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Abstract We study hadronic jets that are tagged as heavy-
flavoured, i.e. they contain either beauty or charm. In partic-
ular, we consider heavy-flavour jets that have been groomed
with the Soft Drop algorithm. In order to achieve a deeper
understanding of these objects, we apply resummed perturba-
tion theory to jets initiated by a massive quark and we perform
analytic calculations for two variables that characterise Soft
Drop jets, namely the opening angle and the momentum frac-
tion of the splitting that passes Soft Drop. We compare our
findings to Monte Carlo simulations. Furthermore, we inves-
tigate the correlation between the Soft Drop energy fraction
and alternative observables that aim to probe heavy-quark
fragmentation functions.

1 Introduction and motivation

Beauty (b) and charm (c) quarks are often considered “heavy
flavours” because their masses are above the proton mass,
mb = 4.2 GeV and mc = 1.3 GeV, respectively. However,
their mass is not so large, compared to the typical scale of
hadron formation, Λ � 1 GeV, so hadronisation occurs. This
does not happen for the top quark, which has a mass 170
times bigger than the proton mass. This value is so large that
its lifetime is smaller than the hadronisation scale.

Heavy flavours constitute a window on two mechanisms
that provide ordinary matter with mass: electroweak symme-
try breaking and the binding energy of strong interactions.
On the one hand, they play a crucial role in studies of the
Higgs boson and, on the other hand, they constitute a bridge
between perturbative and non-perturbative Quantum Chromo
Dynamics (QCD). For these reasons, they have been (and
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still are) the subject of detailed theoretical and experimental
studies.

In this work, we focus on processes in which heavy quarks
are produced. From a theoretical point of view, calculations
for identified heavy flavours can be performed essentially
because the quark mass sets a perturbative scale for the run-
ning coupling and, at the same time, removes collinear singu-
larities. From an experimental viewpoint, the lifetime of B (or
D) hadrons is long enough so that their decay happens away
from the interaction point. Dedicated b- and c-tagging tech-
niques that exploit this property to identify B and D hadrons,
or b and c jets, are widely used in collider experiments.

Flavour physics has been studied for decades, both in the
quark and lepton sectors. However, the recent development of
Infra-Red and Collinear (IRC) safe flavour-jet algorithms [1–
5] opens up the possibility to set up a yet-unexplored flavour
physics program that exploits jets and their substructure at
the Large Hadron Collider (LHC).

Resummed calculations for jets initiated by heavy quarks
have been first performed in the context of studies focussing
on B decays [6–9] and top jets [10–15], exploiting effec-
tive field theories. However, to the best of our knowledge,
there exists only a handful of studies that exploit modern
jet substructure techniques to study heavy flavours [16–23].
The main goal of these studies is to investigate the so-called
dead-cone effect [24,25], i.e. the fact that colour radiation
around heavy quarks is suppressed. Remarkably, this effect
has been recently measured by the ALICE collaboration at
the LHC [26].

In contrast, there exists a rather extensive literature ded-
icated to studying the properties of a reconstructed B (or
D) hadron, such as its energy or its transverse momentum.
The theoretical description of these observables is usually
based on heavy-quark fragmentation functions, which can
be computed in perturbative QCD. State-of-the-art predic-
tions include the resummation of different classes of loga-
rithmic corrections, e.g. mass logarithms and end-point log-
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arithms, see e.g. [27–34]. In this context, two of us have
recently developed a theoretical framework to consistently
resum both mass and soft logarithms [35,36]. In this study,
we will heavily rely on these results and we will apply them
to jet-based observables. This way, we will be able to obtain
theoretical predictions that resum both the logarithms of the
observable we want to study and the logarithms of the ratio
of the heavy-quark mass to the jet transverse momentum.

In this study, we investigate the possibility of exploit-
ing a widely used jet substructure technique, namely Soft
Drop [37], to study heavy-flavour jets. The Soft Drop algo-
rithm has been extensively studied and Soft Drop jets are
routinely used in experimental analyses, both in the context
of measurements and searches for new physics. In particular,
we consider heavy-flavour-tagged jets and focus on the angu-
lar separation (θg) and momentum fraction (zg) of the first
splitting that passes Soft Drop. The former directly measures
the angular resolution of the groomed jet and, therefore, it
gives us direct access to the dead cone. The latter, instead,
allows us to probe the heavy-quark splitting function [38,39].

These observables have been recently measured on c-jets
by the ALICE collaboration [40] and our study constitutes the
first step towards a first-principle description of the data. A
direct comparison to the ALICE data, however, goes beyond
the scope of this paper, as it would require matching the
resummed expressions to fixed-order matrix elements, as
well as accounting for the fact that ALICE reconstructs c-
jets from exclusive D-meson decays.

The paper is organised as follows. We start by reviewing
the Soft Drop algorithm in Sect. 2. In Sect. 3 we perform the
next-to-leading logarithmic (NLL) resummation of the θg
distribution, including heavy-quark mass effects and com-
pare it Monte Carlo parton-shower simulations. In Sect. 4
we study the zg distribution, both from first-principle and
in Monte Carlo simulations and study its correlation to a
standard momentum fraction variable used in the context of
fragmentation functions. Finally, we draw our conclusions
in Sect. 5. Details of the calculations are collected in the
Appendices.

2 Soft Drop

Soft Drop [37] is a grooming algorithm that recursively
removes soft-wide angle constituents from a jet. The Soft
Drop procedure starts by re-clustering a given jet (typically
an anti-kt [41] jet) with radius R0 and transverse momentum
pt with the Cambridge–Aachen (C/A) algorithm [42,43].
Soft Drop then parses the resulting angular-ordered branch-
ing history, grooming away the softer branch, until a branch

that satisfies the condition

min (pt1, pt2)

pt1 + pt2
> zc

(
Δ12

R0

)β

,

Δ12 =
√

(y1 − y2)2 + (φ1 − φ2)2, (1)

is found. In the expression above, 1 and 2 denote the branches
at a given step in the clustering, pti are the corresponding
transverse momenta, and Δ12 is their rapidity-azimuth sepa-
ration. If the condition above is never satisfied, we can either
remove the jet from consideration (“tagging mode”) or leave
it as the final Soft Drop jet (“grooming mode”).

The kinematics of the first branch that satisfies (1) defines
the groomed jet radius θg and the groomed momentum shar-
ing zg:

θg = Δ12

R0
, zg = min (pt1, pt2)

pt1 + pt2
. (2)

The θg distribution is IRC safe and it was first studied, for
light jets, in [37] and then resummed to next-to-leading log-
arithmic (NLL) accuracy in [44]. The momentum sharing zg
is IRC safe for β < 0 but only Sudakov safe for β ≥ 0 [38].
The NLL calculation of the zg distribution was performed
in [45].

3 The θg distribution

In this section, we describe the resummation of the θg dis-
tribution for a jet originated by a massive quark. We follow
the general strategy described in Ref. [37] and we, therefore,
consider the resummation of the cumulative distribution, nor-
malised to the Born cross section,

Σ(θ2
g ) = 1

σ0

∫ θ2
g

0

dσ

dθ ′
g

2 dθ ′
g

2
, (3)

exploiting Lund diagrams [46].

3.1 Lund plane geography

Lund diagrams are a useful way to represent the available
phase space for the emission of soft and collinear gluons
off a hard dipole. The Lund plane is usually represented in
terms of pairs of the logarithmic variables, so that, in the soft
and collinear limit, equal areas correspond to equal emission
probabilities.

We choose to draw Lund planes as depicted in Fig. 1. On
the horizontal axis, we show the logarithm of the emission
angle with respect to the jet axis, as measured in the rapidity-
azimuth plane, normalised to the jet radius, i.e. θ = Δ

R0
. On

the vertical axis, we show the emission’s transverse momen-
tum with respect to the jet axis, normalised to the hard scale
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Fig. 1 Lund plane representation of the soft and quasi-collinear phase
space for emissions off a b quark, on the left, and off a c quark, on the
right. The dead-cone region is indicated in grey. Soft Drop is applied and
the groomed-away region appears in light purple. The vertical dashed
line in black indicates a measurement of the groomed radius θg and the

corresponding area in pink is the vetoed region, which gives rise to the
Sudakov form factor. The horizontal red lines indicate the boundaries
between different flavour numbers for the running coupling, while the
green one marks the boundary of the non-perturbative region

of the process, κ = kt
pt R0

. This way, lines of constant θg,

in the soft and collinear limits, are represented by straight
vertical lines, as shown in Fig. 1, in dashed black.

The Soft Drop condition z = zcθβ sets the dotted line in
purple. In this study, we consider β ≥ 0. The region of phase
space below this line (shaded in purple) is groomed away.

Recently, two of us have achieved a generalisation of
the Lund-plane resummation formalism that includes quark-
mass effects [36]. The Lund plane on the left-hand panel of
Fig. 1 is for a b-quark line, while the one on the right is for
a c-quark. When considering heavy-quark Lund planes, two
important differences with respect to the massless case arise.
First, the presence of the vertical short-dashed line, in black,
that represents the beginning of the dead cone at θ = mb

pt R0
,

i.e. Δ = mb
pt

, for the left-hand figure, and at θ = mc
pt R0

,

for the right-hand one. The shaded area in grey is the dead-
cone region. Here, collinear emissions do not give rise to any
logarithmic enhancement, leading to a suppression of QCD
activity in this region. Second, the presence of heavy-quark
thresholds, which are relevant when considering the running
of the strong coupling. In Fig. 1, they are represented by hor-
izontal dotted lines in red. The lines at κ = mb,c

pt R0
correspond

to kt = mb,c and therefore mark the boundaries between two
regions with different numbers of active flavours: n f = 5
above and n f = 4 below, and n f = 4 above and n f = 3
below, for kt = mb and kt = mc, respectively. We also show
(in green) the line κ = Λ

pt R0
that marks the kt = Λ � 1 GeV

boundary between the perturbative and the non-perturbative
regions. For the region below this line, we need a prescription
to regulate the Landau pole of the strong coupling. Details
are given in Appendix A. Finally, we show dotted lines in

blue, at κ = zc and at κ = zc
(

mb,c
pt R0

)1+β

, which originate

from the Soft Drop condition and the dead-cone boundary.
When performing actual calculations, one needs to estab-

lish the hierarchy between these scales. Let us consider, as an
example the case of b-jets, with relatively high-pt . Because
Soft Drop is usually employed with zc = 0.1, we have that
zc >

mb
pt R0

if pt R0 > 42 GeV. Ideally, we would like to have

zc
(

mb
pt R0

)1+β

> Λ
pt R0

. This results in an upper bound for the

hard scale (pt R0)
β < zc

m1+β
b
Λ

. However, this inequality is
hardly satisfied if we consider commonly used values of the
Soft Drop parameters, e.g. zc = 0.1 and β = 0. Thus, we do
expect non-perturbative contributions to affect the dead-cone
region and we will assess their size using Monte Carlo simu-
lations. In Fig. 1, we show the Lund plane for this hierarchy
of scales, on the left for b-jets and on the right for c-jets. A
discussion of all the other possible hierarchies and regions
can be found in Appendix B.

3.2 Recap of the massless calculation

Before computing the θg resummed distribution for a jet ini-
tiated by a massive quark, let us briefly recall the structure
of the resummation in the case of massless partons. The all-
order cumulative distribution can be written as the product
of two contributions

ΣNLL(θ2
g ) = S(θ2

g ) e−R(θ2
g ). (4)

The function R is the Sudakov exponent, or radiator, which
accounts for angular-ordered collinear emissions. It was first
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computed in [37] and, for the case of a quark jet, reads

R(θ2
g ) =

∫ 1

θ2
g

dθ2

θ2

∫ 1

0
dz Pgq(z)

αCMW
S (k2

t )

2π
Θ(z − zcθ

β),

(5)

where θ is the emission angle, normalised to the jet radius,
kt = zθpt R0 and the massless q → qg (timelike) splitting
function is

Pgq(z) = CF
1 + (1 − z)2

z
. (6)

In order to achieve NLL accuracy, the running coupling must
be evaluated at two loops in the so-called CMW scheme [47].
Henceforth, we will also work in the small-zc limit. Conse-
quently, even in the case β = 0, we will ignore flavour-
changing contributions [48,49]. The Sudakov form factor
represents the no-emission probability and corresponds to
the area shaded in pink on the Lund planes of Fig. 1.

This rather simple picture essentially arises from two
facts. First, for the θg distribution, independent emissions,
i.e. αn

SC
n
F contributions, exponentiate with no corrections due

to multiple emissions [37]. Second, all non-Abelian contri-
butions are unresolved and therefore captured at NLL by
the running coupling in the CMW scheme. However, as it
was pointed out in [44], the above description is not com-
plete at NLL and the resummed expression must be supple-
mented with a correction factor, S in Eq. (4). Indeed sim-
ple exponentiation is broken by single logarithmic contri-
butions that arise from two competing mechanisms. Let us
start with the correction to the independent emission contri-
bution. The C/A algorithm, which is used as the first step of
the Soft Drop procedure, can cluster two soft gluons together
first, if they are the closest pair in angle, instead of cluster-
ing each of them with the hard quark. This happens when
θ12 < min(θ1, θ2). This effect introduces single-logarithmic
corrections that are usually referred to as clustering loga-
rithms [50–53]. On the other hand, the clustering condition
also plays a role in the correlated emission contribution. The
C/A algorithm can resolve a soft gluon splitting, giving rise
to a non-global contribution [54,55] that spoils the CMW
picture. This is also a single logarithmic contribution that
can happen if the two soft gluons are not the closest pair in
angle, i.e. θ12 > min(θ1, θ2).

Both contributions start at O(α2
S) and can be computed

using the expression of the squared matrix element for the
emission of two strongly-ordered soft gluons with momenta
k1, k2 off a hard fermionic dipole with momenta pa, pb
[56,57]

W = 2CFwab,1
[
CAwa1,2 + CAwb1,2 + (2CF − CA) wab,2

]
= 4C2

F wab,1wab,2 + 2CFCA wab,1
(
wa1,2 + wb1,2 − wab,2

)
,

(7)

where the C2
F term describes the independent emission con-

tribution, while the CFCA one, the correlated one. We have
introduced the eikonal factor

wi j,l = pi · p j

pi · kl p j · kl . (8)

Following [44], we consider the case in which the softer
gluon (k2) is emitted at a large angle and passes the Soft
Drop condition, while the harder gluon (k1) is emitted at an
angle smaller than θg and so it is not subject to the Soft Drop
condition. If we work in the small-angle limit, considering
real and virtual contributions, we find

S = 1 +
(αS

π

)2
∫ 1

0

dz1

z1

∫ 1

0

dz2

z2

∫ 2π

0

dφ

2π

∫ θ2
g

0

dθ2
1

θ2
1

∫ 1

θ2
g

dθ2
2

θ2
2

× Θ
(
z2 − zcθ

β
2

)
Θ (z1 − z2)

[
C2

F Θ (θ1 − θ12)

− CFCA
θ1θ2 cos φ

θ2
1 + θ2

2 − 2θ1θ2 cos φ
Θ (θ12 − θ1)

]
+ O(α3

S),

(9)

with θ2
12 = θ2

1 + θ2
2 −2θ1θ2 cos φ. The integration above can

be simplified by noting that, in order to capture the highest
power of the logarithm of θg, we can evaluate the momen-

tum fraction integrals with lower limit z2 = zcθ
β
2 � zcθ

β
g .

This way, the momentum fraction integrals decouple from
the angular ones and we obtain

S = 1 + 1

2

(αS

π

)2
log2

(
zcθ

β
g

) ∫ 2π

0

dφ

2π

∫ θ2
g

0

dθ2
1

θ2
1

∫ 1

θ2
g

dθ2
2

θ2
2

×
[
C2

F Θ (2θ1 cos φ − θ2) − CFCA
θ1θ2 cos φ

θ2
1 + θ2

2 − 2θ1θ2 cos φ

× Θ (θ2 − 2θ1 cos φ)

]
+ O

(
α2

S log θg

)

= 1 +
(αS

π

)2
log2

(
zcθ

β
g

) π2

108

(
C2

F − 4CFCA

)
. (10)

The all-order resummation of these contributions has been
performed numerically, in the large-Nc limit [44]. In this
study, we have decided to limit ourselves to studying the
impact of these corrections. Thus, we approximate the clus-
tering factor S by simply considering the exponentiation of
the two-loop result:

S(θ2
g ) = exp

⎡
⎣C2

F − 4CFCA

108

(∫ 1

zcθ
β
g

dz

z
αS(z2 p2

t R
2
0)

)2
⎤
⎦, (11)

where the running of the strong coupling is taken at one
loop.
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3.3 The θg distribution for a heavy-flavour jet

We now perform the resummation of the θg distribution for
jets initiated by a heavy quark, considering both the case of
a b-quark and a c-quark. Both the Sudakov contribution R
and the clustering correction function S in Eq. (4) need to be
reconsidered. We start with the calculation of the resummed
Sudakov exponent.

It was realised long ago that squared QCD matrix ele-
ments with massive partons factorise in the so-called quasi-
collinear limit [58,59]. In this approximation, both the trans-
verse momentum kt of the emission with respect to the mas-
sive emitter, and the mass m are small compared to the hard
scale but they are considered of the same order. In this limit,
the squared invariant amplitude for one-gluon emission takes
the form

|M |2 � 8παS
z(1 − z)

k2
t + z2m2

i

Pgi
(
z, k2

t

)
|M0|2, i = b, c,

(12)

where the massive splitting function for i → ig is

Pgi (z, k
2
t ) = CF

(
1 + (1 − z)2

z
− 2z(1 − z)m2

i

k2
t + z2m2

i

)
. (13)

Following the same steps as in [36], we write

Ri (θ
2
g ,m2

i ,m
2
b,m

2
c) =

∫ p2
t R

2
0

0

dk2
t

k2
t + z2m2

i

∫ 1

0
dz Pgi (z, k

2
t )

× αCMW
S (k2

t )

2π
Θ(z − zcθ

β)Θ(θ − θg),

(14)

where θ = kt
zpt R0

. Note that the mass dependence enters
in two ways. First, for a jet initiated by a quark flavour
i = b, c, the quasi-collinear phase-space and the massive
splitting function depend on mi . Second, regardless of the
jet flavour, the running of the strong coupling may cross the
b and the c thresholds, thus inducing a logarithmic depen-
dence on the quark masses. In order to proceed further, it
is convenient to change the integration variable in Eq. (14)
from k2

t to θ2:

Ri (θ
2
g , θ2

i , ξb, ξc) =
∫ 1

θ2
g

dθ2

θ2 + θ2
i

∫ 1

0
dz Pgi

(
z, k2

t

) αCMW
S (k2

t )

2π

× Θ(z − zcθ
β), (15)

where now k2
t = z2θ2 p2

t R
2
0, and we have introduced the

following dimensionless variables

ξi = m2
i

p2
t R

2
0

, θ2
i = ξi , with i = b, c. (16)

We stress again that the Sudakov exponent for either a high-
pt b-jet or c-jet depends on both ξb and ξc because the running
coupling crosses both quark thresholds. However, it depends
only on the dimensional ratio θ2

i of the corresponding flavour
i = b, c.

The mass-dependent shift in the denominator of Eq. (15)
acts as an effective lower bound of a logarithmic angular
integration. This is the well-known dead-cone effect, [24,25]
i.e. the fact that radiation off massive partons at angles below
m/pt is not logarithmically enhanced. Therefore, we can fur-
ther simplify our expression by shifting the angular integra-
tion variable to θ̄2 = θ2 + θ2

i . Neglecting power corrections
in the mass, we have

Ri (θ
2
g , θ2

i , ξb, ξc) =
∫ 1

ϑ2
g,i

dθ̄2

θ̄2

∫ 1

0
dz Pgi

(
z, z2(θ̄2 − θ2

i )p2
t R

2
0

)

× αCMW
S (z2(θ̄2 − θ2

i )p2
t R

2
0)

2π
Θ(z − zc(θ̄

2 − θ2
i )

β
2 ), (17)

with ϑ2
g,i = θ2

g + θ2
i . Let us first note that

Pgi
(
z, z2(θ̄2 − θ2

i )p2
t R

2
0

)
= CF

(
1 + (1 − z)2

z
− 2θ2

i (1 − z)

zθ̄2

)

≡ Pgi (z, θ̄
2). (18)

Furthermore, as discussed in detail in [36], the mass-
dependent shift in the argument of the running coupling con-
tributes at most to NNLL corrections and, therefore, it can be
dropped at the accuracy we are working at. A similar argu-
ment applies to the shift in the Soft Drop condition. This can
be easily checked at fixed coupling. For instance, in the soft
and collinear limits, we have

R(f.c.)
i = αSCF

π

∫ 1

ϑ2
g,i

dθ̄2

θ̄2

∫ 1

0

dz

z
Θ(z − zc(θ̄

2 − θ2
i )

β
2 )

= αSCF

π

{
log ϑ2

g,i

(
log zc + β

4
log ϑ2

g,i

)

−β

2

[
Li2

(
− 1

θ2
i

)
− Li2

(
θ2
i

ϑ2
g,i

)
+ 1

2
log2 θ2

i + π2

6

]}

= αSCF

π

∫ 1

ϑ2
g,i

dθ̄2

θ̄2

∫ 1

0

dz

z
Θ(z − zc θ̄

β ) + NNLL, (19)

where in the last step we have dropped constant terms in
the θi → 0 or θg → 0 limits, which are NNLL. Thus, the
massive Sudakov exponent at NLL becomes

Ri (θ
2
g , θ2

i , ξb, ξc) =
∫ 1

ϑ2
g,i

dθ̄2

θ̄2

∫ 1

zc θ̄β

dzPgi (z, θ̄
2)

× αCMW
S (z2θ̄2 p2

t R
2
0)

2π
. (20)
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Remarkably, with the sole exception of the mass-dependent
term in the splitting function, this result, when seen as a
function of ϑ2

g,i , has the same form of the massless case,
Eq. (5). Consequently, we can represent the massive Sudakov
form factor in Fig. 1 using the same Lund planes as in the
massless case, provided that we interpret vertical lines as
lines of constant ϑ2

g,i . This way, the dead-cone line acts as

a phase-space boundary because ϑ2
g,i → θ2

i as θg → 0.

The integrations in Eq. (20) are all straightforward but the
presence of the Soft Drop condition, of the dead cone, and
of mass thresholds force us to consider many cases. Details
are given in the Appendices.

Next, we have to consider the clustering correction factor
S. We adopt the same, approximate, strategy of the massless
case. Namely, we consider the running-coupling exponenti-
ation of the two-loop result. The square amplitude for the
emission of two soft gluons off a massive quark–antiquark
dipole was computed in [60,61]. For our purposes, we are
actually interested in a less general result, namely the case
of the emission of two soft gluons that are strongly ordered
in energies, e.g. z2 � z1, off a single dipole. In this limit,
the massive square matrix element takes the same form as
Eq. (7) but with the massless eikonal factor wi j,k substituted
by the massive one:

wm
i j,l = pi · p j

pi · kl p j · kl − m2
i

2pi · kl − m2
j

2p j · kl . (21)

We choose pa, see Eq. (7), to be the momentum of the heavy
quark and we work in the quasi-collinear limit with respect
to its momentum direction. Therefore, we can set p2

b = 0.

We then integrate the C2
F and CFCA contributions with the

same constraints as in Eq. (9):

Si = 1 +
(αS

π

)2
∫ 1

0

dz1

z1

∫ 1

0

dz2

z2

∫ 2π

0

dφ

2π

∫ θ2
g

0

dθ2
1

θ̄2
1

∫ 1

θ2
g

dθ2
2

θ̄2
2

× Θ
(
z2 − zcθ

β
2

)
Θ (z1 − z2)

[
C2

F Θ (θ1 − θ12)

×
(

1 − θ2
i

θ̄2
1

− θ2
i

θ̄2
2

+ θ4
i

θ̄2
1 θ̄2

2

)
− CFCA

θ1θ2 cos φ + θ2
i

θ2
1 + θ2

2 − 2θ1θ2 cos φ

×
(

1 − θ2
i

θ̄2
1

)
Θ (θ12 − θ1)

]
+ O(α3

S), i = b, c, (22)

where, as before, θ̄2
1 = θ2

1 + θ2
i and θ̄2

2 = θ2
2 + θ2

i . As in the
massless case, in order to obtain the leading contribution we
can substitute θ2 � θg in the Soft Drop condition. Therefore,
the momentum fraction integrals decouple from the angular
ones and we obtain

Si = 1 +
(αS

π

)2
log2 zcθ

β
g

[
C2

FF1(θ
2
g , θ2

i ) + CFCAF2(θ
2
g , θ2

i )
]
.

(23)

The Abelian contribution reads

F1(θ
2
g , θ2

i ) =
∫ π

3

0

dφ

2π

∫ 4 cos2 φ

1

x dx

(x + κ)2

[
log (g(φ))

− κ

1 + κ
(g(φ) − 1)

]
, (24)

with

g(φ) = 4(1 + κ) cos2 φ

x + 4κ cos2 φ
, κ = θ2

i

θ2
g
. (25)

For the non-Abelian case, instead, we find

F2(θ
2
g , θ2

i ) = −
∫ 2π

0

dφ

2π

∫ 1

0

dy

y(1 + y2κ)

∫ y

0
dt

2t

t2 + y2κ

× t cos φ + y2κ

t2 − 2t cos φ + 1

[
1 − κy2

t2 + κy2

]
Θ(1 − 2t cos φ).

(26)

We evaluate F1 and F2 numerically. However, in the limit
θ2
g � θ2

i we are able to perform the integrals analytically
and we obtain

lim
θ2
i /θ2

g→0
F1(θ

2
g , θ2

i ) = π2

108
,

lim
θ2
i /θ2

g→0
F2(θ

2
g , θ2

i ) = −π2

27
, (27)

so that the massless result Eq. (10) is recovered. Remarkably,
in the opposite limit, we find

lim
θ2
g /θ2

i →0
F1(θ

2
g , θ2

i ) = lim
θ2
g /θ2

i →0
F2(θ

2
g , θ2

i ) = 0, (28)

so that these contributions disappear asymptotically. We note
that this result is not related to the clustering conditions but
rather to the requirement that one of the two gluons (k1) be
within the groomed jet radius, i.e. 0 < θ2

1 < θ2
g .Changing the

integration variable to θ̄2
1 , we have θ2

i < θ̄2
1 < θ2

g +θ2
i . Thus,

we have to evaluate the integral of a (regular or integrable)
function over a domain that has a vanishing measure as
θ2
g → 0.

As for the massless case, we do not perform the full NLL
resummation of these effects, but we limit ourselves to expo-
nentiate the O(α2

S) with running coupling corrections, as
done in Eq. (11):

Si (θ
2
g , θ2

i , ξb, ξc) = exp

[
C2

FF1(θ
2
g , θ2

i ) + CFCAF2(θ
2
g , θ2

i )

π2

×
(∫ 1

zcθ
β
g

dz

z
αS(z2 p2

t R
2
0)

)2
⎤
⎦ . (29)
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In summary, the resummed θg distribution for a heavy-
flavour jet reads

1

σ0

dσi

dθg
= d

dθg

[
Si (θ

2
g , θ2

i , ξb, ξc) e
−Ri (θ2

g ,θ2
i ,ξb,ξc)

]
, (30)

for i = b, c. The Sudakov exponent Ri is given in Eq. (20)
and the clustering contribution Si in Eq. (29). Note that our
NLL distribution is no longer normalised, as a consequence
of the fact that, in the massive case, the resummed cumulative
behaves as a constant for θg → 0, while it vanishes in the
massless case, see Eq. (4). Indeed, while in the massless case,
Soft Drop with β ≥ 0 behaves perturbatively as a groomer,
i.e. within resummed perturbation theory, it always returns a
jet with θg > 0, the quark mass provides an effective cutoff
so that, there is a non-vanishing probability, given by

Si (0, θ2
i , ξb, ξc) e

−Ri (0,θ2
i ,ξb,ξc) ∼ e

− αSCF
πβ

(
log2(zcθ

β
i )−log2(zc)

)
,

(31)

to find Soft Drop jets with θg = 0, even if we expect
fixed-order corrections, as well as non-perturbative effects, to
smear this effect out. Thus, we could either use Soft Drop in
grooming mode and supplement Eq. (30) with an endpoint,
δ(θg), contribution that ensures normalisation or consider
the algorithm in tagging mode and discard jets that return
θg = 0. Henceforth, we choose this second option.

Finally, we note that, in the calculations of the resummed
exponent presented so far, we have always included virtual
corrections, as well as the contributions from jets that fail
Soft Drop. In tagging mode, one should discard those and, in
principle, repeat the calculations. However, we observe that
in resummed perturbation theory

Σ(θg)

∣∣∣
tagging

= Σ(θg)

∣∣∣
grooming

− Σ(0)

∣∣∣
grooming

. (32)

Thus, in practice, we can just use the results obtained so far,
provided that we remove the θg = 0 contribution. Numerical
results and their comparison to Monte Carlo simulations will
be presented in the next section.

3.4 Numerical results and comparison to Monte Carlo
simulations

We now provide numerical results for the θg distribution
according to Eq. (30), and compare them to Monte Carlo
(MC) simulations. To this purpose, we generate events using
HERWIG, version 7.2.2 [62]. To test the all-order behaviour
of the observables we are interested in, we consider LO
matrix elements for the hard process, dressed with the
parton shower.1 Hadronisation effects are included using

1 In this paper we concentrate on an angular-ordered parton shower, see
[63] for detailed comparisons with analytic resummation. We have also
tested our analytic predictions against the HERWIG dipole shower [64]

the HERWIG cluster hadronisation model, when explicitly
declared, and the CT14 [66] set of PDFs has been used
throughout the paper.

We simulate the inclusive production of a pair of oppo-
sitely charged muons in association with a jet, in proton–
proton collisions at 13 TeV centre-of-mass energy. The muon
pair is required to have an invariant mass between 70 and
110 GeV. Jets are clustered using the anti-kt algorithm [41]
with R0 = 0.4 and then ordered in transverse momentum.
The hardest jet containing a b (c) quark, or a B (D) hadron,
is considered. To match the heavy quark/hadron with a jet
we look at the closest (with respect to the jet axis) flavoured
particle, starting from the highest in transverse momentum,
with pt > 5 GeV. Properties of the flavoured particle and the
jet are extracted and analysed using RIVET [67] and FASTJET

[68]. The fiducial phase-space for the muons is defined by
the following cuts: pt,μ > 26 GeV, |ημ| < 2.4, while the
jets are selected in the region defined by |ηJ | < 2.4. We
consider three different transverse-momentum regions, i.e.
pt ≥ 50, 150 and 300 GeV. However, only pt ≥ 150 GeV is
shown in the main text, and the other cases can be found in
Appendix C.

The θg distribution is shown in Fig. 2. Each plot includes
parton level, i.e. with parton shower effect only, and hadron
level, i.e. with hadronisation and the Underlying Event (UE)
included. Together with the MC prediction, we show the cor-
responding NLL result of Eq. (30). The latter also exhibits
a theoretical uncertainty given by the variation of the renor-
malisation scale, for which the central value is set at the hard
scale pt R0, by a factor of two, as customary. Plots in differ-
ent rows correspond to results for the identified leading jet in
Z+b (B), Z+c (D) and Z + light quark/hadron production,
respectively. We always consider Soft Drop with zc = 0.1,

and β = 0 and 1, for left and right plots, respectively. For b
and c jets, we also indicate, in green, the expected dead-cone
region θg < θi = mi

pt R0
. All curves are normalised to have

unit area. For β = 0, i.e. when Soft Drop is more aggressive,
we find good agreement between the NLL prediction and the
MC. They are fairly different, instead, for β = 1 at high θg.

However, in this region, we expect fixed-order corrections,
not considered here, to be important.

In order to highlight possible dead-cone effects, it is useful
to consider the ratio between the heavy-flavour jet θg distri-
bution and the corresponding one for light-quark jets. We
do this in Fig. 3. We concentrate on b-jets, but we show the
results for three different transverse momentum cuts, namely
50, 150 and 300 GeV (from top to bottom). We show results
for both β = 0 (left) and β = 1 (right). In every plot, we

Footnote 1 continued
and the PYTHIA8.3 [65] one and we did not find significant differences.
It would be interesting, in the future, to also compare to state-of-the-art
simulations that also include matching to fixed order.
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show the ratio obtained with our NLL resummed prediction
and with the simulation performed with HERWIG, both at
parton-level and hadron-level.

As expected, because θi = mi
pt R0

, the dead cone is
more visible at lower values of pt . Interestingly, deviations
between the b and the light quark distribution start at angu-
lar scales bigger than θi . However, as pt is increased, this
transition is pushed to a region that is likely beyond exper-
imental resolution. We also note that mass effects are more
pronounced for the β = 0 case than β = 1. Considering that
we have already noted that the former is under better theo-
retical control than the latter, the Soft Drop jets with β = 0
appear to be an interesting choice to study the dead cone.

4 The zg distribution

We now discuss the second variable that characterises Soft
Drop jets, namely the momentum fraction zg. In this dis-
cussion, we want to provide a simple theoretical prediction
for zg for jets initiated by massive quarks. We also compare,
both analytically and in Monte Carlo simulation, the variable
zg to a widely-used fragmentation variable that measures the
transverse momentum fraction of the B(D) hadrons (or b(c)
quark at parton level) with respect to the jet pt .

4.1 Recap of the massless calculation

We start by briefly reviewing the calculation of the zg dis-
tribution for light jets. The value of zg is fixed by the first
de-clustering of the jet that passes the Soft Drop condition.
Because we are completely inclusive over the splitting angle,
we must integrate over all possible values of θg, including
configurations where the two emissions become collinear,
for which the integral diverges. If β ≥ 0, collinear split-
tings always pass the Soft Drop condition and these divergent
configurations are not cancelled by the corresponding virtual
corrections, for which zg is undefined, and heralds the fact
that the observable is not IRC safe.

However, zg belongs to a wider class, i.e. Sudakov safe
observables [37,38,69,70], that despite being IRC unsafe,
can be computed in perturbation theory, provided that we use
resummation. For this purpose, we need to introduce a safe
companion observable. The Soft Drop procedure itself sug-
gests using the groomed angle θg, which we have discussed
in the previous section. Therefore, we imagine to measure a
value of zg, given a finite angular separation θg. Using the
language of conditional probabilities, we have [38]:

1

σ0

dσ

dzg
=
∫ 1

0
dθg p(θg) p(zg|θg), (33)

where p(θg) = 1
σ0

dσ
dθg

and p(zg|θg) = p(zg,θg)
p(θg)

is the con-
ditional probability for measuring zg given a value of θg. If
β < 0, zg is IRC safe and the integral in Eq. (33) can be
computed order by order in αS. This is no longer true when
β ≥ 0, which is the standard configuration in which the Soft
Drop algorithm is used and, therefore, our case of interest.
In this situation, the integral (33) diverges order by order
in the strong coupling because of the 1/θg behaviour of the
integrand. However, if we take p(θg) to be the resummed
distribution, i.e. the derivative of Eq. (4), then the Sudakov
form factor regulates the θg = 0 singularity, providing us
with a finite answer for Eq. (33).

Because in this work we are not concerned with logarithms
of zg and zc, we evaluate the conditional probability at fixed-
order, focusing on the case of a quark-initiated jet2:

p(zg |θg) = Pgq (zg)αS(z2
gθ

2
g p

2
t R

2
0)∫ 1

zcθ
β
g

dz Pgq (z)αS(z2 θ2
g p

2
t R

2
0)

Θ(zg − zcθ
β
g ). (34)

The Soft Drop condition (1) dictates zg < 1
2 and, if β = 0,

zg > zc.
The integral in Eq. (33) with running coupling must be

performed numerically. However, it is interesting to study its
fixed-coupling and lowest-order approximation, see Eq. (19).
Thus, we consider

R(f.c.)(θ2
g ) = αSCF

πβ

(
log2(zcθ

β
g ) − log2(zc)

)

= αSCF

π

(β

4
log2 θ2

g + log θ2
g log zc

)
,

S(f.c.)(θ2
g ) = 1. (35)

For β ≥ 0, we find [38]

1

σ0

dσ (f.c.)

dzg
= Pgq(zg)

αS

2π

∫ 1

0

dθ2
g

θ2
g
e−R(θ2

g )Θ(zg − zcθ
β
g )

=
√

αS

4βCF
Pgq(zg)e

αSCF
πβ

log2 zc
[

erf

(√
αSCF

πβ
log a

)
+ 1

]
,

(36)

2 We note that the formalism we have just presented does not describe
the situation in which we have a q → qg splitting, with the gluon
harder than the quark, i.e. when the minimum function of the Soft Drop
condition (1) returns 1−z. This case can be accounted for by introducing
a symmetrised version of the splitting function [38,71,72], which is
integrated over 0 < z < 1/2. For consistency, one should then make
this replacement also in the calculation of the resummed θg distribution.
In what follows, in order to streamline our discussion, we keep the
standard version of the splitting function.
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Fig. 2 The groomed jet radius (θg) distribution for b-jets (top), c-jets
(middle) and light-quark jets (bottom). In all plots, we show our NLL
resummation, as well as the results obtained with the Monte Carlo event
generator HERWIG, both at parton and hadron level. Jets are selected
with the anti-kt algorithm with R0 = 0.4, with pt ≥ 150 GeV, and

groomed with Soft Drop with zc = 0.1, and two values of the angular
exponent: β = 0 (on the left) and β = 1 (on the right). The uncertainty
bands for the analytic predictions are obtained by varying the resum-
mation scale by a factor of two above and below the hard scale pt R0,

i.e. μR ∈
[
pt R0

2 , 2pt R0

]
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Fig. 3 Ratios of groomed jet radius (θg) distribution of b jets to light-
quark jets for three values of the jet transverse momentum: 50 GeV
(top), 150 GeV (middle) and 300 GeV (bottom). The plots on the left

are for β = 0, and the ones on the right are for β = 1. In each plot,
we show our NLL resummation and the results obtained with HERWIG,
both a parton-level and hadron-level
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where erf(x) is the error function and a = min[zg, zc]. If
β > 0, the above result is non-analytic in αS:

1

σ0

dσ (f.c.)

dzg
= 1

2

√
αS

βCF
Pgq(zg) + O (αs) . (37)

Even more interesting is the β = 0 case. At fixed coupling,
the conditional probability, Eq. (34), becomes independent
of θg and factors out of the integration to give

1

σ0

dσ (f.c.)

dzg
= Pgq(zg)∫ 1

zc
dz Pgq(z)

Θ(zg > zc) + O (αs) . (38)

It can be shown that the β = 0 case does have a valid per-
turbative expansion in αS, despite being αS-independent at
lowest order. Eq. (38) shows that the β = 0 zg-distribution
is essentially driven by the QCD splitting function [38]. This
observation has initiated numerous theoretical [73–76] and
experimental [77–83] studies (see also [71,72]) that aim to
use zg as a probe of QCD dynamics, both in pp and heavy-ion
collisions.

4.2 The zg distribution for a heavy-flavour jet

We now move to the case of b and c jets and we start by con-
sidering the simple O(αS) calculation of the zg distribution,
in the quasi-collinear limit:

1

σ0

dσ
(f.o.)
i

dzg
= αS

2π

∫ 1

0

dθ2

θ2 + θ2
i

∫ 1

zcθβ

dz Pgi
(
z, (zθpt R0)

2
)

× δ(z − zg)

= αS

2π

∫ 1

θ2
i

dθ̄2

θ̄2
Pgi

(
zg, θ̄

2
)

Θ(zg − zcθ̄
β)

+ NNLL, (39)

where, as before, we have dropped the mass-dependent shift
in the Soft Drop condition. Even before performing the inte-
gral, it is clear that the mass of the heavy quark, as one might
have expected, regulates the collinear singularity and so the
zg distribution is IRC safe, for every value of β. The compu-
tation of the integral is straightforward but the presence of the
θ̄2 dependent contribution in the splitting function compli-
cates the result. However, to illustrate our point, it is sufficient
to work at LL. Therefore, we approximate Pgi = 2CF/zg,
and we find

1

σ0

dσ
(f.o.)
i

dzg
= −αSCF

π

1

zg

⎧⎨
⎩

log θ2
i zg > zc,

2
β

log
zcθ

β
i

zg
zcθ

β
i < zg < zc.

(40)

Note that in the case β = 0, we have zg > zc and only the
first term survives. Albeit finite, this expression contains log-
arithms of θ2

i , which become large in the boosted regime. The

all-order resummation of logarithms of zg partially addresses
this problem. Indeed, keeping our focus on the LL fixed-
coupling approximation, we find the following result for the
normalised cumulative distribution:

log Σ
(f.c.)
i (zg) = αSCF

π

[
− log θ2

i log zg Θ(zg − zc)

+
(

1

β
log2 zg

zc
− log θ2

i log zg

)
Θ(zc − zg)Θ(zg − zcθ

β
i )

+
(

1

β
log2 θ

β
i − log θ2

i log zcθ
β
i

)
Θ(zcθ

β
i − zg)

]
. (41)

The β = 0 case is rather simple

1

σ0

dσ
(f.c.)
i

dzg
= −αSCF

π

log θ2
i

zg
e− αSCF

π
log θ2

i log zg , zg > zc.

(42)

We note that these expressions indeed resum those logarithms
of θi that are associated with logarithms of zg. However, the
θi → 0 limit is not smooth and we do not recover the massless
result of Eq. (36). This is related to the non-commutativity of
the soft and massless limits, discussed at length in [35,36].

Another way of resumming logarithms θ2
i is to resort to

the conditional probability procedure described above for the
massless case. To illustrate the procedure, we repeat, for the
massive case, the calculation that led to the fixed-coupling
result in Eq. (36). At LL, the splitting function can be approx-
imated by its soft contribution. Moreover, at this accuracy
Ri (θ

2
g , θ2

i , ξb, ξc) = R(ϑ2
g,i ), with R given by Eq. (35) and

ϑ2
g,i ∈ [θ2

i , 1]. Therefore, for β ≥ 0, we find

1

σ0

dσ
(f.c.)
i

dzg
= αSCF

π

1

zg

∫ 1

θ2
i

dθ̄2

θ̄2
e−R(θ̄2)Θ

(
zg − zcθ̄

β
)

=
√

αSCF

β

1

zg
e

αSCF
πβ

log2 zc

×
[

erf

(√
αSCF

πβ
log a

)
− erf

(√
αSCF

πβ
log
(
zcθ

β
i

))]
,

(43)

with a = min[zg, zc]. In particular, for β = 0, we find

1

σ0

dσ
(f.c.)
i

dzg
= 1

zg log zc

(
e− αSCF

π
log θ2

i log zc − 1
)

, zg > zc.

(44)

The first-order expansions of the above expressions agree
with Eq. (40) and large logarithmic corrections in θ2

i are
resummed. Furthermore, if we take θi → 0, we recover
the massless distribution of Eq. (36). We further note that
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Eq. (44) is the same as its massless counterpart, but for the
normalisation factor in brackets. This makes sense because
in the LL fixed-coupling approximation, both distributions
are driven by the most singular part of the splitting function,
which is the same for Pgq , Pgb, and Pgc.

Because it has the correct θi → 0 limit, we decide to
use the conditional-probability approach to compute the zg
distribution of a heavy-flavour jet:

1

σ0

dσi

dzg
= 1

σ0

∫ 1

θ2
i

dθ̄2 Pgi (zg, θ̄2)αS(z2
g θ̄

2 p2
t R

2
0)∫ 1

zc θ̄β dzPgi (z, θ̄2)αS(z2 θ̄2 p2
t R

2
0)

× Θ(zg − zcθ̄
β)

dσi

dθ2
g

∣∣∣∣
θ2
g=θ̄2−θ2

i

, i = b, c, (45)

where the resummed θg distribution is given in Eq. (45).
We can make some further simplifications. The derivative in
Eq. (45) gives a factor that simplifies, within our accuracy, the
denominator of the conditional probability. Thus, we obtain

1

σ0

dσi

dzg
= 1

σ0

∫ 1

θ2
i

dθ̄2

θ̄2
Pgi (zg, θ̄

2)αS(z2
g θ̄

2 p2
t R

2
0)

× Si (θ̄
2, θ2

i , ξb, ξc) e
−Ri (θ̄2,θ2

i ,ξb,ξc)Θ(zg − zcθ̄
β).

(46)

Numerical results and their comparison to Monte Carlo sim-
ulations will be presented in the next section.

We close this discussion by noting that Eq. (45) does not
systematically resum logarithms of zg and zc. This is accept-
able for our purposes because we are mostly interested in the
β = 0 case, for which zg > zc = 0.1. However, it would be
interesting to extend the full NLL resummation for zg, per-
formed for light jets in [45] to the massive case. Because the
calculation in [45] is based on the resummation of the double
differential (θg, zg), it may overcome the difficulties about
the θi → 0 limit of Eqs. (41) and (42), previously discussed.

4.3 Numerical results and comparison to Monte Carlo
simulations

In this section, we compare our resummed results for the zg
distribution to the ones obtained with Monte Carlo event gen-
erators, both at parton- and hadron-level. We limit ourselves
to the case β = 0 and we simulate events using HERWIG,
with the same settings as the ones described in Sect. 3.4.

In Fig. 4, we compare resummed results for two dif-
ferent values of the jet transverse momentum cut, namely
pt ≥ 50 GeV, on the left, and pt ≥ 150 GeV, on the right.
The plots at the top are for b-jets, the ones in the middle for
c-jets, and the ones at the bottom for light-quark jets. All
curves are normalised to have unit area. As already pointed
out, the results all look very similar, because the shape of

the distribution is mostly driven by the singular part of the
splitting function for the emission of a gluon off a (massive)
quark. However, we also note that differences between b,c,
and light flavours are larger in the Monte Carlo results than
in the analytic ones. This could be due to quark masses influ-
encing the kinematics, thus causing mass-dependent recoil
effects. These are, to a certain extent, accounted for in the
parton shower, but neglected in the analytic resummation.

Overall, we find good agreement between our calcula-
tion and the Monte Carlo results, although our results are
strangely closer to the full simulation than to the parton-
level one. We note that our predictions undershoot the Monte
Carlo at large zg. We have traced this back to the fact that our
calculation does not take into account symmetrised splitting
functions, as discussed in the footnote of Sect. 4.1. Indeed
by rescaling the zg distribution by the symmetrised splitting
function, the tail of the analytic calculation moves closer to
the Monte Carlo results.

4.4 Comparison to fragmentation functions

The study of heavy-flavour production at high energies is a
multi-scale problem and, as already pointed out, logarithms
of the ratio of the quark mass to the hard scale of the pro-
cess can spoil the convergence of the perturbative expan-
sion. Because these logarithmic corrections are related to
collinear dynamics, heavy-flavour production cross-sections
obey a factorisation theorem and they can be written as the
convolution of process-dependent partonic (massless) coef-
ficient functions with universal heavy-flavour fragmentation
functions. Fragmentation functions obey DGLAP evolution
equations with timelike splitting functions, which allow one
to resum these large logarithmic corrections to all perturba-
tive orders.

The initial condition for heavy quark fragmentation func-
tions can be computed in perturbation theory, as originally
pointed out in Refs. [27,28], where the next-to-leading order
(NLO) computation in QCD was presented. The NNLO cor-
rections were computed later in Refs. [29,30]. Furthermore,
the initial condition of the evolution is affected by soft log-
arithms, that can be resummed to all orders too [31–34,36].
Fragmentation functions for b (or c) quarks are usually then
supplemented with non-perturbative corrections before being
compared to experimental data. In the context of heavy-
flavour production in e+e− collision, one of the most widely
studied observables is perhaps the energy fraction x of the
heavy quark (or hadron) with respect to the energy of the
incoming beam, in the centre-of-mass frame, see [84] (and
references therein) for a recent review.

Collinear factorisation ensures that fragmentation func-
tions are universal objects and so they can be used, in princi-
ple, to describe heavy flavours in hadronic collisions. How-
ever, a few changes in their definition are usually required
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Fig. 4 The groomed momentum fraction (zg) distribution for b-jets
(top), c-jets (middle) and light-quark jets (bottom). In all plots, we
show our resummed result, as well as the one obtained with the Monte
Carlo event generator HERWIG, both at parton and hadron level. Jets
are selected with the anti-kt algorithm with R0 = 0.4, and groomed

with Soft Drop with zc = 0.1 and β = 0. The plots on the left are for
pt ≥ 50 GeV, while the ones on the right are for pt ≥ 150 GeV. The
uncertainty bands for the analytic predictions are obtained by varying
the resummation scale by a factor of two above and below the hard scale

pt R0, i.e. μR ∈
[
pt R0

2 , 2pt R0

]
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Fig. 5 Monte Carlo studies of the fragmentation function variable x,
obtained with HERWIG. The plot on the left shows the ζ = 1 − x dis-
tribution for b-jets, at parton- and hadron-level. The plot on the right

shows the correlation between zg (with zc = 0.1, and β = 0) and ζ, at
hadron level. In both cases, we have pt ≥ 150 GeV, and R0 = 0.4

from a practical point of view. For instance, although is pos-
sible to study directly the properties of identified B or D
decays, the LHC experiments typically measure properties
of the B and D hadrons within jets [85–88]. Theoretical stud-
ies of heavy quarks fragmenting in jets have been performed
using effective field theories [89–92].

In hadronic collisions, one usually measures projections
of the hadron momentum with respect to the jet one (see
e.g. [85]) or the transverse momentum fraction of the heavy
flavour with respect to the jet transverse momentum (see
e.g. [86]):

x = pti
pt

, i = b, c. (47)

Because x = 1 at the Born level, if we want to study soft and
collinear emissions, it is useful to define ζ = 1 − x .

In what follows, we would like to study the correlation, if
any, between the variable ζ, which measures the departure
from Born kinematics of the identified heavy flavour within
a jet, to zg (with β = 0), which probes the kinematics of the
splitting that passes Soft Drop, in a heavy-flavour tagged jet.

Let us start with the O(αS) calculation, in the quasi-
collinear limit. The result for zg can be immediately read
off Eq. (39) by setting β = 0:

1

σ0

dσ
(f.o.)
i

dzg
= αS

2π

∫ 1

θ2
i

dθ̄2

θ̄2
Pgi

(
zg, θ̄

2
)

Θ(zg − zc). (48)

The computation of the momentum fraction ζ, in the same
approximation, is rather straightforward. We consider the
emission of a gluon with momentum fraction z in the quasi-
collinear limit. If the gluon is emitted within the jet, then
z = ζ, i.e. the b(c) quark has momentum fraction 1− z = x .

If the gluon is emitted outside the jet, it does not contribute
to the observable and x remains equal to unity.3 We have

1

σ0

dσ
(f.o.)
i
dζ

= αS

2π

∫ 1

0

dθ2

θ2 + θ2
i

∫ 1

0
dz Pgi

(
z, (zθpt R0)2

)

δ(z − ζ )

= αS

2π

∫ 1

θ2
i

dθ̄2

θ̄2
Pgi

(
ζ, θ̄2

)
, (49)

where the second equation holds up to power corrections in
the mass. Eq. (49) coincides with Eq. (48), for ζ > zc, i.e.
x < 1 − zc. We conclude that 1 − x and zg are fully corre-
lated at this perturbative order. It is interesting to investigate
whether this remains true beyond that. We study this problem
by performing a Monte Carlo study.

Before doing so, we study the ζ = 1 − x spectrum using
the same HERWIG simulation setup described for our previous
analyses. The results are shown in Fig. 5, on the left, where we
plot the ζ distribution at parton- and hadron-level, for b-jets
with pt ≥ 150 GeV. We note that non-perturbative effects
are large. This is interesting because, while fragmentation
functions are under better perturbative control than Soft Drop
observables, the latter ones seem to be more robust against
non-perturbative corrections.

Finally, the right-hand plot of Fig. 5 shows the two dimen-
sional distribution for zg (with zc = 0.1 and β = 0)

and ζ, again for pt ≥ 150 GeV, at hadron-level. We note
that the O(αS) correlation between these two observables
is not maintained when higher-order corrections and non-
perturbative effects are included. Therefore, we conclude that

3 This is different in e+e− collision where the energy fraction is defined
globally and gluon radiation always contributes.
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zg and ζ = 1 − x can offer different handles to study heavy-
flavour dynamics at the LHC.

5 Conclusions and outlook

In this work, we have considered heavy-flavour jets, namely
b- and c-jets. In particular, we have studied heavy-flavour
jets in conjunction with the Soft Drop grooming algorithm.
Exploiting resummed perturbation theory, we have computed
the NLL distribution for the groomed jet radius θg, for both
b- and c-jets. Our calculation accounts for the dead-cone
effect due to the heavy-quark mass, as well as mb and mc

thresholds in the running coupling, which is frozen at a non-
perturbative scale Λ = 1 GeV. We also discuss the role of
clustering logarithms, first computed in [44]. The presence of
many scales originates many cases and regions to be consid-
ered. We have listed all of them and shown numerical results
for representative cases. We have compared our findings for
the θg distribution with simulated data obtained with Monte
Carlo event generators, assessing the role of non-perturbative
corrections, such as hadronisation and the Underlying Event.
We have found good agreement between resummed pertur-
bation theory and Monte Carlo simulation, for the β = 0
case, even for relatively low values of the hard scale, i.e.
pt = 50 GeV and R0 = 0.4. The agreement worsens if
positive values of the angular exponent β are considered.

We have also considered the momentum fraction zg of
the first emission that passes Soft Drop. Our calculation
generalises to the massive case the conditional-probability
approach of [38] and it allows for a resummation of mass
effects. While our results hold for any β ≥ 0, we have
focussed our numerical investigations on the β = 0 case.
This choice is motivated by a few reasons. First, this is the
value for which, at least to lowest order, one has a clear fac-
torisation of the conditional probability expression, leading
to a distribution proportional to the splitting function. For
β > 0, the dependence on the splitting function is smeared
out. Second, it is for the β = 0 case that one expects to find
more similarities to the fragmentation variable x, and third,
from the study of the θg distribution, we have found that the
β = 0 is under better theoretical control and more sensi-
tive to dead cone effects. We have compared our numerical
results to Monte Carlo simulations. As for the massless case,
the result is driven by the QCD splitting function and it is
largely insensitive to non-perturbative effects.

Finally, we have compared the zg distribution to the
fragmentation variable x, which measures the ratio of the
heavy quark (hadron) transverse momentum to the jet pt .
We performed the analytic calculation of both distributions
at O(αS), showing that they lead to the same results for
zg = 1 − x > zc. We have investigated the all-order
behaviour of these observables using Monte Carlo simu-

lations and discovered that the parton-shower significantly
dilutes this correlation. However, we have found that, in con-
trast to zg, the x receives sizeable non-perturbative correc-
tions. In the future, it would be interesting to repeat these
studies with the modified version of the declustering proce-
dure [93], whereby one follows the flavoured branch.

In this work, we have performed a detailed theoretical
study of the effect of Soft Drop grooming on heavy-flavour
jets. Before being able to compare to experimental data, such
as the ones collected by the ALICE collaboration [40], a few
steps need to be taken. We are going to implement our cal-
culation in the resummation plugin to SHERPA [94,95] in
order to match our results to NLO theoretical predictions,
with fiducial cuts, supplemented with non-perturbative cor-
rections, as done for instance in [96–101]. In this context, it
would be also interesting to lift the small-zc limit and inves-
tigate, in the β = 0 case, flavour-changing contributions that
may induce radiation into the dead-cone region. Finally, it
would be important to improve the accuracy of the zg calcu-
lation by including the resummation of zg and zc logarithms,
as done in [45].
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Appendix A: Running coupling integrals with quark-
mass thresholds

Throughout the paper, we have made use of the strong
coupling in the Catani–Marchesini–Webber (CMW) scheme
[47]:

αCMW
S (k2

t ) = αS(k2
t )

(
1 + αS(k2

t )
K (n f )

2π

)
, (A.1)

where, in turn, αS(k2
t ) is in the decoupling scheme:

αS(k2
t ) = α

(5)
S (k2

t )Θ(k2
t − m2

b)

+ α
(4)
S (k2

t )Θ(k2
t − m2

c)Θ(m2
b − k2

t )

+ α
(3)
S (k2

t )Θ(k2
t − Λ2)Θ(m2

c − k2
t )

+ α
(3)
S (Λ2)Θ(Λ2 − k2

t ), (A.2)

and

K (n f ) = CA

(
67

18
− π2

6

)
− 5

9
n f . (A.3)

In the above equation, α
(n f )

S is the two-loop running coupling
withn f active flavours. As a prescription to deal with the non-
perturbative region, we have decided to freeze the coupling
below the scale Λ � 1 GeV.

In order to evaluate the integrals over the running coupling,

we express each α
(n f )

S (k2
t ) appearing in Eq. (A.2) in terms

of the value of the strong coupling at the hard scale pt R0,

which we assume to be above the b-quark mass. Requiring
continuity at the two quark-mass thresholds, at two loops, we
find

α
(5)
S (k2

t ) = αS

1 + ν5

(
1 − αS

β
(5)
1

β
(5)
0

log (1 + ν5)

1 + ν5

)
, (A.4)

α
(4)
S (k2

t ) = αS

1 + ν4 − δ54

(
1 − αS

β
(4)
1

β
(4)
0

log (1 + ν4 − δ54)

1 + ν4 − δ54

)

−
(

β
(5)
1

β
(5)
0

− β
(4)
1

β
(4)
0

)
log (1 − λ

(5)
ξb

)
α2

S

(1 + ν4 − δ54)2 ,

(A.5)

α
(3)
S (k2

t ) = αS

1 + ν3 − δ54 − δ43

×
(

1 − αS
β

(3)
1

β
(3)
0

log (1 + ν3 − δ54 − δ43)

1 + ν3 − δ54 − δ43

)

− α2
S

(
β

(4)
1

β
(4)
0

− β
(3)
1

β
(3)
0

)
log
(

1 − δ54 − λ
(4)
ξc

)
(1 + ν3 − δ54 − δ43)2

− α2
S

(
β

(5)
1

β
(5)
0

− β
(4)
1

β
(4)
0

)
log (1 − λ

(5)
ξb

)

(1 + ν3 − δ54 − δ43)2 ,

(A.6)

where αS = α
(5)
S (p2

t R
2
0) and we have introduced

νn f = αSβ
(n f )

0 log
k2
t

p2
t R

2
0

, n f = 3, 4, 5, (A.7)

λ
(n f )

ξb
= αSβ

(n f )

0 log
1

ξb
, n f = 4, 5, (A.8)

λ
(n f )

ξc
= αSβ

(n f )

0 log
1

ξc
, n f = 3, 4, (A.9)

δ54 = λ
(5)
ξb

− λ
(4)
ξb

, δ43 = λ
(4)
ξc

− λ
(3)
ξc

. (A.10)

The two-loop coefficients of the QCD β-function are

β
(n f )

0 = 11CA − 2n f

12π
, β

(n f )

1 = 17C2
A − 5CAn f − 3CFn f

24π2 ,

(A.11)

with CA = 3 and CF = 4
3 .

All the expressions we have to compute can be cast as
a double integration over the emission’s transverse momen-
tum and its angle with respect to the hard quark, at fixed
transverse momentum. Furthermore, it proves convenient to
change integration variables to logarithmic ones, namely ν

and the emission’s rapidity. This way, the integral over rapid-
ity can always be written as L0 + cν with L0 and c indepen-
dent of ν. Therefore, all these expressions have the form:

I (n f ) (λa, λb, L0, c) = CF(
αSβ

(n f )

0

)2

∫ −λa

−λb

dν
αCMW

S (k̄2
t )

2π

× (L0 + cν) ,

k̄t = pt R0 exp
ν

αSβ
(n f )

0

. (A.12)

The limits of integration, as well as L0, are linear combina-

tions of λ(n f ) = αSβ
(n f )

0 log 1
ϑ2
g,i

, λ
(n f )

cut = αSβ
(n f )

0 log 1
zc

,

λ(NP) = αSβ
(3)
0 log (pt R0)

2

Λ2 and λ
(n f )

ξi
, defined above. In con-

trast, c can only assume the values:
{

1
1+β

,− β
1+β

,−1, 0
}

.

As long as k2
t > Λ2, the integral in Eq. (A.12) can be

written as:

I (n f )(λa, λb, L0, c) = CF

2πβ
(n f )2
0

(
1

αS
I1(λa, λb, L0, c)

+K
(n f )

eff

2π
I2(λa, λb, L0, c) − β

(n f )

1

β
(n f )

0

I3(λa, λb, L0, c)

)
,

(A.13)
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with:

I1 =
(
L0 − c(1 − x(n f ))

)
log

(
1 − x(n f ) − λa

1 − x(n f ) − λb

)

−c (λa − λb) ,

I2 = (c(1 − x(n f )) − L0)
λa − λb

(1 − x(n f ) − λa)(1 − x(n f ) − λb)

+c log

(
1 − x(n f ) − λa

1 − x(n f ) − λb

)

I3 = (c(1 − x(n f )) − L0)

×
(1 + log

(
1 − x(n f ) − λa

)

1 − x(n f ) − λa
−

1 + log
(

1 − x(n f ) − λb

)

1 − x(n f ) − λb

)

+c

(
1

2
log2 (1 − x(n f ) − λa) − 1

2
log2 (1 − x(n f ) − λb)

)
,

(A.14)

and

x (n f ) =

⎧⎪⎨
⎪⎩

0 for n f = 5,

δ54 for n f = 4,

δ54 + δ43 for n f = 3.

(A.15)

The coefficient K
(n f )

eff is defined as:

K
(n f )

eff =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K (5) for n f = 5,

K (4) − 2π

(
β

(5)
1

β
(5)
0

− β
(4)
1

β
(4)
0

)
log (1 − λ

(5)
ξb

) for n f = 4,

K (3) − 2π

(
β

(4)
1

β
(4)
0

− β
(3)
1

β
(3)
0

)
log
(

1 − δ54 − λ
(4)
ξc

)

−2π

(
β

(5)
1

β
(5)
0

− β
(4)
1

β
(4)
0

)
log (1 − λ

(5)
ξb

) for n f = 3.

(A.16)

When kt becomes smaller than the non-perturbative scale
Λ, we freeze the coupling at Λ, see Eq. (A.2). In this case
the result of Eq. (A.12) is straightforward, and reads:

I (NP) (λa, λb, L0, c) = CF(
αSβ

(n f )

0

)2

αCMW
S

(
Λ2
)

2π

×
( c

2
(λ2

a − λ2
b) − L0(λa − λb)

)
.

(A.17)

In order to achieve NLL accuracy, two further contributions
must be considered. These are obtained by integrating the
less singular components of the splitting function. At this
accuracy, we can evaluate the strong coupling at one loop.
We must take into account the hard-collinear term of the
splitting function:

B(n f ) = B1

2πβ
(n f )

0 αS

∫ −λa

−λb

dν α
(n f )

S (ν)

= B1

2πβ
(n f )

0

log

(
1 − x (n f ) − λa

1 − x (n f ) − λb

)
, (A.18)

and mass-dependent one:

H (n f ) = H1

2πβ
(n f )

0 αS

θ2
i

ϑ2
g,i

∫ −λa

−λb

dν α
(n f )

S (ν)

= H1θ
2
i

2πβ
(n f )

0 ϑ2
g,i

log

(
1 − x (n f ) − λa

1 − x (n f ) − λb

)
, (A.19)

with B1 = − 3
2CF, H1 = −CF. In the non-perturbative

regions, both integrals in Eqs. (A.18, A.19) reduce to the
result in Eq. (A.17) with the replacements αCMW

S → αS,

L0 = 1, and c = 0.

Appendix B: Mapping out the different regions

The integrals that are necessary in order to describe heavy-
flavour jet distributions are all of the types described in the
previous appendix. What makes the calculation cumbersome
is the presence of multiple scales, which implies the appear-
ance of many different regions and cases to be considered.

The Soft Drop condition, the heavy-flavour thresholds and
the non-perturbative scales determine 7 different values for
the dimensionless transverse momentum κ < 1 that appears
on the vertical axis of the Lund plane in Fig. 1:

κ2 = z2
c , ξi , z2

cξ
1+β
i , with i = b, c,Λ, (B.20)

Clearly, we have to take into account additional constraints
that will reduce the number of possible cases much below 7!.
We have
⎧⎪⎨
⎪⎩

ξb > ξc > ξΛ,

z2
cξ

1+β
b > z2

cξ
1+β
c > z2

cξ
1+β
Λ ,

ξi > z2
cξ

1+β
i .

Note that this implies that z2
cξ

1+β
Λ is always the smallest one.

We classify the different cases according to the value of zc.

(a) The case z2
c > ξb has the following subcases:

1 ξc ξΛ z2
cξ

1+β
b z2

cξ
1+β
c

2 ξc z2
cξ

1+β
b ξΛ z2

cξ
1+β
c

3 ξc z2
cξ

1+β
b z2

cξ
1+β
c ξΛ

4 z2
cξ

1+β
b ξc ξΛ z2

cξ
1+β
c

5 z2
cξ

1+β
b ξc z2

cξ
1+β
c ξΛ

where it is understood that the values in the table are
ordered from big to small.

(b) The case ξb > z2
c > ξc has the same subcases as (a).
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Fig. 6 Same as Fig. 2, but for pt ≥ 50 GeV
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Fig. 7 Same as Fig. 2, but for pt ≥ 300 GeV
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(c) The case ξc > z2
c > ξΛ has 3 subcases:

1 ξΛ z2
cξ

1+β
b z2

cξ
1+β
c

2 z2
cξ

1+β
b ξΛ z2

cξ
1+β
c

3 z2
cξ

1+β
b z2

cξ
1+β
c ξΛ

(d) Finally, for the last case, we can only have ξΛ > z2
c >

z2
cξ

1+β
b > z2

cξ
1+β
c .

Thus, we have to consider 14 cases. This is what actually
happens for light jets and c-jets. For b-jets, the situation is
slightly simpler because the dead cone at θ2

i = ξb implies

that we are not sensitive to the scale z2
cξ

1+β
c . Thus, we have

only 3 distinct subcases for (a) and (b), 2 for (c) and still 1
for (d), totalling 9 cases for b-jets.

In this work, we have fixed the value of zc = 0.1 and
considered only two distinct values for the angular exponent
β = 0, 1. We have also worked with just one value for the
anti-kt jet radius, R0 = 0.4, and fixed the non-perturbative
scale Λ = 1 GeV. This results in only two different hierar-
chies to be considered. In fact, for pt = 150, 300 GeV we
have:

z2
c > ξb > ξc > ξΛ > z2

cξ
1+β
b > z2

cξ
1+β
c > z2

cξ
1+β
Λ , (B.21)

while, for pt = 50 GeV, we find

ξb > z2
c > ξc > ξΛ > z2

cξ
1+β
b > z2

cξ
1+β
c > z2

cξ
1+β
Λ . (B.22)

Appendix C: Results for the θg distribution at low and
high transverse momentum

We collect here results for the θg distribution at NLL, for two
different values of the transverse momentum cut of the jet.
In Fig. 6, we show the case pt ≥ 50 GeV, while in Fig. 7 we
consider a high-pt cut, namely pt ≥ 300 GeV. Details of the
plots are the same as in the main text, Fig. 2.

The low-pt selection allows us to expose the dead cone. In
the case of b-jets, we see that the θg distribution (for β = 0)

has clearly a distinct shape compared to the light-quark case.
However, for such low scales pt R0 � 20 GeV, we have
to deal with larger non-perturbative effects. This is particu-
larly true for the β = 1 case. The high-pt selection is under
better perturbative control, but in this phase-space region,
mass effects are essentially negligible. This is still interest-
ing because, in this context, heavy-flavour identification pro-
vides us with a purified sample of quark jets, i.e. it essentially
works as a quark/gluon tagger.
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