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Abstract Analytically continuing the von Neumann ent-
ropy from Rényi entropies is a challenging task in quantum
field theory. While the n-th Rényi entropy can be computed
using the replica method in the path integral representation
of quantum field theory, the analytic continuation can only be
achieved for some simple systems on a case-by-case basis.
In this work, we propose a general framework to tackle this
problem using classical and quantum neural networks with
supervised learning. We begin by studying several exam-
ples with known von Neumann entropy, where the input
data is generated by representing Tr ρn

A with a generating
function. We adopt KerasTuner to determine the optimal net-
work architecture and hyperparameters with limited data. In
addition, we frame a similar problem in terms of quantum
machine learning models, where the expressivity of the quan-
tum models for the entanglement entropy as a partial Fourier
series is established. Our proposed methods can accurately
predict the von Neumann and Rényi entropies numerically,
highlighting the potential of deep learning techniques for
solving problems in quantum information theory.

1 Introduction

The von Neumann entropy is widely regarded as an effective
measure of quantum entanglement, and is often referred to
as entanglement entropy. The study of entanglement entropy
has yielded valuable applications, particularly in the con-
text of quantum information and quantum gravity (see [1,2]
for a review). However, the analytic continuation from the
Rényi entropies to von Neumann entropy remains a chal-
lenge in quantum field theory for general systems. We tackle
this problem using both classical and quantum neural net-
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works to examine their expressive power on entanglement
entropy and the potential for simpler reconstruction of the
von Neumann entropy from Rényi entropies.

Quantum field theory (QFT) provides an efficient method
to compute the n-th Rényi entropy with integer n > 1, which
is defined as [3]

Sn(ρA) ≡ 1

1 − n
ln Tr(ρn

A). (1)

The computation is done by replicating the path integral rep-
resentation of the reduced density matrix ρA by n times.
This step is non-trivial; however, we will be mainly look-
ing at examples where explicit analytic expressions of the
Rényi entropies are available, especially in two-dimensional
conformal field theories (CFT2) [4–7]. Then upon analytic
continuation of n → 1, we have the von Neumann entropy

S(ρA) = lim
n→1

Sn(ρA). (2)

The continuation can be viewed as an independent problem
from computing then-th Rényi entropy. Although the unique-
ness of S(ρA) from the continuation is guaranteed by Carl-
son’s theorem with a sub-Hagedorn density of states, analytic
expressions in closed forms are currently unknown for most
cases.

Furthermore, while Sn(ρA) are well-defined in both inte-
ger and non-integer n, determining it for a set of integer
values n > 1 is not sufficient. To obtain the von Neumann
entropy, we must also take the limit n → 1 through a space
of real n > 1. The relationship between the Rényi entropies
and the von Neumann entropy is therefore complex, and the
required value of n for a precise numerical approximation of
S(ρA) is not clear.

Along this line, we are motivated to adopt an alternative
method proposed in [8], which would allow us to study the
connection between higher Rényi entropies and von Neu-
mann entropy “accumulatively.” This method relies on defin-
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ing a generating function that manifests as a Taylor series

G(w; ρA) =
∞∑

k=1

f̃ (k)

k
wk, f̃ (k) = Tr[ρA(1 − ρA)k]. (3)

Summing over k explicitly yields an absolutely convergent
series that approximates the von Neumann entropy with
increasing accuracy as w → 1. This method has both numer-
ical and analytical advantages, where we refer to [8] for
explicit examples. Note that the accuracy we can achieve
in approximating the von Neumann entropy depends on the
truncation of the partial sum in k, which is case-dependent
and can be difficult to evaluate. It becomes particularly chal-
lenging when evaluating the higher-order Riemann–Siegel
theta function in the general two-interval case of CFT2 [8],
which remains an open problem.

On the other hand, deep learning techniques have emerged
as powerful tools for tackling the analytic continuation prob-
lem [9–14], thanks to their universal approximation prop-
erty. The universal approximation theorem states that artifi-
cial neural networks can approximate any continuous func-
tion under mild assumptions [15], where the von Neumann
entropy is no exception. A neural network is trained on a
dataset of known function values, with the objective of learn-
ing a latent manifold that can approximate the original func-
tion within the known parameter space. Once trained, the
model can be used to make predictions outside the space by
extrapolating the trained network. The goal is to minimize
the prediction errors between the model’s outputs and the
actual function values. In our study, we frame the supervised
learning task in two distinct ways: the first approach involves
using densely connected neural networks to predict von Neu-
mann entropy, while the second utilizes sequential learning
models to extract higher Rényi entropies.

Instead of using a static “define-and-run” scheme, where
the model structure is defined beforehand and remains fixed
throughout training, we have opted for a dynamic “define-by-
run” approach. Our goal is to determine the optimal model
complexity and hyperparameters based on the input valida-
tion data automatically. To achieve this, we employ Keras-
Tuner [16] with Bayesian optimization, which efficiently
explores the hyperparameter space by training and evalu-
ating different neural network configurations using cross-
validation. KerasTuner uses the results to update a proba-
bilistic model of the hyperparameter space, which is then
used to suggest the next set of hyperparameters to evaluate,
aiming to maximize expected performance improvement.

A similar question can be explicitly framed in terms of
quantum machine learning, where a trainable quantum cir-
cuit can be used to emulate neural networks by encoding
both the data inputs and the trainable weights using quantum
gates. This approach bears many different names [17–22],
but we will call it a quantum neural network. Unlike clas-

sical neural networks, quantum neural networks are defined
through a series of well-defined unitary operations, rather
than by numerically optimizing the weights for the non-linear
mapping between targets and data. This raises a fundamen-
tal question for quantum computing practitioners: can any
unitary operation be realized, or is there a particular charac-
terization for the learnable function class? In other words,
is the quantum model universal in its ability to express any
function with the given data input? Answering these ques-
tions will not only aid in designing future algorithms, but also
provide deeper insights into how quantum models achieve
universal approximation [23,24].

Recent progress in quantum neural networks has shown
that data-encoding strategies play a crucial role in their
expressive power. The problem of data encoding has been the
subject of extensive theoretical and numerical studies [25–
28]. In this work, we build on the idea introduced in [29,30],
which demonstrated the expressivity of quantum models as
partial Fourier series. By rewriting the generating function for
the von Neumann entropy in terms of a Fourier series, we can
similarly establish the expressivity using quantum neural net-
works. However, the Gibbs phenomenon in the Fourier series
poses a challenge in recovering the von Neumann entropy.
To overcome this, we reconstruct the entropy by expanding
the Fourier series into a basis of Gegenbauer polynomials.

The structure of this paper is as follows. In Sect. 2, we
provide a brief overview for the analytic continuation of
the von Neumann entropy from Rényi entropies within the
framework of QFT. In addition, we introduce the generat-
ing function method that we use throughout the paper. In
Sect. 3, we use densely connected neural networks with
KerasTuner to extract the von Neumann entropy for several
examples where analytic expressions are known. In Sect. 4,
we employ sequential learning models for extracting higher
Rényi entropies. Sect. 5 is dedicated to studying the expres-
sive power of quantum neural networks in approximating the
von Neumann entropy. In Sect. 6, we summarize our findings
and discuss possible applications of our approach. Appendix
A is devoted to the details of rewriting the generating func-
tion as a partial Fourier series, while Appendix B addresses
the Gibbs phenomenon using Gegenbauer polynomials.

2 Analytic continuation of von Neumann entropy from
Rényi entropies

Let us discuss how to calculate the von Neumann entropy
in QFTs [31–34]. Suppose we start with a QFT on a d-
dimensional Minkowski spacetime with its Hilbert space
specified on a Cauchy slice � of the spacetime. Without loss
of generality, we can divide � into two disjoint sub-regions
� = A ∪ Ac. Here Ac denotes the complement sub-region
of A. Therefore, the Hilbert space also factorizes into the
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tensor product H� = HA ⊗ HAc . We then define a reduced
density matrix ρA from a pure state on �, which is therefore
mixed, to capture the entanglement between the two regions.
The von Neumann entropy S(ρA) allows us to quantify this
entanglement

S(ρA) ≡ − Tr(ρA ln ρA) = Area(∂A)

εd−2 + · · · . (4)

Along with several nice properties, such as the invariance
under unitary operations, complementarity for pure states,
and a smooth interpolation between pure and maximally
mixed states, it is therefore a fine-grained measure for the
amount of entanglement between A and Ac. The second
equality holds for field theory, where we require a length
scale ε to regulate the UV divergence encoded in the short-
distance correlations. The leading-order divergence is cap-
tured by the area of the entangling surface ∂A, a universal
feature of QFTs [35].1

There have been efforts to better understand the structure
of the entanglement in QFTs, including free theory [36], heat
kernels [37,38], CFT techniques [39] and holographic meth-
ods based on AdS/CFT [40,41]. But operationally, comput-
ing the von Neumann entropy analytically or numerically is
still a daunting challenge for generic interacting QFTs. For
a review, see [1].

Path integral provides a general method to access S(ρA).
The method starts with the Rényi entropies [3]

Sn(ρA) = 1

1 − n
ln Tr ρn

A, (5)

for real n > 1. As previously mentioned, obtaining the von
Neumann entropy via analytic continuation in n with n → 1
requires two crucial steps. An analytic form for then-th Rényi
entropy must be derived from the underlying field theory in
the first place, and then we need to perform analytic continu-
ation toward n → 1. These two steps are independent prob-
lems and often require different techniques. We will briefly
comment on the two steps below.

Computing Tr ρn
A is not easy; therefore, the replica method

enters. The early form of the replica method was developed
in [34], and was later used to compute various examples in
CFT2 [4–7], which can be compared with holographic ones
[42]. The idea behind the replica method is to consider an
orbifold of n copies of the field theory to compute Tr ρn

A
for positive integers n. The computation reduces to evaluat-
ing the partition function on a n-sheeted Riemann surface,
which can be alternatively computed by correlation functions
of twist operators in the n copies. For more details on the con-
struction in CFTs, see [4–7]. If we are able to compute Tr ρn

A

1 While in CFT2, the leading divergence for a single interval A of length
� in the vacuum state on an infinite line is a logarithmic function of the
length, this is the simplest example we will consider later.

for any positive integer n ≥ 1, we have

S(ρA) = lim
n→1

Sn(ρA) = − lim
n→1

∂

∂n
Tr ρn

A. (6)

This is computable for special states and regions, such as
ball-shaped regions for the vacuum of the CFTd . However,
in CFT2, due to its infinite-dimensional symmetry being suf-
ficient to fix lower points correlation functions, we are able
to compute Tr ρn

A for several instances.
The analytic continuation in n → 1 is more subtle. Ensur-

ing the existence of a unique analytic extension away from
integer n typically requires the application of the Carlson’s
theorem. This theorem guarantees the uniqueness of the ana-
lytic continuation from Rényi entropies to the von Neumann
entropy, provided that we can find some locally holomorphic
function Sν with ν ∈ C such that Sn = Sn(ρ) for all integers
n > 1 with appropriate asymptotic behaviors in ν → ∞.
Then we have unique Sν(ρ) = Sν [43,44]. Carlson’s theo-
rem addresses not only the problem of unique analytic con-
tinuation but also the issue of continuing across non-integer
values of the Rényi entropies.

There are other methods to evaluate S(ρA) in the context
of string theory and AdS/CFT; see for examples [45–50].
In this work, we would like to focus on an effective method
outlined in [8] that is suitable for numerical considerations. In
[8], the following generating function is used for the analytic
continuation in n with a variable z

G(z; ρA) ≡ − Tr

(
ρA ln

1 − zρA

1 − z

)

=
∞∑

n=1

zk

k

(
Tr(ρk+1

A ) − 1

)
. (7)

This manifest Taylor series is absolutely convergent in the
unit disc with |z| < 1. We can analytically continue the func-
tion from the unit disc to a holomorphic function inC\[1,∞)

by choosing the branch cut of the logarithm to be along the
positive real axis. The limit z → −∞ is within the domain
of holomorphicity and is exactly where we obtain the von
Neumann entropy

S(ρA) = lim
z→−∞G(z; ρA). (8)

However, a more useful form can be obtained by performing
a Möbius transformation to a new variable w = z

z−1

G(w; ρA) = − Tr

(
ρA ln {1 − w(1 − ρA)}

)
. (9)

It again manifests as a Taylor series

G(w; ρA) =
∞∑

k=1

f̃ (k)

k
wk, (10)
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where

f̃ (k) = Tr[ρA(1 − ρA)k]

=
k∑

m=0

(−1)mk!
m!(k − m)! Tr (ρm+1

A ). (11)

We again have a series written in terms of Tr ρn
A, and it is

absolutely convergent in the unit disc |w| < 1. The conve-
nience of using w is that by taking w → 1, we have the von
Neumann entropy

S(ρA) = lim
w→1

G(w; ρA) =
∞∑

k=1

f̃ (k)

k
. (12)

This provides an exact expression of S(ρA) starting from a
known expression of Tr ρn

A. Numerically, we can obtain an
accurate value of S(ρA) by computing a partial sum in k.
The method guarantees that by summing to sufficiently large
k, we approach the von Neumann entropy with increasing
accuracy.

However, a difficulty is that we need to sum up k ∼ 103

terms to achieve precision within 10−3 in general [8]. It will
be computationally costly for certain cases with complicated
Tr ρn

A. Therefore, one advantage the neural network frame-
work offers is the ability to give accurate predictions with
only a limited amount of data, making it a more efficient
method.

In this paper, we focus on various examples from CFT2

with known analytic expressions of Tr ρn
A [6], and we use

the generating function G(w; ρA) to generate the required
training datasets for the neural networks.

3 Deep learning von Neumann entropy

This section aims to utilize deep neural networks to predict
the von Neumann entropy via a supervised learning approach.
By leveraging the gradient-based learning principle of the
networks, we expect to find a non-linear mapping between
the input data and the output targets. In the analytic continua-
tion problem from then-th Rényi entropy to the von Neumann
entropy, such a non-linear mapping naturally arises. Accord-
ingly, we consider Sn(ρA) (equivalently Tr ρn

A and the gen-
erating function) as our input data and S(ρA) as the target
function for the training process. As supervised learning, we
will consider examples where analytic expressions of both
sides are available. Ultimately, we will employ the trained
models to predict the von Neumann entropy across various
physical parameter regimes, demonstrating the efficacy and
robustness of the approach.

The major advantage of using deep neural networks lies in
that they improve the accuracy of the generating function for
computing the von Neumann entropy. As we mentioned, the

accuracy of this method depends on where we truncate the
partial sum, and it often requires summing up a large k in (12),
which is numerically difficult. In a sense, it requires knowing
much more information, such as those of the higher Rényi
entropies indicated by Tr ρn

A in the series. Trained neural
networks are able to predict the von Neumann entropy more
accurately given much fewer terms in the input data. We can
even predict the von Neumann entropy for other parame-
ter spaces without resorting to any data from the generating
function.

Furthermore, the non-linear mappings the deep neural net-
works uncover can be useful for investigating the expressive
power of neural networks on the von Neumann entropy. Addi-
tionally, they can be applied to study cases where analytic
continuations are unknown and other entanglement measures
that require analytic continuations.

In the following subsections, we will give more details on
our data preparation and training strategies, then we turn to
explicit examples as demonstrations.

3.1 Model architectures and training strategies

Generating suitable training datasets and designing flexible
deep learning models are empirically driven. In this subsec-
tion, we outline our strategies for both aspects.

Data preparation
To prepare the training datasets, we consider several

examples with known S(ρA). We use the generating func-
tion G(w; ρ), which can be computed from Tr ρn

A for each
example. This is equivalent to computing the higher Rényi
entropies with different choices of physical parameters since
the “information” available is always Tr ρn

A. However, note
that all the higher Rényi entropies are distinct information.
Therefore, adopting the generating function is preferable
to using Sn(ρA) itself, as it approaches the von Neumann
entropy with increasing accuracy, making the comparison
more transparent.

We generate N = 10,000 input datasets for a fixed range
of physical parameters, where each set contains kmax = 50
terms in (12); their corresponding von Neumann entropies
will be the targets. We limit the amount of data to mimic
the computational cost of using the generating function. We
shuffle the input datasets randomly and then split the data
into 80% for training, 10% for validation, and 10% as the test
datasets. Additionally, we use the trained neural networks to
make predictions on another set of 10,000 test datasets with a
different physical parameter regime and compare them with
the correct values as a non-trivial test for each example.

Model design
To prevent overfitting and enhance the generalizability of

our model, we have employed a combination of techniques
in the design of neural networks. ReLU activation function is
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Fig. 1 An architecture of 3 densely connected layers, where each layer
has 8 units. The final output layer is a single Dense unit with a unique
output corresponding to the von Neumann entropy

used throughout the section. We adopt Adam optimizer [51]
in the training process with mean square error (MSE) as the
loss function.

We consider a neural network consisting of a few hidden
Dense layers with varying numbers of units in TensorFlow-
Keras [52,53]. In this case, each neuron in a layer receives
input from all the neurons in the previous layer. The Dense
connection allows the model to find non-linear relations
between the input and output, which is the case for analytic
continuation. The final layer is a Dense layer with a single unit
that outputs a unique value for each training dataset, which
is expected to correspond to the von Neumann entropy. As
an example, we show a neural network with 3 hidden Dense
layers, each with 8 units, in Fig. 1.

To determine the optimal setting of our neural networks,
we employ KerasTuner [16], a powerful tool that allows us to
explore different combinations of model complexity, depth,
and hyperparameters for a given task. An illustration of the
KerasTuner process can be found in Fig. 2. We use Bayesian
optimization, and adjust the following designs and hyperpa-
rameters:

• We allow a maximum of 4 Dense layers. For each layer,
we allow variable units in the range of 16 to 128 with a
step size of 16. The number of units for each layer will
be independent of each other.

• We allow BatchNormalization layers after the Dense lay-
ers as a Boolean choice to improve generalization and act
as a regularization.

• A final dropout with log sampling of a dropout rate in the
range of 0.1 to 0.5 is added as a Boolean choice.

• In the Adam optimizer, we only adjust the learning
rate with log sampling from the range of 3 × 10−3 to
9 × 10−3. All other parameters are taken as default val-
ues in TensorFlow-Keras. We also use the AMSGrad [54]
variant of this algorithm as a Boolean choice.

We deploy the KerasTuner for 100 trials with 2 executions
per trial and monitor the validation loss with EarlyStopping
of patience 8. Once the training is complete, since we will
not be making any further hyperparameter changes, we no
longer evaluate performance on the validation data. A com-
mon practice is to initialize new models using the best model
designs found by KerasTuner while also including the valida-
tion data as part of the training data. Indeed, we select the top
5 best designs and train each one 20 times with EarlyStop-
ping of patience 8. We pick the one with the smallest relative
errors from the targets among the 5 × 20 models as our final
model. We set the batch size in both the KerasTuner and the
final training to be 512.

In the following two subsections, we will examine exam-
ples from CFT2 with Tr ρn

A and their corresponding von Neu-
mann entropies S(ρA) [4–8]. These instances are distinct
and worth studying for several reasons. They have different
mathematical structures and lack common patterns in their
derivation from the field theory side, despite involving the
evaluation of certain partition functions. Moreover, the ana-
lytic continuation for each case is intricate, providing strong
evidence for the necessity of independent model designs.

3.2 Entanglement entropy of a single interval

Throughout the following, we will only present the analytic
expression of Tr ρn

A since it is the only input of the generating
function. We will also keep the UV cut-off ε explicit in the
formula.

Single interval
The simplest example corresponds to a single interval A

of length � in the vacuum state of a CFT2 on an infinite
line. In this case, both the analytic forms of Tr ρn

A and S(ρA)

are known [4], where S(ρA) reduces to a simple logarithmic
function that depends on �. We have the following analytic
form with a central charge c

Tr ρn
A =

(
�

ε

) c
6 ( 1

n −n)

, (13)

that defines G(w; ρA). The corresponding von Neumann
entropy is given by

S(ρA) = c

3
ln

�

ε
. (14)
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Fig. 2 Flowchart illustrating the steps of KerasTuner with Bayesian
optimization. Bayesian optimization is a method for finding the opti-
mal set of designs and hyperparameters for a given dataset, by itera-
tively constructing a probabilistic model from a prior distribution for

the objective function and using it to guide the search. Once the tuner
search loop is complete, we extract the best model in the final training
phase by including both the training and validation data

We fixed the central charge c = 1 and the UV cutoff
ε = 0.1 when preparing the datasets. We generated 10,000
sets of data for the train-validation-test split from � = 1 to
50, with an increment of �� = 5 × 10−3 between each step
up to k = 50 in G(w; ρA). To further validate our model, we
generated an additional 10,000 test datasets for the following
physical parameters: � = 51 to 100 with �� = 5 × 10−3.
For a density plot of the data distribution with respect to the
target von Neumann entropy, see Fig. 3.

Figure 4 illustrates that the process outlined in the pre-
vious subsection effectively minimizes the relative errors in
predicting the test data to a very small extent. Moreover, the
model’s effectiveness is further confirmed by its ability to
achieve similarly small relative errors when predicting the
additional test datasets. The accuracy of the model’s pre-
dictions for the two test datasets significantly surpasses the
approximate entropy obtained by summing the first 50 terms
of the generating function, as can be seen in Fig. 5. We empha-
size that in order for the generating function to achieve the
same accuracy as the deep neural networks, we generally
need to sum k ≥ 400 from (12) [8]. This applies to all the
following examples.

In this example, the von Neumann entropy is a simple
logarithmic function, making it relatively straightforward for
the deep learning models to decipher. However, we will now
move on to a more challenging example.

Single interval at finite temperature and length
We extend the single interval case to finite temperature

and length, where Tr ρn
A becomes a complicated function of

the inverse temperature β = T−1 and the length �. The ana-
lytic expression of the Rényi entropies was first derived in
[55] for a two-dimensional free Dirac fermion on a circle
from bosonization. We can impose periodic boundary con-
ditions that correspond to finite size and finite temperature.
For simplicity, we set the total spatial size L to 1, and use �

to denote the interval length. In this case we have [55]

Tr ρn
A =

n−1
2∏

k=− n−1
2

∣∣∣∣
2πεη(τ)3

θ1(�|τ)

∣∣∣∣

2k2

n2 |θν(
k�
n |τ)|2

|θν(0|τ)|2 , (15)

where ε is a UV cutoff. We study the case of ν = 3, which
is the Neveu–Schwarz (NS-NS) sector. We then have the
following Dedekind eta function η(τ) and the Jacobi theta
functions θ1(z|τ) and θ3(z|τ)

η(τ ) ≡ q
1

24

∞∏

n=1

(1 − qn), (16)

θ1(z|τ) ≡
n=∞∑

n=−∞
(−1)n− 1

2 e(n+ 1
2 )2iπτ e(2n+1)π i z, (17)

θ3(z|τ) ≡
n=∞∑

n=−∞
en

2iπτ e2nπ i z . (18)

Previously, the von Neumann entropy after analytically
continuing (15) was only known in the high- and low-
temperature regimes [55]. In fact, only the infinite length
or zero temperature pieces are universal. However, the ana-
lytic von Neumann entropy for all temperatures was recently
worked out by [56–58], which we present below

S(ρA) = 1

3
log

σ(�)

ε
+ 4i�

×
∫ ∞

0
dq

ζ(iq� + 1/2 + iβ/2) − ζ(1/2) − ζ(iβ/2)

e2πq − 1
.

(19)

Here σ and ζ are the Weierstrass sigma function and zeta
function with periods 1 and iβ, respectively. We can see
clearly that the analytic expressions for both Tr ρn

A and S(ρA)

are rather different compared to the previous example.
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Fig. 3 The distribution of the data for the case of a single interval,
where we plot density as a function of the von Neumann entropy com-
puted by (14) with varying �. The left plot represents the 10,000 datasets
for the train-validation-test split, while the right plot corresponds to

the additional 10,000 test datasets with a different physical parame-
ter regime. The blue curves represent the kernel density estimate for a
smoothed estimate of the data distribution

Fig. 4 Left: The MSE loss function as a function of epochs. We mon-
itor the loss function with EarlyStopping, where the minimum loss is
achieved at epoch 410 with loss ≈ 10−7 for this instance. Right: The
density plot of relative errors between the model predictions and targets.

Note that the blue color corresponds to the test datasets from the initial
train-validation-test split, while the green color is for the additional test
datasets. We can see clearly that for both datasets, we have achieved
high accuracy with relative errors � 0.30%

In preparing the datasets, we fixed the interval length
� = 0.5 and the UV cutoff ε = 0.1. We generated 10,000
sets of data for train-validation-test split from β = 0.5 to
1.0, with an increment of �β = 5 × 10−5 between each
step up to k = 50 in G(w; ρA). Since β corresponds to the
inverse temperature, this is a natural parameter to vary as the
formula (19) is valid for all temperatures. To further vali-
date our model, we generated 10,000 additional test datasets
for the following physical parameters: β = 1.0 to 1.5 with
�β = 5×10−5. A density plot of the data with respect to the
von Neumann entropy is shown in Fig. 6. As shown in Figs. 7

and 8, our model demonstrates its effectiveness in predicting
both test datasets, providing accurate results for this highly
non-trivial example.

3.3 Entanglement entropy of two disjoint intervals

We now turn to von Neumann entropy for the union of two
intervals on an infinite line. In this case, several analytic
expressions can be derived for both Rényi and von Neu-
mann entropies. The theory we will consider is a CFT2 for
a free boson with central charge c = 1, and the von Neu-
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Fig. 5 We plot the predictions from the model with the analytic von
Neumann entropy computed by (14) for the 1000 test datasets (left)
from the training-validation-test split and the additional 10,000 test
datasets (right), with the same scale on both figures. The y-axis rep-
resents the numerical value of the entropies, while the x-axis denotes

the index of samples from the test datasets. We have re-ordered the sam-
ples with increasing entropy values. The correct von Neumann entropy
overlaps with the model’s predictions precisely. We have also included
the approximate entropy by summing over k = 50 terms in the gener-
ating function

Fig. 6 The distribution of the two test datasets for the case of a single interval at finite temperature and length, where we plot density as a function
of the von Neumann entropy computed by (19) with varying β. The blue curves represent the kernel density estimate for a smoothed estimate of
the data distribution
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Fig. 7 Left: The MSE loss function as a function of epochs. The minimum loss close to 10−8 is achieved at epoch 86 for this instance. Right:
The relative errors between the model predictions and targets for the two test datasets, where we have achieved high accuracy with relative errors
� 0.6%

Fig. 8 We plot the predictions from the model with the analytic von
Neumann entropy computed by (19) for the two test datasets. Again, the
approximate entropy by summing over k = 50 terms in the generating

function is included. Note that in order to achieve the same accuracy
from the generating function, it requires at least k ≈ 700 terms in this
case

mann entropy will be distinguished by two parameters, a
cross-ratio x and a universal critical exponent η. The latter is
proportional to the square of the compactification radius.

To set up the system, we define the union of the two inter-
vals as A ∪ B with A = [x1, x2] and B = [x3, x4]. The
cross-ratio is defined to be

x = x12x34

x13x24
, xi j = xi − x j . (20)

With the definition, we can write down the generating func-
tion for two intervals in a free boson CFT with finite x and
η [5]

Tr(ρn) = cn

(
ε2x13x24

x12x34x14x23

) 1
6 (n− 1

n )

Fn(x, η), (21)

where ε is a UV cutoff and cn is a model-dependent coef-
ficient [6] that we set to cn = 1 for simplicity. An exact
expression for Fn(x, η) is given by

Fn(x, η) = �(0|η�)�(0|�/η)

[�(0|�)]2 , (22)

for integers n ≥ 1. Here �(z|�) is the Riemann–Siegel theta
function defined as

�(z|�) ≡
∑

m∈Zn−1

exp[iπmt · � · m + 2π imt · z], (23)

where � is a (n − 1) × (n − 1) matrix with elements

�rs = 2i

n

n−1∑

k=1

sin

(
πk

n

)
βk/n cos

[
2πk

n
(r − s)

]
, (24)

123



192 Page 10 of 32 Eur. Phys. J. C (2024) 84 :192

and

βy = Fy(1 − x)

Fy(x)
, Fy(x) ≡ 2F1(y, 1 − y; 1; x), (25)

where 2F1 is the hypergeometric function. A property of this
example is that (22) is manifestly invariant under η ↔ 1/η.

The analytic continuation towards the von Neumann
entropy is not known, making it impossible to study this
example directly with supervised learning. Although the
Taylor series of the generating function guarantees con-
vergence towards the true von Neumann entropy for suf-
ficiently large values of k in the partial sum, evaluat-
ing the higher-dimensional Riemann–Siegel theta function
becomes increasingly difficult. For efforts in this direction,
see [59,60]. However, we will revisit this example in the next
section when discussing the sequence model.

However, there are two limiting cases where analytic per-
turbative expansions are available, and approximate analytic
continuations of the von Neumann entropies can be obtained.
The first limit corresponds to small values of the cross-ratio
x , where the von Neumann entropy has been computed ana-
lytically up to second order in x . The second limit is the
decompactification limit, where we take η → ∞. In this
limit, there is an approximate expression for the von Neu-
mann entropy.

Two intervals at small cross-ratio
Let us consider the following expansion of Fn(x, η) at

small x for some η �= 1

Fn(x, η) = 1 +
(

x

4n2

)α

s2(n) +
(

x

4n2

)2α

s4(n) + · · · ,

(26)

where we can look at the first order contribution with

s2(n) ≡ N n

2

n−1∑

j=1

1

[sin(π j/n)]2α
. (27)

The coefficient α for a free boson is given by α =
min[η, 1/η]. N is the multiplicity of the lowest dimension
operators, where for a free boson we have N = 2. Up to this
order, the analytic von Neumann entropy is given by

S(ρAB) = 1

3
ln

(
x12x34x14x23

ε2x13x24

)

−N
(
x

4

)α √
π�(α + 1)

4�
(
α + 3

2

) − · · · . (28)

We can set up the numerics by taking |x12| = |x34| = r , and
the distance between the centers of A and B to be L , then the
cross-ratio is simply

x = x12x34

x13x24
= r2

L2 . (29)

Similarly we can express |x14| = L + r = L(1 + √
x) and

|x23| = L − r = L(1 −√
x). This would allow us to express

everything in terms of x and L .
For the datasets, we fixed L = 14, α = 0.5, and ε2 = 0.1.

We generated 10,000 sets of data for train-validation-test
split from x = 0.05 to 0.1, with an increment of �x =
5 × 10−6 between each step up to k = 50 in G(w; ρA). To
further validate our model, we generated 10,000 additional
test datasets for the following physical parameters: x = 0.1
to 0.15 with �x = 5 × 10−6. A density plot of the data
with respect to the von Neumann entropy is shown in Fig. 9.
We refer to Figs. 10 and 11 for a clear demonstration of the
learning outcomes.

The study up to second order in x using the generating
function method is available in [8], as well as through the
use of holographic methods [61]. Additionally, an analytic
continuation toward the von Neumann entropy up to second
order in x for general CFT2 can be found in [62]. Although
this is a subleading correction, it can also be approached
using our method.

Two intervals in the decompactification limit
There is a different limit that can be taken other than

the small cross-ratio, where an approximate analytic Rényi
entropies can be obtained. This is called the decompactifica-
tion limit where we take η → ∞, then for each fixed value
of x we have F(x, η) as

Fn(x, η) =
[

ηn−1

∏n−1
k=1 Fk/n(x)Fk/n(1 − x)

] 1
2

, (30)

where 2F1 is the hypergeometric function. Equation (30) is
invariant under η ↔ 1/η, so we will instead use the result
with η � 1

Fn(x, η) =
[

η−(n−1)

∏n−1
k=1 Fk/n(x)Fk/n(1 − x)

] 1
2

. (31)

In this case, the exact analytic continuation of the von Neu-
mann entropy is not known, but there is an approximate result
following the expansion with η � 1

S(ρAB) � SW (ρAB) + 1

2
ln η − D′

1(x) + D′
1(1 − x)

2
+ · · · ,

(32)

with SW (ρAB) being the von Neumann entropy computed
from the Rényi entropies without the special function
Fn(x, η) in (21). Note that

D′
1(x) = −

∫ i∞

−i∞
dz

i

π z

sin2(π z)
ln Fz(x). (33)

This approximate von Neumann entropy has been well tested
in previous studies [5,8], and we will adopt it as the target
values in our deep learning models.
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Fig. 9 The distribution of the two test datasets for the case of two intervals at small cross-ratio, where we plot density as a function of the von
Neumann entropy computed by (28) with varying x . The blue curves represent the kernel density estimate for a smoothed estimate of the data
distribution

Fig. 10 Left: The MSE loss function as a function of epochs. The minimum loss close to 10−8 is achieved at epoch 696 for this instance. Right:
The relative errors between the model predictions and targets for the two test datasets, where we have achieved high accuracy with relative errors
� 0.03%

For the datasets, we fixed L = 14, x = 0.5 and ε2 = 0.1.
We generated 10,000 sets of data for train-validation-test split
from η = 0.1 to 0.2, with an increment of �η = 10−5

between each step up to k = 50. To further validate our
model, we generated 10,000 additional test datasets for
the following physical parameters: η = 0.2 to 0.3 with
�η = 10−5. A density plot of the data with respect to the
von Neumann entropy is shown in Fig. 12. We again refer
to Figs. 13 and 14 for a clear demonstration of the learning
outcomes.

We have seen that deep neural networks, when treated
as supervised learning, can achieve accurate predictions for
the von Neumann entropy that extends outside the parameter
regime in the training phase. However, the potential for deep
neural networks may go beyond this.

As we know, the analytic continuation must be worked
out on a case-by-case basis (see the examples in [4–7]) and
may even depend on the method we use [8]. Finding general
patterns in the analytic continuation is still an open question.
Although it remains ambitious, the non-linear mapping that
the neural networks uncover would allow us to investigate
the expressive power of deep neural networks for the analytic
continuation problem of the von Neumann entropy.

Our approach also opens up the possibility of using deep
neural networks to study cases where analytic continuations
are unknown, such as the general two-interval case. Further-
more, it may enable us to investigate other entanglement mea-
sures that follow similar patterns or require analytic contin-
uations. We leave these questions as future tasks.
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Fig. 11 We plot the predictions from the model with the analytic von
Neumann entropy computed by (28) for the two test datasets. We also
include the approximate entropy by summing over k = 50 terms in the

generating function. Note that in order to achieve the same accuracy
from the generating function, it requires at least k ≈ 800 terms in this
case

Fig. 12 The distribution of the two test datasets for the case of two intervals in the decompactification limit, where we plot density as a function
of the von Neumann entropy computed by (32) with varying η. The blue curves represent the kernel density estimate for a smoothed estimate of
the data distribution

4 Rényi entropies as sequential deep learning

In this section, we focus on higher Rényi entropies using
sequential learning models. Studying higher Rényi entropies
that depend on Tr ρn

A is equivalent to studying the higher-
order terms in the Taylor series representation of the gen-
erating function (12). There are a few major motivations.
Firstly, although the generating function can be used to com-
pute higher-order terms, it becomes inefficient for more com-
plex examples. Additionally, evaluating Tr ρn

A in (21) for the

general two-interval case involves the Riemann–Siegel theta
function, which poses a challenge in computing higher Rényi
entropies [8,59,60]. On the other hand, all higher Rényi
entropies should be considered independent and cannot be
obtained in a linear fashion. They can all be used to predict
the von Neumann entropy, but in the Taylor series expan-
sion (12), knowing higher Rényi entropies is equivalent to
knowing a more accurate von Neumann entropy. As we can-
not simply extrapolate the series, using a sequential learning
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Fig. 13 Left: The MSE loss function as a function of epochs. The minimum loss at around 10−7 is achieved at epoch 132 for this instance. Right:
The relative errors between the model predictions and targets for the two test datasets, where we have achieved high accuracy with relative errors
� 0.4%

Fig. 14 We plot the predictions from the model with the analytic von
Neumann entropy computed by (32) for the two test datasets. We also
include the approximate entropy by summing over k = 50 terms in the

generating function. Note that in order to achieve the same accuracy
from the generating function, it requires at least k ≈ 400 terms in this
case

approach is a statistically robust way to identify underlying
patterns.

Recurrent neural networks (RNNs) are a powerful type of
neural network for processing sequences due to their “mem-
ory” property [63]. RNNs use internal loops to iterate through
sequence elements while keeping a state that contains infor-
mation about what has been observed so far. This property
allows RNNs to identify patterns in a sequence regardless of
their position in the sequence. To train an RNN, we initialize
an arbitrary state and encode a rank-2 tensor of size (steps,
input features), looping over multiple steps. At each step, the
networks consider the current state at k with the input, and
combine them to obtain the output at k + 1, which becomes
the state for the next iteration.

RNNs incorporate both feedforward networks and back-
propagation through time (BPTT) [64,65], with “time” rep-
resenting the steps k in our case. The networks connect the

outputs from a fully connected layer to the inputs of the same
layer, referred to as the hidden states. These inputs receive
the output values from the previous step, with the number of
inputs to a neuron determined by both the number of inputs to
the layer and the number of neurons in the layer itself, known
as recurrent connections. Computing the output involves iter-
atively feeding the input vector from one step, computing the
hidden states, and presenting the input vector for the next step
to compute the new hidden states.

RNNs are useful for making predictions based on sequen-
tial data, or “sequential regression,” as they learn patterns
from past steps to predict the most probable values for the
next step.
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4.1 Model architectures and training strategies

In this subsection, we discuss the methodology of treating the
Rényi entropies (the Taylor series of the generating function)
as sequence models.

Data preparation
To simulate the scenario where kmax in the series cannot

be efficiently computed, we generate N = 10,000 datasets
for different physical parameters, with each dataset having a
maximum of kmax = 50 steps in the series. We also shuffle the
N datasets since samples of close physical parameters will
have most of their values in common. Among the N datasets,
we only take a fraction p < N for the train-validation-test
split. The other fraction q = N − p will all be used as test
data for the trained model. This serves as a critical exami-
nation of the sequence models we find. The ideal scenario is
that we only need small p datasets while achieving accurate
performance for the q datasets.

Due to the rather small number of steps available, we are
entitled to adopt the SimpleRNN structure in TensorFlow-
Keas2 instead of the more complicated ones such as LSTM
or GRU networks [67,68].

We also need to be careful about the train-validation-test
splitting process. In this type of problem, it is important to use
validation and test data that is more recent than the training
data. This is because the objective is to predict the next value
given the past steps, and the data splitting should reflect this
fact. Furthermore, by giving more weight to recent data, it
is possible to mitigate the vanishing gradient (memory loss)
problem that can occur early in the BPTT. In this work, the
first 60% of the steps (k = 1−30) are used for training, the
middle 20% (k = 31−40) for validation, and the last 20%
(k = 41−50) for testing.

We split the datasets in the following way: for a sin-
gle dataset from each step, we use a fixed number of past
steps,3 specified by �, to predict the next value. This will
create (steps − �) sequences from each dataset, resulting in
a total of (steps − �) × p sequences for the p datasets in the
train-validation-test splitting. Using a fixed sequence length
� allows the network to focus on the most relevant and recent
information for predicting the next value, while also sim-
plifying the input size and making it more compatible with

2 SimpleRNN suffers from the vanishing gradient problem when learn-
ing long dependencies [66]. Even using ReLU, which does not cause a
vanishing gradient, back-propagation through time with weight sharing
can still lead to a vanishing gradient across different steps. However,
since the length of the sequence is small due to the limited maximum
steps available in our case, we have found that SimpleRNN generally
performs better than its variants.
3 We could also include as many past steps as possible, but we have
found it less effective. This can be attributed to our choice of network
architectures and the fact that we have rather short maximum steps
available.

our network architectures. We take p = 1000, q = 9000,
and � = 5. An illustration of our data preparation strategy is
shown in Fig. 15.

Model design
After the pre-processing of data, we turn to the model

design. Throughout the section, we use the ReLU activation
function and Adam optimizer with MSE as the loss function.

In KerasTuner, we employ Bayesian optimization by
adjusting a few crucial hyperparameters and designs. We
summarize them in the following list:

• We introduce one or two SimpleRNN layers, with or
without recurrent dropouts. The units of the first layer
range from 64 to 256 with a step size of 16. If a second
layer is used, the units range from 32 to 128 with a step
size of 8. Recurrent dropout is applied with a dropout rate
in the range of 0.1 to 0.3 using log sampling.

• We take LayerNormalization as a Boolean choice to
enhance the training stability, even with shallow net-
works. The LayerNormalization is added after the Sim-
pleRNN layer if there is only one layer; in between the
two layers if there are two SimpleRNN layers.

• We allow a Dense layer with units ranging from 16 to
32 and a step size of 8 as an optional regressor after the
recurrent layers.

• A final dropout with log sampling of a dropout rate in the
range of 0.2 to 0.5 is added as a Boolean choice.

• In the Adam optimizer, we only adjust the learning rate
with log sampling from the range of 10−5 to 10−4.
All other parameters are taken as the default values in
TensorFlow-Keras. We take the AMSGrad [54] variant
of this algorithm as a Boolean choice.

The KerasTuner is deployed for 300 trials with 2 execu-
tions per trial. During the process, we monitor the validation
loss using EarlyStopping of patience 8. Once the best set of
hyperparameters and model architecture are identified based
on the validation data, we initialize a new model with the
same design, but with both the training and validation data.
This new model is trained 30 times while monitoring the
training loss using EarlyStopping of patience 10. The final
predictions are obtained by averaging the results of the few
cases with close yet overall smallest relative errors from the
targets. The purpose of taking the average instead of picking
the case with minimum loss is to smooth out possible out-
liers. We set the batch size in both the KerasTuner and the
final training to be 2048.

We will also use the trained model to make predictions on
the q test data and compare them with the correct values as
validation for hitting the benchmark.
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Fig. 15 Data preparation process for the sequential models. A total of
N datasets are separated into two parts: the p datasets are for the initial
train-validation-test split, while the q datasets are treated purely as test
datasets. The zoomed-in figure on the right hand side illustrates how

a single example sequence is generated, where we have used a fixed
number of past steps � = 5. Note that for the additional q test datasets,
a total of (steps − �) × q = 405000 sequences are generated

4.2 Examples of the sequential models

The proposed approach will be demonstrated using two
examples. The first example is a simple representative case
of a single interval (13); while the second is a more chal-
lenging case of the two-interval at decompactification limit
(32), where the higher-order terms in the generating function
cannot be efficiently computed. Additionally, we will briefly
comment on the most non-trivial example of the general two-
interval case.

Single interval
In this example, we have used the same N datasets for the

single interval as in Sect. 3.2. Following the data splitting
strategy we just outlined, it is worth noting that the ratio of
training data to the overall dataset is relatively small. We
have plotted the losses of the three best-performing models,
as well as the density plot of relative errors for the two test
datasets in Fig. 16. Surprisingly, even with a small ratio of
training data, we were able to achieve small relative errors
on the additional test datasets.

Two intervals in the decompactification limit
Again, we have used the same N datasets for the two inter-

vals in the η → ∞ limit as in Sect. 3.3. In Fig. 17, we have
plotted the losses of the four best-performing models and the
density plot of relative errors for the two test datasets. In this
example, the KerasTuner identified a relatively small learn-
ing rate, which led us to truncate the training at a maximum

of 1500 epochs since we had achieved the required accuracy.
In this case, the predictions are of high accuracy, essentially
without outliers.

Let us briefly address the most challenging example dis-
cussed in this paper, which is the general two-interval case
(21) where the analytic expression for the von Neumann
entropy is not available. In this example, only Tr ρn

A is known,
and since it involves the Riemann–Siegel theta function, com-
puting the generating function for large k in the partial sum
becomes almost infeasible. Therefore, the sequential learn-
ing models we have introduced represent the most viable
approach for extracting useful information in this case.

Since only kmax ≈ 10 can be efficiently computed from
the generating function in this case, we have much shorter
steps for the sequential learning models. We have tested the
above procedure with N = 10,000 datasets and kmax = 10,
however, we could only achieve an average of 5% relative
errors. This is not a generalizable outcome. Improvements
may come from a larger dataset with a longer training time,
or reducing the required datasets via certain cross-validation
techniques, which we leave as a future task.

In general, sequential learning models offer a poten-
tial solution for efficiently computing higher-order terms in
the generating function. To extend our approach to longer
sequences beyond the kmax steps, we can treat the problem
as self-supervised learning. However, this may require a more
delicate model design to prevent error propagation. Nonethe-
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Fig. 16 Top: The loss function for the best 3 models as a function
of epochs. We monitor the loss function with EarlyStopping, where
the epochs of minimum losses at around 10−8 for different models are
specified in the parentheses of the legend. Bottom: The density plots

as a function of relative errors for the two test datasets. The relative
errors for the p test datasets are concentrated at around 1%; while for
the additional q test datasets, they are concentrated at around 2.5% with
a very small ratio of outliers

less, exploring longer sequences can provide a more com-
prehensive understanding of the behavior of von Neumann
entropy and its relation to Rényi entropies.

5 Quantum neural networks and von Neumann entropy

In this section, we explore a similar supervised learning task
by treating the quantum circuits as models that map data
inputs to predictions, which influences the expressive power
of quantum circuits as function approximations. The purpose
of the study is different from the previous cases with classical
neural networks, where instead of a generalizable quantum
model, we are exploring the expressivity of quantum circuits
on the von Neumann entropy.

5.1 Fourier series from variational quantum machine
learning models

We will focus on a specific function class that a quantum neu-
ral network can explicitly realize, namely a simple Fourier-
type sum [29,30]. Before linking it to the von Neumann

entropy, we shall first give an overview of the seminal works
in [30].

Consider a general Fourier-type sum in the following form

fθi (�x) =
∑

�ω∈�

c �ω(θi )e
i �ω·�x , (34)

with the frequency spectrum specified by � ⊂ R
N . Note

that c �ω(θi ) are the (complex) Fourier coefficients. We need
to come up with a quantum model that can learn the charac-
teristics of the sum by the model’s control over the frequency
spectrum and the Fourier coefficients, which are ultimately
affected by some trainable parameters θi and the data input
�x .

Now we define the quantum machine learning model as
the following expectation value

fθi (x) = 〈0|U †(x, θi )MU (x, θi )|0〉, (35)

where |0〉 is taken to be some initial state of the quantum
computer. We will see that the expressivity of the quantum
circuit given by (35) manifests as a Fourier-type sum as in
(34). The M will be the physical observable. Note that we
have omitted writing the vector symbol and the hat on the
operator, which should be clear from the context. The cru-
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Fig. 17 Top: The loss function for the best 4 models as functions of
epochs. We monitor the loss function with EarlyStopping. Bottom: The
density plot as a function of relative errors for the two test datasets. The

relative errors for the p test datasets are well within � 1.5%; while for
the additional q test datasets, they are well within � 2%

cial component is U (x, θi ), which is a quantum circuit that
depends on the data input x and the trainable parameters θi
with L layers. Each layer has a data-encoding circuit block
S(x), and the trainable circuit block W (θi ). Schematically, it
has the form

U (x, θi ) = W (L+1)(θi )S(x)W (L)(θi ) · · ·
W (2)(θi )S(x)W (1)(θi ), (36)

where we refer to Fig. 18 for a clear illustration.
Let us discuss the three major components of the quantum

circuit in the following:

• The repeated data-encoding circuit block S(x) prepares
an initial state that encodes the (one-dimensional) input
data x and is not trainable due to the absence of free
parameters. It is represented by certain gates that embed
classical data into quantum states, with gates of the form
g(x) = e−i x H , where H is the encoding Hamiltonian
that can be any unitary operator. In this work, we use the
Pauli X-rotation gate, and the encoding Hamiltonians in
S(x) will determine the available frequency spectrum �.

• The trainable circuit block W (θi ) is parametrized by a
set of free parameters θi = (θ1, θ2, . . .). There is no spe-

cial assumption made here and we can take these train-
able blocks as arbitrary unitary operations. The trainable
parameters will contribute to the coefficients cω.

• The final piece is the measurement of a physical observ-
able M at the output. This observable is general, it could
be local for each wire or subset of wires in the circuit.

Our goal is to establish that f (x) can be written as a partial
Fourier series [29,30]

fθi (x) = 〈0|U †(x, θi )MU (x, θi )|0〉 =
∑

n∈�

cne
inx . (37)

Note that here for simplicity, we have taken frequencies
being integers � ⊂ Z

N . The training process goes as fol-
lows: we sample a quantum model with U (x, θi ), and then
define the mean square error as the loss function. To opti-
mize the loss function, we need to tune the free parameters
θ = (θ1, θ2, . . .). The optimization is performed by a classi-
cal optimization algorithm that queries the quantum device,
where we can treat the quantum process as a black box and
only examine the classical data input and the measurement
output. The output of the quantum model is the expectation
value of a Pauli-Z measurement.
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Fig. 18 Quantum neural networks with repeated data-encoding circuit
blocks S(x) (whose gates are of the form g(x) = e−i x H ) and trainable
circuit blocks W (i). The data-encoding circuit blocks determine the
available frequency spectrum for �ω, while the remainder determines
the Fourier coefficients c �ω

We use the single-qubit Pauli rotation gate as the encoding
g(x) [30]. The frequency spectrum � is determined by the
encoding Hamiltonians. Two scenarios can be considered to
determine the available frequencies: the data reuploading
[69] and the parallel encodings [70] models. In the former,
we repeat r times of a Pauli rotation gate in sequence, which
means we act on the same qubit, but with multiple layers
r = L; whereas in the latter, we perform similar operations
in parallel on r different qubits. but with a single layer L = 1.
These models allow quantum circuits to access increasingly
rich frequencies, where � = {−r, . . . ,−1, 0, 1, . . . , r} with
a spectrum of integer-valued frequencies up to degree r . This
will correspond to the maximum degree of the partial Fourier
series we want to compute.

From the discussion above, one can immediately derive
the maximum accessible frequencies of such quantum mod-
els [30]. But in practice, if the degree of the target function
is greater than the number of layers (for example, in the sin-
gle qubit case), the fit will be much less accurate.4 Increasing
the value of L typically requires more training epochs to con-
verge at the same learning rate. For our demonstrations later,

4 Certain initial weight samplings may not even converge to a satis-
factory solution. This is relevant to the barren plateau problem [71]
generically present in variational quantum circuits with a random ini-
tialization, similar to the classical vanishing gradient problem.

we will focus on target Fourier series up to degree 4, with
both data reuploading (L = 4 layers) and parallel encodings
models (r = 4 qubits).

This is relevant to a more difficult question of how to
control the Fourier coefficients in the training process, given
that all the blocks W (i)(θi ) and the measurement observ-
able contribute to “every” Fourier coefficient. However, these
coefficients are functions of the quantum circuit with limited
degrees of freedom. This means that a quantum circuit with
a certain structure can only realize a subset of all possible
Fourier coefficients, even with enough degrees of freedom.
While a systemic understanding is not yet available, a sim-
ulation exploring which Fourier coefficients can be realized
can be found in [30]. In fact, it remains an open question
whether, for asymptotically large L , a single qubit model can
approximate any function by constructing arbitrary Fourier
coefficients.

5.2 The generating function as a Fourier series

Given the framework of the quantum model and its relation to
a partial Fourier series, a natural question arises as to whether
the entanglement entropy can be realized within this setup.
To approach this question, it is meaningful to revisit the gen-
erating function for the von Neumann entropy

G(z; ρA) ≡ − Tr

(
ρA ln

1 − zρA

1 − z

)
=

∞∑

k=1

f (k)

k
zk, (38)

as a manifest Taylor series. The goal is to rewrite the generat-
ing function in terms of a partial Fourier series. Therefore, we
would be able to determine whether the von Neumann and
Rényi entropies are the function classes that the quantum
neural network can describe. Note that we will only focus on
small-scale tests with a low depth or width of the circuit, as
the depth or width of the circuit will correspond exactly to
the orders that can be approximated in the Fourier series.

But we cannot simply convert either the original generat-
ing function or its Taylor series form to a Fourier series. By
doing so, it will generally involve special functions in ρA, for
which we will be unable to specify in terms of Tr ρn

A. There-
fore, it is essential to have an expression of the Fourier series
that allows us to compute the corresponding Fourier coeffi-
cients at different orders using Tr ρn

A, for which we know the
analytic form from CFTs.

This can indeed be achieved, see Appendix A for a
detailed derivation. The Fourier series representation of the
generating function on an interval [w1, w2] with period
T = w2 − w1 is given by

G(w; ρ) = a0

2
+

∞∑

n=1

{ ∞∑

m=0

f̃ (m)

m
Ccos(n,m) cos

(
2πnw

T

)
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+
∞∑

m=0

f̃ (m)

m
Csin(n,m) sin

(
2πnw

T

)}
, (39)

where Ccos and Csin are some special functions defined as

Ccos(n,m)

= 2

(m + 1)T

[
pFq

(
m + 1

2
; 1

2
,
m + 3

2
;−n2π2t2

2

T 2

)
tm+1
2

− pFq

(
m + 1

2
; 1

2
,
m + 3

2
;−n2π2t2

2

T 2

)
tm+1
1

]
, (40)

Csin(n,m)

= 4nπ

(m + 2)T 2

[
pFq

(
m + 2

2
; 3

2
,
m + 4

2
;−n2π2t2

2

T 2

)
tm+2
2

− pFq

(
m + 2

2
; 3

2
,
m + 4

2
;−n2π2t2

1

T 2

)
tm+2
1

]
, (41)

with pFq being the generalized hypergeometric function.
Note also that

f̃ (m) ≡
m∑

k=0

(−1)2m−k+1m!
k!(m − k)! Tr (ρk+1

A ). (42)

Similarly, the zeroth order Fourier coefficient is given by

a0 =
∞∑

m=0

f̃ (m)

m
Ccos(0,m)

=
∞∑

m=0

f̃ (m)

m

2(wm+1
2 − wm+1

1 )

(m + 1)T
. (43)

Note that summing to m = 10 suffices our purpose, while
the summation in n corresponds to the degree of the Fourier
series. Note that the complex-valued Fourier coefficients cn
to be used in our simulation can be easily reconstructed from
the expression. Therefore, the only required input for eval-
uating the Fourier series is f̃ (m), with Tr ρk+1

A explicitly
given. This is exactly what we anticipated and allows for a
straightforward comparison with the Taylor series form.

Note the interval for the Fourier series is not arbitrary. We
will take the interval [w1, w2] to be [−1, 1], which is the
maximum interval where the Fourier series (39) is conver-
gent. Furthermore, we expect that as w → 1 from (39), we
arrive at the von Neumann entropy, that is

S(ρA) = lim
w→1

G(w; ρA). (44)

However, as we can see in Fig. 19, there is a rapid oscillation
near the end points of the interval for the Fourier series. The
occurrence of such “jump discontinuity” is a generic feature
for the approximation of discontinuous or non-periodic func-
tions using Fourier series known as the Gibbs phenomenon.
This phenomenon poses a serious problem in recovering
accurate values of the von Neumann entropy because we

Fig. 19 Gibbs phenomenon for the Fourier series near the end point
for w → 1. We take the single interval example where the yellow curve
represents the generating function as a Taylor series, and the blue curve
is the Fourier series approximation of the generating function

are taking the limit to the boundary point w → 1. We will
return to this issue in Sect. 5.4.

5.3 The expressivity of the quantum models on the
entanglement entropy

In this subsection, we will demonstrate the expressivity of
the quantum models of the partial Fourier series with exam-
ples from CFTs. We will focus on two specific examples: a
single interval and two intervals at small cross-ratio. While
these examples suffice for our purpose, it is worth noting
that once the Fourier series representation is derived using
the expression in (39), all examples with a known analytic
form of Tr ρn

A can be studied.
The demonstration is performed using Pennylane [72]. We

have adopted the Adam optimizer with a learning rate 0.005
and batch size of 100, where MSE is the loss function. Note
that we have chosen a smaller learning rate compared to [30]
and monitor with EarlyStopping. For the two examples we
study, we have considered both the serial (data reuploading)
and parallel (parallel encodings) models for the training. Note
that in the parallel model, we have used the StronglyEntan-
glingLayers in Pennylane with itself of 3 user-defined layers.
In each case, we start by randomly initializing a quantum
model with 300 sample points to fit the target function

f (x) =
n=k∑

n=−k

cne
inx . (45)

where the complex-valued Fourier coefficients are calculated
from the real coefficients in (39). We have chosen k = 4 with
prescribed physical parameters in the single- and two-interval
examples. Therefore, we will need r in the serial and parallel
models to be larger than k = 4. We have executed multiple
trials from each case, where we include the most successful
results with maximum relative errors controlled in � 3% in
Figs. 20, 21, 22, 23.

123



192 Page 20 of 32 Eur. Phys. J. C (2024) 84 :192

Fig. 20 A random serial quantum model trained with data samples to
fit the target function of the single interval case. Top: the MSE loss
function as a function of epochs, where the minimum loss is achieved
at epoch 982. Bottom left: a random initialization of the serial quan-

tum model with r = 6 sequential repetitions of Pauli encoding gates.
Bottom right: the circles represent the 300 data samples of the single
interval Fourier series with � = 2 and ε = 0.1 for (14). The red curve
represents the quantum model after training

As observed from Figs. 20, 21, 22, 23, a rescaling of the
data is necessary to achieve precise matching between the
quantum models and the Fourier spectrum of our examples.
This rescaling is possible because the global phase is unob-

servable [30], which introduces an ambiguity in the data-
encoding. Consider our quantum model

fθ (x) = 〈0|U †(x, θ)MU (x, θ)|0〉 =
∑

ω∈�

cω(θ)eiωx , (46)
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Fig. 21 A random parallel quantum model for the single interval case. Top: the loss function achieves minimum loss at epoch 917. Bottom: a
random initialization of the quantum model with r = 5 parallel repetitions of Pauli encoding gates that has achieved a good fit

where we consider the case of a single qubit L = 1, then

U (x) = W (2)g(x)W (1). (47)

Note that the frequency spectrum � is determined by the
eigenvalues of the data-encoding Hamiltonians, which is
given by the operator

g(x) = e−i x H . (48)

H has two eigenvalues (λ1, λ2), but we can rescale the energy
spectrum to (−γ, γ ) as the global phase is unobservable (e.g.
for Pauli rotations, we have γ = 1

2 ). We can absorb γ from
the eigenvalues of H into the data input by re-scaling with

x̃ = γ x . (49)
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Fig. 22 A random serial quantum model trained with data samples to
fit the target function of the two-interval system with a small cross-ratio.
Top: the loss function achieves minimum loss at epoch 968. Bottom left:
a random initialization of the serial quantum model of r = 6 sequential

repetitions of Pauli encoding gates. Bottom right: the circles represent
the 300 data samples of the two-interval Fourier series with x = 0.05,
α = 0.1, and ε = 0.1 for (28). The red curve represents the quantum
model after training

Therefore, we can assume the eigenvalues of H to be some
other values. Specifically, we have chosen γ = 6 in the train-
ing, where the interval in x is stretched from [0, 1] to [0, 6],
as can be seen in Figs. 20, 21, 22, 23.

We should emphasize that we are not re-scaling the origi-
nal target data, but instead, we are re-scaling how the data is
encoded. Effectively, we are re-scaling the frequency of the
quantum model itself. The intriguing part is that the global
phase shift of the operator acting on a quantum state cannot
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Fig. 23 A random parallel quantum model for the two-interval case. Top: the loss function achieves minimum loss at epoch 818. Bottom: a random
initialization of the quantum model with r = 5 parallel repetitions of Pauli encoding gates that has achieved a good fit

be observed, yet it affects the expressive power of the quan-
tum model. This can be understood as a pre-processing of
the data, which is argued to extend the function classes of
the quantum model that can represent [30].

This suggests that one may consider treating the re-scaling
parameter γ as a trainable parameter [69]. This would turn
the scaling into an adaptive “frequency matching” process,

potentially increasing the expressivity of the quantum model.
Here we only treat γ as a tunable hyperparameter. The scal-
ing does not need to match with the data, but finding an
appropriate scaling parameter is crucial for model training.
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Fig. 24 We have plotted the single interval example with L = 2 and
ε = 0.1 for (14). Here the legends GN refer to the Fourier series of the
generating function to degree N , by summing up to m = 10 in (39).
GTaylor refers to the Taylor series form (12) of the generating function
by summing up to k = 100

5.4 Recovering the von Neumann entropy

So far, we have managed to rewrite the generating function
into a partial Fourier series fN (w) of degree N , defined on
the interval w ∈ [−1, 1]. By leveraging variational quantum
circuits, we have been able to reproduce the Fourier coeffi-
cients of the series accurately. In principle, with appropriate
data-encoding and re-scaling strategies, increasing the depth
or width of the quantum models would enable us to capture
the series to any arbitrary degree N . Thus, the expressivity of
the Rényi entropies can be established in terms of quantum
models. However, a crucial problem remains, that is, we need
to recover the von Neumann entropy under the limit w → 1

lim
w→1

G(w; ρA) = S(ρA), (50)

where the limiting point is exactly at the boundary of the
interval that we are approximating. However, as we can see
clearly from Fig. 24, taking such a limit naïvely gives a very
inaccurate value compared to the true von Neumann entropy.
This effect does not diminish even by increasing N to achieve
a better approximation of the series when compared to its
Taylor series form, as shown in Fig. 24. This is because the
Fourier series approximation is always oscillatory at the end-
points, a general feature known as theGibbs phenomenon for
the Fourier series when approximating discontinuous or non-
periodic functions.

A priori, a partial Fourier series of a function f (x) is a
very accurate way to reconstruct the point values of f (x), as
long as f (x) is smooth and periodic. Furthermore, if f (x)
is analytic and periodic, then the partial Fourier series fN
would converge to f (x) exponentially fast with increasing
N . However, fN (x) in general is not an accurate approxima-
tion of f (x) if f (x) is either discontinuous or non-periodic.
Not only the convergence is slow, there is an overshoot near
the boundary of the interval. There are many different ways
to understand this phenomenon. Broadly speaking, the dif-
ficulty lies in the fact that we are trying to obtain accurate

local information from the global properties of the Fourier
coefficients defined via an integral over the interval, which
seems to be inherently impossible.

Mathematically, the occurrence of the Gibbs phenomenon
can be easily understood in terms of the oscillatory nature of
the Dirichlet kernel, which arises when the Fourier series is
written as a convolution. Explicitly, the Fourier partial sum
can be written as

sn(x) = 1

π

∫ π

−π

f (ξ)Dn(ξ − x)dξ, (51)

where the Dirichlet kernel Dn(x) is given by

Dn(x) = sin (n + 1
2 )x

2 sin x
2

. (52)

This function oscillates between positive and negative values.
The behavior is therefore responsible for the appearance of
the Gibbs phenomenon near the jump discontinuities of the
Fourier series at the boundary.

Therefore, our problem can be accurately framed as fol-
lows: given the 2N + 1 Fourier coefficients f̂k of our gen-
erating function (39) for −N ≤ k ≤ N , with the generat-
ing function defined in the interval w ∈ [−1, 1], we need
to reconstruct the point value of the function at the limit
w → 1. The point value of the generating function at this
limit exactly corresponds to the von Neumann entropy. Espe-
cially, we need the reconstruction to converge exponentially
fast with N to the correct point value of the generating func-
tion, that is

lim
w→1

|G(w; ρA) − fN (w)| ≤ e−αN , α > 0. (53)

This is for the purpose of having a realistic application of
the quantum model, where currently the degree N we can
approximate for the partial Fourier series is limited by the
depth or the width of the quantum circuits.

We are in need of an operation that can diminish the oscil-
lations, or even better, to completely remove them. Sev-
eral filtering methods have been developed to ameliorate
the oscillations, including the non-negative and decaying
Fejér kernel, which smooths out the Fourier series over the
entire interval, or the introduction of Lanczos σ factor, which
locally reduces the oscillations near the boundary. For a com-
prehensive discussion on the Gibbs phenomenon and these
filtering methods, see [73]. However, we emphasize that none
of these methods are satisfying, as they still cannot recover
accurate point values of the function f (x) near the boundary.

Therefore, we need a more effective method to remove
the Gibbs phenomenon completely. Here we will adopt a
powerful method by re-expanding the partial Fourier series
into a basis of Gegenbauer polynomials.5 This is a method

5 Note that other methods exist based on periodically extending the
function to give an accurate representation within the domain of inter
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developed in the 1990s by a series of seminal works [75–80],
we also refer to [81,82] for more recent reviews.

The Gegenbauer expansion method allows for accurate
representation, within exponential accuracy, by only sum-
ming a few terms from the Fourier coefficients. Given an ana-
lytic and non-periodic function f (x) on the interval [−1, 1]
(or a sub-interval [a, b] ⊂ [−1, 1]) with the Fourier coeffi-
cients

f̂k = 1

2

∫ 1

−1
f (x)e−ikπxdx, (54)

and the partial Fourier series

fN (x) =
N∑

k=−N

f̂ke
ikπx . (55)

The following Gegenbauer expansion represents the original
function we want to approximate with the Fourier informa-
tion

SN ,M (x) =
M∑

n=0

gλ
n,NC

λ
n (x), (56)

where gλ
n,N is the Gegenbauer expansion coefficients and

Cλ
n (x) are the Gegenbauer polynomials.6 Note that we have

the following integral formula for computing gλ
n,N

1

hλ
n

∫ 1

−1
(1 − x2)λ− 1

2 einπxCλ
n (x)dx

= �(λ)

(
2

πk

)λ

in(n + λ)Jn+λ(πk), (59)

then

gλ
n,N = δ0,n f̂ (0) + �(λ)in(n + λ)

×
N∑

k=−N ,k �=0

Jn+λ(πk)

(
2

πk

)λ

f̂k, (60)

Footnote 5 continued
est, which involves reconstructing the function based on Chebyshev
polynomials [74]. However, we do not explore this method in this work.
6 The Gegenbauer expansion coefficients gλ

n,N are defined with the
partial Fourier series fN (x) as

gλ
n,N = 1

hλ
n

∫ 1

−1
(1 − x2)λ− 1

2 fN (x)Cλ
n (x)dx, 0 ≤ n ≤ M. (57)

For λ ≥ 0, the Gegenbauer polynomial of degree n is defined to satisfy

∫ 1

−1
(1 − x2)λ− 1

2 Cλ
k (x)Cλ

n (x)dx = 0, k �= n. (58)

We refer to Appendix B for a more detailed account on the properties
of the Gegenbauer expansion.

Fig. 25 Gegenbauer expansion constructed from the Fourier informa-
tion. Here SM refers to the Gegenbauer polynomials of order M . Note
that we set βε = 0.25, then λ = M = 0.25N . Therefore, in order to
construct the polynomials of order M , we need the information of the
Fourier coefficients to order N = 4M

where we only need the Fourier coefficients f̂k .
In fact, the Gegenbauer expansion is a two-parameter fam-

ily of functions, characterized by λ and M . It has been shown
that by setting λ = M = βεN where ε = (b − a)/2 and
β < 2πe

27 for the Fourier case, the expansion can achieve
exponential accuracy with N . Note that M will determine
the degrees of the Gegenbauer polynomials, and as such,
we should allow the degrees of the original Fourier series to
grow with M . For a clear demonstration of how the Gegen-
bauer expansion approaches the generating function from
the Fourier data, see Fig. 25. We will eventually be able to
reconstruct the point value of the von Neumann entropy near
w → 1 with increasing order in the expansion. A more
precise statement regarding the exponential accuracy can
be found in Appendix B. This method is indeed a process
of reconstructing local information from global information
with exponential accuracy, thereby effectively removing the
Gibbs phenomenon.

Given that the Gegenbauer reconstruction from the Fourier
data is always possible, establishing the expressivity of quan-
tum neural networks directly for the Gagenbauer polynomi-
als is an open question worth pursuing.

6 Discussion

In this paper, we have considered a novel approach of using
classical and quantum neural networks to study the analytic
continuation of von Neumann entropy from Rényi entropies.
We approach the analytic continuation problem in a way suit-
able to deep learning techniques by rewriting Tr ρn

A in the
Rényi entropies in terms of a generating function that mani-
fests as a Taylor series (12). We show that our deep learning
models achieve this goal with a limited number of Rényi
entropies.
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Instead of using a static model design for the classi-
cal neural networks, we adopt the KerasTuner in finding
the optimal model architecture and hyperparameters. There
are two supervised learning scenarios: predicting the von
Neumann entropy given the knowledge of Rényi entropies
using densely connected neural networks, and treating higher
Rényi entropies as sequential deep learning using RNNs. In
both cases, we have achieved high accuracy in predicting the
corresponding targets.

For the quantum neural networks, we frame a similar
supervised learning problem as a mapping from inputs to pre-
dictions. This allows us to investigate the expressive power
of quantum neural networks as function approximators, par-
ticularly for the von Neumann entropy. We study quantum
models that can explicitly realize the generating function as
a partial Fourier series. However, the Gibbs overshooting
hinders the recovery of an accurate point value for the von
Neumann entropy. To resolve this issue, we re-expand the
series in terms of Gegenbauer polynomials, which leads to
exponential convergence and improved accuracy.

Several relevant issues and potential improvements arise
from our approach:

• It is crucial to choose the appropriate architectures before
employing KerasTuner, for instances, densely connected
layers in Sect. 3 and RNNs in Sect. 4. Because these
architectures are built for certain tasks a priori. Keras-
Tuner only serves as an effective method to determine
the optimal complexity and hyperparameters for model
training. However, since the examples from CFT2 have
different analytic structures for both the von Neumann
and Rényi entropies, it would be interesting to explore
how the different hyperparameters correlate with each
example.

• Despite being efficient, the parameter spaces we sketched
in Sects. 3.1 and 4.1 that the KerasTuner searches are not
guaranteed to contain the optimal setting, and there could
be better approaches.

• We can generate datasets by fixing different physical
parameters, such as temperature for (19) or cross-ratio
x for (28). While we have considered the natural param-
eters to vary, exploring different parameters may offer
more representational power. It is possible to find a Dense
model that provides feasible predictions in all parameter
ranges, but may require an ensemble of models.

• Regularization methods, such as K-fold validation, can
potentially reduce the model size or datasets while main-
taining the same performance. It would be valuable to
determine the minimum datasets required or whether
models with low complexity still have the same repre-
sentational power for learning entanglement entropy.

• On the other hand, training the model with more data and
resources is the most effective approach to improve the

model’s performance. One can also scale up the search
process in the KerasTuner or use ensemble methods to
combine the models found by it.

• For the quantum neural networks, note that our approach
does not guarantee convergence to the correct Fourier
coefficients, as we outlined in Sect. 5.1. On the other
hand, not all the trainable parameters will contribute to
all the Fourier coefficients, where theoretical understand-
ing is lacking. It may be beneficial to investigate various
pre-processing or data-encoding strategies to improve the
approximation of the partial Fourier series with a high
degree r that generally requires more training parame-
ters [83–86].

There are also future directions that are worth exploring
that we shall comment on briefly:

• Mutual information: We can extend our study to mutual
information for two disjoint intervals A and B, which is
an entanglement measure related to the von Neumann
entropy defined as

I (A : B) ≡ S(ρA) + S(ρB) − S(ρA∪B). (61)

In particular, there is a conjectured form of the gen-
erating function in [8], with Tr ρn

A being replaced by
Tr ρn

A Tr ρn
B/ Tr ρn

A∪B . It is worth exploring the expres-
sivity of classical and quantum neural networks using this
generating function, particularly as mutual information
allows eliminating the UV-divergence and can be com-
pared with some realistic simulations, such as spin-chain
models [87].

• Self-supervised learning for higher Rényi entropies:
Although we have shown that RNN architecture is effec-
tive in the sequence learning problem in Sect. 4, it is
worth considering other architectures that could poten-
tially offer better performance. For instance, a time-
delay neural network, depthwise separable convolutional
neural network, or a Transformer may be appropriate
for certain types of data. These architectures may be
worth exploring in extending the task of extracting higher
Rényi entropies as self-supervised learning, particularly
for examples where analytic continuation is not available.

• Other entanglement measures from analytic continu-
ation: There are other important entanglement measures,
say, relative entropy or entanglement negativity that may
require analytic continuation and can be studied numer-
ically based on neural networks. We may also consider
entanglement entropy or entanglement spectrum that can
be simulated in specific models stemming from con-
densed matter or holographic systems.

• Expressivity of classical and quantum neural net-
works: We have studied the expressivity of classical
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and neural networks for the von Neumann and Rényi
entropies, with the generating function as the medium.
This may help us in designing good generating func-
tions for other entanglement measures suitable for neural
networks. It is also worth understanding whether other
entanglement measures are also in the function classes
that the quantum neural networks can realize.

Acknowledgements We thank Xi Dong for his encouragement of this
work. C-H.W. was supported in part by the U.S. Department of Energy
under Grant No. DE-SC0023275, and the Ministry of Education, Tai-
wan. This material is based upon work supported by the Air Force Office
of Scientific Research under award number FA9550-19-1-0360.

Data Availability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: The data is available
on GitHub at the same repository below in Code Availability].

Code availability The source code for both our classical and quantum
models is publicly available on GitHub at the following repository:
(https://github.com/Chih-HungWu/ML-von-Neumann-Entropy). The
implementation is written in Python and is based on the TensorFlow-
Keras framework [52,53] for the classical deep learning models studied
in Sects. 3 and 4, and on the PennyLane framework [72] for the quantum
models studied in Sect. 5. We have also included the Mathematica files
used to generate the datasets based on the generating function method
introduced in Sect. 2, along with our datasets. One can easily reproduce
our results using their own choices of datasets with great generalizabil-
ity; please refer to the documentation for further instructions.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix A Fourier series representation of the
generating function

Suppose there is a Fourier series representation of the gener-
ating function from (7)

G(z; ρA) =
∞∑

n=−∞
cne

inz . (A1)

The idea is that we want to compute the Fourier coefficients
given only the information about G(z; ρ) or Tr ρn

A. We can
compute the complex-valued Fourier coefficients cn using
real-valued coefficients an and bn for a general period T

where

G(z; ρA) = a0

2
+

∞∑

n=1

an cos

(
2πnz

T

)

+ bn sin

(
2πnz

T

)
. (A2)

Note that

an = 2

T

∫ z2

z1

G(z; ρA) cos

(
2πnz

T

)
dz, (A3)

bn = 2

T

∫ z2

z1

G(z; ρA) sin

(
2πnz

T

)
dz, (A4)

where we only need to compute the two Fourier coefficients
using the generating function of Tr ρn

A. However, the above
integrals are hard to evaluate in general. Instead, we will show
that both an and bn can be written as the following series

an =
∞∑

m=0

G(0; ρ)(m)

m! Ccos(n,m), (A5)

bn =
∞∑

m=0

G(0; ρ)(m)

m! Csin(n,m). (A6)

where Ccos(n,m) and Csin(n,m) involve certain special
functions. The definitions of G(0; ρA)(m) starts from the fol-
lowing generating function in terms of w from (9)

G(w; ρA) = − Tr (ρA ln [1 − w(1 − ρA)]), (A7)

where the m-th derivative with w → 0

G(0; ρA)(m)

= − Tr[(−1)m+1(m − 1)!ρA(ρA − 1)m]

= −(m − 1)!
m∑

k=0

(−1)2m−k+1m!
k!(m − k)! Tr (ρk+1

A ). (A8)

Note that we have to define for m = 0 such that

G(0; ρA)(0) = − Tr(ρA ln 1) = 0. (A9)

Then we have the Fourier series representation of the
generating function on an interval [w1, w2] with period
T = w2 − w1 given by

G(w; ρA) = a0

2

+
∞∑

n=1

{ ∞∑

m=0

f̃ (m)

m
Ccos(n,m) cos

(
2πnw

T

)

+
∞∑

m=0

f̃ (m)

m
Csin(n,m) sin

(
2πnw

T

)}
,

(A10)
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where we have defined

f̃ (m) ≡ −
m∑

k=0

(−1)2m−k+1m!
k!(m − k)! Tr (ρk+1

A ). (A11)

with manifest Tr ρk+1
A appearing in the expression.

Now we need to work out Ccos(n,m) and Csin(n,m).
First, let us consider in general

an = 2

T

∫ t2

t1
f (t) cos

(
2πnt

T

)
dt, (A12)

where we have written G(w; ρA) as f (t) for simplicity. We
can write down the Taylor series of both pieces

f (t) =
∞∑

j=0

f ( j)(0)

j ! t j (A13)

cos

(
2πnt

T

)
=

∞∑

k=0

(−1)k

(2k)!
(

2πnt

T

)2k

, (A14)

Consider the following function

Tcos(t) ≡ f (t) cos

(
2πnt

T

)

=
[ ∞∑

j=0

f ( j)(0)

j ! t j
][ ∞∑

k=0

(−1)k

(2k)!
(

2πnt

T

)2k]
,

(A15)

then let us collect the terms in orders of t

Tcos(t) = f (0) + f (1)(0)t

+
(

1

2
f (2)(0) − 2 f (0)

(
πn

T

)2)
t2

+
(

1

6
f (3) f (0) − 2 f (1)(0)

(
πn

T

)2)
t3

+
(

1

24
f (4)(0) − f (2)

(
πn

T

)2

+ 2

3
f (0)

(
πn

T

)4)
t4

+ · · · , (A16)

then the integral becomes

∫ t2

t1
Tcos(t)dt = f (0)(t2 − t1) + 1

2
f (1)(0)(t2

2 − t2
1 )

+ 1

3

(
1

2
f (2)(0) − 2 f (0)

(
πn

T

)2)
(t3

2 − t3
1 )

+ 1

4

(
1

6
f (3) f (0) − 2 f (1)(0)

(
πn

T

)2)
(t4

2 − t4
1 )

+ 1

5

(
1

24
f (4)(0) − f (2)

(
πn

T

)2

+ 2

3
f (0)

(
πn

T

)4)
(t5

2 − t5
1 )

+ · · · . (A17)

Now we want to re-order this expression, where we collect
terms in terms of f (m)(0)

∫ t2

t1
Tcos(t)dt

= f (0)

(
(t2 − t1) − 2

3

(
πn

T

)2

(t3
2 − t3

1 )

+ 2

15

(
πn

T

)4

(t5
2 − t5

1 ) + · · ·
)

+ f (1)(0)

(
1

2
(t2

2 − t2
1 ) − 1

2

(
πn

T

)2

(t4
2 − t4

1 ) + · · ·
)

+ f (2)(0)

(
1

24
(t4

2 − t4
1 ) + · · ·

)
+ · · · . (A18)

After multiplying a factor of 2/T , this can be written as

an = 2

T

∫ t2

t1
Tcos(t)dt =

∞∑

m=0

f (m)(0)

m! Ccos(n,m), (A19)

where

Ccos(n,m)

=
∞∑

p=0

[
(−1)p2(2p+1)n2pπ2p

(2p + m + 1)(2p)!T 2p+1

×
(
t (2p+m+1)
2 − t (2p+m+1)

1

)]

= 2

(m + 1)T

×
[
pFq

(
m + 1

2
; 1

2
,
m + 3

2
;−n2π2t2

2

T 2

)
tm+1
2

− pFq

(
m + 1

2
; 1

2
,
m + 3

2
;−n2π2t2

2

T 2

)
tm+1
1

]
. (A20)

Next, we consider the case for Csin(n,m), where we need
to work out

bn = 2

T

∫ t2

t1
f (t) sin

(
2πnt

T

)
dt, (A21)

again, we know

sin

(
2πnt

T

)
=

∞∑

k=0

(−1)k

(2k + 1)!
(

2πnt

T

)(2k+1)

, (A22)

then we define

Tsin(t) ≡ f (t) sin

(
2πnt

T

)

=
[ ∞∑

j=0

f ( j)(0)

j ! t j
][ ∞∑

k=0

(−1)k

(2k + 1)!
(

2πnt

T

)2k+1]
,

(A23)
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with the only difference being the denominator (2k)! →
(2k + 1)! and the power of 2πnt

T becomes 2k + 1. Then

Csin(n,m)

=
∞∑

p=0

[
(−1)p2(2p+2)n2p+1π2p+1

(2p + m + 2)(2p + 1)!T 2p+2

×
(
t (2p+m+2)
2 − t (2p+m+2)

1

)]

= 4nπ

(m + 2)T 2

×
[
pFq

(
m + 2

2
; 3

2
,
m + 4

2
;−n2π2t2

2

T 2

)
tm+2
2

− pFq

(
m + 2

2
; 3

2
,
m + 4

2
;−n2π2t2

1

T 2

)
tm+2
1

]
. (A24)

Appendix B The Gegenbauer polynomials and the
Gibbs phenomenon

In the appendix, we discuss briefly the definition and proper-
ties of the Gegenbauer polynomials used to remove the Gibbs
phenomenon in Sect. 5.4.

The Gegenbauer polynomialsCλ
n (x) of degree n for λ ≥ 0

are defined by the integral
∫ 1

−1
(1 − x2)λ− 1

2 Cλ
k (x)Cλ

n (x)dx = 0, k �= n. (B25)

with the following normalization

Cλ
n (1) = �(n + 2λ)

n!�(2λ)
. (B26)

Note the polynomials are not orthonormal, the norm ofCλ
n (x)

is
∫ 1

−1
(1 − x2)λ− 1

2 (Cλ
n (x))2dx = hλ

n, (B27)

where

hλ
n = π

1
2 Cλ

n (1)
�(λ + 1

2 )

�(λ)(n + λ)
. (B28)

Given a function f (x) defined on the interval [−1, 1] (or
a sub-interval [a, b] ⊂ [−1, 1]), the corresponding Gegen-
bauer coefficients f̂ λ(l) are given by

f̂ λ(l) = 1

hλ
n

∫ 1

−1
(1 − x2)λ− 1

2 f (x)Cλ
l (x)dx, (B29)

then the truncated Gegenbauer expansion up to the firstm+1
terms is

f λ
m(x) =

m∑

l=0

f̂ λ(l)Cλ
l (x). (B30)

Here we will sketch briefly how the Gegenbauer expan-
sion leads to a resolution of the Gibbs phenomenon as we
discussed in Sect. 5.4. In fact, one can prove that there is an
exponential convergence between the function f (x) we want
to approximate and the m-th degree Gegenbauer polynomi-
als. We will only sketch the idea behind the proof, and we
refer the readers to the review in [80] for the details.

One can establish exponential convergence by demon-
strating that the errors for the N -th Fourier coefficient,
expanded into Gegenbauer polynomials, can be made expo-
nentially small. Let us call the f mN (x) the expansion of fN (x)
into m-th degree Gegenbauer polynomials and f m(x) the
expansion of f (x) into m-th degree Gegenbauer polynomi-
als. Then we have the following relation, where the approxi-
mation of f (x) by f mN (x) is obviously bounded by the error
between f (x) and f m(x) and the error between f m(x) and
f mN (x)

|| f (x) − f mN (x)|| ≤ || f (x) − f m(x)||
+|| f m(x) − f mN (x)||. (B31)

On the right hand side of the inequality, we call the first
norm as the regularization error, while the second norm as
the truncation error. Note that we take the norm to be the
maximum norm over the interval [−1, 1]. To be more precise,
we can write the truncation error as

|| f m − f mN || = max−1≤x≤1

∣∣∣∣
m∑

k=0

( f̂ λ
k − ĝλ

k )C
λ
k (x)

∣∣∣∣, (B32)

where we take f̂ λ
k to be the unknown Gegenbauer coefficients

of the function f (x). If both λ and m grow linearly with N ,
this error is shown to be exponentially small. On the other
hand, the regularization error can be written as

|| f − f m || = max−1≤1

∣∣∣∣ f (x) −
m∑

k=0

f̂ λ
k C

λ
k (x)

∣∣∣∣. (B33)

It can also be shown that this error is exponentially small
for λ = γm with a positive constant γ . Since both the reg-
ularization and truncation errors can be made exponentially
small with the prescribed conditions, the Gegenbauer expan-
sion achieves uniform exponential accuracy and removes the
Gibbs phenomenon from the Fourier data.
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