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Abstract Assuming that viscous fluid in the form of Bar-
row holographic dark energy (BHDE) (a particular case of
more generalized version of HDE elaborated in Nojiri et
al. in Phys Lett B 825:136844, 2022; Symmetry 13(6):928,
2021) and pressure-less dark matter are present across the
flat Friedmann–Robertson–Walker universe, we find the pre-
cise solutions of viscous BHDE models in non-interacting
and interacting scenarios for different choices of scale fac-
tor. We show the evolution of the EoS parameters in the vis-
cous non-interacting and interacting situations together with
the deceleration parameters for observing the transition time
frame. Afterwards, we investigate a bounce inflation model
using the analytical results of model’s slow-roll parameters,
scalar spectral index, and tensor-to-scalar ratio. We investi-
gated an association between BHDE and scalar field mod-
els since inflation is typically attributed to the existence of
scalar fields. The evolution of the generated potential from
the scalar fields are plotted against time. Finally, we investi-
gated the GSL of the thermodynamics.

1 Introduction

The accelerating expansion of the universe has been widely
proven by cosmological evaluations obtained with the Super-
novae Ia (SNeIa), the Cosmic Microwave Background
(CMB) radiation anisotropy, the Large Scale Structure (LSS),
and X-ray investigations [1–13]. Most scientists believe that
this accelerating expansion is caused by an energy compo-
nent, commonly known as Dark Energy (DE) with nega-
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tive pressure. Recent cosmological observations show that
the DE occupies roughly two-thirds of the universe’s total
density while DM fills the remaining one-third (baryonic
matter makes up only a small percentage of the universe’s
overall energy density) [14,15]. Radiation barely makes an
impact in universe’s evolution. Numerous candidates have
been proposed to define DE [16–19], but its nature is still
undetermined. The simplest form of DE is cosmological
constant with a negative constant equation of state (EoS)
parameter ω = −1 [20,21]. There have been numerous other
dark energy models proposed, including quintessence [22–
24], phantom [25–28], quintom [29–32], tachyon field [33–
35], k-essence [36–38], Chaplygin gas [39–42], holographic
dark energy [43–45], and many more to explain the acceler-
ated expansion of the universe. For an extensive review on
dark energy we can study this paper [46]. The holographic
dark energy (HDE), whose formulation depends on the holo-
graphic principle [47], is a further candidate for DE. Accord-
ing to the holographic principle, which derives from black
hole (BH) thermodynamics, a system’s entropy is determined
by its area rather than its volume [48,49]. The realisation that
information on every object that has entered a black hole
(BH) is encoded on the surface of the event horizon served
as the inspiration for the concept. Susskind expanded the
holographic idea to include string theory in [48]. Addition-
ally, he recently developed the de-Sitter space holography
in [50]. Starting with the relationship between a quantum
field theory’s greatest length and its ultraviolet cutoff [51],
one may arrive at a vacuum energy of holographic origin
that, at cosmic scales, takes the form of dark energy. Both
in its simplified [52–55] and expanded [56–65] forms, holo-
graphic dark energy produces intriguing cosmic behaviour
that is consistent with observational data [2,66–71].

The Bekenstein–Hawking entropy of a black hole is
equivalent to the universe horizon (i.e., maximum distance)
entropy, which is proportional to its area in the application of

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-024-12575-2&domain=pdf
http://orcid.org/0000-0002-5250-2585
http://orcid.org/0000-0002-5175-2873
mailto:sanghati.saha1504@gmail.com
mailto:sanghati.saha2@s.amity.edu
mailto:schattopadhyay1@kol.amity.edu
mailto:surajitchatto@outlook.com
mailto:gudekli@istanbul.edu.tr


314 Page 2 of 30 Eur. Phys. J. C (2024) 84 :314

the holographic principle at cosmic framework. However,
Barrow recently showed that more intricate, fractal char-
acteristics might be introduced to the black-hole structure
via quantum gravity forces, which were motivated by the
COVID-19 viral images. Due to this complicated structure’s
finite volume but with indefinite (or finite) area, the deformed
black-hole entropy formula [72] is

Sh =
(

A

A0

)1+ �
2

(1)

where, A denotes usual horizon area and A0 denotes Planck
area. The new exponent � is used to measure the quantum-
gravitational deformation, with � = 0 denoting the con-
ventional Bekenstein–Hawking entropy (horizon structure)
and � = 1 denoting the most complex and fractal struc-
ture. Though it resembles Tsallis non-extensive entropy [73],
the above quantum-gravitationally corrected entropy differs
from the typical “quantum-corrected” entropy with logarith-
mic adjustments [74].Yet, basic fundamentals and physical
concepts are very different. The fact that the aforementioned
effective fractal behaviour derives from wide elementary
physical principles rather than from precise quantum grav-
ity calculations, making it appropriate as a starting approach
[72] to the subject.

In modern theoretical cosmology, one of the most funda-
mental concern is whether the universe was singular or non-
singular at its beginning. Asking whether the Big Bang or
Big Bounce theories accurately capture the evolution of our
universe is analogous to this question. In the bouncing model,
the Universe first experiences a contraction phase that is dom-
inated by matter, followed by a non-singular bounce, before
causal production for fluctuation [75–78]. Additionally, the
scale factor grows (a(t) > 0) during the expanding phase
and lowers (a(t) < 0) during the contracting phase. Finally,
at the matter bounce epoch, the scale factor is equal to zero.
As a result, in bouncing cosmic theory, the Hubble parameter
H transitions from negative values H < 0 to positive values
H > 0 by crossing zero (H = 0) [79,80]. One of the another
potential explanations for the early universe’s development is
inflation, according to scientific literature. According to this,
the universe expands at an extremely rapid pace and in a short
period of time. Starobinsky [81] offered such an expansion
theory for the early ages, and Guth [82] used it for the first
time as a potential fix for the hot big-bang theory’s issues.
This inflationary scenario has been thoroughly investigated
and generalised in several ways [83–88] which are consis-
tent with observational data. Although, conventional inflation
scenario still requires improvement due to the so-called “sin-
gularity problem” that Hawking et al. presented in their land-
mark paper on the singularity theorem [89–91]. Their proof
of this theorem states that, if inflation is traced back to its
inception, we are likely to come across the Big-Bang singu-

larity, which is the singularity of the early the universe. At the
singularity, everything blows up and one can not get control
of the universe under classical description. Since the singular-
ity occurs before the onset of inflation, it can hardly be solved
within inflation scenario itself. This motivates us to find alter-
native theories in pre-inflation era. In order to get rid of this
problem we have considered bouncing evolution of the uni-
verse. It is also possible to extend this non-singular scenario
to the cyclic universe [92–95] in a significant way. The con-
cept, which we shall refer to as the bouncing inflation model
for convenience, has been investigated in Refs. [96,97]. In
this model, the universe is in a contracting phase before to
the slow-roll inflation [98–103] and begins to inflate after the
bounce. The contracting phase of this model is comparable
to that of the Pre-BigBang scenario (reviews can be found in
[104,105]) (PBB scenario), and it may also be comparable in
theory to the ekpyrotic scenario. Contrary to the findings, the
adiabatic perturbation spectrum produced during the kinetic
contraction in the PBB scenario is very blue. On large angular
scales, however, this blue spectrum is only necessary for the
power suppression [96]. The reheating temperature must be
appropriate with a hot big bang evolution after inflation, and
the slow-roll inflation must typically begin at a high scale.
These requirements ensure that the magnitude of primor-
dial perturbation is compatible with the observations. The
application of the holographic principle to the early universe
will yield an energy density that is great enough to sustain
the inflationary scenario, as the measure of length during
the inflationary period is anticipated to be tiny. According
to a recent argument, the start of the slow-roll inflation will
need an enormous uptunneling in the everlasting inflation
scenario, which is exponentially unfavourable, if the mag-
nitude of the eternally inflating backdrop is extremely low.
Nevertheless, this outcome might be considerably changed if
the bounce was introduced prior to the slow-roll inflation (see
[106–109,113–116]). It is demonstrated in Ref. [107] that the
universe may be at various minimums of a landscape at differ-
ent cycles, and that the development of the observed universe
is explained by the bouncing inflation model. The inflation
after bounce results in cosmological hysteresis, which raises
the amplitude of the cycles, as demonstrated in Ref. [109].
The early-time acceleration and late-time acceleration eras
of our universe were unifiedly described by Nojiri et al. [110]
using the holographic technique. It was discovered that sev-
eral greater curvature cosmological models, with or without
matter fields, corresponded to this “holographic unification.”
Both inflation and bounce realizations in holographic frame-
work were proposed in [111,112].

Cosmic expansion is significantly influenced by dissipate
processes, such as heat transmission, shear viscosity, and bulk
viscosity. Eckart [117] first presented the general theory of
dissipation in a relativistic imperfect fluid, which Landau and
Lifshitz [118] later refined. A relativistic second-order the-
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ory known as the full causal theory was created by Israel
and Stewart [119]. Shear viscosity refers to an an-isotropic
universe, whereas bulk viscous pressure is connected to dis-
sipate events in an uniform homogeneous and isotropic uni-
verse. When a cosmic fluid expands (or shrinks) too quickly,
the system may not have enough time to reach its local ther-
modynamic equilibrium, leading to the formation of bulk
viscosity.

Bekenstein [120] made the assumption in 1973 that there
is a correlation between a black hole’s event horizon and its
thermodynamics, such that the event horizon of the black hole
is a measure of its entropy. This concept has been extended
to include the horizons of cosmological models, and now
each horizon relates to an entropy. In generalised form, the
second law of thermodynamics has been modified in this
way: the total of all time derivatives of entropy(s) associ-
ated to horizons plus the time derivative corresponding to
normal entropy has to be positive, i.e., the total amount of
entropy(s) must be increasing as a function of time. In [121],
it is examined if the generalised second law (GSL) holds
true for cosmological models that somewhat deviate from
de-Sitter space. As the horizon area quantifies our lack of
comprehension of what is beyond it, it is only reasonable to
connect an entropy with it.

Thus, whether theoretically or observationally, studying
the bouncing inflation model is interesting. We look over
the fundamental BHDE equations in Sect. 2. In Sect. 3 we
have introduced the scale factors and established the dynam-
ics of cosmological parameters corresponding to the scale
factors in viscous interacting and non-interacting scenario.
In Sect. 4 we have discussed in detail about the inflation-
ary scenario with focus on non-singular bounce inflation. In
Sect. 5, we also explore the thermodynamic properties of this
present model. Section 6, finally the paper ends with some
conclusions and future directions. It may be noted that in the
figures, the unit of time is Gyears. The model parameters
and the constants of integration present in the equations are
dimensionless and hence no unit is used for them. This holds
for the previous and subsequent discussions.

Rest of the paper is organized as follows: In Sect. 2,
we have presented a discussion on BHDE in the frame-
work of bulk viscosity. Bouncing cosmology incorporating
dark energy-dark matter interaction has been demonstrated in
Sect. 3. Barrow holographic dark fluid-driven inflation is dis-
cussed in Sect. 4. GSL implications of BHDE are discussed
in Sect. 5 and the work is concluded in Sect. 6.

2 An overview of Barrow holographic dark energy in
bulk viscous framework

In this section, we consider Barrow holographic dark energy
(BHDE) in bulk viscous scenario. Considering the entropy

condition S ∝ A ∝ L2 with usual entropy relation ρDE L4 ≤
S where, ρDE defines standard holographic dark energy and
L defines length of the horizon. By using black-hole entropy
formula Eq. (1) we can derive energy density of Barrow Holo-
graphic Dark Energy(BHDE) as following

ρDE = cL�−2 (2)

Here, c = 3p2M2
p, in which Mp denotes reduced Planck

mass, p2 is our model parameter, � denotes quantum grav-
itational deformation, and L is the length of IR cut-off. The
aforementioned estimation gives the predicted standard holo-
graphic dark energy in the scenario when � = 0. However,
Barrow holographic dark energy will diverge from the con-
ventional one by changing the range of �, resulting in distinct
cosmic behaviour. Although there are other options for the
greatest length L that occurs in the expression of any holo-
graphic dark energy, the future event horizon is the one that
is most frequently used in the literature [122,123].

RE = a
∫ ∞

t

dt

a
= a

∫ ∞

a

da

Ha2 (3)

where, a denotes scale factor and H = ȧ
a be the Hubble

parameter. As a result, by replacing L in equation Eq. (2)
with RE , we get to the energy density of BHDE, which is

ρBHDE = cR�−2
E (4)

In this case, we have considered the range of � > 0 and
M2

p = 1. Therefore, in Eq. (4) the term c behaves like our
model parameter. For a homogeneous and isotropic flat uni-
verse, the FRW metric is provided by

ds2 = −dt2 + a2(t)(dr2 + r2(dθ2 + sin2θdφ2), (5)

where, the cosmic time is represented by t , and the scale fac-
tor is a(t). Here, we have take in the units 8πG = 1. Any
dissipation process in a FRW cosmology is scalar in the case
of isotropic and homogeneous cosmologies. The potential
for DEC violations is a well-known outcome of the FRW
cosmological solutions, which correspond to universes with
perfect fluid and bulk viscous stresses [124,125]. The bulk
viscous pressure � in Eckart’s theory [117] can be chosen
as � = −3Hξ where ξ is the term describing the fluid’s
bulk viscosity and may be defined as a function of the Hub-
ble parameter due to transport coefficient. We see that in
[126] ξ ∝ ρ and ρ ∝ H . Additionally, Meng and Dou [127]
presume the bulk viscosity coefficient in terms of Hubble
parameter H . Based on the aforementioned studies, we have
taken into consideration ξ(H) = ξH in this study, where ξ

is a constant parameter. Therefore, the resulting model inter-
prets the universe’s bulk viscous pressure as � = −3ξH2.
We assume that the universe contains both the aforemen-
tioned Barrow holographic dark energy and ordinary matter
perfect fluid in bulk viscous scenario. Following that, the two
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Friedmann equations are expressed as

H2 = 1

3
ρe f f ective (6)

and,

6
ä

a
= −(ρe f f ective + 3(Pef f ective + �)) (7)

where, ρe f f ective = ρm+ρBHDE . Here, we have considered,
pressure-less dark matter whose density is denoted by ρm and
Pm = 0. The effective pressure, Pef f , is just redefined by the
bulk viscosity, causing dissipation, according to Pef f ective =
PBHDE = PDE + � = PDE − 3ξH2.

3 The bouncing cosmology incorporating dark energy
and dark matter interaction

The most interesting aspect of the cosmic bounces, compared
to the conventional inflationary paradigm, is the lack of the
initial singularity. A successful bouncing cosmology should,
in theory, overcome every issue that the inflationary scenario
resolved. It should also result in the production of a power
spectrum that is almost scale invariant. There are many infla-
tionary bouncing cosmologies in the literatures [128–130],
and in this section, before mentioning the details of chal-
lenges of early universe cosmology in the Big Bang cosmol-
ogy era as well as bouncing scenarios to address some of the
conceptual problems such as inflation, horizon, and entropy,
we must begin with a lightning of physical properties of the
scale factors. We shall here check the mixed model as BHDE
background fluid, in which a contracting phase followed by
a bounce leads to an inflationary era.

3.1 Scale factors chosen

In this section, we are going to explore emergent, intermedi-
ate scale factors in the viscous BHDE, Big-Bang cosmolog-
ical settings.

3.1.1 Emergent expansion of the universe

The scale factor for emergent universe [131,132] can be
determined as

a(t) = a0(λ + eμt )n (8)

in which, a0, μ, λ, n being positive invariant. In order for
the scale factor a(t) to be positive and a0 > 0 must be met
and for avoidance of big-rip singularity λ has to be positive
respectively. For accelerated expansion of the universe the
scale factor a(t) must be positive, as well as n has to be
positive. To achieve big-bang singularity at t = −∞ we
have to take, a < 0 and n < 0. Therefore, we can derive

Hubble parameter (H ) from Eq. (8) which are:

H = nμeμt

(λ + eμt )
(9)

3.1.2 Intermediate expansion of the universe

Considering a specific kind of intermediate scenario where
the Friedmann universe’s scale factor a(t) [133,134] is
defined as;

a(t) = eBt
β

(10)

where, β, B are positive constant and β lies between (0, 1).
Here, the universe is expanding more quickly compared to
the power law form, where the scale factor is stated as,
(a(t) = a0tn , n be the constant) as well as the expansion
of the universe is slower than de-sitter expansion rate with
β = 1. Therefore, Hubble parameter becomes

H = Bβtβ−1 (11)

3.2 Bouncing universe

In this matter bounce scenario, the initial singularity seen
in both the inflationary and standard Big Bang cosmologies
may be properly avoided. In the bouncing model, the Uni-
verse first experiences a contraction phase that is dominated
by matter, followed by a non-singular bounce, before causal
production for fluctuation [75–78]. Additionally, the scale
factor grows (a(t) > 0) during the expanding phase and
lowers (a(t) < 0) during the contracting phase. Finally, at
the matter bounce epoch, the scale factor is equal to zero.
As a result, in bouncing cosmic theory, the Hubble param-
eter H transitions from negative values H < 0 to positive
values H > 0 by crossing zero (H = 0) [79,80]. In this
framework of BHDE, our goal with this article is to offer
the latest developments in the discussion of the inflationary
epoch, dark energy, as well as bouncing cosmology. Let us
consider, a bouncing scale factor of double exponential form
[135]

a(t) = a0e
μt + a1e

−γ t (12)

where, a0, a1, μ and γ are positive real numbers. There will
be de-sitter universe formed if a1 = 0 and γ = 0 and for that
reason we are assuming a1 �= 0 and γ �= 0. Therefore,

ȧ(t) = a0μe
μt − a1γ e

−γ t (13)

Therefore, the bouncing time will be

ts = 1

μ + γ
log

(
a1γ

a0μ

)
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Fig. 1 Evolution of bouncing Hubble parameter

In this case, we are taking non-singular bounce with bouncing
point at t = 0 with the constraint a0

a1
= γ

μ
= ζ .

H = a0et (μ+ν)μ − a1ν

a1 + a0et (μ+ν)
(14)

In Fig. 1 we have shown evolution of Hubble parameter
with respect to cosmic time. Here, we can see H is negative in
pre-bounce scenario which shows contraction of the universe,
H = 0 at bouncing point and H > 0 in post-bounce scenario
by showing expansion of the universe.

3.3 Emergent cosmologies: general characteristics

Here, we have considered the density of BHDE from Eq. (4)
where, � lies between (0, 1) and c be the model parameter
in the scenario of emergent universe from Eq. (8). Again,
ṘE can be calculated using Eq. (3) as ṘE = HRE − 1 and
solving it with the help of Eq. (9) we can get the solutions of
RE and which is

RE = (
etμ + λ

)n
C1

+
(
1 + e−tμλ

)n
2F1

[
n, n; 1 + n;−e−tμλ

]
nμ

(15)

Therefore, reconstructed energy density of BHDE in emer-
gent scenario be:

ρBHDE = c

(
C1

(
etμ + λ

)n

+
(
1 + e−tμλ

)n
2F1

[
n, n; 1 + n;−e−tμλ

]
nμ

)−2+�

(16)

3.3.1 Emergent BHDE universe: single fluid model

Here, we have considered non-interacting scenario for this
case. Therefore, BHDE doesn’t interact with the viscous stuff
in its entirety. As a result, each of these fluids’ continuity
equations is conserved separately:

ρ̇m + 3H(Pm + ρm) = 0 (17)

and,

ρ̇Total + 3H(ρTotal + PTotal) = 0 (18)

where, ρTotal = ρm+ρBHDE and, PTotal = Pm+PDE +�.
As we have taken, pressure-less dark matter, Pm = 0 and
therefore, PTotal = PBHDE − 3ξH2. From Eq. (17), we got
the solutions of matter density

ρm = ρm0

(
etμ + λ

)−3n

a3
0

(19)

From Eqs. (16) and (19), we can get the solutions of ρTotal

and ρ̇Total .

ρTotal = ρm0

(
etμ + λ

)−3n

a3
0

+c

(
C1

(
etμ + λ

)n +
(
1 + e−tμλ

)n
2F1

[
n, n; 1 + n;−e−tμλ

]
nμ

)−2+�

(20)

From Eq. (7) we can get the expression of thermodynamic
pressure (P) and from Eqs. (18), (19) and (20) we can get the
expression of EoS parameter w and we know that, effective
EoS parameter we f f ,

we f f = P + �

ρTotal
= η1

η2
(Let), (21)

where,

η1 = −ρm0

(
etμ + λ

)2−3n − 9a3
0e

2tμn2μ2ξ

+a3
0

(
6e2tμnμ2 − 6e2tμn2μ2 − 6etμn

(
etμ + λ

)
μ2

+9e2tμn2μ2ξ − c
(
etμ + λ

)2
(
C1

(
etμ + λ

)n

+
(
1 + e−tμλ

)n
2F1

[
n, n; 1 + n;−e−tμλ

]
nμ

)−2+�)

η2 = 3a3
0

(
etμ + λ

)2

(
ρm0

(
etμ + λ

)−3n

a3
0

+c

(
C1

(
etμ + λ

)n +
(
1 + e−tμλ

)n
2F1

[
n, n; 1 + n;−e−tμλ

]
nμ

)−2+�
⎞
⎠

We have now examined the stability of our model to see
whether or not it adequately captures the expanding the uni-
verse. The Hubble parameter H(t) explains how the uni-
verse’s expansion is time-dependent although the expansion
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Fig. 2 Evolution of reconstructed effective EoS parameter of viscous
BHDE in non-interacting emergent scenario

rate’s variation over time is quantified by the deceleration
parameter, q(t) [136,137]. In this case, we established square
speed of sound [138,139] to determine the model’s stabil-
ity. c2

s ≥ 0 is necessary for the model’s stability. A value
below zero indicates that the model is unstable. Here, we
used Einstein’s theory of viscous non-interacting emergent
behaviour and included the squared speed of sound for BHDE
reconstruction scheme. The deceleration parameter (q(t))
and square speed of sound (c2

s ) are given by:

q(t) = −ä(t)

aH2 (22)

c2
s = d(Pef f ective)

d(ρTotal)
(23)

where, Pef f ective = PTotal = PBHDE −3ξH2 and ρTotal =
ρm + ρBHDE and a(t) be the emergent scale factor.

In Figs. 2, 3 and 4 we have plotted we f f , deceleration
parameter (q) and c2

s with respect to cosmic time t for a range
of values of �. We used the parameters as follows to create
the diagrams for the current section: c = 3, ρm0 = 0.32,
C1 = 2.6, μ = 1.3, λ = 0.6, n = 0.06, and a0 = 0.2. All
the choices are in their physically permissible ranges. It is
observed that during the cosmological evolution, the recon-
structed BHDE effective EoS parameter Fig. 2 behaves like
phantom in viscous non-interacting emergent Einstein grav-
ity framework. The deceleration parameter’s value in Fig. 3 is
precisely less than zero, demonstrating the universe’s accel-
eration. The graph Fig. 4 shows that the model is stable for
all values of � and ξ as long as the squared speed of sound
is positive throughout its entire existence in a Friedmann–
Lemaître–Robertson–Walker universe.

Fig. 3 Evolution of deceleration parameter in non-interacting emer-
gent scenario

Fig. 4 Square speed of sound c2
s ≥ 0 for viscous BHDE in non-

interacting emergent scenario

3.3.2 Emergent BHDE universe: coupled fluid model

In this section, we suppose that the dark fluids of the universe-
BHDE and pressure-less DM-exchange energy via an inter-
action term called Q. Therefore, the combined form of the
conservation equations be:

ρ̇m + 3Hρm = Q (24)

ρ̇BHDE + 3HρBHDE (1 + w) = −Q (25)
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where, w be the EoS parameter. In the aforementioned equa-
tions, Q stands for the pace of energy density transfer. If
Q > 0, energy transfer occurs from BHDE → DM ; if
Q < 0, energy transfer occurs from DM → BHDE . As a
result, once the development of the energy densities ρm and
ρDE is established for a certain interaction term Q, either
numerically or analytically, the rate of expansion of the uni-
verse can be determined and the revised cosmological param-
eters may be explained in terms of their evolution through
time. The interaction among BHDE and DM has to be a func-
tion of the densities of energy multiplied by a number with
units of an inverse of time, a natural choice of Hubble param-
eter, according to the conservation of energy Eqs. (24) and
(25). As a consequence, Q might be represented intuitively in
any arbitrary way; for instance, Q ∝ Hρ with assumptions
of ρ = ρm , ρ = ρDE , and ρ = ρm + ρDE are more fre-
quent in this context. In this present work, we have assumed
Q = 3Hb2ρm from the literature [140]. Now, from Eq. (24),
we can get the expression of ρm

ρm = (
etμ + λ

)3
(−1+b2

)
n
C2. (26)

Therefore, from Eqs. (16) and (26), we can get the expression
of ρTotal and ρ̇Total and by putting the value of ρTotal and
ρ̇Total in Eq. (25) we got the expression of EoS parameter
w in interacting viscous scenario and plotted in Fig. 5 with
respect to time. Again, by putting the expression of ρTotal

and � in Eq. (7) we got the expression of pressure (P) and
we have plotted we f f = P+π

ρTotal
in interacting viscous scenario

in Fig. 6. Here, we have checked the stability of the model
in interacting scenario which is stable under small perturba-
tions by getting c2

s ≥ 0. The interacting EoS parameter w in
Fig. 5 has been found to breach the −1 phantom border in
the early stages of time. Then, it can avoid big-rip singular-
ity in the later phase time and behaves like quintessence. In
Fig. 6 the interacting effective EoS parameter behaves like
phantom although the reconstructed interacting effective EoS
parameter can not avoid the big-rip by exiting the phantom
boundary.

3.4 Intermediate cosmologies: general characteristics

Here, we have considered, intermediate scale factora(t) from
Eq. (10) by choosing β, B as positive arbitrary constant and
β will be in (0, 1). Again, the density of BHDE as

ρBHDE = cR�−2
E

where, � belongs to (0, 1) and c be the model parameter. By
solving RE from ṘE = HRE − 1 with the help of Eq. (11),
we can get the expression of ρBHDE in intermediate scenario.

Fig. 5 Evolution of reconstructed viscous interacting EoS parameter
with the range of interaction coefficient b lies in (0, 1) in emergent
scenario

Fig. 6 Evolution of reconstructed viscous interacting effective EoS
parameter with the range of interaction coefficient b lies in (0, 1) in
emergent scenario

Therefore,

RE = eBt
β

⎛
⎝C1 +

t
(
Btβ

)−1/β
�

[
1
β
, Btβ

]
β

⎞
⎠ (27)
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and,

ρBHDE = c

⎛
⎝eBt

β

⎛
⎝C1 +

t
(
Btβ

)−1/β
�

[
1
β
, Btβ

]
β

⎞
⎠

⎞
⎠

−2+�

.

(28)

3.4.1 Intermediate BHDE universe: single fluid model

In this subsection, we have considered intermediate non-
interacting scenario. Therefore, from Eq. (17), we can get
the density of pressure-less dark matter,

ρm = ρm0e
−3Btβ (29)

Therefore, from Eqs. (28) and (29) we can get the expression
of ρTotal which is

ρTotal = c

⎛
⎝eBt

β

⎛
⎝C1 +

t
(
Btβ

)−1/β
�

[
1
β
, Btβ

]
β

⎞
⎠

⎞
⎠

−2+�

+ρm0e
−3Btβ (30)

Therefore, from Eq. (7), the expression of thermodynamic
pressure of BHDE.Therefore, the expression of EoS param-
eter be,

w = ζ11

ζ22
(31)

where,

ζ11 = −ct−β
(
Btβ

)2/β
β2

×
⎛
⎜⎝eBt

β

⎛
⎜⎝C1 +

t
(
Btβ

)−1/β
�

[
1
β , Btβ

]
β

⎞
⎟⎠

⎞
⎟⎠

�

×
(

2t
(
Btβ

) 1
β + BC1e

Btβ tβ
(
Btβ

) 1
β

β − t
(
Btβ

) 1
β

�

+BC1e
Btβ tβ

(
Btβ

) 1
β

β�

+BeBt
β
t1+β�

[
1

β
, Btβ

]

+BeBt
β
t1+β��

[
1

β
, Btβ

]
gg

⎞
⎠

and,

ζ22 = 3B

(
C1

(
Btβ

) 1
β

β + t�

[
1

β
, Btβ

])

×
⎛
⎝ggC2

1ρm0

(
Btβ

)2/β
β2

+2C1ρm0 t
(
Btβ

) 1
β

β�

[
1

β
, Btβ

]
+ ρm0 t

2�

[
1

β
, Btβ

]2

Fig. 7 Evolution of reconstructed effective EoS parameter of viscous
BHDE in non-interacting intermediate scenario

+ceBt
β

(
Btβ

)2/β
β2

×
⎛
⎜⎝eBt

β

⎛
⎜⎝C1 +

t
(
Btβ

)−1/β
�

[
1
β , Btβ

]
β

⎞
⎟⎠

⎞
⎟⎠

�
⎞
⎟⎟⎠

Here, we have plotted effective EoS parameter(we f f =
P+�
ρTotal

) in non-interacting intermediate scenario in Fig. 7. Fig-
ure 7 shows that phantom scenario of effective EoS parame-
ter and this the reconstructed we f f can not avoid the big-rip
by exiting the phantom boundary. Now, from the definition
of deceleration parameter (q(t) = −ä(t)

aH2 ) and square speed

of sound against small perturbations (c2
s = d(Pef f ective)

d(ρTotal )
), we

have examined our model’s rate of expansion and stability in
non-interacting intermediate scenario. In Fig. 8, accelerating
expansion of the universe has been demonstrated and Fig. 9
shows that our model is stable for all values of � against
small perturbations. Here, we have chosen β and B as posi-
tive parameters and β ∈ (0, 1).

3.4.2 Intermediate BHDE universe: coupled fluid model

In this subsection, we have considered interacting scenario
by taking interaction term Q = 3Hb2ρm . Considering
Eqs. (24), (25) and (28) we can get, ρm and EoS parame-
ter in interacting scenario. Therefore,

ρm = e3
(−1+b2

)
BtβC2, (32)

Although,

ρTotal = ρBHDE + ρm (33)
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Fig. 8 Evolution of deceleration parameter in non-interacting interme-
diate scenario

Fig. 9 Square speed of sound c2
s ≥ 0 for viscous BHDE in non-

interacting intermediate scenario

Hence, from Eqs. (7), (33) and � = −3ξH2 we can get,
thermodynamic pressure, EoS parameter and effective EoS
parameter respectively. In Figs. 10 and 11 we have plotted
viscous interacting EoS parameter and effective EoS param-
eter of reconstructed BHDE in intermediate scenario respec-
tively. We can see quintessence behavior of EoS parameter
in Fig. 10 and effective EoS parameter is firmly approach-
ing the phantom border in Fig. 11. It is established that our
model is stable against small perturbations with background

Fig. 10 Evolution of reconstructed viscous interacting EoS parameter
for the range b lies in (0, 1) in intermediate scenario

Fig. 11 Evolution of reconstructed viscous interacting effective EoS
parameter for the range b lies in (0, 1) in intermediate scenario

fluid as BHDE in interacting viscous intermediate scenario
by square speed of sound test.

3.4.3 Bouncing cosmologies: general characteristics

In this case, the density of BHDE has been regarded as

ρBHDE = cR�−2
E
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in which � is higher than 0 and c is the model’s component,
and in the case of a bouncing universe,

a(t) = a0e
μt + a1e

−γ t

where the positive real values μ, γ , a0, and a1 are listed.
By the reference of ȧ(t) = a0μeμt − a1γ e−γ t we can get,
Hubble parameter as Eq. (14). Therefore, in this bouncing
universe, using bouncing Hubble parameter (14) in ṘE =
HRE − 1, we can get,

RE =
e−tν

(
a1 + a0et (μ+ν)

) (
a1νC1 − etν2F1

[
1, ν

μ+ν
,

μ+2ν
μ+ν

,− a0et (μ+ν)

a1

])
a1ν

(34)

Therefore, reconstructed energy density of BHDE in
bouncing scenario be:

ρBHDE = c

⎛
⎝e−tν

(
a1 + a0et (μ+ν)

) (
a1νC1 − etν2F1

[
1, ν

μ+ν
,

μ+2ν
μ+ν

,− a0et (μ+ν)

a1

])
a1ν

⎞
⎠

−2+�

(35)

We already postulated the existence of both the perfect
fluid of ordinary matter and the previously described viscous
Barrow holographic dark energy in the universe as a whole.

3.4.4 Bounce BHDE universe: single fluid model

We have examined the bounce non-interacting case in this
subsection. Consequently, we may obtain the density of
pressure-less dark matter from Eq. (17).

ρm = ρm0(
a0etμ + a1e−tν

)3 (36)

Thus, we can obtain the equation of ρTotal from Eqs. (35)
and (36).

ρTotal = ρm0(
a0etμ + a1e−tν

)3 + c

⎛
⎝e−tν

(
a1 + a0et (μ+ν)

) (
a1νC1 − etν2F1

[
1, ν

μ+ν
,

μ+2ν
μ+ν

,− a0et (μ+ν)

a1

])
a1ν

⎞
⎠

−2+�

(37)

Therefore, from Eq. (7) and � = −3ξH2, we can get the
expression of thermodynamic pressure of BHDE and EoS
parameter,

P = 1

3

⎛
⎜⎝ − ρm0(

a0etμ + a1e−tν
)3 − 6

(
a0et (μ+ν)μ2 + a1ν

2
)

a1 + a0et (μ+ν)
+ 9

(
a0et (μ+ν)μ − a1ν

)2
ξ(

a1 + a0et (μ+ν)
)2

−c

⎛
⎝e−tν

(
a1 + a0et (μ+ν)

) (
a1νC1 − etν2F1

[
1, ν

μ+ν
,

μ+2ν
μ+ν

,− a0et (μ+ν)

a1

])
a1ν

⎞
⎠

−2+q�
⎞
⎟⎠ (38)
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w =
⎛
⎜⎝a2

1ce
2tνν2

⎛
⎝e−tν

(
a1 + a0et (μ+ν)

) (
a1C1ν − etν2F1

[
1, ν

μ+ν
,

μ+2ν
μ+ν

,− a0et (μ+ν)

a1

])
a1ν

⎞
⎠

�

×
⎛
⎜⎝a1ν

(
−etν(−2 + �) + a0C1e

t (μ+ν)(1 + �)μ − a1C1(1 + �)ν
)

−(1 + �)
(
a0e

t (μ+2ν)μ − a1e
tνν

)
2F1

[
1,

ν

μ + ν
,
μ + 2ν

μ + ν
,−a0et (μ+ν)

a1

] ⎞
⎟⎠

⎞
⎟⎠ /

×
⎛
⎝3

(
a1 + a0e

t (μ+ν)
)2 (

a0e
t (μ+ν)μ − a1ν

) (
−a1C1ν + etν2F1

[
1,

ν

μ + ν
,
μ + 2ν

μ + ν
,−a0et (μ+ν)

a1

])3

×
⎛
⎜⎝ ρm0(

a0etμ + a1e−tν
)3 + c

⎛
⎝e−tν

(
a1 + a0et (μ+ν)

) (
a1C1ν − etν2F1

[
1, ν

μ+ν
,

μ+2ν
μ+ν

,− a0et (μ+ν)

a1

])
a1ν

⎞
⎠

−2+�
⎞
⎟⎠

⎞
⎟⎠ (39)

and, we know that we f f = P+�
ρTotal

,
therefore,

we f f = − ζ31
ζ32

(40)

where,

ζ31 = 3
(
a0et (μ+ν)μ − a1ν

)2
ξ(

a1 + a0et (μ+ν)
)2

+1

3

(
ρm0(

a0etμ + a1e−tν
)3 + 6

(
a0et (μ+ν)μ2 + a1ν

2
)

a1 + a0et (μ+ν)
− 9

(
a0et (μ+ν)μ − a1ν

)2
ξ(

a1 + a0et (μ+ν)
)2

+c

⎛
⎝e−tν

(
a1 + a0et (μ+ν)

) (
a1νC1 − etν2F1

[
1, ν

μ+ν
,

μ+2ν
μ+ν

,− a0et (μ+ν)

a1

])
a1ν

⎞
⎠

−2+�
⎞
⎟⎠

ζ32 = ρm0(
a0etμ + a1e−tν

)3 + c

⎛
⎝e−tν

(
a1 + a0et (μ+ν)

) (
a1νC1 − etν2F1

[
1, ν

μ+ν
,

μ+2ν
μ+ν

,− a0et (μ+ν)

a1

])
a1ν

⎞
⎠

−2+�

.

Additionally, we showed total energy density (ρTotal ),
the EoS parameter, and effective EoS parameter in the non-
interacting bouncing scenario in Figs. 12, 13, and 14 respec-
tively. The universe’s proper chronological growth is seen in
Fig. 12. The BHDE energy density in Fig. 12 decreases due
to contraction in the pre-bounce scenario, reaches its lowest
value at t = 0 during the bounce, and rises due to expansion
in the post-bounce scenario. According to the inflationary
hypothesis of the universe, this illustration depicts a rapid
increase in density brought on by bounce inflation, followed
by stability of density across succeeding eras of the cosmos.
The existence of t2 in the associated formulas accounts for

the symmetry of the graphs surrounding the bouncing point.
There is a continuous and stabilized background evolution
of the energy density. At t = 0, the bounce is confirmed and
is clearly visible. Figure 13 illustrates how the EoS param-
eter crosses the phantom border in both the cases pre and

post-bounce scenario. The reconstructed we f f , effective EoS
parameter is behaving quintessence in pre-bounce scenario
and phantom in post bounce scenario as seen in Fig. 14, and
the phantom scenario of the effective EoS parameter can
escape the big-rip in post bounce scenario.

We have now investigated the rate of expansion and sta-
bility of our model in a non-interacting bouncing situation,
starting from the specification of the deceleration parameter
(q(t) = −ä(t)

aH2 ) and the square speed of sound against minor

perturbations (c2
s = d(Pef f ective)

d(ρTotal )
). The universe’s accelerating

expansion is illustrated in Figs. 15, and 16 demonstrates that

123



314 Page 12 of 30 Eur. Phys. J. C (2024) 84 :314

Fig. 12 Evolution of reconstructed viscous total BHDE density in the
non-interacting bouncing scenario

our model is stable against tiny perturbations for all values
of � in pre and post-bounce scenario.

3.4.5 Bounce BHDE universe: coupled fluid model

In this part, we assume that the pressure-less DM and the
dark fluids of the universe, BHDE and Q, exchange energy
through an interaction term. We have taken the interaction
term Q = 3Hb2ρm to explore an interacting scenario in the
current section. Taking into account Eqs. (24), (25) and (35),
we may obtain the ρm and EoS parameter in an interacting
scenario.

ρm = e3
(−1+b2

)(−tν+log(a1+a0et (μ+ν))
)
C2 (41)

Again, we have taken, ρTotal = ρDE + ρm and therefore,

ρTotal = C2e
3
(−1+b2

)(−tν+log
[
a1+a0et (μ+ν)

])

+c

⎛
⎝e−tν

(
a1 + a0et (μ+ν)

) (
a1C1ν − etν2F1

[
1, ν

μ+ν
,

μ+2ν
μ+ν

,− a0et (μ+ν)

a1

])
a1ν

⎞
⎠

−2+�

(42)

Therefore, from ρ̇DE + 3 HρDE (1 +w)+ 3 Hb2ρm = 0,
we can get the expression of EoS parameter and effective
EoS parameter in viscous, interacting, bouncing scenario.
As a result, as shown in Fig. 17, the growth of the recon-
structed EoS parameter (left panel) diverges as the denomi-
nator is zero at the bouncing point t = 0 in the equation of the
EoS parameter. In the post-bounce instance, the EoS param-
eter crosses the phantom boundary at early stages, but later

Fig. 13 Evolution of reconstructed EoS parameter of viscous BHDE
in non-interacting bouncing scenario

it behaves like a quintessence scenario; in the pre-bounce
case, it behaves like a quintessence scenario depending on
the interaction coefficient. In the post-bounce scenario, the
Big Rip singularity is avoided by the effective EoS parameter
in Fig. 18 (right panel). It is evident that both EoS parame-
ters are strictly moving to phantom when we increase the
interaction coefficient b.

4 Barrow holographic dark fluid-driven inflation

One key challenge for inflation is the singularity problem
before the onset of inflation itself. Therefore, the full history
of the very early the universe cannot be obtained from the
inflationary model. This singularity problem is automatically
avoided in a bouncing cosmic scenario, but at the expense

of requiring the introduction of new physics to achieve
the bounce. Non-singular bouncing cosmologies are a con-
temporary alternative to the inflationary Big-Bang scenario.
These cosmologies, in general, offer geodesic completeness
and address certain issues that inflation was designed to
resolve, such the horizon problem. Inspired by the studies
[113–116,141,142], we are going to discuss a scenario where
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Fig. 14 Evolution of reconstructed effective EoS parameter of viscous
BHDE in the non-interacting bouncing scenario

there is a transition to accelerated expansion at the end of a
non-singular bounce. For a general inflation scenario, the
initial Friedmann equation can be expressed as H2 = ρin f

3 ,
where, ρin f represents the density of energy of the (effective)
fluid that drives inflation, which can come from numerous
sources and mechanisms as well as a scalar field or modified
gravity. Please take note that we have, as usual, overlooked
the contributions made by the radiation components. In this
study, we examine the possibility that inflation has a Barrow
holographic origin, meaning that non-interacting pressure-
less dark matter and the Barrow holographic energy density
serve as its source. Because ρin f = ρTotal , it follows that
ρTotal = ρm + ρBHDE .

4.1 Hubble slow-roll approximation

Here, the Hubble slow-roll parameters εn (with n being a
positive integer) [143–146] can consequently be obtained as
the evolution of H(t) is known in emergent, intermediate
situation. Therefore,

εn+1 = d ln|εn|
dN

(43)

along with ε0 = Hinitial
H and the e-folding number N is

defined as, N = ln( a
ainitial

). Here, ainitial be the scale factor
at the beginning of inflation corresponding to Hubble param-
eter at that time be Hinitial . Again, using k as the absolute
value of the wave number k, we can compute the values of
the inflationary observables, which are the tensor spectral
index nT , the tensor-to-scalar ratio r , and the scalar spectral

Fig. 15 Evolution of deceleration parameter in non-interacting bounc-
ing scenario

Fig. 16 Square speed of sound c2
s ≥ 0 for viscous BHDE in non-

interacting bouncing scenario

index of the curvature perturbations ns , as reported in [145].
Therefore,

r ≡ 16ε1 (44)

ns ≡ 1 − 2ε1 − 2ε2 (45)

αs ≡ −2ε1ε2 − ε2ε3 (46)

nT ≡ −2ε1 (47)

where, the first three Hubble slow-roll parameters are-
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Fig. 17 Evolution of reconstructed viscous interacting EoS parameter
in bouncing scenario

ε1 = −Ḣ

H2 (48)

ε2 = Ḧ

H Ḣ
− 2Ḣ

H2 (49)

ε3 = (Ḧ H − 2Ḣ2)−1 ∗
[
H Ḣ

...
H − Ḧ(Ḣ2 + H Ḧ

H Ḣ

−2Ḣ

H2 (H Ḧ − 2Ḣ2)

]
(50)

We note here that, based on the thorough perturbation anal-
ysis of holographic dark energy carried out in [147], we

should, in theory, perform a full perturbation analysis for
this particular Barrow holographic model in order to extract
the exact expressions for the inflationary observable. How-
ever, the approximate relations Eqs. (44-47), which hold for
all scenarios provided H(t) is known for emergent and inter-
mediate scenario, are sufficient for the sake of the current
study [145] to provide the estimated values for the inflation-
ary observable. Relationships Eqs. (44-47) are highly help-
ful since they let one compare data and Barrow holographic
inflation predictions.

4.1.1 Hubble slow-roll approximation in emergent universe

We now evaluate the slow-roll approximation’s intrinsic
structure. The basic principle of the horizon flow formal-
ism is the inclusion of a set of flow parameters that describe
the evolution of the Hubble scale. We know that,

Ḣ = −1

2
(ρTotal + P + �) (51)

and,

H2 = 1

3
(ρTotal) (52)

Therefore, by considering the emergent universe from Eq. (20),
thermodynamic pressure and bulk-viscous pressure � =
−3ξH2, we can get the Hubble flow slow-roll parameters
in the background of BHDE fluid.

ε1 = −3

c

⎛
⎜⎜⎝C1

(
e

N
n

p

)n

+

(
1 + pλ

e
N
n −pλ

)n

2F1

[
n, n, 1 + n,

pλ

−e
N
n +pλ

]

nμ

⎞
⎟⎟⎠

2−�

×

⎛
⎜⎜⎜⎝

(
e
N
n

p

)−3n

ρm0

6a3
0

+ e− 2N
n npλ

(
e

N
n − pλ

)
μ2 + e− 2N

n n2
(
e

N
n − pλ

)2
μ2

× −1

3
c

⎛
⎜⎜⎝C1

(
e

N
n

p

)n

+

(
1 + pλ

e
N
n −pλ

)n

2F1

[
n, n, 1 + n,

pλ

−e
N
n +pλ

]

nμ

⎞
⎟⎟⎠

−2+�⎞
⎟⎟⎟⎠ (53)

Rather than addressing the perturbation analysis of BHDE,
the standard perturbation strategy for obtaining the scalar
spectral index, ns , and tensor-to-scalar ratio, r , is used as the
approximation methodology by considering Eqs. (20, 44, 45,
46, 47). Here, the standard perturbation technique serves as a
useful approximation. The process outlined above is used to
determine the ns and r at the horizon crossing, demonstrating
their dependence on the model’s free constants.
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The evolution of ε1 with respect to e-folding number(N )

and tensor to scalar ratio r against spectral index ns in viscous
emergent scenario is plotted in Figs. 19 and 20 respectively.
We can see, the inflationary scenario and nice exit from infla-
tion (ε1 = 1) in Fig. 19. During the inflationary era, (ε1 = 1)

has the largest value. After leaving the inflationary phase, it
exhibits negative behaviour. It is observed that the trajecto-
ries in (ns, r) plane exhibit a decreasing behaviour, which is
consistent Planck2018 data set. Hence, our calculated tensor
to scalar ratio for this model is consistent with the observa-
tional bound of Planck. Hence, it can explain the primordial
fluctuation in the early universe.

4.1.2 Hubble slow-roll approximation in intermediate
universe

In this subsection, we have considered an intermediate scale
factor to incorporate Hubble flow dynamics in the back-
ground of the BHDE universe. Here, we have taken matter
density with Barrow holographic dark energy density for the
evolution of the Hubble parameter. We substitute ρ and P in
Eq. (51) for finding Ḣ by ρTotal of non-interacting viscous
total energy density and P+� effective pressure respectively
in the intermediate universe. Therefore,

ε1 = − 1

2c

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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e
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B

) 1
β

)β
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( −C3+N
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) 1
β
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B
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B

) 1
β

)β
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�
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B

) 1
β
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⎟⎟⎟⎟⎟⎠
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2−�
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⎛
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(54)

Therefore, from ε2 = ε̇
Hε1

and Eq. (54), we can calculate,
tensor to scalar ratio and spectral index in this intermediate
scenario. Here, we define all the slow-roll parameters in terms
of H , which is a function of the number of e-folds N dur-
ing inflation and may be written as H = H(N ). The scalar
spectral index, often represented as (ns), explains the scale
dependence of density variations. When there is an index
of unity, all scales have the same variances. The distinctive
size scales of structure creation are influenced by the input
parameter (ns) of �CDM , where a modest modification has
minimal impact. Certain numbers (often ranges) of (ns) are
often suggested by inflationary models, and ns = 0.96 is still
very consistent with inflation models where it exists today.
In this study, we give an exact constraint on fundamental
gravitational waves, which is, tensor-to-scalar ratio (r), for a
broad category of single-field inflation models in which, in
the BHDE scenario, inflation always takes place below the
Planck scale.

In this Fig. 21, we can define a successful inflationary
phase (as ε1 < 1) in the viscous non-interacting intermediate
universe with BHDE background fluid. There is a nice exit of
the inflationary phase in this case. However, we have shown
that the original model of inflation using viscous intermedi-
ate scale factor with BHDE background fluid is inconsistent
with constraints on r and ns at greater than 95% confidence
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interval. Slightly far from ns = 0.965 and r = 0.15, the
slow-roll formulas are not valid with respect to Planck2018
dataset and we display it in Fig. 22 for indicative purposes
only.

4.2 Correspondence between BHDE and scalar field

In the next section, we demonstrate how the BHDE approach
can be used to characterize inflationary behaviour in terms of
two distinct scalar field dynamics. Bamba et al. [148] demon-
strate a work which corresponds between DE and scalar
field. Beginning with inflation, scalar field dynamics has been
essential for modern cosmology, producing a paradigm shift
that has integrated cosmology and high-energy physics. The
scalar field dynamics with BHDE background fluid in the
absence of background dark matter are introduced in the fol-
lowing.

4.2.1 Canonical scalar field

First, the relationship between the canonical scalar field and
BHDE is examined. Mohammadi et al. [149] states that the
canonical scalar field’s pressure and energy density are as
follows:

ρφc̃ = 1

2
φ̇2
c̃ + V (φc̃) (55)

Pφc̃ = 1

2
φ̇2
c̃ − V (φc̃) (56)

where, canonical scalar field is represented by φc̃. Therefore,
we can write,

V (φc̃) = 1

2
ρBHDE (1 − wBHDE ) (57)

and,

φ̇2
c̃ = ρBHDE (1 + wBHDE ) (58)

(a) Cosmological dynamics of canonical scalar field in emer-
gent universe

Substituting ρBHDE and wBHDE in Eq. (57) by ρTotal

and we f f of emergent viscous non-interacting scenario from
Eqs. (20) and (21), we get the potential V (φc̃) and we have
plotted V (φc̃) and 2V − φ̇2

c̃ in Figs. 23 and 24 respectively. In
Fig. 23, the generated potential function from the canonical
scalar field is presented against the e-folding number N . Var-
ious trajectories are produced for different � values in order
to comprehend how the potential varies with the parameter.
It is clear from the figure that the potential increases as the
Hubble function increases. This result is consistent with the
observations. As we study 2V − φ̇2

c̃ , we observe that it is pos-
itive (see Fig. 24) with respect to N . However, in the vicinity
of the increase of e-folding number, 2V − φ̇2

c̃ is nearly flat,
although it starts increasing sharply; hence, we may consider
it to be consistent with the inflationary expansion.

Fig. 18 Evolution of reconstructed viscous interacting effective EoS
parameter in bouncing scenario

Fig. 19 Evolution of reconstructed Hubble flow parameter ε1 with
respect to e-folding number in viscous non-interacting emergent sce-
nario

(b) Cosmological dynamics of canonical scalar field in inter-
mediate universe

Inflationary scenarios refer to scenarios in which late-time
acceleration and inflation are described by a single scalar
field. A single scalar field is required for the consistent uni-
fication of inflation and late time acceleration with Big Bang
singularity. This requires a potential that is initially followed
by steep behaviour thereafter and shallow again around the
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Fig. 20 Evolution of reconstructed tensor to scalar ratio r against
spectral index ns in viscous non-interacting emergent scenario for
� ∈ (0,∞)

Fig. 21 Evolution of reconstructed Hubble flow parameter ε1 with
respect to e-folding number in viscous non-interacting intermediate sce-
nario

present epoch. When we replace ρBHDE and wBHDE in
Eq. (57) with ρTotal and we f f of the intermediate viscous
non-interacting scenario, we obtain the V (φc̃) like the pre-
vious case in Figs. 25 and 26, respectively, we have plotted
V (φc̃) and 2V − φ̇2

c̃ .
The produced potential function from the canonical scalar

field is shown against the e-folding number N in Fig. 25. To

Fig. 22 Evolution of reconstructed tensor to scalar ratio r against spec-
tral index ns in viscous non-interacting intermediate scenario

Fig. 23 Evolution of reconstructed canonical potential V (φc̃) in vis-
cous non-interacting emergent scenario

understand how the potential fluctuates with the parameter,
several trajectories are generated for various � values. With
respect to N , 2V − φ̇2

c̃ is positive, as can be seen in Fig. 26.
However, 2V − φ̇2

c̃ is almost flat near the e-folding number
increase, as a result, we can see it as appropriate with the
inflationary expansion.
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Fig. 24 Evolution of reconstructed 2V −φ̇2
c̃ in viscous non-interacting

emergent canonical scalar field scenario

Fig. 25 Evolution of reconstructed canonical potential V (φc̃) in vis-
cous non-interacting intermediate scenario

4.2.2 Tachyonic field

In addition, tachyon fields [150] have been suggested as pos-
sible candidates for dark energy. Since tachyons are imagi-
nary mass scalar fields, it is possible that they are never at rest
and that their speed is always greater than that of light. In spite
of this seemingly contradictory feature, models of tachyonic
dark energy have been place up in which accelerated expan-
sion is driven by the tachyon field. To make sure that these
models are consistent with observational data and theoret-

Fig. 26 Evolution of reconstructed 2V −φ̇2
c̃ in viscous non-interacting

intermediate canonical scalar field scenario

ical constraints, they must be carefully examined because
they involve complex dynamics. The purpose of this section
is to look at the circumstances under which BHDE acts as a
tachyonic field. For our investigation, an integrated approach
seeks to identify common features, underlying principles,
and potential connections between canonical and tachyonic
scalar field models for our study. By creating such a frame-
work, it may be possible to gain a better understanding of the
nature of BHDE fluid and it provides a more comprehensive
understanding of its role in the accelerated expansion of the
universe with Big bang singularity as origin of the universe
in this case. The tachyon field’s pressure and energy density
are determined by:

ρφT̃
= V (φT̃ )√

1 − φ̇2
T̃

(59)

PφT̃
= −V (φT̃ )

√
1 − φ̇2

T̃
(60)

where, tachyonic scalar field is represented by φT̃ . In order
to ascertain a suitable potential for the tachyonic field that
exhibits BHDE behaviour, we evaluate the pressure and
energy densities of these two dark energy models. The out-
come is

V (φT̃ ) = ρBHDE

√
1 − φ̇2

T̃
(61)

where,

φ̇2
T̃

= 1 + wBHDE (62)

(c) Cosmological dynamics of tachyonic scalar field in emer-
gent universe
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Fig. 27 Evolution of reconstructed tachyon potential V (φT̃ ) in viscous
non-interacting emergent scenario

Using ρBHDE and wBHDE in Eqs. (61 and 62) by ρTotal

and we f f respectively of emergent viscous non-interacting
scenario from Eqs. (20) and (21), we get V (φT̃ ) in terms of
e-folding number N . Consequently, we can calculate 2V−φ̇2

T̃
in this tachyonic emergent scenario. We have plotted V (φT̃ )

and 2V − φ̇2
T̃

in Figs. 27 and 28 respectively with respect
to e-folding number N . Plotting the constructed potential
function from the tachyonic scalar field against the e-folding
number N is shown in Fig. 27. In this instance, distinct tra-
jectories are produced for varying � values in order to com-
prehend how the potential depends on the parameter. This
figure makes it clear that as the e-folding number increases,
so does the potential. The observations are compatible with
this outcome. In Fig. 28, we can see, 2V − φ̇2

T̃
is plotted with

respect to e-folding number which is also consistent with the
observational data as 2V >> φ̇2

T̃
.

(d) Cosmological dynamics of tachyonic scalar field in inter-
mediate universe

The motivations for using various scalar field dynam-
ics in this study are rooted in their relevance to theoreti-
cal physics, cosmology. The tachyonic scalar field is fre-
quently associated with scenarios involving dark energy or
late-time accelerated expansion of the universe. Its exponen-
tial dependence on potential causes negative pressure and
accelerates the universe’s expansion in the late stages. The
tachyonic scalar field is of particular interest for understand-
ing the cosmic acceleration with intermediate scale factor,
observed through supernovae and BHDE background fluid.
Using ρBHDE and wBHDE in Eqs. (61) and (62)) by ρTotal

and we f f of intermediate viscous non-interacting scenario
from Eq. (30) and effective EoS parameter, we obtain V (φT̃ )

Fig. 28 Evolution of reconstructed 2V−φ̇2
T̃

in viscous non-interacting
emergent tachyon scalar field scenario

and hence 2V − φ̇2
T̃

in relation to e-folding number N . We

plot V (φT̃ ) and 2V − φ̇2
T̃

in Figs. 29 and 30, respectively.
Figure 29 plots the constructed potential function from the
tachyonic scalar field against the e-folding number N under
the viscous BHDE as background fluid. Here, different tra-
jectories are generated for different � and ξ values to under-
stand the dependence of the potential on the parameter. This
figure shows that the potential increases with the values of
e-foldings. This conclusion is consistent with the observa-
tions. Plotting 2V − φ̇2

T̃
against e-folding number is shown

in Fig. 30, and this is in compatible with the observational
data, which shows that 2V >> φ̇2

T̃
.

4.3 Inflation from bouncing scenario aspect

In contemporary theoretical cosmology, one of the most fun-
damental questions is whether the universe was singular or
non-singular at its beginning. This inquiry is analogous to
determining whether the Big Bang or Big Bounce theories
adequately account for the universe’s evolution. Our main
objective for this study is to find a correlation between infla-
tionary scenario following the Big Bang and rapid increase
in volume after the Big Bounce, in the context of Einstein’s
gravity. This subsection is devoted on the study of bounce
inflationary dynamics in various theoretical contexts. Tradi-
tionally, inflation was firstly studied in the context of scalar-
tensor theory in its simplest form and we provide detailed
calculations for the slow-roll indices, after getting the con-
straint range of bouncing parameters of this model for infla-
tion in post bounce scenario. Then, we have found the corre-
spondence between scalar fields and viscous non-interacting
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Fig. 29 Evolution of reconstructed tachyon potential V (φT̃ ) in viscous
non-interacting intermediate scenario

Fig. 30 Evolution of reconstructed 2V −φ̇2
c̃ in viscous non-interacting

intermediate tachyon scalar field scenario

BHDE scenario, namely canonical scalar field and tachyonic
scalar field. For completeness of bounce inflationary sce-
nario, we first study the spectral index of primordial curva-
ture perturbations and also the scalar-to-tensor ratio and then
the canonical scalar field inflationary paradigm. In this same
subsection, we study the tachyonic non-canonical scalar field
case also.

Fig. 31 (Ḣ − H) phase space diagram corresponds to Eq. (12): In the
Ḣ > 0, the bounce is at H = 0, where the transition from H < 0 to
H > 0 is at Ḣ > 0

Fig. 32 Evolution of reconstructed ε1 in viscous non-interacting post
bounce scenario

4.3.1 Realisation of inflation in post-bounce scenario

To extract transparent and easily understandable information
about the model at hand, we first construct the (Ḣ−H) phase
space that corresponds to the bouncing scale factor Eq. (12)
in viscous non-interacting BHDE scenario. In Fig. 31, we
draw the phase space diagram (Ḣ − H) corresponding to
Eq. (12), where the bounce point is evidently indicated at the
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point (HB = 0, Ḣ > 0). Before this point, the contraction
phase can be shown as H < 0 and Ḣ > 0, while after this
point the expansion phase is determined as H > 0 and Ḣ >

0. Again, the effective EoS parameter can be re-written as
we f f = −2Ḣ

3H2 − 1 from Eqs. (6, 7). Therefore, from Eqs. (12,
14), we can get,

we f f = −1

−2a0et (μ+ν)(μ + ν)3
(
a0et (μ+ν)(−1 + μ) − a1(1 + ν)

)
3(1 + ν)2

(
a0et (μ+ν)μ − a1ν

)2

(63)

Therefore, in the post-bouncing scenario, for an accelerating
possible inflationary universe, the effective EoS parameter
has to lie in the range of (−1, −1

3 ), which is the quintessence
scenario. Therefore, in Eq. (63), a1(1 + ν) > a0(−1 + μ)

as the exponential function et (μ+ν) always behaves positive
for positive range of μ and ν. Therefore, to get a1(1 + ν) −
a0(−1 + μ) > 0, μ has to lie μ ∈ (0, 1). In this case, we are
taking a non-singular bounce with a bouncing point at t = 0
with the constraint a0

a1
= γ

μ
= ζ , in which ζ lies between

(0, 1). If μ is a proper fraction, then other parameters of
Eq. (12), a0, a1, and ν have to be positive proper fractions
for getting a post-bounce inflationary scenario. Again, we
know that, the deceleration parameter q = −1− Ḣ

H2 , and first

slow-roll parameter ε1 = −Ḣ
H2 . For accelerating expansion of

universe q < −1 and inflationary scenario ε1 < 1. Conse-
quently, the accepting common region is Ḣ

H2 > 0 for an accel-
erating inflationary scenario in the viscous non-interacting
BHDE universe’s post-bounce case. Furthermore, if all of
the parameters of this double exponential bouncing model,
a0, a1, μ and ν, belong to (0, 1), the model can feel the infla-
tionary phase gracefully in the quintessence period. Now,
we have calculated Hubble flow parameters in the context of
post-bounce viscous interacting scenario and illustrated the
methods of spectral index of primordial curvature perturba-
tions and also the scalar-to-tensor ratio. Therefore,

ε1 =
3

ρm0

3(a0etμ+a1e−tν)
3 − 3a0et (μ+ν)μ2

a1+a0et (μ+ν) − 3a1ν
2

a1+a0et (μ+ν) + c

⎛
⎝ e−tν

(
a1+a0et (μ+ν)

)(
a1C1ν−etν2F1

[
1, ν

μ+ν
,
μ+2ν
μ+ν

,− a0e
t (μ+ν)

a1

])

a1ν

⎞
⎠

−2+�

ρm0

(a0etμ+a1e−tν)
3 + c

⎛
⎝ e−tν(a1+a0et (μ+ν))

(
a1C1ν−etν2F1

[
1, ν

μ+ν
,
μ+2ν
μ+ν

,− a0e
t (μ+ν)

a1

])

a1ν

⎞
⎠

−2+�

(64)

Therefore, from Eq. (64), we can found ε2 = ε̇1
Hε1

, ratio of the
amplitude of tensor perturbations (primordial gravitational
waves) to the amplitude of scalar perturbations r = 16ε1,
and spectral index ns = 1 − 2ε1 − 2ε2.

In Fig. 31 we have plotted phase space diagram of Ḣ − H
and in Fig. 32 we have plotted the evolution of reconstructed
ε1 in post-bounce viscous interacting scenario. Figure 32
shows ε1 << 1 although we are unable to show the nice
exit from bounce inflation.

4.3.2 Correspondence to the scalar field in bouncing
scenario

Belinsky–Khalatnikov–Lifshitz (BKL) anisotropic instabil-
ity is a well-known conceptual problem for bouncing cos-
mologies [151]. When the effective energy density caused
by the back-reaction of anisotropies rises more quickly than
the energy densities of the dust and radiation matter fields,
the BKL instability manifests in contracting cosmologies.
Therefore, to guarantee that anisotropies never dominate
and to have a bounce that is approximately isotropic, the
initial conditions must be fine-tuned to be almost perfectly
isotropic. Anisotropies are justified to be ignored in the pres-
ence of an ekpyrotic scalar field because this problem is
avoided in the ekpyrotic scenario, where a scalar field with
a steep and negative-valued potential always dominates over
anisotropies in a contracting universe [152]. A scalar field
with a Horndeski-type non-standard kinetic term and a neg-
ative exponential potential has been shown to be able to
combine an era of ekpyrotic contraction with a non-singular
bounce [153]. Moreover, the matter bounce and the ekpy-
rotic scenario can be combined by assuming the universe
started in a state of matter-dominated contraction and includ-
ing a regular dust field. Within the framework of canoni-
cal and non-canonical tachyonic scalar fields with the vis-
cous non-interacting BHDE scenario, we will examine the
matter-ekpyrotic bounce in this paper. We will also compare
its dynamics to those found in the effective field approach
developed in [153]. In order to prevent the BKL instability
and dilute anisotropy, it is imperative that a phase of Ekpy-
rotic contraction precedes the bounce, and this is achieved by

selecting the bounce field potential V (φ). Using exponential
functions, the potential can also be selected to provide an
attractor solution in the expanding and contracting branches
of the cosmological evolution.
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Fig. 33 Evolution of reconstructed canonical potential V (φc̃) in vis-
cous non-interacting bouncing scenario

(e) Cosmological dynamics of canonical scalar field in
bouncing universe

Substituting ρBHDE and wBHDE in Eq. (57) by ρTotal

and we f f of bouncing viscous non-interacting scenario from
Eqs. (37) and (40), we get the bounce field potential V (φ) in
canonical scalar field case. Here, we have plotted, a bounce
field potential which violates the Null Energy Condition for
a brief period, inducing the bounce, and 2V − φ̇2

c̃ in Figs. 33
and 34 respectively. The generated potential function from
the canonical scalar field is shown against time t in Fig. 33.
To understand how the potential varies with the parameter,
several trajectories are generated for various � values. The
figure makes it evident that the potential rises with time t .
This result is consistent with the observations. As we study
2V − φ̇2

c̃ , we observe that it is positive (see Fig. 34) with
respect to t . Nonetheless, 2V − φ̇2

c̃ is almost flat near the
time increase, even though it begins to rise sharply; for this
reason, we can regard it as consistent.

(f) Cosmological dynamics of tachyonic scalar field in bounc-
ing universe

Moving on, we introduce a second field V (φT̃ ) to repre-
sent an arbitrary tachyonic potential that satisfies the Null
Energy Condition and φT̃ be the matter field. For an under-
standing of the cosmic acceleration with bouncing scale fac-
tor, observed through Big Bounce and BHDE background
fluid, the tachyonic scalar field is of particular interest. By
substituting ρTotal and we f f of the bouncing viscous non-
interacting scenario from Eq. (37) with ρBHDE and wBHDE

in Eqs. (61, 62) and the effective EoS parameter, we obtain
tachyonic potential V (φT̃ ) and in Figs. 35 and 36, we have

Fig. 34 Evolution of reconstructed 2V −φ̇2
c̃ in viscous non-interacting

bouncing canonical scalar field scenario

Fig. 35 Evolution of reconstructed tachyon potential V (φT̃ ) in viscous
non-interacting bouncing scenario

plotted V (φT̃ ) and 2V − φ̇2
T̃

in relation to time respectively.
Plotting the constructed potential function from the tachy-
onic scalar field against the time under the viscous BHDE
as background fluid is shown in Fig. 35. At the background
level the universe is homogenous, and thus both the bounce
field potential V (φT̃ ) and the matter field φT̃ are only func-
tions of cosmic time. Figure 36 plots 2V − φ̇2

T̃
against time;

this corresponds with the observational data, which indicates
that 2V >> φ̇2

T̃
.
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Fig. 36 Evolution of reconstructed 2V −φ̇2
T̃

in viscous non-interacting
intermediate tachyon scalar field scenario

5 Thermodynamic implications to barrow holographic
dark energy

Following the clarification of the black hole’s thermodynam-
ical characteristics [120,154,155], it has been said that the
black hole’s entropy is proportionate to the horizon’s area A
which is

S = A

4G
, where, A = 4πr2

H (65)

There have been extensive and current studies where the
relation between gravity and thermodynamics has been
explained. This is known as the Bekenstein–Hawking entropy,
where rH is the horizon radius and we operate in units where
h = kB = c = 1 [156,157]. Using the cosmological appar-
ent horizon [158] as a realisation of the thermodynamics
of space-time [156], we have found in the studies that the
FRW equations can also be viewed as the first law of ther-
modynamics when we take into account the Bekenstein–
Hawking entropy. More precisely, [72] provides the Barrow
entropy.We know our BHDE parameter is �, and A0 is a
constant in the equation mentioned above.

5.1 Thermodynamics of interacting BHDE

In this section, we derive the rate of change of the total
entropy and then examine the validity of generalized second
law of thermodynamics. It is widely accepted that the ther-
modynamical characteristics of a black hole apply equally
to a cosmic horizon, and thus thermodynamical study of the
gravity theory is an intriguing area of research. Furthermore,
when the universe is restricted by an apparent horizon, the

first Friedmann equation in the FRW universe may also be
used to determine the first law of thermodynamics, which
holds in a black hole horizon. Bekenstein [120] postulated in
1973 that there is a relationship between a black hole’s ther-
modynamics and event of horizon, meaning that the black
hole’s event of horizon is a measure of its entropy. This con-
cept has been expanded to include cosmological model hori-
zons, such that each horizon is equivalent to an entropy. Con-
sequently, the second law of thermodynamics was modified
such that, in its generalized form, the total of all horizon-
related time derivatives of entropies plus the time deriva-
tive of normal entropy must be positive, meaning that the
total of entropies must increase with time. This gives good
reason to use the future event horizon as the cosmic hori-
zon for analysing any cosmological model’s thermodynamic
features. In light of the aforementioned justifications, we
have regarded the universe as a thermodynamic system here,
enclosed by the cosmic event horizon of radius [159,166].
The future event horizon is that the distance that light travels
from the present time to infinity, is defined by

RE = a(t)
∫ ∞

t

dt

a(t)
and ṘE = HRE − 1 (66)

where, a(t) denotes scale factor.
Let us consider S f and Sh are the entropy of the fluid and

the entropy of the horizon containing the fluid, therefore, the
total entropy (S) will be S = Sh + S f . Like any isolated
macroscopic system, S needs to satisfy the following rela-
tions that are consistent with the rules of thermodynamics,

Ṡ = dS
dt ≥ 0 and S̈ = d2S

dt2
< 0. (67)

It is important to take into account that the inequality Ṡ ≥ 0
and S̈ ≤ 0 are referred to, respectively, as the generalised
second law (GSL) [157–165] of thermodynamics and ther-
modynamic equilibrium (TE), in this context. In addition, the
GSL ought to hold true throughout the entirety of the uni-
verse’s history, whereas the TE ought to hold during the latter
stages of that evolution. Here, we have considered, both vis-
cous BHDE and dark matter in interacting scenario to check
validity of GSL. When evaluating the validity of GSL, we
use the assumption that the future event horizon and the dark
sectors are in equilibrium, which means that the temperature
of the horizon is the same for both dark energy and dark
matter. Because of their interaction, there will inevitably be
a temperature equilibrium between the dark sections. The
horizon and the dark regions will shortly reach equilibrium.
Consequently, the temperatures of each component in the
universe will eventually converge to the horizon tempera-
ture. The temperature of the event horizon be

TE = 1
2πRE

(68)
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As previously mentioned, we considered the BHDE and DM
as the components in the energy budget, then we can write

S f = SBHDE + SDM (69)

where, SBHDE and SDM represents the entropies of the cou-
pled fluid of BHDE and DM respectively and here, T is con-
sidered as the temperature of this coupled fluid inside the
horizon. As a result, for the individual matter contents, the
first law of thermodynamics (TdS = dE + PdV ) can be
expressed as follows:

TdSBHDE = dEBHDE + PBHDEdV, (70)

TdSDM = dEDM + PDMdV = dEDM , (71)

where the horizon volume is expressed as V = 4
3πRE

3.

Again, EBHDE = 4
3πRE

3ρBHDE and EDM = 4
3πRE

3ρDM

represents the internal energies of BHDE and pressure-less
DM. Therefore, by differentiating Eqs. (70) and (71), we can
get ṠBHDE and ṠDM respectively. Finally, it is imperative to
note that in this particular context, the fluid temperature T
must match the event horizon temperture TE ; otherwise, the
energy flow would cause this geometry to deform. Therefore,
the entropy inside this coupled BHDE and DM will be:

Ṡ f = ṠBHDE + ṠDM (72)

Again, entropy of the horizon can be defined as:

SE = A0
4G

A
A0

(1+�)
, where, A = 4πR3

E (73)

Here, A = 4πR3
E and RE are the surface area and the

radius of the future event horizon. Therefore, by differen-
tiating Eq. (72), we can arrive at the expression:

S = ṠE + Ṡ f = ṠE + ṠBHDE + ṠDM (74)

Hence, by replacing RE from Eq. (15), ρm f rom Eq. (26),
ρTotal and P of viscous interacting emergent BHDE in
Eqs. 72, 73, 74, we can get the time derivative of total
entropy in emergent interacting scenario and it is plotted in
Fig. 37. Figure 37 is consistent with the time derivative of
total entropy as it satisfies the inequality Ṡ ≥ 0. Thermal
equilibrium is also established in this case also for S̈ ≤ 0.

We can obtain the time derivative of total entropy in
intermediate interacting scenario by substituting RE from
Eq. (27), ρm f rom Eq. (32), ρTotal , and P of viscous inter-
acting emergent BHDE in Eqs. (72), (73), (74). Since Fig. 38
satisfies the inequality Ṡ ≥ 0, it is consistent with the time
derivative of total entropy. In this instance, thermal equilib-
rium is also established for S̈ ≤ 0.

Specifically, we present for the first time a non-singular
generalized entropy. The non-singular behavior of the pro-
posed entropy function can be helpfully described in the con-
text of bouncing scenarios, where the universe experiences
H = 0 at the moment of bounce. This section will discuss

Fig. 37 The time derivative of the total entropy for future event horizon
RE using the first law of thermodynamics in the emergent interacting
BHDE scenario

how the generalized entropy affects non-singular bounce cos-
mology. Specifically, we will look into whether an early uni-
verse bounce that is consistent with observational constraints
can be generated by the entropic energy density. Here, we
can establish the time derivative of total entropy in bounc-
ing interacting scenario by substituting RE from Eq. (34),
ρm f rom Eq. (41), ρTotal , and P of viscous interacting emer-
gent BHDE in Eqs. (72), (73), (74). Figure 39 satisfies the
inequality Ṡ ≥ 0 in post bounce scenario, which is compati-
ble. Although, in pre-bounce scenario, S → 0

6 Conclusion

Singularity problem has been affecting inflation theories
despite their remarkable achievements. Phenomenologically,
one can avoid the singularity by taking into account that a
non-singular bounce occurs prior to inflation. The bounce
suggests that the universe may have been contracting from a
large volume before our universe began to expand. In addi-
tion to offering a scientific explanation for the mysterious
question of what our Universe looked like before inflation,
the bounce scenario may also introduce some new elements
into the early stages of our Universe and make predictions
that may be found in later observations. In [96,97], the phe-
nomenology of the bounce inflation scenario was first exam-
ined. It was demonstrated that, in addition to producing scale-
invariant scalar perturbations that fit the data, such a scenario
can also result in tilted spectrum, which can explain the sup-
pression of the CMB TT spectrum at large scales. The pertur-
bations generated prior to the bounce. Although conformal
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Fig. 38 The time derivative of the total entropy for future event horizon
RE using the first law of thermodynamics in the intermediate interacting
BHDE scenario

Fig. 39 The time derivative of the total entropy for future event horizon
RE using the first law of thermodynamics in the bouncing interacting
BHDE scenario

transformation effectively addresses the majority of prob-
lems associated with the bouncing paradigm, it is important
to note that certain problems may still arise as a result of the
same transformation.

Our goal in this work was to establish a link between the
singularities of the Big Bang and the Big Bounce, which can
be solved generically without requiring the introduction of
the non-standard kinetic operators needed for the effective
field approach. The cosmological dynamics of a canonical

scalar field with an ekpyrotic like potential is also examined
in this paper. Barrow holographic dark energy (BHDE) is
formulated using dimensional analysis and the Barrow holo-
graphic principle. It should be noted that the BHDE differs
significantly from the standard dark energy (DE) models in
which the dark energy density is derived from a suitable
scalar field or from one or more higher curvature terms in the
Lagrangian. This is because the BHDE is based on the holo-
graphic principle rather than adding a term to the Lagrangian.
The particle horizon (Rp) or the future event horizon (RE )

are typically used to calculate the horizon distance. Here,
we have considered viscous BHDE as background fluid in
interacting and non-interacting scenario for evolution of the
universe, where the Barrow exponent lies in (0,∞). The pur-
pose of the study [1] was to investigate if there is a form of
the LIR that is appropriate enough to be considered equiva-
lent to the generalized HDE in terms of the Barrow entropic
dark energy model. In that case, the authors have examined
the question: what is the equivalent LIR’s form that corre-
sponds to the entropic DE model of Barrow? Inspired by
this [1] study, we have chosen the relaxed Barrow exponent
that varies in accordance with the universe’s cosmological
expansion.

Cosmic expansion is significantly influenced by dissipa-
tive processes such as bulk viscosity, shear viscosity, and
heat transport. When a cosmological fluid expands (or con-
tracts) too quickly, it can cause the system to lose its local
thermodynamic equilibrium and thus develop bulk viscos-
ity. For this reason, we have studied emergent, intermediate
and bouncing cosmology with respect to viscous BHDE in
interacting and non-interacting scenario. In an emergent uni-
verse, single BHDE performs a vital role in the realization
of inflation by taking the Big Bang singularity as the ini-
tial singularity. In Figs. 2, 3, we have plotted the expression
of the effective EoS parameter we f f and the deceleration
parameter q respectively. we f f behaves phantom rigorously,
and q shows an accelerating emergent BHDE universe in a
non-interacting scenario. Figure 4 shows our model is sta-
ble against small perturbations. Although, in Fig. 5, we have
observed quintessence evolution of the universe by choosing
interacting viscous BHDE scenario with the interaction term
Q = 3Hb2ρm . Figure 6 shows us the effective EoS param-
eter crosses the phantom boundary in a coupled fluid model
similar to a single fluid model of the BHDE viscous emergent
universe. Then, in the non-interacting intermediate scenario,
we have plotted the effective EoS parameter (we f f = P+�

ρTotal
)

in Fig. 7. The phantom scenario of effective EoS parameter
and the reconstructed we f f are unable to escape the big-rip
by leaving the phantom, as shown in Fig. 7. The universe’s
accelerating expansion is shown in Fig. 8, and Fig. 9 demon-
strates that our model is stable against small perturbations for
all values of �. We have plotted viscous interacting BHDE
in an intermediate scenario in Figs. 10 and 11. In Fig. 10, the

123



314 Page 26 of 30 Eur. Phys. J. C (2024) 84 :314

EoS parameter exhibits its quintessential behavior, while in
Fig. 11, the effective EoS parameter is steadily approaching
the phantom border. In the next subsection, we will address
the cosmological field equations that correspond to the non-
singular viscous bouncing scenario with the BHDE single
fluid model for background evolution. In Fig. 1, we have
seen the bouncing evolution of the universe with bouncing
point HB = 0. Furthermore, we presented the EoS parame-
ter, effective EoS parameter, and total energy density (ρTotal )
in Figs. 12, 13, and 14, respectively, for the non-interacting
bouncing scenario. Fig. 12 shows the proper chronological
growth of the universe. In Fig. 12, the BHDE energy density
rises in the post-bounce scenario, increases in the pre-bounce
scenario due to expansion, and reaches its minimum value
at t = 0 during the bounce. The EoS parameter crosses the
phantom border in both the pre- and post-bounce scenarios,
as shown in Fig. 13. As shown in Fig. 14, the reconstructed
we f f , effective EoS parameter is behaving quintessence in
the pre-bounce scenario and phantom in the post-bounce sce-
nario. In the post-bounce scenario, the phantom scenario of
the effective EoS parameter is able to escape the big-rip. Fig-
ure 15 shows the accelerating expansion of the universe, and
Fig. 16 shows that, for all values of � in both pre and post
bounce scenarios, our model is stable against small pertur-
bations. As illustrated in Fig. 17, the growth of the recon-
structed EoS parameter (left panel) diverges due to viscous
BHDE in an interacting scenario. The EoS parameter behaves
as quintessence in the pre-bounce case and crosses the phan-
tom boundary in the post-bounce instance. The effective EoS
parameter prevents the Big Rip singularity in the post-bounce
scenario (right panel). It is clear that as we increase the inter-
action coefficient b, both EoS parameters are strictly moving
to phantom.

In literature, the holographic principle is frequently
applied to late time acceleration. We have used the princi-
ple in the early time inflationary scenario here, having been
inspired by this. The energy density is proportional to the
inverse of length squared, according to the principle. The
energy density produced should be sufficient to drive the
inflation since it is anticipated that the length scale will be
extremely small during the inflation. Since the entropy is
the known source of holographic dark energy, changing the
entropy law can change the nature of the DE. Here, we’ve
examined one such modification using the Barrow entropy
relation, which was inspired by the COVID-19 virus’s shape.
It was discovered that the structure of a black hole had intri-
cate fractal features brought about by these quantum correc-
tions. Using � > 0, we have investigated an inflationary sce-
nario characterized by a universe full of Barrow holographic
dark energy. In emergent, intermediate, and non-singular
bouncing scenarios, a number of analytical solutions for the
model were discovered, including the slow-roll parameters,
scalar spectral index, and tensor-to-scalar ratio. Lastly, a pos-

sible correspondence between scalar fields and the BHDE is
investigated. For this, the Tachyonic field and the canonical
scalar field are both employed. Plotting the potential pro-
duced by the two distinct fields allows one to see how it has
evolved. The trend can be observed to be in line with the
observational data. This work demonstrates that BHDE may
be a prime contender to power the universe’s early inflation-
ary scenario. In Figs. 19, 21 we have established inflationary
scenarios in viscous emergent and intermediate BHDE uni-
verse and nice exit from inflation with Big Bang singularity.
Figure 20 is consistent with Planck2018 dataset in emergent
case although Fig. 22 is inconsistent with Planck2018 dataset
in intermediate case. In Figs. 23, 25 we can see canonical
scalar field is realised in emergent and intermediate viscous
BHDE scenario. The distinctive quality of tachyon fields-
their imaginary mass and negative kinetic energy-is captured
in Figs. 27, 29 respectively.

In this paper, we have shown that in models with both
canonical and non-canonical scalar fields, stable bouncing
cosmologies are generic and straightforward to achieve.
Without departing from the weak-gravity regime, we have
built models that can stably realize a transition from con-
traction to expansion by Fig. 31 in a flat Friedmann uni-
verse. The evolution must be free of gradient instabilities
and the perturbations must stay ghost-free for the bounce to
be considered healthy. To be more precise, we have deduced
a set of sufficient conditions on the bounce inflation theory’s
form to ensure the stability of the evolution at the turnaround
point. As we’ve demonstrated, it’s easy to realize fast infla-
tion in a post-bounce scenario in Fig. 32. However, we have
not been able to create a model in which the entire history
of expansion-including the distant past and distant future-is
under control. The model presented here avoids the cosmic
singularity problem and is geodesically complete, as is the
case with most non-singular bouncing cosmologies. In the
BHDE non-interacting viscous scenario, this double expo-
nential bouncing scale factor can realize the canonical and
non-canonical scalar field (see Figs. 33, 35). Additionally, as
the universe contracts prior to the bounce, the current patch
comes into causal contact, and we offer a solution to the hori-
zon problem that does not require inflation. We will explicitly
calculate the horizon size to explain how bouncing cosmolo-
gies and the model considered in this paper solve the hori-
zon problem. The main goal is, as mentioned earlier, to find
out if the time derivative of the total entropy of the universe,
bounded by the horizons and the normal entropy, stays at non-
negative level. We have thought of the universe surrounded
by event horizon in order to accomplish the same. We have
already incorporated event horizon to find out the density of
BHDE. The type of time derivative of the total entropy for
the event horizon has been studied for the emergent, interme-
diate, and non-singular bouncing interacting viscous BHDE
scenarios. The generalized second law is applicable to all
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emergent, intermediate, and post-bounce scenarios, regard-
less of the curvature of the universe, as we can observe from
Figs. 37, 38, 39 when the model parameters are chosen appro-
priately.

In summary, the Barrow entropic dark energy model is
found to be equivalent to the generalized HDE, with the cor-
responding cut-off determined in terms of future event hori-
zon. As we wrap up, let’s discuss the current study’s findings
in light of the very recent research by [167], whose authors
suggested the holographic realisation of a cosmic scenario
from constant roll inflation (early on) to the dark energy era
(later on), with an intermediate radiation-dominated era fol-
lowed by a Kamionkowski-like reheating stage. We suggest
expanding our research to include phases that actually follow
the inflationary phase in light of [167], which will show how
early inflation and late time acceleration are unified.
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