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Abstract We investigate the critical behavior of Lifshitz
black holes in Einstein-dilaton gravity in the context of spon-
taneous Lorentz symmetry breaking. Considering the effects
of both the Bumblebee vacuum expectation value (VEV) and
the fluctuations over the VEV, we obtained new asymptot-
ically Lifshitz charged solutions in (3 + 1) dimensions. We
consider the longitudinal massive mode of Lorentz violation
(LV) as thermodynamic pressure, leading us to establish an
P − V extended phase space. Within this framework, we
derive the equation of state P(T, V ), and subsequently iden-
tify the critical points, which manifest as discontinuities in the
specific heat at constant pressure. Following this, we compute
the Gibbs free energy, revealing a first-order phase transition
within the model. Finally, we determine the critical expo-
nents, demonstrating their equivalence to those observed in
the Van der Waals system.

1 Introduction

Lorentz symmetry is fundamental to our understanding of
matter. So far, this symmetry has been shown to be exact.
Indeed, there are severe observational constraints on Lorentz-
violating effects in the matter sector [1]. The same is observed
in the weakly coupled gravitational sector, although the con-
straints are weaker. However, we believe that at some energy
interval, this symmetry can be violated. Some models in
string theory [2], very special relativity [3], noncommutative
spacetime [4] and loop quantum gravity [5], among others,
enable Lorentz symmetry violation in the gravitational UV
regime. A framework to explore Lorentz violating theories is
provided by the Standard Model Extension (SME), wherein
LV coefficients lead to violation of the particle Lorentz sym-
metry [6]. A mechanism for the local Lorentz violating is pro-
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vided by a spontaneous symmetry breaking potential due to
self-interacting tensor fields. The vacuum expectation value
(VEV) of these tensor fields yields to background tensor
fields, which by coupling to the Standard Model (SM) fields
violate the particle local Lorentz symmetry [7–10]. More-
over, the spontaneous Lorentz violation allows the LV terms
in the Lagrangian to satisfy the Bianchi identities, a key prop-
erty for the gravitational field [7].

Gauge/gravity duality studies have been proving to be a
very promising area in theoretical physics in recent years.
This is mainly due to the operational ease that such a
tool offers to obtain weakly coupled and computable dual
descriptions of strongly coupled conformal theories [11]. The
strongly-coupled systems exhibits a scaling symmetry near
critical points. When the critical fixed point is not dynamic,
the more familiar scale invariance which arises in the con-
formal group is given by

t → λt, xi → λxi (1)

where λ is a real constant, the t is time coordinate and xi
are spatial coordinates. The AdS/CFT correspondence has
continued to gain strength over time, with numerous works
applying this duality [12–15]. But we are interested in the
development of the gravitational dual description of models
exhibiting anisotropic scale invariance of the type

t → λzt, xi → λxi (2)

where z is called the dynamic exponent. The aforementioned
scale symmetry is referred to as the Lifshitz scale symmetry
[16]. However, when z = 1, the scaling becomes isotropic,
which corresponds to relativistic invariance. Hence, our spe-
cific focus is on the examination of black hole solutions gen-
erated by the LV in close proximity to the critical point char-
acterized by a Lifshitz scale symmetry.

It has been proposed in [17,18] the gravity duals of field
theories with Lifshitz scaling should possess metric solutions
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that exhibit asymptotic behavior of the following form:

ds2 = −r2z

l2z
dt2 + l2dr2

r2 + r2

l2
d�2

d−1. (3)

For z = 1, which corresponds to the transformations (1), we
obtain the anti-de Sitter (AdS) spacetime, where the param-
eter l represents the radius of AdS. It corresponds to rela-
tivistic invariance. On the other hand, when considering a
non-trivial dynamic exponent, we refer to the metric (3) as
Lifshitz. There are intriguing values of z to consider. For
instance, at z = 2, the theory’s symmetry can be extended to
the Schrödinger group. Please refer to [19,20] for additional
details. Moreover, it is important to note that for the Lifshitz
scaling (2) to hold in the metric (3), the radial coordinate
must be transformed as r → λ−1r .

One specific model of interest is the Kostelecký–Samuel
(KS) model [21], where the field responsible for spontaneous
symmetry breaking is a vector field known as the Bumblebee
field. We are specifically interested in studying the KS model
plus the inclusion of multiple gauge fields and a negative
cosmological constant, all minimally coupled to the dilaton
field. This model allows us to investigate the effects of these
interactions on the dynamics and properties of the system
with LV in spacetime asymptotically Lifshitz (3).

It is important to emphasize that Lifshitz spacetime itself
is not a vacuum solution to Einstein’s equations [22]. There-
fore, in order to obtain Lifshitz solutions, it becomes neces-
sary to introduce matter fields. In Refs. [16,23], gauge fields
are employed, while in Refs. [24,25], Proca fields are uti-
lized in the context of Lifshitz spacetime. However, the pri-
mary focus of this article lies in the solutions derived from
Einstein–Maxwell-dilaton (EMd)-type models. As demon-
strated in Ref. [26], the inclusion of a dilaton field gives rise
to exact solutions in Lifshitz context. Significant solutions
incorporating dilation, yet devoid of Lifshitz symmetry, are
discussed in Refs. [27,28]. We can also identify alternative
asymptotically Lifshitz black hole solutions in the literature,
notably without the dilaton interaction, as referenced in [29–
31]. This serves as the primary motivation for considering
its presence in the action. Additionally, the inspiration for
including a dilaton field arises from string theories, where in
their low-energy limit, they reduce to Einstein gravity cou-
pled with a scalar dilaton field along with other fields [32]. By
incorporating the dilaton field into the gravitational action,
we aim to explore the implications and potential connec-
tions between these two frameworks: spontaneous breaking
of Lorentz symmetry and Lifshitz spacetime.

Thus, the most general action for this model, which pre-
serves diffeomorphism invariance, is given by:

S = 1

16πGN

∫
dd+1x

√−g

[
R − (∂φ)2 − 2Λ0e

−2ξ0φ

− 1

4

N∑
i=1

F2
i e

−2χiφ − 1

4
B2e−2ξ2φ − V (BμB

μ ± b2)

e−2ξ3φ

]
, (4)

where GN is the Newton gravitational constant and Λ0 is
the cosmological constant. The first term of the above action
is the Einstein–Hilbert term. The scalar field φ is called the
dilaton field that couples to the matter fields of the theory,
where ξ and χ are the coupling constants that measure this
interaction. As we will come to observe, this specific field
significantly alters the solutions within our problem, particu-
larly when contrasted with the solutions obtained in the limit
of φ = 0, see Refs. [33,34].

Moreover, we have two physically different 2-forms. The
first one composed of N strength fields of gauge fields is
defined as F := Fμνdxμ∧dxν , where Fμν = ∂[μAν]. Incor-
porating multiple gauge fields is essential, as highlighted in
Ref. [35], where it is emphasized that a minimum of twoU (1)

fields is necessary to generate a Lifshitz solution for black
holes (5) characterized by a spherical horizon. The introduc-
tion of a third field is dedicated to charging the black hole
itself, while the remaining N − 3 fields contribute to diverse
black hole charges.

The single other 2-form defined as B := Bμνdxμ ∧ dxν ,
where Bμν = ∂[μBν], defines the kinetic term of the so-
called Bumblebee field Bμ. The self-interacting vector field
Bμ has a vacuum expectation value (VEV)bμ which defines a
privileged direction in spacetime [21]. Furthermore, the term
with V is the potential that may depend on the Bμ field (self-
interaction), on the metric gμν and even on derivatives of the
field. Note that the term V breaks the U (1) symmetry for the
Bumblebee field. As demonstrated in Appendix A, this impli-
cation results in a model possessing an additional degree of
freedom when compared to an invariant vector theory under
gauge transformations. In Ref. [36], the significance of this
novel degree of freedom becomes evident when considering
radiative corrections.

The existence of a non-null VEV, i.e., < Bμ >= bμ �= 0
results in the spontaneous breakdown of Lorentz symmetry
[2]. Note that this is justified when the VEV is precisely the
minimum of the potential V = 0. Under these conditions,
a necessary constraint is outlined in Eq. (88). For this vac-
uum case, massless modes that behave similar to photo may
appear [21]. For the emergence of massive modes, an appro-
priate choice of potential is necessary [37]. Thus, in action
(4) the local U (1) gauge symmetry is notably absent. Rather
than this symmetry, the model exhibits both massless Nambu-
Goldstone modes and a massive mode, stemming from spon-
taneous Lorentz violation. As the mass approaches infinity,
the photon manifests itself as massless Nambu-Goldstone
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modes. The details for mass generation in the context of LV
are discussed in detail in the Appendix A.

One approach to investigating the characteristics of black
hole solutions is by analyzing their thermodynamics. The
study of black hole thermodynamics held significant scien-
tific importance for many years. The parallels between con-
ventional thermodynamics and black holes are truly remark-
able, encompassing various thermodynamic variables includ-
ing pressure, volume, temperature, entropy, and more, as
well as phase structures. The study of these phase struc-
tures is particularly crucial in the investigation of critical
phenomena. Perhaps the most emblematic discovery about
critical phenomena was made by Hawking and Page [38].
They showed that there is a phase transition in the phase
space of the Schwarzschild-AdS black hole. After this dis-
covery, other phase transitions were discovered, as the first
order phase transition in the charged Reissner-Nordström-
AdS (RN-AdS) black hole spacetime [39]. In both of the ref-
erenced articles, the cosmological constant assumes a signif-
icant role; however, it does not contribute to the formulation
of the first law of thermodynamics.

Lately, there has been a growing interest in incorporating
the variability of the cosmological constant Λ0 into the first
law of black hole thermodynamics [40–42]. To attain this
objective, it was observed that the mass M is now character-
ized by enthalpy rather than internal energy. The Ref. [40]
demonstrated that by reevaluating the critical behavior of the
AdS charged black hole, considering the cosmological con-
stant as a thermodynamic variable, we encounter a system
that closely parallels the behavior of the Van der Waals fluid.
The P−V space holds significant importance for the analysis
of critical behavior, given its direct analogy to conventional
thermodynamics. In Ref. [41], we can find research focus-
ing on the critical behavior of Lifshitz dilaton black holes
through the utilization of the P − V diagram. While it may
initially appear unusual to consider the variation of a cosmo-
logical constant, it is justifiable in certain more fundamental
theories, where certain constants arise as vacuum expecta-
tion values [40]. Drawing inspiration from this, we intend
to elevate the thermodynamic variable to include the mas-
sive mode of Bumblebee fluctuations, which precisely arise
from a dynamic process. Thus, we are suggesting here is
to conduct an examination of the critical behavior within the
expanded P−V space of a Lifshitz black hole, influenced by
the spontaneous breaking of Lorentz symmetry. Ultimately,
our findings reveal a system with critical exponents identical
to those of the Van der Waals fluid.

Before delving into the examination of Lifshitz black hole
solutions, it is worthwhile to briefly explore a potential link
between the Hořava–Lifshitz theory and models featuring
spontaneous Lorentz symmetry breaking, particularly the
Tensor–Vector theories. Taking inspiration from anisotropic
scale invariance (2), Hořava puts forward the concept of a

renormalizable UV completion of general relativity, which
does not adhere to Lorentz invariance [43]. The Lorentz sym-
metry is violated in UV since time and space are treated dif-
ferently. On the other hand, this symmetry can be violated
locally through a spontaneous symmetry breaking [2]. How-
ever, the Hořava theory presents problems such as instabili-
ties that arise precisely due to the presence of a nondynamical
spatial foliation in the action. In an attempt to address this
issue, the Ref. [44] constrained the Lorentz-violating vector
field, known as the aether (a dynamic timelike vector), to be
hypersurface orthogonal. Consequently, it has been shown
that by doing so, the theory is identical to the IR limit of the
extension of Hořava gravity [45].

This paper is organised as follows. In Sect. 2, we obtain
the black hole solution for the model with Bumblebee fluc-
tuations and study its geometric properties. In Sect. 3, we
study the thermodynamics of the solution found and then
study the critical phenomena associated with the model. The
paper concludes in Sect. 4. We will be using units where the
speed of light, Planck’s constant, and Boltzmann’s constant
equals unity, c = h̄ = k = 1. We shall also take the Lorentzian
signature for the spacetime metric to be (−,+, ...,+).

2 Bumblebee excitations black hole in Lifshitz gravity

In this section, our aim is to seek (3+1)-dimensional black
hole solutions characterized by Bumblebee excitations that
exhibit asymptotically Lifshitz behavior. To this end, we con-
sider the following line element as our starting point [46]:

ds2 = −r2z

l2z
f (r)dt2 + l2dr2

r2 f (r)
+ r2d�2

2 (5)

where the d�2
2 the metric of a unit-radius S2 and the f (r) is

the blackening function. Thus, we impose the condition that
the function f (r) satisfies the following requirement:

lim
r→∞ f (r) = 1, (6)

ensuring that the metric asymptotically approaches the form
given by (3). Additionally, we specifically consider the static
and symmetrically spherical scenario, where all fields vary
exclusively along the radial direction of the asymptotically
Lifshitz spacetime.

Taking inspiration from the work [37], we consider the
sector of Lorentz violation to be governed by Bumblebee
excitations in the linear regime of fluctuations. By adopt-
ing a quadratic and smooth potential, a massive mode can
be obtained through a mechanism known as the alternative
Higgs mechanism. In addition to the massive mode, there
exists a massless mode corresponding to Nambu-Goldstone
bosons. Considering the metric (5) that exhibits both spheri-
cal and temporal symmetries, we further assume that the vac-
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uum expectation value (VEV) has only one non-zero radial
component, see Appendix A. Under these conditions, we
derive in the Appendix A the following effective action:

S = 1

16πGN

∫
d4x

√−g

[
R − (∂φ)2 − 2Λ0e

−2ξ0φ

− 1

4

N∑
i=1

F2
i e

−2χiφ − 1

4
F̃2

2 e
−2ξ2φ − V0e

−2ξ3φ

]
. (7)

Here, we define F̃ = F̃μνdxμ ∧ dxν , where F̃μν = ∂[μ Ãν]
with the condition Ãr = 0 when

br �= 0. (8)

Additionally, we introduce the notation:

V0 ≡ 2λb2β2
0 . (9)

In practice, the model consists of N + 1 vector fields com-
bined with two Liouville potentials for the dilaton. However,
it is important to note that, as we will later demonstrate, the
N gauge fields primarily serve as auxiliary fields within the
framework

With the given action at our disposal, we can derive the
equations of motion (EoM) by varying the action (3) with
respect to the metric, the vector fields, and the scalar field.
This leads us to the following equations, respectively:

Rμν = Λ0e
−2ξ0φgμν +

N∑
i=1

e−2χiφ

2
T EM,i

μν + e−2ξ2φ

2
T BUM

μν

+ V0

2
e−2ξ3φgμν + 1

2
∂μφ∂νφ, (10)

N∑
i=1

Dμ(e−2χiφFμν
i ) = 0, (11)

Dμ(e−2ξ2φ F̃μν) = 0, (12)

�φ + 2ξ0Λ0e
−2ξ0φ +

N∑
i=1

χi

2
F2
i e

−2χiφ + ξ2

2
F̃2

2 e
−2ξ2φ

+ ξ3V0e
−2ξ3φ = 0. (13)

where

T EM,i
μν = (Fi )μ

σ (Fi )νσ − 1

4
gμνF

2
i (14)

T BUM
μν = F̃μ

σ F̃νσ − 1

4
gμν F̃

2
2 . (15)

Note that we used in Eq. (10) the fact that the two quantities
above have traceless in 4-dimensions.

Assuming that (Fi )r t �= 0 and F̃rt �= 0, indicating an elec-
tric field configuration, we can derive the following expres-
sions from Eqs. (11) and (12), respectively, for the ansatz

(5):

(Fi )r t = qi e2χiφ

r3−z
, (16)

F̃rt = q̃e2ξ2φ

r3−z
, (17)

where qi and q̃ are integration constants. These constants are
related to the total charge through further considerations

Qi = 1

16πGN

∫
e−2χiφ  Fi , (18)

Q̃ = 1

16πGN

∫
e−2ξ2φ  F̃ . (19)

This last charge is related to the transverse mode that origi-
nated through a spontaneous Lorentz symmetry breaking.

Substituting the solutions (16) and (17) in the components
t t and rr of Eq. (10), we can find from the combination
Rt

t − Rr
r that

φ = φ0 + φ1lnr, (20)

where φ0 is a integration constant and φ1 is given by

φ1 = 2
√
z − 1. (21)

This way of obtaining the dilaton field through Einstein’s
EoM is present in numerous references such as [27,34,47].
From the expression for φ1 presented above, it is evident
that we require z ≥ 1. It is worth noting that besides the
context of dilaton and Lifshitz black hole solutions, scalar
fields of the form (20) are also solutions in various models of
asymptotically Anti-de Sitter (AdS) spacetimes [48,49]. To
obtain the function f (r), we can substitute Eqs. (16), (17),
and (20) into the Einstein equations (10). By performing this
substitution, we obtain the following expression for f (r)

f (r) = l2

r2z2 − mr−z−2 − Λ0l2e−2ξ0φ0(ξ0φ1 + 1)r−2ξ0φ1

z(−2ξ0φ1 + z + 2)

− l2V0e−2ξ3φ0(ξ3φ1 + 1)r−2ξ3φ1

2z(−2ξ3φ1 + z + 2)

+
N∑
i=1

q2
i l

2ze2χiφ0(−χiφ1 + 2z − 5)r2χiφ1−4z+8

4z(3z − 2(χiφ1 + 5))

+ q̃2l2ze2ξ2φ0(−ξ2φ1 + 2z − 5)r2ξ2φ1−4z+8

4z(3z − 2(ξ2φ1 + 5))
. (22)

In the expression above, the integration constant m is related
to the mass, as we will discuss later. To obtain a solution
that is asymptotically Lifshitz, it is crucial for the condition
(6) to hold. In order to achieve this, we fix the cosmologi-
cal constant term. Consequently, from Eq. (22), we need to
determine the coupling constant ξ0 as follows

ξ0 = 0. (23)
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That is, by making this particular choice, the dilaton field
does not couple to the cosmological constant term, resulting
in a pure cosmological constant contribution. Certainly, we
could apply a similar approach to the other terms in Eq. (22),
such as the term with V0. However, choosing a specific value
forV0 would fix the contribution from Lorentz violation (LV),
resulting in a solution that does not exhibit the effects of LV.
Since the main objective of the article is to investigate the
effects of LV, it is not desirable to fix the term associated
with LV in this manner.

It is important to note that we have not yet utilized the
equation of motion (EoM) of the scalar field. This equation
will yield an algebraic equation that assists in relating the
parameters of the theory. By substituting the solution (22)
into Eq. (13), we obtain the following expression:

− Λ0φ1 + V0[4ξ3 − φ1]e−2ξ3φ

2
+ φ1

r2 = 1

4

(
L

r

)2z−2

×
[ N∑

i=1

F2
i [4χi + φ1]e−2χiφ + F̃2[4ξ2 + φ1]e−2ξ2φ

]

(24)

This equation can be solved through various ways. However,
our objective is to obtain a solution that highlights not only the
contribution from the LV charge q̃ but also the effects of the
LV massive mode V0 discussed in the paper. To achieve this,
we can choose the first gauge field to cancel the cosmological
constant term. Note that choosing

χ1 = 2

φ1
, (25)

the dependence on r vanishes. Finally, so that the two terms
can be canceled, we fix the charge U (1) with the cosmolog-
ical constant as follows:

q2
1 = 4(z − 1)l2−2ze

− 4φ0
φ1 Λ0

z + 1
. (26)

Similarly, the second gauge field to cancel the third term on
the left side in the Eq. (24). By making this choice:

χ2 = 1

φ1
. (27)

So that the second charges U (1) to cancel the term φ1
r2 with

q2
2 = 4(z − 1)l2−2ze

− 2φ0
φ1

z
. (28)

Furthermore, the remaining N − 2 gauge field can be can-
celed for the following choice

χ j = −φ1

4
, (29)

where j = 2, ..., N − 1. Finally, in order to cancel the trans-
verse and longitudinal mode terms of the LV in Eq. (24),
respectively, we have that

ξ2 = −φ1

4
, ξ3 = φ1

4
. (30)

As our primary interest lies in exploring the contributions
associated with the spontaneous breaking of Lorentz symme-
try, we will henceforth consider only two U (1) fields. Con-
sequently, these fields will not contribute to the metric, since
they do not introduce U (1) charges into the solution. Illus-
trating their auxiliary nature in this particular configuration,
since they are already fixed in (26) and (28). It is important
to note that in order to obtain a black hole solution using the
action (7), it is necessary to incorporate at least three vector
fields, as previously mentioned in reference [26]. Therefore,
in this case, only two gauge fields are sufficient to achieve a
black hole solution with spherical symmetry. This is because
the role of the additional vector field required for spheri-
cal symmetry will be played by the transverse mode of the
Lorentz violation. This rationale justifies why we no longer
utilize the remaining N − 2 gauge fields in our analysis.
Moreover, as assumed in (23), we consider the cosmological
constant term to be unity, which imposes the condition that

Λ0 = − (z + 1)(z + 2)

2l2
. (31)

Considering all of the aforementioned considerations, we
can conclude that the solution is characterized by only four
free parameters: m, q̃ , V0 and φ0. Summarizing, the solution
we found to action (7) is

ds2 = −r2z

l2z
f (r)dt2 + l2dr2

r2 f (r)
+ r2d�2

d−1, (32)

where

f (r) = 1 − m

rz+2 + l2

r2z2 + V0l2e−φ0
√
z−1

2(z − 4)r2z−2

+ q̃2l2ze−√
z−1φ0

4zr2(z+1)
. (33)

(F1)r t = 2

√
z − 1

z

l1−ze
φ0

2
√
z−1

r1−z
, (34)

(F2)r t = √
2(z − 1)(z + 2)l−1e

φ0√
z−1 r z+1, (35)

F̃rt = q̃e−√
z−1φ0

r z+1 , (36)

φ = φ0 + 2
√
z − 1lnr, (37)

where Λ0 = − (z+1)(z+2)

2l2
and V0 = 2λb2β2

0 . Note that a
special limit for the z parameter is when z = 1. Firstly, the
scalar field becomes constant for this limit. Further, the fixed-
charges q1,2 vanish and the cosmological constant is given
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by Λ0 = − 3
l2

. Therefore, we recover the charged black hole
solution, i.e.,

ds2 = −
(

1 − m

r
+ q̃2

r2 − Λe f f r
2
)
dt2

+
(

1 − m

r
+ q̃2

r2 − Λe f f r
2
)−1

dr2 + r2d�2
2, (38)

where the effective cosmological constant is given by

Λe f f ≡ Λ0 + λb2β2
0 . (39)

Result similar to that found in [50]. Thus, we can recover the
AdS charged black holes [39] for λb2β2

0 < 3
l2

. On the other
hand, for z �= 1, the solution exhibits significant differences
compared to the AdS charged black holes. This highlights the
profound impact of the dilaton field on the solution, showcas-
ing the drastic changes it induces. It is precisely this dramatic
change that we will further investigate when addressing the
critical behaviors of the solution (32).

Now, let us analyze some geometric properties of the solu-
tion (32). First, we can determine the position of the horizon
rh by setting f = 0. This results in the following algebraic
equation for rh :

r2z−2
h − mrz−4

h + l2

z2 r
2z−4
h + V0l2e−√

z−1φ0

2(z − 4)

+ q̃2l2ze−√
z−1φ0r−4

h

4z
= 0. (40)

In this case, we assume that rh represents the largest posi-
tive real root of the equation f = 0. Unfortunately, an exact
solution for rh = rh(m, q̃, φ0, V0) is not readily available.
However, as noted by Ref. [26], the mass parameter m is
not a fundamental parameter of the theory. Instead, the fun-
damental parameters are q̃ , φ0, V0 and the temperature T .
Motivated by this, we can solve Eq. (40) with respect to the
mass, yielding

m = r z+2
h

(
q̃2l2zr−2(z+1)

h e−√
z−1φ0

4z
+ V0l2r

2−2z
h e−√

z−1φ0

2(z − 4)

+ l2

r2
h z

2
+ 1

)
. (41)

This quantity will play a crucial role as we utilize it to derive
an expression for the temperature that depends solely on q̃ ,
rh , φ0 and V0. Additionally, as we will explore later, in the
limit when the black hole becomes extremal, i.e., T = 0, the
near-horizon geometry is given by AdS2 × S2.

As mentioned, certain studies suggest that the cosmologi-
cal constant can exert a form of pressure on black holes, and
this consideration is crucial for the investigation of criticality

in systems. Drawing inspiration from these works and rec-
ognizing the similarities between the cosmological constant
and the LV massive mode, it is reasonable to speculate that
this mode may also exert pressure on the black hole. From
Eq. (10), it is possible to associate a pressure with V0. Conse-
quently, it can be shown that the pressure due to the massive
mode is given by1

PLV = −V0e−√
z−1φ0

16πGNr
2z−2
h

. (42)

Note that due to the fact that V0 > 0, the pressure obtained
above is negative, bearing resemblance to the pressure associ-
ated with a de Sitter solution. On the other hand, the pressure
associated with the cosmological constant can be expressed
as:

PΛ0 = z + 2

8πGNl2
. (43)

Note that this pressure is positive and in the limit z = 1
we recover the usual case PΛ0 = 3

8πGN l2
. Although it is

possible to define different pressures for the parameters V0

and Λ, in our analysis, we assume that onlyV0 exerts pressure
on the black hole. In other words, we consider V0 to be a
thermodynamic variable. On the other hand, we treat Λ as a
constant that does not enter the first law of thermodynamics.
This choice seems reasonable since the pressure associated
with V0 is a result of the dynamic process of spontaneous
Lorentz symmetry breaking, which is well-established in the
literature. This process is inherently dynamic, in contrast to
the a priori nature of the cosmological constant.

3 Phase structure

In this section, we explore and analyze the critical behaviors
of the black hole in Lifshitz spacetime (32). It is important to
note that establishing an exact analysis of the P−V extended
phase space for Lifshitz solutions presents certain difficulties.
This arises due to the challenge of finding an equation of state
P = P(V, T ) for an arbitrary dynamic exponent z. Although
this problem can be circumvented by assuming a modified
equation of state, as seen in Ref. [51], a more natural and
convenient approach is to consider that the thermodynamic
pressure is given by the LV (42), which simplifies the analysis
of the criticality in the PV diagram. By adopting this choice,

1 We can model the stress-energy tensor as Tμν =
diag(ρ,−Pr ,−Pt ,−Pt ), where ρ is the energy density and Pr ,
Pt are the radial and tangential pressures, respectively. By utilizing Eq.
(10), we can determine the pressures associated with the parameters
V0 and Λ. Considering that Lifshitz spacetime is non-isotropic, we
account for a non-isotropic fluid. Furthermore, we focus solely on the
radial component since the tangential components do not contribute to
the work exerted by the pressure on the black hole.
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we can obtain an equation of state that closely resembles that
of a Van der Waals fluid, as we will explore further.

Before delving into the analysis of the phase structure,
it is essential to study the thermodynamic properties of the
solutions (32–37) and verify if the first law is valid. However,
to proceed, we must formally define how the parameter m
relates to the mass of the black hole. But first, let us explicitly
define the LV charge from Eq. (19) as:

Q̃ = q̃l z−1

4GN
. (44)

Further, the potential associated with this charge in the ther-
modynamic relations, measured at infinity with respect to the
horizon, is defined by:

Φ̃(r) = Ãμχμ|r→∞ − Ãμχμ|r=rh , (45)

where χ = ∂t is the null generator of the horizon. Consider-
ing Eq. (36) and the equation above, we obtain that

Φ̃(r) = − q̃e−√
z−1φ0

z
(r−z − r−z

h ). (46)

Using the modified Brown and York formalism [52], we
can calculate the mass of the solution as:

M = ml−z−1

2GN
(47)

3.1 Thermodynamics

The first thermodynamic property that we calculate is the

temperature, which can be given by T = l−1−zr z(r f ′+2z f )
4π

.2

By substituting Eqs. (33) and (41) into this expression, we
find that:

T = l−z−1r−z−2
h

16π z

[
4r2z

h

(
l2 + r2

h z(z + 2)
)

− ze−√
z−1φ0

(
q̃2l2z + 2l2r4

h V0

) ]
, (50)

where we use the Eq. (47). Thus, the extremal limit (T = 0)
is given by

V ext
0 = 4e

√
z−1φ0r2z

ext
(
z(z + 2)r2

ext + l2
) − q̃2zl2z

2l2zr4
ext

, (51)

2 We can calculate surface gravity κ , hence temperature T = κ
2π

, for
static spherically symmetric spacetime with metric given by

ds2 = gtt dt
2 + grr dr

2 + r2d�2
2, (48)

through the following formula

κ = − ∂r gtt
2
√−grr gtt

. (49)

where rext is the position of the horizon at extremality.
Notably, if we substitute Eqs. (41) and (51) into (33), we
indeed find that the near-horizon geometry is described by
AdS2 × S2.

The other quantity is the Bekenstein-Hawking entropy
which is given by

S = πr2
h

GN
. (52)

Having defined the thermodynamic and geometric quan-
tities for the solution (32), we are now ready to verify the
first law of thermodynamics. However, before proceeding, it
is essential to understand the role of the parameters of the
Lorentz violation, expressed by V0 and q̃ , in the first law.
Inspired by the limit z → 1, we can assume that the cosmo-
logical constant is fixed, meaning the black hole parameters
are varied in a ’fixed AdS background’. On the other hand, as
already mentioned, we consider that the LV massive mode
contributes to a form of pressure in the first law. Drawing
parallels between V0 and the cosmological constant, we will
adopt the analysis made by Refs. [53,54] to understand the
implications ofV0 in the first law of thermodynamics. Indeed,
these articles demonstrated that when the cosmological con-
stant is considered as a thermodynamic variable through a
pressure term, the mass of the black hole is no longer identi-
fied solely with the free energy, but rather with the enthalpy.
This novel approach garnered considerable attention as it
unveiled the striking similarities between the AdS charged
black hole solutions and the Van der Waals fluid [39], pro-
viding a clearer and more insightful perspective on their ther-
modynamic behavior. Certainly, this assumption does raise
some concerns, notably the lack of a known mechanism that
treats the cosmological constant as vacuum expectation val-
ues. However, for our proposal, this does not pose a problem,
as the Bumblebee excitations generating these new terms
arise precisely as vacuum expectation values of Bμ. This
unique feature sets our approach apart, allowing for a natu-
ral incorporation of the cosmological constant and avoiding
the issues associated with the traditional treatment of it as a
thermodynamic variable.

Therefore, by assuming that the LV mass mode V0 is a
thermodynamic variable, we establish that the mass param-
eter (47) is analogous to the enthalpy. This thermodynamic
potential can then be related to the entropy, pressure, and
charge in an extended phase space that includes the PLV and
VLV variables. The relationship can be expressed as follows:

dH = TdS + VLV dPLV + Φ̃(∞)d Q̃, (53)

where the potential Φ̃ is held fixed at the boundary at value

Φ̃(∞) = Q̃lz−1r−z
h e−√

z−1φ0

4GN z
, and serves as the variable conju-

gate to the charge Q̃. Thus, we have that
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T =
(

∂H

∂S

)
V0,Q̃,φ0

, (54)

VLV =
(

∂H

∂P

)
S,Q̃,φ0

, (55)

Φ̃(∞) =
(

∂H

∂ Q̃

)
S,V0,φ0

. (56)

Indeed, it is evident that the relation (54) holds, as the
enthalpy is given by Eq. (47). Similarly, we find that Eq.
(56) holds for (44). Finally, we can confirm that the first law
truly holds when the ”thermodynamic volume” (55) is given
by:

VLV = 4πl1−zr z+2
h

4 − z
, (57)

where we assume that the thermodynamic pressure is given
by the pressure (42). Indeed, quantity (57) has volume dimen-
sion, [length]3. In limiting cases, our expressions naturally
recover the definitions in [40,55,56].

Substituting Eqs. (52) and (42) in the expression (41), we
obtain the enthalpy given by

H(S, PLV , Q̃) = π z/2

4GN z2lz+1
(√

SGN
)z

[
16G3

N l
2PLV S2z2

π(4 − z)r2−2z
h

+ 8G2
N l

2 Q̃2ze−√
z−1φ0 + 2π−z (SGN )z

(
GN Sz2

π
+ l2

)]
. (58)

In fact, the Eq. (71) holds, since the quantities (54), (55)
and (56) are confirmed with Eqs. (50), (57) and (46), respec-
tively. In addition, in the limit z = 1 (Q̃ = 0) we recover the
enthalpy found by Ref. [53], as expected.

3.2 Equation of state

In order to explore the similarities between the Lorentz Viola-
tion black hole solution in Lifshitz spacetime (32) and liquid–
gas system in the extended phase, we make the assumption
that both the charge and the cosmological constant are fixed
external parameters, not thermodynamic variables. To pro-
ceed in this direction, we obtain the black-hole equation of
state, i.e., the equation that depends only on PLV and VLV ,
from Eq. (50), and it is given by:

PLV (T, VLV ) = −PΛ0 + T lz−1r−z
h

2GN

+ GN Q̃2r−2(z+1)
h e−√

z−1φ0

2π
− 1

8πGNr2
h z

,

(59)

where the VLV is given in terms of the event horizon radius
rh through Eq. (57). Also, PΛ0 is defined in (43), but to reit-
erate, this quantity is a fixed parameter. Once we have the

equation of state (59), we can proceed to calculate the criti-
cal points of the P–V diagram. However, before that, it would
be more appropriate to rewrite Eq. (59) in a form similar to
the equation of state for the Van der Waals-like fluid [40].
It is crucial to highlight that the analogy drawn between our
solution (32) and Van der Waals fluid holds precisely when
z = 1. For other values of z, distinct critical effects emerge, a
point that will be expounded upon in subsequent discussions.
To achieve this, we define a kind of ”specific volume” given
by:

v ≡
(

2GN

lz−1

)
r zh . (60)

Thus, we have Eq. (59) can be rewritten as

PLV = − a

2πv2/z
+ b

πv
2(z+1)

z

+ T

v
− PΛ0 , (61)

where

a = 2
2
z −4G

2
z −1
N l

2
z −2

z
, (62)

b = 2
z+2
z Q̃2G

2
z +3
N l

2
z −2ze−√

z−1φ0 . (63)

Moreover, we can define the ”specific volume” as v = VLV
N ,

where N represents the ”number of states” [42]. Thus, it is
straightforward to obtain that for (57), the general N is given
by:

N = 2

4 − z
S, (64)

where S is the entropy (52). Indeed, this remarkable result
indicates that the entropy of the black hole is somehow related
to the number of degrees of freedom of the system. The fact
that the expression for N is proportional to the black hole
entropy suggests a deeper connection between the micro-
scopic properties of the black hole and its macroscopic ther-
modynamic behavior, providing valuable insights into the
underlying nature of the black hole solution.

The critical point is obtained from
(

∂PLV
∂v

)
T,Q̃,φ0

=
(

∂2PLV
∂v2

)
T,Q̃,φ0

= 0, (65)

which leads to

vc = 4G2
N Q̃l1−ze−

√
z−1φ0

2

√
z(z + 1)(z + 2)

2 − z
, (66)

Tc =
2

z−2
z G

z−2
z

N l1−z Q̃
z−2
z e− (z−2)

√
z−1φ0

2z

(
z(z+1)(z+2)

2−z

) 1
2 − 1

z

π z(z + 2)
,

(67)

Pc =
2− 2

z −3G
− z+2

z
N Q̃−2/ze

√
z−1φ0
z (z + 2)

(
z(z+1)(z+2)

2−z

)− z+1
z

π
−PΛ0 . (68)
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Fig. 1 P–V diagram of Einstein–Maxwell–Bumblebee-dilaton black
hole for Q̃ = 1. We have set GN = φ0 = l2 = 1

From the equations presented above, it becomes evident
that to identify critical points, where both the critical tem-
perature and the critical horizon are real and non-negative,
the dynamic coefficient needs to be within the range of
1 ≤ z < 2. By plotting two P–V diagrams for two val-
ues of z within this interval, we observe the emergence of an
’oscillating part’ in the isotherm, closely resembling the Van
der Waals P–V diagram (Fig. 1). Notably, the pressure near
the critical point is negative for this configuration. This is a
characteristic feature of scenarios where the Lorentz sym-
metry is spontaneously broken (42) for V0 > 0. However,
as the temperature increases, we move away from the criti-
cal points, until we reach a positive pressure PLV , indicating
a scenario where the spontaneous breaking of the Lorentz
symmetry is no longer present, as we would have λ < 0.

We can also find a universal relation for general z that
relates the three critical quantities (66),(67) and (68). Thus,
it is straightforward to show that

Pef f
c vc
Tc

= 4 − z2

4(1 + z)
, (69)

where Pef f
c = Pc + PΛ0 . Note that in z = 1, we recover

same relation as for the Van der Waals fluid.

Further, from the equation of state (61) it is possible to
obtain ’the law of corresponding states’. Setting the following
quantities

p = Pef f

Pe f f
c

, v = v

vc
, τ = T

Tc
, (70)

where Pef f = PLV + PΛ0 , we have that

8τ = 2(2 + z)v

[
2 − z

1 + z
p + 1

v
2
z −1

]
− 2(2 − z)

(1 + z)v−1− z
2
.

(71)

In limit z = 1, we recover ’the law of corresponding states’
of Ref. [40]. This equation will be crucial for calculating the
critical exponents later on.

3.3 Thermal stability

As shown by Ref. [57], it is possible to associate thermody-
namic stability with microscopic fluctuations of the system.
The stability condition can be expressed as

CP,V ≡ T

(
∂S

∂T

)
PLV ,VLV ,Q̃

≥ 0, (72)

where CP,V is the specific heat at constant pressure or vol-
ume. Using Eqs. (50) and (52), we have that the specific heat
at constant pressure is given by

CP = 8π2zlz+1r z+4
h e

√
z−1φ0T

B̃
,

where T is given by (50) and

B̃ ≡ 4G3
N l

2 Q̃2z(z + 2) + GNr
2z
h e

√
z−1φ0

[
r2
h z

2(z + 2)

− l2(z − 2)
(

8πGN PLV r
2
h z − 1

) ]
. (73)

Immediately, we can observe that the specific heat CP

becomes singular at B̃ = 0, precisely at the critical point.
In Fig. 2, we plot the heat capacity at constant pressure
against the horizon, considering various values of z. The
orange and green lines exhibit discontinuities, which is a
result of these lines falling within the range allowing for
critical points 1 ≤ z < 2. The blue line, situated outside
this interval, does not display discontinuities. Furthermore,
we can observe that only the two lines within the interval
demonstrate thermodynamic stability. On the other hand, the
heat capacity at constant volume vanishes, as the entropy (52)
remains unchanged when the volume is fixed.
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Fig. 2 Heat capacity at constant pressure vs. horizon radius for various
values of z and GN Q̃ = 1. We have set φ0 = l2 = 1

3.4 Gibbs free energy

In phase transition studies, analyzing the Gibbs free energy is
of utmost importance. This is because first-order transitions
are identified by the divergent behavior of its first derivative.
With this in mind, we can express the Gibbs free energy as
follows:

G = H − T S, (74)

where the enthalpy H is identified as the mass (47), as dis-
cussed earlier. Thus, we have that the Gibbs energy for fixed
Q̃ for our solution is given by

G(T, PLV ) = 1

4GN z2lz+1r zh

[
l2

(
4G2

N Q̃2z(z + 2)e−√
z−1φ0

− (z − 2)r2z
h

(
8πGN PLV r2

h z
2 + z − 4

)
z − 4

)
− z3r2z+2

h

]
, (75)

where rh = rh(T, PLV ) is expressed through Eq. (59). In
the limit z = 1 we retrieve the same result from Ref. [40] that
used the Euclidean approach to quantum gravity to obtain the
same result.

In Fig. 3, we present the Gibbs free energy as a function
of temperature for two values of z that fall within the range
allowing for critical points. For z = 1, we observe a graph
very similar to the one obtained in [40]. In fact, we can see
that for P < Pc, the ”swallow tail” phenomenon emerges.
On the other hand, when we set z = 3/2, the ”swallow tail”
behavior is altered. However, for both cases, it is evident that
when T < Tc, a first-order phase transition occurs between
a (small black hole) and a (large black hole).

3.5 Critical exponents

The behavior of physical quantities near a critical point can
be characterized by critical exponents. These exponents are
independent of the details of the theory, making them uni-
versal. However, they may depend on the size of the system

Fig. 3 Gibbs free energy of Einstein–Maxwell–Bumblebee-dilaton
black hole for GN Q̃ = 1. The orange lines correspond to critical pres-
sures where GN Pz=1

c ≈ −0.118 and GN Pz=3/2
c ≈ −0.139.We have

set φ0 = l2 = 1

or the range of interactions. Using the same approach as in
Ref. [39], we obtain four critical exponents: α, β, γ , and δ

below.

– Order parameter η

In order to obtain the order parameter, we expand the equa-
tion of corresponding states (71) in the neighborhood of the
critical point. For this, we define that:

t = τ − 1 ω = v − 1. (76)

So, we obtain that:

p ≈ 1 − 4(z + 1)t

z2 − 4
+ 4z(z + 1)tω

z2 − 4
− 2z(z + 1)ω3

3
+ . . . ,

(77)

where the ellipsis takes into account the terms of order equal
to or greater than ω4, which we disregard. We also neglect
the tω2 terms. Now, we can calculate the differential of the
truncated series above, and we get that:

dPLV = 2z(z + 1)Pef f
c

(
2t

z2 − 4
− ω2

)
dω. (78)
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It is worth remembering that PΛ0 is fixed, so its differential
vanishes. Assuming that ωl and ωs are the ’volumes’ of the
large and small black holes, respectively, and that during the
phase transition the pressures are equal, we can obtain the
following equation:

1 − 4(z + 1)t

z2 − 4
+ 4z(z + 1)tωl

z2 − 4
− 2z(z + 1)ω3

l

3

= 1 − 4(z + 1)t

z2 − 4
+ 4z(z + 1)tωs

z2 − 4
− 2z(z + 1)ω3

s

3
. (79)

Furthermore, we can employ the Maxwell’s equal area law
to obtain the following equation:
∫ ωs

ωl

ω

(
2t

z2 − 4
− ω2

)
dω = 0. (80)

Assuming fixed t < 0, the unique non-trivial solution to the
system of equations (79) and (80) is ωl = −ωs ∝ √−t .
Thus, the order parameter is given by

η = vc(ωl − ωs) ∝ √−t . (81)

Therefore, we find that the first critical exponent is β = 1/2.

– Isothermal compressibility κT

The other critical exponent γ is found through the isothermal
compressibility given by

κT = −1

v

∂v

∂PLV

∣∣∣∣
T

∝ t−γ . (82)

We achieve this by differentiating Eq. (77). Thus, we can
easily obtain that

κT ∝ 1

Pef f
c t

. (83)

Therefore, we find that the second critical exponent is γ = 1.

– Critical isotherm T = Tc

The next critical exponent δ is related to the ‘shape of the
critical isotherm’ t = 0 through the relation:

|P − Pc| ∝ |v − vc|δ. (84)

We can obtain this relation by assuming t = 0 in Eq. (77).
Thus, we get:

p − 1 = −2z(z + 1)ω3

3
. (85)

Therefore, we find that the third critical exponent is δ = 3.

– Specific heat at constant volume Cv

Finally, we have that the exponent α governs the behaviour
of the specific heat at constant volume,

Cv = T
∂S

∂T

∣∣∣∣
v

∝ |t |α. (86)

But as mentioned at the end of Sect. 3.3, the Cv vanishes.
Therefore, we find that the last critical exponent is α = 0.

In conclusion, we have found that the critical exponents
for a dilaton Lifshitz black hole with Bumblebee excitations
are the same as those found in the Van der Waals fluid. This
remarkable similarity indicates that the critical behaviors in
both systems share universal features, despite their differ-
ent physical origins. The study of critical phenomena in this
black hole solution provides valuable insights into the ther-
modynamic properties of systems with Lifshitz symmetry
and Lorentz violation.

4 Final remarks and perspectives

We investigated the impact of the dilaton coupling on mul-
tiple gauge fields and Bumblebee excitations in (3+1)-
dimensional asymptotically Lifshitz black hole solutions. In
the context of a static and spherically symmetric black hole,
the transverse and longitudinal modes become decoupled
from the radial vacuum expectation value (VEV). Subse-
quently, we developed a model that links the dilaton to these
modes in a similar fashion. Moreover, the dilaton potential is
induced by the massive mode β0, while the massless mode of
Nambu-Goldstone gives rise to a Maxwell-type field. Ulti-
mately, we demonstrated that the gauge fields function as
auxiliary fields in our model. Furthermore, we ensured the
decoupling of the cosmological constant term from the dila-
ton to guarantee the asymptotic Lifshitz behavior of our solu-
tion.

We have discovered a novel charged black hole solution
within an asymptotically Lifshitz spacetime. When z = 1,
this solution reverts to the AdS charged black hole solution,
albeit generated in the framework of spontaneous Lorentz
symmetry breaking. For z �= 1, we derived a solution dis-
playing a complex phase structure that is highly contingent
on the critical exponent.

To uncover the parallels between our LV solution and the
liquid–gas system, we employed a criticality analysis in the
P −V space. Here, we treated the massive mode as the ther-
modynamic pressure and its conjugate quantity as the ther-
modynamic volume. Notably, we recognized that this pres-
sure assumes a negative value, a necessary condition for the
spontaneous breaking of the Lorentz symmetry, leading to
the emergence of the β0 mode and its association with a de
Sitter phase. While it is conceivable to elevate the cosmolog-
ical constant to a thermodynamic pressure, effectively repre-
senting the Anti de Sitter phase, we specifically elevated V0
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to a thermodynamic variable. This deliberate choice allowed
for a focused examination of the solution’s critical behav-
ior through the lens of the P − V diagram. We justified this
decision by considering the ongoing dynamics of the massive
longitudinal mode of the LV, which arises from fluctuations
around the vacuum expectation value bμ. In this way, we
provided a dynamic rationale for our selection

In the concluding section of the paper, our focus shifted
towards a comprehensive analysis of the phase structures. We
initiated this examination by deriving key thermodynamic
quantities. First and foremost was the temperature. We estab-
lished that in the extremal limit (T = 0), the near-horizon
geometry can be accurately described as AdS2 × S2. Addi-
tionally, we computed the entropy employing the Bekenstein-
Hawking formula. Moreover, we underscored the necessity,
within the framework of an extended P − V phase space,
to interpret the mass of the black hole as the enthalpy for
the first law of thermodynamics to hold. However, the most
pivotal aspect of this endeavor lies in the critical behaviors
we unearthed during our scrutiny of the phase structures

We determined the critical points of the equation of state
and constructed the P − V phase diagram. In the range
1 ≤ z < 2, we observed the emergence of an ’oscillat-
ing component’ in the isotherm, akin to our findings in the
liquid–gas system. Additionally, we uncovered a universal
relation and ’the law of corresponding states’ dependent on
z that links the critical points. Notably, at z = 1, we retrieve
the relationships for the Van der Waals fluid. Concerning the
stability of the solution, we demonstrated that CP exhibits
discontinuities (indicative of phase transitions) and positiv-
ity (indicative of thermodynamic stability) for 1 ≤ z < 2.
Moreover, the swallowtail behavior of the Gibbs free energy
at z = 1 signifies a first-order phase transition within the sys-
tem. Conversely, for z = 3/2, we observed a distinct swal-
lowtail behavior, which also signals a first-order transition.
Finally, we calculated the critical exponents of the system
and determined them to be universal, mirroring those of a
Van der Waals fluid system

To conclude the paper, we will offer some suggestions
regarding the future directions and perspectives for this
research. An intriguing avenue to explore would involve
interpreting this in the context of dual field theory. Specifi-
cally, leveraging the AdS/CFT correspondence could provide
insights into the non-gravitational manifestation of this sys-
tem. In cases where z takes on arbitrary values, the system
exhibits Lifshitz scaling. The corresponding dual boundary
field theory, while not adhering to relativistic principles, still
permits particle production. Therefore, it would be promis-
ing to understand how LV relates to a non-relativistic dual
field theory. An additional proposition would involve delving
into the potential identification of the Bumblebee field as the
infrared limit of an extended version of Horǎva gravity [45].
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A Bumblebee excitations in curved spacetime

In this appendix, we aim to clarify the action (7) used in our
study, particularly focusing on the Lorentz violation sector.
Our approach is based on the works [37,50]. Let us begin
by recalling a well-established finding in the literature con-
cerning Lorentz violation. Theories featuring spontaneous
local Lorentz and diffeomorphism violation include mass-
less Nambu-Goldstone modes. These modes emerge as field
excitations in the minimum of the symmetry-breaking poten-
tial. On the other hand, it is also possible to obtain massive
modes. Assuming a smooth quadratic potential such as

V = λ

2
(BμB

μ ± b2)2, (87)

then it is possible to show that excitations above the mini-
mum are allowed, so that an alternative Higgs gravitational
mechanism can occur in which massive modes involving the
metric appear. Here, λ represents a positive self-interaction
coupling constant with mass dimension one, while b2 is a
positive constant with squared mass dimension. The ± sign
indicates whether bμ is spacelike or timelike. Furthermore,
the vacuum condition V = 0 leads to the existence of a vac-
uum expectation value < Bμ >= bμ in the following form:

gμνbμbν = ∓b2. (88)

To verify this assertion, we proceed by considering the
following decomposition:

Bμ = bμ + χμ. (89)
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Since the VEV defines a preferred direction in spacetime,
we can decompose χμ into transverse Aμ and longitudinal β

modes with respect to bμ [37]

χμ = Ãμ + βb̂μ, (90)

where by defining the projection operators P ||
μν = bμbν

bαbα
and

P⊥
μν = gμν − bμbν

bαbα
, we have Ãμ = P⊥

μνχ
ν and βb̂μ =

P ||
μνχ

ν . As result, we have to Ãμbμ ≈ 0 and b̂μb̂μ = ∓1,

where b̂μ = bμ√
b2

. Using the decomposition (90), the smooth
quadratic potential term is given at first order by

V ≈ 4λ[(b̂αbα)β]2, (91)

i.e., V (X) �= 0, therefore the β is a massive mode.
In the literature, it has been demonstrated that these

modes experience strong coupling when considering a gen-
eral spacetime. However, there are two situations in which
this difficulty can be overcome. The first scenario arises when
we assume that these fluctuations ”exist” in a flat spacetime
(see [37]). However, in this case, it has been shown that the
massive mode becomes non-dynamic. The second solution
involves selecting a specific spacetime configuration with a
preferred direction for the vacuum expectation value (VEV).
This choice of preferred direction allows for a viable alter-
native where the issues of strong coupling can be addressed.
Let’s explore this scenario in more detail.

In order to address the strong coupling issue arising from
the curvature and coupling between longitudinal and trans-
verse modes, let’s consider the propagation of Bumblebee
fluctuations on a symmetric spacetime described by metric
(5). We assume a spacelike VEV with only one nonvanishing
component, given as: bμ = (0, br , 0, 0). We can determine
the radial component using Eq. (88), leading to the following
expression:

br = b�

r
√

f (r)
. (92)

It’s worth noting that the VEV choice specified in (92) results
in a vanishing field strength, meaning thatbμν = 0. Addition-
ally, due to the decomposition, this choice leads to Ãr = 0.

Returning to the action (4), we can now replace the decom-
position (90) into it. Let’s begin by dealing with the kinetic
term of the Bumblebee field. It is straightforward to see, albeit
a bit tedious, that

BμνB
μν = χμνχ

μν = F̃μν F̃
μν + 4F̃μν(∂μβ)b̂ν

+ 2(∂μβ)(∂μβ) − 2(∂μβ)(∂νβ)(b̂ν b̂
μ), (93)

where we use that bμν = b̂μν = 0. Note that after the sec-
ond equality, we recognize that the first term corresponds
to the Maxwell term. Moreover, the second term vanishes if
we make the assumption that the fields depend solely on the

radial coordinate. Furthermore, upon utilizing Eq. (92), we
observe that the usual kinetic term of the longitudinal mode
cancels out with another term. Consequently, for this specific
choice of the preferred direction in spacetime, the Bumble-
bee kinetic term simplifies to just the Maxwell-type term,
which is described by the transverse mode. In this specific
configuration, the massive mode not only becomes decoupled
from the non-massive mode but also loses its dynamics. As
a consequence, we can describe the massive mode as being
”non-dynamic.” In this context, we denote the constant asso-
ciated with the non-dynamic massive mode as β0. Indeed,
taking all the considerations about the kinetic term and the
potential into account (91), we derive the action (7).
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