stage, if there is a plateau on the inflaton potential.
During this stage, the primordial curvature perturbation Rk

and its power spectrum PR can be remarkably enhanced
on small scales. In this work, an analytical approximation is
provided to systematically study the evolution of Rk in the
USR inflation. We first discuss the asymptotic solutions of
the moduli and arguments of Rk and its time derivative Rk,N

on the sub- and super-horizon scales separately and find that
all these solutions have simple exponential forms. Then, Rk

on five typical scales are investigated in order. Our analytical
approximation predicts that Rk first revolves around the ori-
gin in the complex plane, but if it crosses the horizon around
the start of the USR stage, there appears a subsequent lin-
ear evolution towards or away from the origin. This behavior
naturally explains the shape of PR from the sharp dip to the
peak and matches the numerical results perfectly. Moreover,
the minimum of PR is exactly proved to be nonvanishing.
Our analytical approximation will help the model building
in primordial black hole and gravitational wave physics.

1 Introduction

The milestone in multi-messenger astronomy is marked by
the detection of the gravitational waves from the merger of
binary black holes [1]. Some typical characteristics of these
black holes, such as their unexpectedly large masses and rel-
atively small spins, are not consistent with usual astrophys-
ical black holes, but are more possible to be of primordial
origin [2–4]. Primordial black holes (PBHs) are theorized to
form before the Big Bang nucleosynthesis, so they are a very
powerful probe in the early Universe [5]. For instance, they
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could explain the strong absorption trough found in the 21-cm
global spectrum [6,7], and serve as the seeds of the super-
massive black holes in galactic centers [8], supported by the
recent observation from the James Webb Space Telescope
on the massive galaxies at high redshifts [9]. Meanwhile,
the first-order scalar perturbations that generate PBHs can
also produce the second-order scalar-induced gravitational
waves (SIGWs) [10–16], such as the possible nHz gravita-
tional wave background discovered recently [17–27]. More
important, PBHs are a natural and promising candidate of
dark matter (DM) [28].

Unlike astrophysical black holes, the masses of PBHs can
range from the Planck mass to supermassive scale (10−38–
1010 M�, with M� = 1.989×1030 kg being the solar mass)
[29]. This versatility enables PBHs to offer valuable insights
into different cosmic conundrums [30]. The PBHs with mass
M < 5 × 10−19 M� have already evaporated because of
the Hawking radiation, changing the background intensi-
ties of various cosmic rays [31]. However, those with mass
M > 5 × 10−19 M� can still exist today, acting as a stable
and pressureless candidate of DM. The PBH abundance fPBH

is defined as its proportion in DM today. If fPBH � 0.1, the
PBHs can be considered as an effective candidate of DM; if
fPBH � 10−3, its possibility as DM can be safely excluded in
the relevant mass range. Currently, according to various con-
straints on the upper bounds of fPBH in different mass ranges,
there still remains an open mass window from 10−17 M� (the
asteroid mass range) to 10−13 M� (the sub-lunar mass range)
that is possible to compose all DM with PBHs [28,29,31,32].

The PBH abundance fPBH can be calculated from the
power spectrum PR(k) of the primordial curvature per-
turbation R [33–35]. On large scales (e.g., the pivot scale
k∗ = 0.05 Mpc−1 in the Planck satellite experiment),
PR is precisely measured by the anisotropies of the cos-
mic microwave background (CMB), with an amplitude of
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2.10 × 10−9 [36]. However, to produce abundant PBHs, R
must be large enough, so that PR is significantly enhanced
up toO(10−2) on small scales. In the usual single-field slow-
roll (SR) inflation models, such a huge enhancement of PR

is almost impossible. Therefore, the SR conditions must be
violated on small scales, and various ultraslow-roll (USR)
inflation models are thus proposed [37–75]. In these models,
there is always a plateau or a (near-)inflection point on the
inflaton potential, where the inflaton rolls down extremely
slowly, amplifying PR accordingly.

Albeit the amplitude and shape of PR can be straightfor-
wardly obtained in various USR inflation models by numer-
ical methods, the physical comprehension behind seems still
indistinct. Previously, in Refs. [51,76,77], the spectral index
of the steepest growth of PR was analytically investigated,
and in Ref. [78], the authors raised an approximation method
to calculate the Fourier mode Rk of the primordial curva-
ture perturbation. However, to our knowledge, these analyses
are still not sufficient in some aspects. For example, there is
always a sharp dip in PR before its steep growth. In some
early literature [79–87], the location of the dip was calcu-
lated numerically, but the underlying physical explanation is
lacking yet. Although the detail of this dip does not affect
the PBH abundance or SIGW spectrum, as they are relevant
mainly to the peak of PR , we still hope to answer whether
the minimum of PR is zero analytically.

Consequently, this paper is dedicated to study the evolu-
tion ofRk and the resultingPR from a more theoretical per-
spective, and is a natural extension of our previous numerical
results in Ref. [87]. We will provide an analytical approxima-
tion to explore the USR inflation, which will save us away
from the mathematical tediousness and extract the physi-
cal essence to the most extent. Following our early works in
Refs. [58,59,73,87], by considering an antisymmetric pertur-
bation on the background inflaton potential, inflation can be
led into the USR stage smoothly. Our main improvements in
this work are threefold. First, by simplifying the two parame-
ters ε and η in the SR and USR stages separately, we are able
to obtain the analytical solutions of Rk and its time deriva-
tive Rk,N . From their asymptotic forms, we achieve |Rk |,
θk,N , and ϕk,N (with θk and ϕk being the arguments of Rk

and Rk,N ) and find that all these quantities possess concise
exponential forms, perfectly in agreement with the numer-
ical results in Ref. [87]. Second, we predict that, besides
the revolving evolution of Rk around the origin in the com-
plex plane when k � HeN , there appears an interesting
linear evolution of Rk towards or away from the origin if Rk

crosses the horizon around the start of the USR stage, natu-
rally explaining the sharp dip and the peak in PR . Third, we
analytically study the minimum of the dip in PR and prove
that it cannot reach zero exactly, which is also seldom men-
tioned before. Altogether, we wish to give a whole picture
and thorough understanding of the physical essence in the

complicated evolution of Rk and the relevant PR , which
will be beneficial to the model building of the USR inflation
and help our research on PBH and gravitational wave physics
in future.

This paper is organized as follows. The basic equations
of motion for Rk and Rk,N are presented in Sect. 2. Then,
we show our analytical approximation in Sect. 3 and discuss
the asymptotic solutions of |Rk |, |Rk |,N , θk,N , and ϕk,N in
the sub- and super-horizon limits, respectively. In Sect. 4,
the evolution of Rk and the resulting PR for five typical
scales with different times of horizon-exit are systematically
investigated. We conclude in Sect. 5. We work in the natural
system of units and set c = h̄ = kB = 1.

2 Basic equations

In this section, we show the equation of motion for the pri-
mordial curvature perturbation Rk and its relation to the
power spectrum PR(k). Two important variables θk and ϕk

are introduced, with their evolutions calculated in detail.

2.1 USR inflation

We start from the single-field inflation model, with the cor-
responding action being

S =
∫

d4x
√−g

[
m2

P

2
R − 1

2
∂μφ∂μφ − V (φ)

]
,

where mP = 1/
√

8πG is the reduced Planck mass, R is the
Ricci scalar, φ is the inflaton field, and V (φ) is its potential.
The inflaton potential V can be further decomposed into its
background Vb(φ) and a perturbation δV (φ) on it. In this
work, we choose Vb as the Kachru–Kallosh–Linde–Trivedi
potential [88],

Vb(φ) = V0
φ2

φ2 + (mP/2)2 .

Meanwhile, we consider a perturbation δV on Vb,

δV (φ) = −A
φ − φ0

1 + (φ − φ0)2/(2σ 2)
,

where three model parameters A, φ0, and σ characterize
the amplitude, position, and width of δV, respectively. (In
principle, the specific form of δV is not unique, and other
kinds of δV can be found in Refs. [58,59,73].) Hence, δV is
antisymmetric around φ0, so it can be smoothly connected on
Vb on both sides of φ0. In addition, we demand A = Vb,φ(φ0)

for simplicity, in order to create a perfect plateau around φ0,

leading inflation into the USR stage. Following Ref. [59], we
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Fig. 1 The inflaton potential V (φ) with the model parameters
V0/m4

P = 10−10, φ0/mP = 1.31, and σ/mP = 0.0831881. The anti-
symmetric perturbation δV creates a plateau on V and thus leads infla-
tion into the USR stage, producing the PBHs with mass M ≈ 10−17 M�
and abundance fPBH ≈ 0.1. The CMB pivot scale corresponds to
φCMB/mP = 2.933, which is far away from the USR regime

choose the model parameters as V0/m4
P = 10−10, φ0/mP =

1.31, and σ/mP = 0.0831881, such that there can be PBHs
with mass M ≈ 10−17 M� and abundance fPBH ≈ 0.1. The
inflaton potential V (φ) is shown in Fig. 1. Moreover, the
initial conditions for inflation are set to be φ/mP = 3.30 and
φ,N/mP = −0.0137, so as to satisfy the Planck constraints
on the power spectrum and the tensor-to-scalar ratio on the
CMB pivot scale k∗ [36].

In cosmic inflation, it is more convenient to utilize the
number of e-folds N as the time variable, defined as dN =
H dt = d ln a, where t is the cosmic time, a(t) = eN is the
scale factor, and H(t) = ȧ/a is the Hubble expansion rate.
Furthermore, to characterize the motion of the inflaton, two
useful parameters are introduced as

ε = − Ḣ

H2 = φ2
,N

2m2
P

, (1)

η = − φ̈

H φ̇
= φ2

,N

2m2
P

− φ,NN

φ,N
. (2)

In terms of these parameters, the Friedmann equation for
cosmic expansion becomes

H2 = V

(3 − ε)m2
P

, (3)

and the Klein–Gordon equation for the inflaton field can be
reexpressed as

φ,NN + (3 − ε)φ,N + 1

H2 V,φ = 0. (4)

Fig. 2 The evolutions of the parameters ε and |η| as a function of
the number of e-folds N . The starting and ending points of the USR
stage are determined by η(Ns) = η(Ne) = 0, with Ns = 56.81 and
Ne = 60.93. During the USR stage, ε decreases nearly exponentially,
but |η| increases significantly and maintains a value around 3 for a
sufficiently long period

In the usual SR inflation, both ε and |η| are always much
smaller than 1 and are thus named as the SR parameters.
However, in the USR stage, ε drops almost exponentially
and |η| may even approach O(1), so the SR conditions are
broken. Thus, the starting and ending points of the USR stage
can be determined by η(Ns) = η(Ne) = 0. With the model
parameters listed above, we have Ns = 56.81 and Ne =
60.93. The evolutions of ε and |η| in both SR and USR stages
are shown in Fig. 2. Moreover, the number of e-folds when
the relevant scale crosses the horizon is denoted as Nout (i.e.,
when k = HeNout ), which is an important quantity for the
subsequent discussions in Sect. 4.

2.2 Rk and PR

Now, we move on to the perturbations on the background
spacetime. In Newtonian gauge, the perturbed metric reads

ds2 = −(1 + 2�) dt2 + a2(1 − 2�)δi j dxidx j ,

where � is the scalar perturbation. (Here, we have neglected
the vector perturbation, tensor perturbation, and anisotropic
stress, as they are irrelevant to PBH formation.) A more con-
venient and gauge-invariant scalar perturbation is the primor-
dial curvature perturbation R defined as

R = � + H

φ̇
δφ = � + δφ

φ,N
,

and the equation of motion for its Fourier mode Rk is the
Mukhanov–Sasaki (MS) equation [89,90],

Rk,NN + (3 + ε − 2η)Rk,N +
(

k

HeN

)2

Rk = 0. (5)
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The initial conditions for the MS equation can be fixed by
the Bunch–Davies vacuum [91]. In the very early Universe,
both ε and |η| are very small, and the asymptotic solution of
Rk is

Rk = eik/(HeN )

z
√

2k

(
1 + i HeN

k

)
, (6)

where z = φ,NeN (i.e., z2 = 2m2
Pa

2ε). At the initial time,
we have k � HeN , so from Eq. (6), we obtain

Rk

∣∣∣∣
N→Nini

= eik/(HeN )

z
√

2k
, (7)

Rk,N

∣∣∣∣
N→Nini

= −eik/(HeN )

z
√

2k

(
z,N
z

+ ik

HeN

)
, (8)

where Nini is the initial number of e-folds.
Furthermore, the PBH abundance and the SIGW spectrum

can be calculated from the power spectrum of R, which
corresponds to the two-point correlation function ofRk in the
Fourier space. The statistical information and observational
significance of Rk is encoded in the dimensionless power
spectrum PR(k) as

PR(k) = k3

2π2 |Rk |2
∣∣∣∣
k�aH

.

We should point out that, in the usual SR inflation, Rk

becomes almost frozen when the relevant scale crosses the
horizon, and PR can be effectively evaluated at the epoch
of horizon-exit. Nonetheless, in the USR inflation, Rk can
still evolve significantly after the horizon-exit, so PR must
be determined at the end of inflation.

Generally speaking, both Rk and PR can be obtained by
numerically solving Eqs. (1)–(5), but this is always a time-
consuming task. Consequently, one of the aims of this work
is to explore an appropriate and analytical approximation to
calculate Rk and PR . Only in this way can we extract the
physical essence in the complicated evolution of Rk and the
characteristic shape of PR in the USR inflation, without
getting lost in the tedious calculation program.

2.3 θk and ϕk

As the MS equation is complex, it is more convenient to
decompose Rk as

Rk = |Rk |e−iθk , (9)

where |Rk | and θk are the modulus and argument of Rk .

Another advantage of this decomposition, rather than decom-
posing Rk into the real and imaginary parts, is that we will

observe interesting revolving and linear evolutions of Rk in
the complex plane, to be shown in Sect. 4.

Substituting Eq. (9) into Eq. (5), we arrive at the equations
of motion for |Rk | and θk,

|Rk |,NN + (3 + ε − 2η)|Rk |,N

+
(

k

HeN

)2
[

1 −
(
HeN θk,N

k

)2
]

|Rk | = 0, (10)

θk,NN +
(

3 + ε − 2η + 2
|Rk |,N
|Rk |

)
θk,N = 0. (11)

Furthermore, from Eq. (7), the initial conditions for |Rk | read

|Rk |
∣∣∣∣
N→Nini

= − 1

z
√

2k
, (12)

|Rk |,N
∣∣∣∣
N→Nini

= z,N

z2
√

2k
. (13)

When the inflaton φ rolls down from its potential V, we have
z = φ,NeN < 0. Since |Rk | is positive, we have assigned a
negative sign in Eq. (12).

Below, for our analytical purpose, we provide two math-
ematical tricks to simplify the calculations of |Rk | and θk .

First, from Eqs. (6) and (9), we can obtain the evolution of
the argument θk as [57]

θk,N = 1

2z2HeN |Rk |2 , (14)

and the detailed derivation can be found in Appendix A.
Hence, θk,N is positive-definite, so θk is a monotonic func-
tion.

Second, from Eq. (9), we have Rk,N = |Rk |,Ne−iθk −
i |Rk |θk,Ne−iθk , so the evolution of the modulus |Rk | is

|Rk |,N =
√

|Rk,N |2 − (|Rk |θk,N )2. (15)

By this means, we are able to achieve |Rk | and θk more
quickly, as both Eqs. (14) and (15) are first-order differential
equations, in whichRk andRk,N can be easily obtained from
the MS equation via the analytical approximation in Sect. 3.
In contrast, it is impossible to solve Eq. (10) analytically, due
to the complicity in the prefactor of |Rk |.

Similarly, we decompose the derivative of Rk as

Rk,N = |Rk,N |e−iϕk ,

where the argument ϕk can be obtained from Eq. (9) as

ϕk = θk + arctan

( |Rk |
|Rk |,N θk,N

)
. (16)
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Substituting Eq. (14) into Eq. (16), we arrive at the evolution
of ϕk as

ϕk,N = 1

2z2HeN |Rk |2 − (2z2HeN |Rk ||Rk |,N ),N

(2z2HeN |Rk ||Rk |,N )2 + 1
.

(17)

Different from θk,N in Eq. (14), ϕk,N depends not only on
|Rk |, but also on |Rk |,N .

In summary, Eqs. (9), (14), (15), and (17) summarize the
evolutions of the moduli and arguments of Rk and Rk,N ,

which are the starting point of our following discussions.

3 Analytical approximation

In this section, we propose our analytical approximation to
calculate |Rk | and |Rk |,N in two different cases: k � HeN

and k � HeN , in which the scale of Rk is sub- and super-
horizon, respectively. Next, we bring the results into Eqs. (14)
and (17) to obtain θk,N and ϕk,N . Our main results are sum-
marized in Tables 1 and 2.

We start our analytical approximation from the two param-
eters ε andη.First, from Fig. 2, in the SR stage when N < Ns,

ε is nearly invariant and η is very small, so we approximately
have

ε ≈ ε(Ns) = εs, η ≈ 0.

Second, in the USR stage when Ns < N < Ne, as the inflaton
potential is extremely flat, from Eqs. (2) and (4), we arrive at
η ≈ 3. Then, from Eqs. (1) and (2), η can be reexpressed as
η = ε − ε,N/(2ε), so we approximately obtain

ε ≈ εse
−6(N−Ns), η ≈ 3.

Third, when N > Ne, the inflation dynamics significantly
depends on the specific inflaton potential, so it is hard to
have a general approximation method any more, and we will
not consider it in this work.

Before exploring Eq. (5), we still need to make two
assumptions. First, η and H are assumed to be constant. Sec-
ond, ε is neglected when it is added to η. These assumptions
are valid in both SR and USR stages, as can be evidently seen
from Fig. 2. With these preparations, Eq. (5) can be exactly
solved as a function of N as

Rk = e
−

(
3
2 −η

)
N

×
[
AJ 3

2 −η

(
k

HeN

)
+ BJ− 3

2 +η

(
k

HeN

)]
, (18)

Rk,N = e
−

(
5
2 −η

)
N k

H

Table 1 All the possible results of |Rk |, θk,N , |Rk |,N , and ϕk,N in the
sub-horizon case with k � HeN via our analytical approximation. The
parameter η ≈ 0 or 3 corresponds to the SR or USR stage, respectively.
From the behaviors of |Rk | and θk,N , Rk either revolves towards the
origin at a decelerated rate in the SR stage, or away from the origin at
an accelerated rate in the USR stage

η |Rk | θk,N |Rk |,N ϕk,N

0 e−N e−N e−2N e−N

3 e2N e−N eN e−N

Table 2 Same as Table 1, but in the super-horizon case with k �
HeN . The current situation is more complicated, due to the competition
between the two terms in Eqs. (25) and (26), so all the possible four
combinations of the leading-order terms are considered

η |Rk | θk,N |Rk |,N ϕk,N

0 e−3N e3N e−3N e3N

0 Const. e−3N e−2N e−N

3 Const. e3N e−2N e−5N

3 e3N e−3N e3N e−3N

×
[
−AJ 1

2 −η

(
k

HeN

)
+ BJ− 1

2 +η

(
k

HeN

)]
, (19)

where Jα(x) is the Bessel function of the first kind, and the
coefficients A and B are the functions of k, H, and η, but
are independent of N . Also, we should mention that both A
and B are complex numbers, since Rk itself is complex.

3.1 k � HeN

We first consider the sub-horizon case with k � HeN . Under
this circumstance, our analytical approximation is relatively
simple, because Jα(x) ∼ 1/

√
x when x = k/(HeN ) � 1,

irrespective of the value of α. As a result, from Eqs. (18) and
(19), we easily obtain

|Rk | ≈ c1e
−(1−η)N ∼

{
e−N (when η ≈ 0),

e2N (when η ≈ 3),
(20)

|Rk,N | ≈ c2e
−(2−η)N ∼

{
e−2N (when η ≈ 0),

eN (when η ≈ 3),
(21)

where the coefficients c1 and c2 can be obtained from A
and B, but the explicit expressions are unnecessary here. We
observe that the time-dependence of Rk and Rk,N is rather
simple. More interpretation of these results will be presented
in Sect. 4.

Now, we discuss the SR and USR stages separately. In the
SR case, η ≈ 0, so from Eqs. (20) and (21), we have

|Rk | ∼ e−N , |Rk,N | ∼ e−2N . (22)
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10−2 103 108 1013 1018 1023

k / Mpc−1

10−14

10−11

10−8

10−5

10−2
P R

(k
)

Nout = 50
Nout = 52.89
Nout = 55
Nout = 58.84
Nout = 62

Fig. 3 The power spectrum PR (k) in the USR inflation, with the
model parameters in Sect. 2.1. On large scales (e.g., the CMB pivot
scale k∗ = 0.05 Mpc−1 denoted with an asterisk), PR is nearly scale-
invariant with an amplitude of 2.10 × 10−9 [36]. On small scales, PR

can be enhanced up to O(10−2) to produce abundant PBHs and SIGWs.
Five typical scales with different Nout = 50, 52.89, 55, 58.84, and 62
are marked as dots with different colors, corresponding to the nearly
scale-invariant region, sharp dip, steep growth, peak, and falling stage,
respectively. The minimum of PR in the sharp dip is merely 1.61 ×
10−14, but not zero

Substituting |Rk | into Eq. (14) and considering ε ≈ εs, we
obtain the evolution of θk as

θk,N ∼ 1

e2N εsHeNe−2N ∼ e−N . (23)

Then, substituting Eqs. (22) and (23) into Eq. (15), we have

|Rk |,N ∼ e−2N .

For the evolution of ϕk, substituting Eqs. (22) and (23) into
Eq. (17), we obtain

ϕk,N ∼ 1

e2N εsHeNe−2N ∼ e−N .

Similarly, in the USR case, η ≈ 3, so

|Rk | ∼ e2N , |Rk,N | ∼ eN .

Taking into account ε ≈ εse−6(N−Ns), we have

θk,N ∼ 1

e2N εse−6(N−Ns)HeNe4N
∼ e−N . (24)

Thus, θk,N has the same time-dependence as that in Eq. (23).
However, this happens only for the sub-horizon case. In the
super-horizon case, θk,N may have totally different results in
the SR and USR cases, to be shown in Sect. 3.2. Furthermore,
by the same means, we obtain

|Rk |,N ∼ eN ,

and

ϕk,N ∼ 1

e2N εse−6(N−Ns)HeNe4N
∼ e−N .

It is interesting to find that ϕk,N behaves the same in both SR
and USR stages, but this is understandable. In the numerator
of the second term in Eq. (17), 2z2HeN |Rk ||Rk |,N is actu-
ally constant no matter η ≈ 0 or 3. Thus, its derivative with
respect to N vanishes, so ϕk,N ≈ θk,N ∼ e−N .

All the above results are summarized in Table 1, indicating
that, when a scale is sub-horizon, |Rk | is a monotonic func-
tion of N . Therefore, Rk either revolves towards the origin
in the complex plane at a decelerated rate in the SR stage,
or away from the origin at an accelerated rate in the USR
stage. These conclusions will be compared with the numeri-
cal results in Sect. 4.1

3.2 k � HeN

Next, we turn to the super-horizon case with k � HeN .

The current situation is a little bit complicated than the sub-
horizon case, and the essential reason is that, when x =
k/(HeN ) � 1, the asymptotic form of the Bessel function
Jα(x) ∼ xα depends on α. Consequently, from Eqs. (18) and
(19), we obtain

|Rk | ≈ ∣∣c3e
−(3−2η)N + c4

∣∣
=

{∣∣c3e−3N + c4
∣∣ (when η ≈ 0),∣∣c3e3N + c4

∣∣ (when η ≈ 3),
(25)

|Rk,N | ≈ ∣∣c5e
−(3−2η)N + c6e

−2N
∣∣

=
{∣∣c5e−3N + c6e−2N

∣∣ (when η ≈ 0),∣∣c5e3N + c6e−2N
∣∣ (when η ≈ 3),

(26)

where the coefficients c3 to c6 can also be obtained from A
and B. Now, the situation becomes more intractable, as there
are two competitive terms in both |Rk | and |Rk |,N . Hence,
we must be very careful to determine the leading-order one,
and we discuss this issue in detail below.

We start from the SR stage with ε ≈ εs and η ≈ 0. If the
leading-order terms are

|Rk | ≈ c3e
−3N , |Rk,N | ≈ c5e

−3N ,

1 Here, two subtle points should be mentioned. First, the results of
|Rk |,N seem inconsistent with those of |Rk |, but we must point out
that |Rk |,N cannot be trivially obtained from the derivative of |Rk |, but
must be calculated from Eq. (15). Second, one cannot naively expect
|Rk |,N ∼ |Rk,N | (although their dependence on N does coincide), but
must use Eq. (15) in principle. These two points also apply in Sect. 3.2.
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Fig. 4 The evolutions of the primordial curvature perturbation Rk and
the two arguments θk and ϕk with Nout = 50. Before Nout, we have
k � HeN and η ≈ 0, and k3|Rk |2/(2π2) ∼ e−2N , θk,N ∼ e−N , and
ϕk,N ∼ e−N , so the slopes of the blue lines in a–c are −2, −1, and
−1. Similarly, when Nout < N < Ns, we have k � HeN and η ≈ 0,

so the slopes of the red lines are 0, −3, and −1. When Ns < N < Ne,

we have k � HeN and η ≈ 3, so the slopes of the purple lines are
0, 3, and −5. All these values match the numerical results (the dashed

lines) very well. Moreover, the evolution of Rk from N = 47 to 52
(ΔN = 0.01) is shown in the complex plane in d, in which Rk first
revolves around the origin at a decelerated rate and finally stops near it.
This means that, for the large-scale curvature perturbation that crosses
the horizon much earlier before the USR stage, |Rk | becomes almost
constant once N > Nout, and the influence from the USR inflation is
negligible

from Eqs. (14), (15), and (17), by the same method in
Sect. 3.1, we obtain

θk,N ∼ e3N , |Rk |,N ∼ e−3N , ϕk,N ∼ e3N .

Similarly, if the leading-order terms are

|Rk | ≈ c4, |Rk,N | ≈ c6e
−2N ,

the corresponding results read

θk,N ∼ e−3N , |Rk |,N ∼ e−2N , ϕk,N ∼ e−N .

Next, we move on to the USR stage with ε ≈ εse−6(N−Ns)

and η ≈ 3. If the leading-order terms are

|Rk | ≈ c3e
3N , |Rk,N | ≈ c5e

3N ,

we obtain

θk,N ∼ e−3N , |Rk |,N ∼ e3N , ϕk,N ∼ e−3N .

Similarly, if the leading-order terms are

|Rk | ≈ c4, |Rk,N | ≈ c6e
−2N ,

we have

θk,N ∼ e3N , |Rk |,N ∼ e−2N , ϕk,N ∼ e−5N .

Again, all the above results are summarized in Table 2,
according to the increasing rate of |Rk |. Because of the com-
petition between the two terms in Eqs. (25) and (26), there
are altogether four different combinations at present. From
the last two rows, we find that, during the USR stage, ϕk,N

decreases dramatically, so ϕk will reach a constant very soon.
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Fig. 5 Same as Fig. 4, but with Nout = 52.89. Before the end of the
USR stage, the evolutions of |Rk |, θk , and ϕk basically resemble those
in Fig. 4. However, around Ne, Rk is no longer frozen but decreases
dramatically as |Rk | ∼ e−3N , and ϕk,N is extremely small at the same
time, so there appears a new linear evolution of Rk after the revolving

process (not shown in the figure) towards but not through origin, as
shown in d with N = 56.8 to 62.9 (ΔN = 0.1). This linear evolution
naturally explains the sharp dip in PR , and the minimum of the dip is
not exactly zero from both theoretical and numerical points of view

Under these circumstances, Rk will have tiny angular veloc-
ity in the complex plane, so there will appear a linear evolu-
tion of Rk, to be shown in Figs. 5, 6 and 7.

Last, we briefly comment that our analytical approxima-
tion mainly applies to the two limiting cases with k � HeN

and k � HeN , but is unfortunately not suitable for the inter-
mediate region around N ∼ Nout with k ∼ HeN , because at
this time, it is difficult to determine the value of [k/(HeN )]2

in front of Rk in Eq. (5).

4 Evolution of the primordial curvature perturbation

In this section, we utilize the results in Sect. 3 to provide
a whole picture of the evolution of the primordial curva-
ture perturbation Rk in the USR inflation. Meanwhile, we
compare our analytical approximation with the numerical
results. For such comparison, five typical scales are chosen,
for which the numbers of e-folds when they cross the horizon
are Nout = 50, 52.89, 55, 58.84, and 62, respectively. The

reason for choosing these numbers is that they correspond
to five typical positions in the power spectrum PR(k): the
nearly scale-invariant region, sharp dip, steep growth, peak,
and falling stage, respectively, as shown in Fig. 3.

Below, the evolution of Rk with different Nout is system-
atically explored in order and compared with the numerical
results (i.e., the lower right panels in Figs. 4, 5, 6, 7 and 8)
in our previous work in Ref. [87].

First, we start from the case with Nout = 50, in which the
relevant scale crosses the horizon much earlier than Ns, and
our results are shown in Fig. 4. Before Nout, we have k �
HeN and η ≈ 0. Therefore, |Rk | ∼ e−N [or equivalently,
k3|Rk |2/(2π2) ∼ e−2N ], θk,N ∼ e−N , and ϕk,N ∼ e−N (the
first row in Table 1), as depicted in the blue lines in Fig. 4a–c.
However, after Nout, we should be cautious and distinguish
the SR and USR stages. When Nout < N < Ns (i.e., the SR
stage), we have k � HeN and η ≈ 0, so |Rk | ∼ const.,
θk,N ∼ e−3N , and ϕk,N ∼ e−N (the second row in Table 2).
However, when Ns < N < Ne (i.e., the USR stage), we have
k � HeN and η ≈ 3, so |Rk | ∼ const., θk,N ∼ e3N , and
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Fig. 6 Same as Fig. 4, but with Nout = 55. When N < Nout, the evo-
lutions of |Rk |, θk , and ϕk are analogous to those in Fig. 4, as shown
in the blue lines in a–c. During the USR stage, we have k � HeN and
η ≈ 3, but there are two competitive terms in |Rk | from Eq. (25). As
a result, in the early phase, we have |Rk | ∼ const., θk,N ∼ e3N , and
ϕk,N ∼ e−5N , so the slopes of the red lines are 0, 3, and −5. Similarly,

in the late phase, the slopes of the purple lines are 6, −3, and −3. Hence,
Rk shows a linear evolution away from the origin and finally stops at
a distant point in the complex plane, explaining the steep growth in
PR , as shown in d with N = 52 to 65 (ΔN = 0.01). Moreover, at
N ≈ 59.15, a sharp decrease appears in |Rk | in a, accompanied by a
spike in θk,N in b, as a natural consequence from Eq. (14)

ϕk,N ∼ e−5N (the third row in Table 2). These behaviors
can also be found in the red and purple lines in Fig. 4a–c.
Altogether, we observe that our analytical approximation fits
the numerical results (the dashed lines) perfectly in all these
situations. Furthermore, the evolution of Rk from N = 47
to 52 is exhibited in the complex plane in Fig. 4d, with the
difference of the number of e-folds between two adjacent
dots set to be ΔN = 0.01. From the results of |Rk | and
θk,N , it is easy to find that Rk revolves clockwise towards
the origin and eventually stops near it, where |Rk | tends to
be constant. The interval between the dots monotonically
decreases, meaning that Rk decelerates gradually. All these
behaviors indicate that the USR stage has negligible effect
on such large-scale curvature perturbation, and |Rk | becomes
almost frozen once N > Nout, which is reflected in the nearly
scale-invariant region in PR .

Second, we study the scale with Nout = 52.89, and our
results are shown in Fig. 5. In fact, most behaviors of |Rk |,
θk,N , and ϕk,N (e.g., the slopes of the blue, red, and purple
lines in Fig. 5a–c) remain the same as those in the previ-

ous case. The unique distinction is that, from the first row
in Table 2, around the end of the USR stage, |Rk | ∼ e−3N

decreases dramatically (the green line in Fig. 5a), and ϕk,N is
extremely small. Hence, there appears a new linear evolution
of Rk towards but not through the origin subsequent to the
revolving process, as shown in Fig. 5d, with N = 56.8 to
62.9. This interesting point naturally explains the sharp dip
in PR . Moreover, we should emphasize that this dip actu-
ally cannot reach zero, consistent with the numerical result
(the dashed line in Fig. 5a). If there were Rk that eventually
stops at the origin, we would have |Rk | = 0 and θk,N = 0
simultaneously. However, from Eq. (14), this is strictly for-
bidden, so the minimum of PR can never be zero, contrary
to the naive inference in Ref. [92].

Third, we consider the scale with Nout = 55, which is
before but near Ns. When N < Nout, the situation is anal-
ogous to the former two cases, as shown in the blue lines
in Fig. 6a–c. However, when Ns < N < Ne, we have
k � HeN and η ≈ 3, so we have to face the two com-
petitive terms in Eq. (25) and determine the leading-order
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Fig. 7 Same as Fig. 4, but with Nout = 58.84. Here, our analyti-
cal approximation applies only to the situation when N < Ns with
k � HeN . As shown in the blue lines in a–c, the evolutions of |Rk |,
θk , and ϕk are similar to the previous cases. From the dashed lines in a
and c, the rapid increase of |Rk | and decrease of ϕk,N almost maintain

as before in Fig. 6a and c, so the linear evolution of Rk still exists.
In d, Rk linearly moves away from the origin and eventually stops at a
rather distant point, resulting in the peak in PR (the previous revolving
process is not shown), with N = 58.8 to 62 (ΔN = 0.05)

one in advance. As a result, in the early phase of the USR
stage, we follow the third row in Table 2, so |Rk | ∼ const.,
θk,N ∼ e3N , and ϕk,N ∼ e−5N , corresponding to the red
lines. In contrast, in the late phase of the USR stage, we arrive
at the last row in Table 2, so |Rk | ∼ e3N , θk,N ∼ e−3N , and
ϕk,N ∼ e−3N , as shown with the purple lines. As |Rk | is
significantly amplified and ϕk,N is tiny simultaneously, Rk

shows a linear evolution away from the origin and finally
terminates at a remote point in the complex plane, inducing
the steep growth in PR , as shown Fig. 6d with N = 52
to 65. In addition, the competition between the two terms in
Eq. (25) causes a sharp decrease of |Rk | at N ≈ 59.15. From
Eq. (14), this decrease also explains a spike in θk,N , as can
be seen in Fig. 6a and b (such divergent behaviors are beyond
our analytical approximation).

Fourth, the peak of the power spectrum PR corresponds
to the scale with Nout = 58.84, and our analytical approx-
imation is partly suitable to this special case. Now, Nout is
almost in the middle between Ns = 56.81 and Ne = 60.93,

but the approximation is inapplicable when k ∼ HeN .There-

fore, we can only find the similar behaviors of |Rk |, θk,N ,

and ϕk,N to those in the previous three cases when N < Ns

(not Nout, since it is larger than Ns now). During the USR
stage, the numerical method is still needed. From the dashed
lines in Fig. 7a and c, the rapid increase of |Rk | and decrease
of ϕk,N almost maintain as before in Fig. 6a and c, so the
linear evolution of Rk still exists, resulting in the peak in
PR eventually, as shown in Fig. 7d with N = 58.8 to 62.

Last, we finish our discussion with Nout = 62. Because
Nout > Ne at present, we only need to take into account the
simple case with k � HeN . Therefore, in the SR stage, we
have η ≈ 0, so |Rk | ∼ e−N , θk,N ∼ e−N , and ϕk,N ∼
e−N (the first row in Table 1), as shown in the blue lines in
Fig. 8a–c. Next, during the USR stage, we have η ≈ 3, so
|Rk | ∼ e2N , θk,N ∼ e−N , and ϕk,N ∼ e−N (the second
row in Table 1), as shown in the red lines. Since |Rk | first
decreases and then increases in the current situation, Rk first
revolves towards the origin and then away from it, as can be
seen in Fig. 8d with N = 59 to 64. Besides, there is no more
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Fig. 8 Same as Fig. 4, but with Nout = 62. Because Nout > Ne, we
only need to consider the simple case with k � HeN . When N < Ns,

we have η ≈ 0, so the slopes of the blue lines in a–c are −2, −1, and
−1. Next, when Ns < N < Ne, we have η ≈ 3, so the slopes of the
red lines are 4, −1, and −1. Moreover, Rk first revolves towards the

origin and then away from it, as can be seen in d with N = 59 to 64
(ΔN = 0.02). Although |Rk | changes dramatically around the USR
stage, the value of ϕk,N is still large enough, so Rk cannot show a linear
evolution in the complex plane any more

linear evolution of Rk, which can also be understood from
the behavior of ϕk, since ϕk,N is still large enough in Fig. 8c.

In summary, we compare our analytical approximation of
the evolution of Rk to the numerical calculation in our pre-
vious work in Ref. [87]. Except the epoch around Nout with
k ∼ HeN , the theoretical and numerical results match each
other very well. We admit that there is indeed some situa-
tions where our approximation is insufficient. These intri-
cacies mainly root from the competition between the two
terms in Eqs. (25) and (26), because it is not always easy to
determine the leading-order one between them, so numerical
calculation is still necessary there. Last, we claim that there
are revolving processes of Rk in all the five typical cases,
but the subsequent linear evolutions only exist for the three
intermediate scales, and the relevant criterion should be that
|Rk | changes dramatically and ϕk,N is tiny simultaneously.

5 Conclusion

The USR inflation is receiving increasing research interest in
recent years, in which the primordial curvature perturbation

Rk behaves completely different in contrast to that in the
SR case. The most remarkable character is that Rk can still
significantly increase after the horizon-exit and thus greatly
enhance the power spectrumPR on small scales. As a result,
PBHs at certain mass windows can be produced in abun-
dance, serving as an effective candidate of DM. Meanwhile,
SIGWs at certain frequencies can also be intense enough to
be discovered by current and future gravitational wave detec-
tors.

In this paper, we provide an analytical approximation to
systematically investigate the evolution of Rk and the rel-
evant PR in the USR inflation, which is usually a highly
numerical and time-consuming task. The asymptotic solu-
tions of the moduli and arguments of Rk and Rk,N are
obtained in both sub- and super-horizon limits with k �
HeN and k � HeN , perfectly matching the numerical
results in our previous work in Ref. [87]. Moreover, five
typical scales with different Nout are studied in order, corre-
sponding to five different positions in PR . In all, we hope to
construct a framework to facilitate the analytical calculation
of Rk . Our basic conclusions are summarized as follows.
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First, we obtain the approximate forms of the parame-
ters ε and η in both SR and USR stages. By this means, all
the analytical solutions of |Rk |, |Rk |,N , θk,N , and ϕk,N can
be expressed in simple exponential forms. However, due to
the different asymptotic expansion of the Bessel function,
the solutions with k � HeN are more complicated than
those with k � HeN , because we have to determine the
leading-order term of Rk in advance. All the possibilities are
summarized in Tables 1 and 2.

Second, as for the evolution of Rk for the five typical
scales with different Nout, the numerical results validate our
analytical approximation where it is applicable, as shown in
Figs. 4, 5, 6, 7 and 8. The evolution of Rk can basically be
divided into two types: the revolving and linear processes.
The former exists in all the five cases. At early times when
k � HeN , in the first four cases with Nout < Ne, we have
|Rk | ∼ e−N and θk,N ∼ e−N , so Rk presents a revolving
motion towards the origin in the complex plane with decreas-
ing angular velocity, as shown in Figs. 4d, 5d, 6d, and 7d.
However, in the last case with Nout > Ne, the USR stage
causes |Rk | ∼ e2N and θk,N ∼ e−N , so Rk revolves away
from the origin, as shown in Fig. 8d.

Third, for the three intermediate scales with Nout = 52.89,

55, and 58.84, besides the revolving motion, a linear evo-
lution of Rk follows afterward. In these situations, |Rk |
changes violently, but at the same time ϕk,N is extremely
small, so Rk nearly evolves along a straight line in the com-
plex plane. When Nout = 52.89, Rk moves towards but not
through the origin in Fig. 5d, inducing the sharp dip in PR

but with a nonvanishing minimum. On the contrary, when
Nout = 55 and 58.84, Rk departs away from the origin in
Figs. 6d and 7d, explaining the steep growth and the peak in
PR . However, if Nout is too small or too big, ϕk,N remains
large enough during the USR stage, so there is only revolving
process of Rk without the subsequent linear evolution.

Altogether, by exploring the evolution of Rk via our ana-
lytical approximation, we wish to provide a whole picture
and thorough understanding of the primordial curvature per-
turbation and the power spectrum in the USR inflation from a
theoretical perspective. Our work will be helpful to the model
building of the USR inflation and contribute our knowledge
of PBH and gravitational wave physics.
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Appendix A: Derivation of Eq. (14)

Below, we show the derivation of Eq. (14) in more detail and
prove that it is a general result.

For this purpose, it is more convenient to utilize the
Mukhanov variable vk = Rk z. By means of vk, the MS
equation in Eq. (5) can be rewritten as

v′′
k +

(
k2 − z′′

z

)
vk = 0, (A.1)

where a prime denotes the derivative with respect to the con-
formal time τ defined as

dτ = dt

a
= dN

HeN
. (A.2)

Next, we decompose vk into its modulus and argument as

vk = |vk |e−iθk . (A.3)

Since z is real, vk has the same argument θk as that of Rk .

From Eq. (A.3), the first- and second-order derivatives of
vk read

v′
k = (|vk |′ − i |vk |θ ′

k)e
−iθk ,

v′′
k = (|vk |′′ − |vk |θ ′2

k − 2i |vk |′θ ′
k − i |vk |θ ′′

k )e−iθk .

Substituting these results into Eq. (A.1), it is straightforward
to obtain (|vk |2θ ′

k)
′ = 0, indicating that |vk |2θ ′

k is a constant.
Equivalently, in terms of Rk and N , we have

|Rk |2z2θk,N HeN = const. (A.4)

Here, we should emphasize that Eq. (A.4) is general, as it is a
direct result from the MS equation in essential. Consequently,
it is valid in both SR and USR stages, and on both sub- and
super-horizon scales.
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Furthermore, we choose the Bunch–Davies vacuum as a
special point to fix the constant in Eq. (A.4). First, we rewrite
Rk in Eq. (6) via the conformal time τ as

Rk = e−ikτ

z
√

2k

(
1 − i

kτ

)
.

Therefore, we have

|Rk | =
√

1

2z2k

[
1 + 1

(kτ)2

]
,

θk = kτ + arctan
1

kτ
.

Substituting these results into Eq. (A.4) and taking Eq. (A.2)
into account, we can eventually determine the constant in
Eq. (A.4) as

|Rk |2z2θk,N HeN = 1

2
,

which is just Eq. (14).
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