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Abstract Axion-like particles (ALPs) that decay into pho-
ton pairs pose a challenge for experiments that rely on the
construction of a decay vertex in order to search for long-
lived particles. This is particularly true for beam-dump exper-
iments, where the distance between the unknown decay posi-
tion and the calorimeter can be very large. In this work we use
machine learning to explore the possibility to reconstruct the
ALP properties, in particular its mass and lifetime, from such
inaccurate observations. We use a simulation-based inference
approach based on conditional invertible neural networks to
reconstruct the posterior probability of the ALP parameters
for a given set of events. We find that for realistic angular and
energy resolution, such a neural network significantly outper-
forms parameter reconstruction from conventional high-level
variables while at the same time providing reliable uncer-
tainty estimates. Moreover, the neural network can quickly
be re-trained for different detector properties, making it an
ideal framework for optimizing experimental design.

1 Introduction

The goal of any particle physics experiment is to gain insight
into the underlying physical theory by using the recorded
events to perform statistical inference. A common situation
in high-energy physics is that one can easily simulate large
numbers of events for given theory parameters, but there is no
direct access to the likelihood of a given event. The resulting
difficulty to infer theory parameters from observed events is
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called the inverse problem.1 Its most common solution is to
engineer a small number of high-level observables, whose
probability distribution can be easily extracted from simula-
tions.

For events with a high multiplicity of final state particles,
many different high-level observables can be constructed,
and finding the optimal ones is an important and difficult
task. But even a small number of final state particles may
pose a challenge, if their properties are difficult to measure.
For example, consider the decay of a long-lived particle with
unknown mass and lifetime into a pair of photons. Since pho-
tons do not leave tracks in the tracking detector, it is difficult
to accurately measure the direction of their momentum in
the electromagnetic calorimeter, which prevents an accurate
reconstruction of the decay vertex and of the invariant mass of
the parent particle [3]. In such a case different vertex recon-
struction algorithms are needed, which construct complex
high-level observables out of all the available experimental
information that go beyond reconstructing four-vectors.

In such a setup, the optimal observable itself may depend
on the details of the experiment, such as the size and position
of the detector and its angle and energy resolution. In order to
optimise experimental design, it then becomes necessary to
automate the process of constructing high-level observables.
Major progress has been made in this context in recent years
by applying Machine Learning (ML) techniques to the physi-
cal sciences [4] and more specifically to high-energy physics
[5]. Of particular importance for us is the application of ML
to LHC physics [6,7] and to searches for new physics [8].

1 For an introduction to the inverse problem and modern ways to address
it see Refs. [1,2].
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The theory behind using ML to learn new physics has been
studied in detail in Refs. [9–11].2

ML approaches to the inverse problem have the key advan-
tage that they are able to adapt to different detector designs
easily, as long as the final state under consideration and the
underlying physical process remain the same. For example,
if we want to assess the impact of varying the calorimeter
resolution on our ability to constrain the parameters of a spe-
cific model, it is typically enough to just retrain a neural net-
work (NN) developed for a specific experimental setup with-
out changing the underlying network architecture or training
strategy.

An application of particular interest for this problem is
the proposed construction of new beam-dump experiments
at CERN to search for feebly-interacting particles at the
GeV scale with macroscopic decay lengths. Among the most
well-motivated such particles is an axion-like particle (ALP),
which arises as a nearly massless particle from the spon-
taneous breaking of an approximate global symmetry [13].
If these ALPs couple dominantly to the electroweak gauge
bosons of the SM, they may be copiously produced in rare
meson decays (such as B → K +a) and subsequently decay
into pairs of photons. There already exist many constraints on
such a scenario, but near-future experiments such as SHAD-
OWS [14], SHiP [15] or HIKE [16] offer unique opportuni-
ties to substantially improve sensitivity.

In this work we explore a ML approach known as
simulation-based inference (SBI) in order to obtain likeli-
hoods (or posterior probabilities) and reconstruct the ALP
parameters from a small number of observed events. We find
that this approach adapts easily to variations in the assumed
detector properties: If the properties of the final-state particles
can be accurately measured, the SBI performs very similar to
conventional methods that would reconstruct the vertex posi-
tion and the invariant mass. If, on the other hand, only less
accurate measurements are available, the network makes use
of additional and correlated information, such as the angu-
lar and energy distribution of ALPs produced in rare meson
decays, to significantly outperform conventional methods.
Most importantly, this process is fully automated and can
be quickly repeated for different detector designs, making it
possible for example to perform cost-benefit analyses for a
large number of experimental concepts.

The remainder of this work is structured as follows. In
Sect. 2 we introduce the physics model that we consider, the
typical experimental setup and how to simulate the physical
processes to obtain mock data. In Sect. 3 we discuss possible
ML approaches to analyse this data and identify conditional
invertible neural networks as particularly promising. We then

2 For a complete list of works in particle physics making use of ML we
recommend the living review [12].

consider ALP parameter inference for different experimental
designs in Sect. 4 and discuss our results in Sect. 5.

2 ALPs at beamdumps

2.1 Event generation

ALPs can be generated and detected in different ways,
depending on the underlying model parameters and the
experimental design [17]. In this work we focus on ALPs
that are produced in the decay B → K +a and subsequently
decay into photon pairs. Such a scenario arises for exam-
ple from ALPs that couple dominantly to SU (2)L gauge
bosons [18]:

L ⊃ −gaW
4

aWμνW̃μν , (1)

where Wμν denotes the SU (2)L field strength tensor and
W̃μν its dual. Alternatively, such a scenario can result from
ALPs coupled to SM fermions as long as the decay into pho-
tons dominates (which requires ma < 3mπ and suppressed
couplings to SM leptons) [19–21].

In our study, we will focus on a simple experimental
setup inspired by NA62 [22] and its proposed successors
HIKE [16], SHiP [15] and SHADOWS [14]. These experi-
ments are proposed to be placed in the ECN3 experimental
hall at CERN after the SPS accelerator stage at the LHC.
The extracted protons have an energy of 400 GeV, which is
enough to produce bottom and charm mesons when imping-
ing on a fixed target. The corresponding production cross
sections and differential distributions have been studied in
Ref. [23,24], and we take their PYTHIA8 [25] samples of B
mesons as starting point for our simulations. ALP production
through D meson decays is found to be negligible [17], so
we focus on B meson decays instead.

The decay of ALPs into photon pairs is described by the
Lagrangian

L ⊃ −1

4
gaγ aFμν F̃

μν , (2)

where the effective ALP-photon coupling is related to the
coupling to SU (2)L gauge bosons via gaγ = sin2 θWgaW
with θW being the weak mixing angle. The ALP lifetime is
given in terms of this coupling and the ALP mass ma by the
relation

(cτa)
−1 = Γa→γ γ = g2

aγ

64π
m3

a . (3)

We will be interested in the case where this coupling is small
(of the order of 10−5 GeV−1), which implies a macroscopic
decay length up to hundreds of meters.
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Both the B meson decay and the subsequent ALP decay
are isotropic in the respective rest frames, such that the distri-
bution of photon angles and energies can be easily obtained
through appropriate rotations and Lorentz boosts. We simu-
late these decays following the public code ALPINIST [17].
To determine the position of the ALP decay vertex, we
assume that the B meson decays promptly at r = (0, 0, 0)

and sample randomly from the exponential distribution of
ALP decay lengths d given by

p(d) = exp

(
− d ma

pacτa

)
, (4)

where pa denotes the ALP momentum in the laboratory
frame. The vertex position is then obtained as rV ≡
(xV , yV , zV ) = d pa/pa .3

In principle, the branching ratios for B → K +a can also
be calculated in terms of the effective ALP model parameters.
In this work, however, we will treat the B meson branching
ratios, and hence the ALP production cross section, as an
independent parameter. This is well-motivated both in the
case of gauge boson interactions, where the effective ALP
photon coupling may receive an additional contribution from
an underlying ALP-hypercharge coupling, and in the case of
quark interactions, where the B meson branching ratio has a
residual logarithmic dependence on the ultraviolet comple-
tion [19,26]. The B meson branching ratios then only affect
the total number of expected events, i.e. the normalisation of
the various distributions, but not their shape. In the follow-
ing, we will focus our attention primarily on the two ALP
parameters that affect kinematic distributions in more com-
plicated ways, namely (ma, gaγ ) or equivalently (ma, cτa).
These are provided as input to our simulator in order to extract
experimental observables.

2.2 Detector geometry and experimental setup

We consider a typical beam-dump experiment, where the
ALPs are produced inside an absorber and propagate into an
evacuated decay volume (see Fig. 1). The photons produced
in the ALP decays then propagate through the decay volume
and are detected when interacting with the calorimeter at the
far end of the experiment. The decay volume is placed at a
distance zmin from the point where the proton beam impinges
onto the dump. The decay volume ends at zmax where the
calorimeter observing the photons is located. The calorimeter
is assumed to be a square with side length �cal centred at
x = xcal and y = 0. In a more refined treatment, we would
need to take into account that between the end of the decay

3 We note that, while the vertex distribution is invariant under rotations
in the plane transverse to the beam direction, most detector geometries
are not. To maintain generality, we will therefore retain all three spatial
coordinates.

Fig. 1 Sketch of the detector design, with a focus on the observable
features (xi , yi , Ei , θi , φi ). The calorimeter plane has been highlighted
in light red

volume and the calorimeter there are tracking detectors. In
our simplified discussion the tracking chambers are taken to
be part of the decay volume and thus the calorimeter is placed
directly at the end of the decay volume.

Candidate ALP events are selected if both photons hit
the calorimeter plane. In order to ensure that the resulting
showers can be individually resolved, we require a mini-
mum photon separation of dmin = 10 cm. Furthermore, we
require both photons to have an energy greater than 1 GeV,
which is readily satisfied by photons produced in the decay
of a boosted ALP. A perfect detector would be able to recon-
struct the photon 4-momenta (i.e. their energy Ei and angu-
lar information θi , φi ) and the calorimeter hit position (xi
and yi ). Experimentally, the showers position zi needs to be
determined as well. Since the shower z-coordinate is typi-
cally meters away from the decay vertex, we identify zi with
the position zmax of the first calorimeter plane and assume
that the impact of the uncertainty is small compared to the
other uncertainties. We note that these observables contain
redundant information: The requirement that both photons
originate from the same decay imposes one constraint on the
ten observables (Ei , θi , φi , xi and yi ), while two further con-
straints are obtained in the case of a two-body decay, even if
the mass of the decaying particle is unknown. If the observ-
ables are consistent with these constraints, it is possible to
reconstruct the vertex position (xV , yV , zV ).

Typical laterally segmented electromagnetic calorimeters
provide relative photon energy resolution of a few percent
for GeV-energies. The shower position can be reconstructed
to a fraction of the spatial segmentation. These six observ-
ables (Ei , xi and yi ) are generally insufficient to reconstruct
the vertex position or the ALP mass. To do so, we need to
extract at least some amount of angular information from the
electromagnetic showers, such as the photon opening angle

αγγ = arccos

(
p1 · p2

p1 p2

)
. (5)

The accuracy with which θi and φi (and hence αγγ ) can be
measured will directly affect our ability to reconstruct the
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Fig. 2 Distribution of generated quantities for varying ALP masses. The energy of the ALP can be reconstructed as the sum of the single photon
energies. The photon angular separation requires the measurement of the photon momenta

underlying physical process. The measurement uncertainty
critically depend on the detector properties, as for instance
the cell granularity and absorber material. To fully charac-
terize the experimental setup, we therefore need to define the
accuracy with which we can measure the different quantities
in addition to specifying the detector geometry.

We will consider two different detector geometries in our
study, which we call “on-axis detector” and “off-axis detec-
tor”. The size of the decay volume and the calorimeter is the
same in both cases. We have zmin = 10 m, zmax = 35 m with
a calorimeter size lcal = 2.5 m. The two detector geome-
tries differ in the fact that for the on-axis case xcal = 0 and
for the off-axis case xcal = 2.25 m. Our off-axis geometry
has been inspired by the current SHADOWS proposal. A
detector with fixed geometry will then be characterized by a
set of three uncertainties: the angular resolution (which we
approximate to be the same on the polar angle σ(θ) and on
the azimuthal angle σ(φ)), the relative energy uncertainty
σ(E)/E and finally the calorimeter hit resolution σ(h).

To conclude this section, we emphasize that, while there
is redundant information in the ten observables measured by
the experiment, it is necessary to use all of them to extract as
much information as possible. Traditional approaches to this
problem employ vertex reconstruction algorithms based on
the photon angles measurement, such that the reconstruction
error of the decay vertex depends on the accuracy with which
we can measure the photon momenta and calorimeter hit
positions. The algorithms that we introduce below, are not
explicitly required to extract vertex information, but they may
of course learn such information if possible and necessary.

We emphasize, however, that an accurate vertex recon-
struction is not always necessary to address the inverse prob-
lem. If we look at Fig. 2, we can see that even something as
low-level as the ALP energy, which can be reconstructed
as the sum of the photon energies, contains information

about the ALP mass, because the ALP energy distribution
is determined by the underlying ALP production mechanism
through B meson decays. However, the ALP energy distri-
butions differ only slightly for different masses, so unless
enough statistics is provided we will not be able to put a strong
constraint on the ALP mass from this information alone. The
opening angle between photons, on the other hand, is harder
to measure precisely, but the distribution of this observable
is very informative about the ALP mass.

3 Simulation-based inference

3.1 Motivation

As discussed above, it is straightforward to generate events
for a given set of ALP model parameters. The inverse prob-
lem of inferring ALP parameters from one or more observed
events is generally much harder. A promising strategy could
be to try and reconstruct the decay vertex and the invariant
mass of the decaying particle, from the observed photons.
This is easily possible if the position and momentum of each
photon is known with high accuracy.

In practice, sizeable measurement uncertainties prevent
an accurate reconstruction of the vertex and invariant mass.
While it may still be possible to estimate the vertex position
and invariant mass using for example a neural network (NN)
regressor, the statistical interpretation of the output is unclear.
Even if the regressor is trained to predict the uncertainty of
its estimate, or if the uncertainty is inferred from simula-
tions, this information would typically only be useful if the
deviations follow approximately a normal distribution.4

4 The possibility of suitably modifying the loss function of a NN regres-
sor to not only provide an estimator, but also an uncertainty on the
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For a rigorous statistical inference it is indispensable to
know the likelihood function, regardless of whether one uses
frequentist or Bayesian methods [29,30]. Even if the likeli-
hood is intractable analytically, it can be reconstructed using
an approach called simulation-based inference. As the name
suggests, the main ingredient of this approach are simu-
lations, i.e. samples of events drawn from the likelihood.
While the approach does not in principle require ML, it
has greatly benefited from advancements in ML algorithms,
which enabled its application in high-dimensional problems
and has lead to growing popularity in recent years [31–35].

A key advantage of simulation-based inference is that it
uses and combines all information available in the observed
events. For example, since we assume a specific ALP pro-
duction process, the energy of the ALP which can be inferred
from the energies of the two photons even if the decay vertex
cannot be reconstructed is correlated with the ALP mass (see
Fig. 2). If additional information on the invariant mass or the
decay vertex are available, it will be automatically combined
with other kinematic variables. Since there is no need to con-
struct explicit high-level observables, no information is lost
and the most accurate estimates are obtained. The remaining
uncertainties can be directly extracted from the shape of the
likelihood (or posterior). This makes it comparably easy to
separate the irreducible physical uncertainty due to inaccu-
rate measurements from the reducible network uncertainty.

Common ML algorithms for simulation-based inference
include classifiers [36,37], which learn probability ratios, and
normalising flows (NFs) [38,39], which perform a density
estimation task by minimizing deviations between the pre-
dicted probability distribution and the one of a given sample.
While classifiers do not learn the distributions directly, they
have the key advantage of being trained on an easier learning
task. This implies that they are in principle better suited to
tackle hard problems. In practice, however, we have found
that simple classifiers often struggle to reproduce very narrow
posteriors. Such posteriors are expected in our set-up for the
case of excellent detector resolution. In the following we will
thus focus on the NF algorithm and consider a specific modi-
fication called conditional invertible neural networks (cINN)
[40,41], described in detail below. NFs are commonly harder
to train for difficult tasks, but in our case the posterior is uni-
modal and low-dimensional. We have observed good conver-
gence and stability of the training, confirming that the cINN
is an appropriate algorithm to deal with the task at hand.

We note that simulation-based inference can be applied
both in the frequentist approach (in order to obtain like-

Footnote 4 continued
estimator has been considered in the literature [27,28]. This latest
approach could be an alternative in the case approximating the pos-
terior is not feasible, but when it is possible our approach leads to better
control due to its well-defined statistical foundation.

lihoods or likelihood ratios) and in the Bayesian approach
(where one focuses on posteriors or likelihood-to-evidence
ratios). While the ML algorithm discussed below can be
adapted to either case, we will focus on the Bayesian
approach, as it is more intuitive given the low dimension-
ality of our parameter space and the high variability of the
observations. Since the cINN has learnt the posterior, we are
able to sample directly from it. This has some key practical
advantages, as we can quickly derive the marginal posteriors
and the credibility regions once we have the posterior sam-
ples. For a frequentist approach, the network would need
to be adapted suitably [40]. In this case, with the cINN we
would sample from the likelihood, providing an alternative
event generator.

3.2 Normalizing flows and conditional invertible neural
networks

Normalizing flows tackle the issue of density estimation by
transforming a known probability density function (PDF)
through a suitable change of variables. To make this more
formal, let us consider a random variable z distributed under
a known PDF f (z). If a new random variable x is defined
through a bijective transformation z = g(x), its PDF is given
by

p(x) = f (g(x))| det J |, with Ji j = dz
dx

= ∂zi
∂x j

. (6)

In order to estimate the PDF of a given sample x, we choose
a convenient form for f (z), for example a Gaussian distri-
bution and give a NN the task of finding a suitable transfor-
mation g(x). Such a NN will be defined by its architecture
and a set of weights ψ , so that we can write gψ(x) to denote
the family of transformations g which can be expressed by
the NN for varying weights ψ . The optimal transformation
will be the one that maximizes the probability of the sam-
ple, or equivalently minimizes the Kullback-Leibler diver-
gence (KL) between the true distribution p and the proposal
distribution pψ :

DKL(p||pψ) = − 1

N

N∑
i

log pψ(xi ) (7)

with pψ(x) ≡ f (gψ(x))| det Jψ | . (8)

We denote the function pψ that minimizes DKL(p||pψ) by p̃.
To make the NN more expressive, we actually stack several
transformations gl . The result is a series (flow) of transfor-
mations which maps our target distribution p(x) to a normal
distribution f (z), hence the name normalizing flow.

In the case at hand, we have a high dimensional vector
x distributed according to a likelihood L that depends on
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model parameters θ . Lacking knowledge of the true values
of θ , we can consider different random choices θ i following
an assumed prior probability π(θ). For each such choice, we
can generate a random event xi from L(θ i ). Given pairs of
θ i and xi , NFs will learn the joint distribution

p(x, θ) = L(x|θ)π(θ) = p(θ |x)p(x). (9)

From this distribution both the posterior and the likelihood
can be derived dividing by the evidence and the prior respec-
tively. The NN structure can be adapted to guarantee that the
function gψ is invertible and the determinant of the Jacobian
Jψ fast to compute [38,42].

In the example above, the NFs treat in the same way
the low-dimensional model parameters and the high-di-
mensional observables, which can lead to difficulties when
learning the joint distribution. This problem is addressed by
cINNs, which are able to directly learn conditional probabil-
ities, i.e. likelihoods or posteriors. In previous works, cINNs
have been employed in high-energy physics for event gen-
eration [43–46], unfolding [47,48] and anomaly detection
[49,50], and for inference in other physical scenarios like the
measurement of QCD splittings [51] and the study of cosmic
rays [52]. Like NFs, cINNs work with density transforma-
tions, but now the model parameters and the observations
enter the network differently. For example, we can transform
the distribution of θ into a normal distribution, while x is not
transformed and is used to determine the transformation of
θ . Proceeding in this way we would determine the probabil-
ity of θ conditioned on x, which is the posterior probability.
Analogously, we can transform x and use θ to determine the
transformation, in which case we would derive the proba-
bility of data conditioned on the model parameters, i.e. the
likelihood.

While conditional invertible neural network treat observ-
ables and model parameters differently, the issue that the
dimensionality of the observables is considerably larger than
the dimensionality of the model parameters remains. One
way to improve the stability of training is to use a summary
network h(x), which is trained in tandem with the cINN itself.
This summary network takes as input the high-dimensional
low-level observables and provides as output to the cINN a
vector of lower dimension (see Fig. 3). We then have a set of
weights ζ defining the summary network and a set of weights
ψ defining the cINN transformation, but both of them are
determined by the same training loop. In other words, we
aim to minimize DKL(p||pψζ ), where

pψζ (θ |x) ≡ f (gψ(θ; hζ (x)))| det Jψζ | . (10)

By training the summary network at the same time as the
cINN, we effectively ask the network to learn the high-level
observables that are best suited to constrain the mass and

Fig. 3 Schematic view of our network architecture, with focus on the
summary network component and the cINN. The summary network h is
a fully connected neural network, while g is an invertible neural network
with affine coupling layers. A full description of the architecture and
hyperparameters is given in Table 1

the lifetime. The final result should not be qualitatively dif-
ferent provided the mutual information between the input
variables and the learnt high-level observables is large [41].
For the scenario under consideration we have observed that
using a summary network leads to a considerably more sta-
ble training. Not only that, but the use of a summary network
simplifies the network learning and can even lead to better
performance. Clearly, the learnt high-level observables may
not be the same for different detector setups.

To conclude this discussion, we remind the reader that the
discrete estimator of the KL divergence in Eq. (7) is defined
up to a constant that depends solely on the true posterior. The
network can thus be trained directly on the task of minimiz-
ing the distance from the true posterior without knowing it
explicitly. However, the lack of knowledge of the true pos-
terior implies that one cannot immediately quantify whether
the posterior approximation is accurate. In the following, we
will therefore explore alternative strategies to ensure that the
posteriors obtained from the cINN are sufficiently close to
the true posterior.

3.3 Application to ALPs

Let us now discuss how the general discussion above applies
to our training samples and variables. First of all, we need
to specify the probability distributions for the model param-
eters, which are used to generate the training samples. In
our Bayesian approach, these are also the prior probabilities.
Since we are interested in ALPs produced in rare B meson
decays, we focus on the mass range where ALPs would be too
heavy to be produced in K → π +a thus evading strong con-
straints from Kaon experiments like NA62 but light enough to
be produced in B → K +a. We therefore sample the masses
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with a log-prior on [0.1 GeV, 4.5 GeV].5 The detector under
consideration has zmin = 10 m, zmax = 35 m, and only par-
ticles with boosted lifetime comparable to these dimensions
can be efficiently detected. We therefore consider proper life-
times in [0.1 m, 100 m] with a log-prior. We then construct
the input parameter vector given by

θ = (log10(ma[GeV]), log10(cτa/ma[m/GeV])) . (11)

We note that the unboosted lifetime cτa/ma is what enters Eq.
(4). Considering this combination (rather than the lifetime
cτa) reduces degeneracies and hence decorrelates the two
model parameters, at least if the calorimeter has sufficient
resolution to reconstruct the vertex position.

When the cINN is trained, it is only implicitly aware of
the priors, as they affect the distribution of model parameters
given to the network for training. This is different to the
case of a classifier used to learn the likelihood-to-evidence
ratio, where the prior needs to be given explicitly [37]. The
fact that the prior is given implicitly means that the posterior
estimated by the cINN does not need to be identically zero
outside of the prior range. When evaluating the posterior for
parameter points close to prior borders, we see a smooth
transition to zero, rather than a step. It would be possible to
truncate and normalize the posterior to force it to be zero
outside of the prior range, if there is a physical reason to
do so. In our case the prior ranges are set by defining the
regions where we expect the experiment to have sufficient
sensitivity, but there is no physical reason why the lower or
higher lifetimes should not be at all possible. This does not
apply to the upper value on the mass, as for our production
process B → K +a the ALPs cannot have a mass larger than
mB − mK ≈ 4.78 GeV, so the posterior for larger masses
should be identically zero if B meson decays are the only
relevant ALP production process. In our case we settle for a
less stringent upper bound on the mass of 4.5 GeV, so that
we do not encounter this physical upper limit.

Having specified how we sample the model parameters,
let us move to the event observables. As discussed above,
each ALP event is characterised by ten experimental observ-
ables, namely the two photon energies, their the 2D-shower
positions and the shower directions. Even though our setup
in principle works with just one observed event, we will
consider data sets consisting of three observed events for
each pair (ma, cτa/ma) of model parameters. Our observ-
able space therefore has dimensionality D = 30. The three
events are not ordered in any way, while the two photons
are ordered based on their energy. To improve the training,
before passing the observables to the network, we take the

5 In principle the mass range under consideration is small enough that
a uniform prior could also work, but in order for our approach to be
easily generalisable, the log-prior is more appropriate.

natural logarithm of the photon energies and the photon polar
angles to avoid inputs that can vary over orders of magnitude.
Finally, both our model parameters and observables receive
standard preprocessing so that they have zero mean and unit
variance. For our analysis we have decided to consider sets of
three observed events, but our discussion applies in much the
same way to any number of observed events. However, it is
useful to work with multiple observed events, because we can
then perform consistency checks between them and reduce
the risk of background contamination. Our specific choice is
motivated by the common use of three predicted events for
the sensitivity projection in background-free experiments.
Let us clarify our naming conventions: we will call a single
diphoton measurement an event, we combine three events
into (data) sets and our training/test samples will consist of
multiple sets.

For the specifics of the network architecture and training,
our setup is based on Ref. [41], but adapted for the task at
hand. We fix the output of the summary network to be two-
dimensional in order to obtain two high-level observables
that are informative of the mass ma and the unboosted life-
time cτa/ma , respectively. We have checked that increasing
the output dimension of the summary network to three or four
does not lead to qualitatively different results. We have opti-
mized the other hyperparameters by performing a scan over
them for a fixed detector setup. More precisely, we have con-
sidered arrays of possible hyperparameter values and com-
bined them to have multiple network trainings. Among all the
possibilities we have looked at the six with the lowest vali-
dation losses. We have then applied these six combinations
of hyperparameters to the other detector setups to confirm
that also for them we would get good training performances.
In the end we picked the hyperparameter combination that
lead to the lowest validation loss. A summary of the network
architecture is given in Table 1.

For all the cases that we will consider below, we find that
the architecture and training hyperparameters given in Table
1 yield good convergence of the training and validation loss.
Thanks to early stopping we avoid overfitting due to over-
training, typically for our detector setups we see a difference
between the validation and training loss of 5% with respect
to the total training loss improvement from the first epoch to
the end of training. We will explicitly show below that the
residual overfitting, while not completely negligible, does
not introduce a significant bias in our results.

4 Applications

In this section we apply the cINN introduced above to the
production and detection of ALPs in proton beam dumps,
considering a simplified experiment. Before assessing the
performance of different detector setups, we take a closer
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Table 1 Architecture of the summary network and of the cINN. The
output of the summary network is fed into the coupling layers transfor-
mations. Since the summary network and the cINN are trained together,
the training hyperparameters apply to both of them

Coupling layers

Number coupling layers 4

Hidden layers [128, 128, 128, 128]

Hidden layers activation ReLU

Output layer activation linear

Summary network

Output layer dimension 2

Hidden layers [64, 64, 64, 64]

Hidden layers activation LeakyReLU (α = 0.01)

Output layer activation linear

Training hyperparameters

Max number epochs 500

Batch size 512

Initial learning rate 5 · 10−3

Decay rate 0.9 every 10 epochs

Early stopping δ < 10−3 for 50 epochs

look at the posterior in order to understand what is easy and
hard for the network to learn. We also discuss how to deal with
background events and the effect of changing the detector
resolution for low-level observables.

4.1 Learning the posterior

In the following, we will measure the performance of a given
detector setup by determining the width of the posterior,
which tells us how tightly the underlying parameters can be
constrained. It is therefore instructive to visualize the poste-
rior for some representative scenarios. Let us start with the
detector geometry defined in Sect. 2, in particular for now
our detector is on-axis (xcal = 0). To understand what a
typical posterior will look like, we consider a specific detec-
tor setup with σ(E)/E = 0.05, σ (h) = 0.1 cm, σ (θ) =
σ(φ) = 5 mrad. Such resolutions are achievable with the
calorimeters proposed for the next generation of beam dump
experiments. We note that realistically energy and angular
resolutions are function of the photon energy itself, with res-
olutions improving for increasing photon energies.

First of all, we emphasize that the posterior for events
generated by different assumed ALP masses and lifetimes
will not have the same shape, in particular their spread will
vary significantly. This is to say that physically not all life-
times and masses are equally easy to reconstruct. As a gen-
eral rule for our production mode and detector geometry,
higher masses and lower (unboosted) lifetimes (within the
sensitivity of the detector) are easier to constrain. We show
the reconstructed posterior for two different observations in

Fig. 4 corresponding to two different model parameters. On
the left, we have an “easy” to constrain observation, with a
small lifetime and sizable mass. This parameter point leads to
pretty distinctive signatures in the detector, like a decay posi-
tion close to zmin and large opening angles αγγ . On the right,
we have an “hard” to constrain observation, corresponding to
a smaller mass and a longer lifetime. In this case the marginal
posterior on the mass is broader and the marginal posterior
on the lifetime is no longer peaked but rather flat.

In both cases we find that, as anticipated, the two param-
eters are largely uncorrelated, i.e. there are no non-trivial
degeneracies in the posterior. The broad posterior for the
unboosted lifetime is not due to a deficiency of the cINN, but
reflects the fact that constraining the lifetime is fundamen-
tally harder than constraining the ALP mass. This is easily
understood, given that in the case of a perfect detector we
would be able to precisely measure the ALP mass by con-
structing the diphoton invariant mass from a single event.
Contrary to this, the decay position stems from a (truncated)
exponential distribution, meaning that even if we precisely
measured the decay position, we would not be able to infer
the lifetime exactly.

To make these statements more quantitative, we need to
quantify the width of the posterior. Since the posterior can
be highly non-Gaussian, simple width estimators like the full
width at half maximum are not descriptive of the posterior
and cannot be used to compare different setups. However, the
trained cINN enables us to directly sample from the posterior.
It is then straightforward to evaluate the covariance matrix
Σm,cτ/m :

Σm,cτ/m =
(

σ 2
m σm cτ/m

σm cτ/m σ 2
cτ/m

)
, (12)

which corresponds to the inverse of the Fisher information
matrix [53]. From this matrix we can determine the typical
area of parameter space enclosed by the posterior as

Am,cτ/m = π

√
det

(
Σm,cτ/m

)
. (13)

In these equations and in the following we will write for
brevity σm and σcτ/m , but these quantities refer to log10(m)

and log10(cτ/m) as these are our input parameters. The
related uncertainties on the linear quantities can be derived
via error propagation.

While the area in Eq. (13) is a good performance measure
in general, in our case it is possible to make further sim-
plifications. First, the off-diagonal terms in the covariance
matrix are by construction small compared to the diagonal
ones. Second, constraining the mass is generally easier than
constraining the (unboosted) lifetime. This implies that best
way to make the posterior narrow is by reducing the uncer-
tainty in the mass, rather than in the lifetime. In our study
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Fig. 4 Joint posterior and marginal posteriors for two different obser-
vations. In red we have the true parameter values, in yellow we have the
best fit to the joint posterior. The three contours indicate the 50%, 68%

and 95% credible regions. The sampled posterior points outside of the
95% credible region are also shown in the plot

we have found that while σm can vary by up to two orders of
magnitude, σcτ/m shows little variation and is largely deter-
mined by the geometry of the decay volume. The best way
to improve the reconstruction of the lifetime would be to
increase the length of the decay volume and place it closer
to the interaction point. We have checked this for a detector
geometry with [zmin, zmax] = [2 m, 100 m] and found that
the posterior on the lifetime becomes more narrow and more
peaked.

For simplicity, and to allow for a more intuitive interpre-
tation of our results, we will use σm instead of Am,cτ/m as
performance measure in the following.

It is clear from Fig. 4 that different ALP parameter points
will generally have different posterior widths. For the “easy”
example (left panel) we obtain σm = 0.024 GeV, while the
“hard” example (right panel) gives σm = 0.034 GeV.6 The
width of the posterior will depend on the model parame-
ters used to generate the observed sample. It is therefore
useful to keep these parameters fixed to some benchmark
cases when comparing the performance of different detector
setups. In this way we reduce the variability intrinsic to dif-
ferent regions of the parameter space. But even in the case
we consider a fixed parameter point, we can have a large
variance in the values of σm obtained. In the following we

6 We note that the achievable mass resolutions is many orders of mag-
nitude larger than the intrinsic width of the ALP corresponding to the
assumed decay length.

will consider test data sets of 10000 samples and evaluate the
distribution of σm over these data sets.

Before doing so, we however need to ensure that the con-
fidence regions derived from the posterior are reliable. In
other words, we need to verify that the posterior width is
indicative of the uncertainty on the parameters, in particular
the mass. We do not have access to the true posterior, so we
cannot quantify the goodness of our approximation by direct
comparison. However, we can check the coverage [54–56].

Given a credibility level α and a posterior p(θ |x), this
defines a highest-posterior credible region where p(θ |x) >

pα . Here, pα is defined implicitly by requiring

α =
∫
p(θ |x)>pα

p(θ |x) dθ . (14)

If we generate random sets x j and evaluate our posterior on
them, we would then expect that the true value θ̄ lies in the
credible region defined by credibility level α for a fraction
α of events. This is our expected coverage. In our case we
only have access to an approximation of the posterior and the
coverage obtained from this approximation takes the name
of empirical coverage.

In the limit where our posterior perfectly approximates the
correct one and for large enough statistics, we would see that
the empirical coverage and the expected coverage coincide.
The results for our case are given in Fig. 5 for a representa-
tive selection of our networks. Our test samples consisting
of 10000 sets have been split into 20 smaller sub-samples
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Fig. 5 Distribution of the empirical coverage against the expected cov-
erage. In black we can see the result in the case of correct posterior.
We have split the test samples in smaller sub-samples: the continuous

colored line indicates the mean value over the sub-samples and the
colored region encapsulates the empirical coverage values over all the
sub-samples

to evaluate the statistical uncertainty on the coverage. Given
our cINN and the possibility of sampling directly from the
2D joint posterior, it is straightforward to evaluate the empir-
ical coverage. We see a percent level underestimation of the
coverage, consistent with the limited overfitting seen in the
training of our networks.

The consistency has been evaluated over the whole prior
and by considering the two-dimensional coverage. Not all
regions of the parameter space are equally easy to constrain
and in particular mass and (unboosted) lifetime present dif-
ferent challenges. Since in our scenario the performance is
mainly given by the uncertainty on the mass, let us look at
the distribution of dm = | log10 m̂ − log10 ma |/σm in Fig. 6.
This is the distance between the true ALP mass value ma

and our estimator m̂ in units of standard deviations. With our
(approximate) posterior we are able to derive for each test

set both a mass estimator from the maximum of the poste-
rior and a standard deviation value from the variance of the
posterior samples. Even though our result is not expected
to be Gaussian, it is instructive to show a comparison with
the Gaussian result in black in Fig. 6. We can see that the
distribution given by the cINN closely resembles the normal
distribution, although with slightly stronger tails.

4.2 Dealing with background events

Experimental efforts are devoted to reducing backgrounds
as far as possible. However, we cannot guarantee in general
that a sample of observed events is background-free. As dis-
cussed above, our cINN approach employs a summary net-
work to synthesize the information from three events into two
high-level observables. This procedure assumes that all three
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Fig. 6 Distribution of the distance between estimated and true mass
values in standard deviations. In black we show the comparison with
the result from a Gaussian distribution. Even though the posterior is not

required to be Gaussian, we find good qualitative agreement. We note,
however, that larger differences may arise for worse detector resolution

events are true signal events generated from the same under-
lying process, i.e. the decay of an ALP with fixed param-
eters θ = (log10 ma, log10(cτa/ma)). To ensure that this
approach gives sensible results, one must check whether the
three events are compatible with each other before combining
them.

To achieve this goal, we need a different cINN, which is
trained on individual events rather than sets of three events.
The architecture (including the summary network) is the
same as for sets of three events, with the only difference being
the dimensionality of the input. We then obtain the estimated
posterior p(θ |xk) for each event xk separately. From these
results, the compatibility can be directly quantified. From
each posterior we get an estimator of the model parameters

θ̂
k ≡ arg max

θ

p̃(θ |xk) , (15)

and we evaluate their compatibility via:

Ckl ≡ 1 −
∫
p̃(θ |xl )> p̃(θ̂

k |xl )
p̃(θ |xl) dθ . (16)

Ckl is then the measure of compatibility between the posteri-
ors. Explicitly, we consider the posterior p̃(θ |xl) and evaluate

the smallest credible region that contains θ̂
k
. Our compatibil-

ity measure is then one minus the corresponding credibility.
To test this procedure, we generate samples that contain

two true signal events (generated using the same ALP param-
eters) and one background event (generated using different
values for the ALP mass and lifetime). The individual pos-
terior for one such set of events is visualised in Fig. 7. By
considering single events, we see that our approach works
also in this scenario. Increasing the number of seen events
leads to narrower posterior, as expected. The main reason we
focus on the scenario of multiple seen events is that in this

case it is possible to assess their compatibility and so we have
a procedure to identify background events. For instance here,
it is clear that the third event is not compatible with the first
two by visual inspection. The compatibility measure Ckl for
the case shown in Fig. 7 is found to be

Ckl =
⎛
⎝ 1 0.59 0

0.97 1 0
0 0 1

⎞
⎠ .

Here the vanishing off-diagonal elements in the third column
and row clearly indicate the incompatibility of the third event
with the first two.

If we come to the conclusion that the three events are
not compatible, we would not proceed and combine them as
input for our full cINN. It is nevertheless interesting to see
what happens if we do, and this is portrayed in Fig. 8. Clearly,
we would come to wrong conclusions about the mass. Even
worse, the network confidently claims a narrow posterior,
which gives no indication that the events are incompatible.
This is likely because the network has never seen incompati-
ble events during its training, so it reconstructs the posterior
as narrow as usual.7

Using the compatibility measure Ckl , it is straightforward
to construct a test statistic (TS) to perform a hypothesis test
of compatibility. Since the compatibility matrix is not sym-
metric, we consider the average (C12 + C21)/2 as TS for
the compatibility of the first two events and (C13 + C31)/2
as TS for the compatibility of the first and the last event.
To determine the distribution of each TS, we consider a
sample containing sets of three events. For each set, event
1 and 2 have been generated from the model parameters

7 We have also found cases where the network would ignore one or
two of the events and reconstruct the posterior from the remaining ones.
However, it appears difficult to force the network to always focus on
the compatible ones only and we did not study this further.
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Fig. 7 Estimated posterior from three events separately. The red cross
indicates the parameter points generating the first two true events, the
purple cross indicates the parameter points generating the last event
(which we call background). The golden cross indicates for each of the

posteriors the maximum posterior value θ̂
k
. The three contours indicate

the 50%, 68% and 95% credible regions. The sampled posterior points
outside of the 95% credible region are also shown in the plot

ma = 1 GeV, cτa = 1 m, while event 3 has been gener-
ated from ma = 0.8 GeV, cτa = 1 m. We visualize the TS
distributions in Fig. 9. We observe that the TS behaves very
differently depending on whether the two events are compat-
ible or not, but we also find some overlap between the two
distributions. Clearly, the degree of overlap depends on the
parameter values used for the background event and on the
detector setup. The more similar the events, and the poorer
the detector resolution, the harder it will be to distinguish
background and signal events.

In a realistic scenario, for each detector setup we would
need to perform a Monte Carlo simulation to establish the
signal efficiency at a fixed background rejection. A perfect
background rejection is not possible as the overlap between
background events and signal events is unavoidable for the
background template we considered. The question of estab-
lishing and maximizing the power of the experiment is com-
pelling, but not easy to address. A classifier trained specif-
ically to distinguish between compatible and incompatible
events could outperform the simple approach outlined here
in terms of signal acceptance. A detailed study of the experi-
mental sensitivity in the presence of varying number of back-
ground and signal events is currently under study and will be

presented in a future work. In this work we also address the
question of establishing a criterium for event compatibility,
depending on the desired background rejection and detector
setup [57].

Using the procedure outlined above, background events
can be accurately identified and eliminated. If we come to
the conclusion that all events in the set are compatible with
each other, we would proceed to combine them. In princi-
ple this could be done by simply multiplying the individual
likelihoods, or by combining the posteriors in an appropriate
way. However, since we only have access to the approximate
likelihoods/posteriors predicted by the cINN, doing so might
amplify any inaccuracies. More accurate results are obtained
by using the cINN trained on sets of three events, which is
what we will do in the following.

To conclude this discussion, let us emphasize that there
may be different ways to check compatibility of the events
before combining them. In particular, it may be possible
to construct a more powerful TS if the dominant source of
background is known. The approach discussed above has the
advantage that we can in principle use information from the
full posterior to assess the probability of type I and type II
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Fig. 8 Estimated posterior
from the three combined events.
The red cross indicates the
parameter points generating the
first two true events, the purple
cross indicates the parameter
points generating the last event
(which we call background).
The golden cross indicates the
maximum of the posterior

Fig. 9 Distribution from pseudo-experiments of the compatibility test
statistic for the case that the first two events are generated from the same
parameter point and the third event is generated from a different point
(see text for details). For a given signal acceptance (i.e. type I error rate),
we can use this distribution to determine the background rejection (i.e.
type II error rate)

errors, whereas for example a classifier would typically only
yield a single number.

4.3 Effect of the input features uncertainties

So far we have focused on a fixed detector setup and dis-
cussed how the posterior looks like for different parameter
values. Let us now consider how the same event is seen by

different detector setups, meaning different sets of uncertain-
ties on the input variables. For each detector setup we train
a corresponding cINN. We use the same architecture and the
same training hyperparameters for all of them: the underlying
physical process is the same, so the algorithm adapts easily
to different smearings of the input observables.

Each detector setup is defined by the set of standard
deviations σ used for the Gaussian smearing that models
the detector resolution. The same uncertainty is applied to
{x1, x2, y1, y2} as the resolution here is mainly given by
the detector granularity. We also assume that θ and φ have
the same uncertainty, and that all uncertainties are uncor-
related. As mentioned in Sect. 4.1, we note that realisti-
cally energy and angular resolutions are function of the pho-
ton energy itself, with resolutions improving for increas-
ing photon energies σ(E)/E ≈ 10 − 15%/

√
(E(GeV) and

σ(θ) = σ(φ) ≈ 30 − 40 mrad/
√

(E(GeV). For easier com-
parison between different detector setups, we use constant
resolutions in our study, but we have checked that our meth-
ods work identically for energy-dependent resolutions. In
a realistic detector with longitudinal segmentation, not all
showers will start at the same z-position which is again con-
ceptually straightforward to include in our cINN inputs.

The set of uncertainties is provided in Table 2 for a total
of 9 detector setups and corresponding networks. For suffi-
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Table 2 Summary of the detector setups considered. Each uncertainty
value is combined with each of the other uncertainty values for a total of
9 combinations. A complementary case for large angular uncertainties
and varying calorimeter hit resolution can be found in Appendix B

Feature uncertainty Values scanned

σ(E)/E [0.01, 0.05, 0.1]
σ(h) [0.1cm]
σ(θ), σ (φ) [1 mrad, 5 mrad, 10 mrad]

ciently good angular resolution, the calorimeter hit resolu-
tion plays no significant role and has therefore been fixed to
σ(h) = 0.1 cm. The results for the case of poor angular res-
olution and varying calorimeter hit resolution are discussed
in Appendix B.

To each of these detector setups corresponds an esti-
mated posterior p̃(ma, cτa |x) which differ in the uncertain-
ties assigned to x. To first approximation, as we increase the
input features uncertainties, we expect the posterior to get
broader. The inferred posteriors can hence be used to draw
conclusions about the performance of the detector setup.
Before comparing the different detector setups in a quantita-
tive way in the next section, let us briefly visualize how the
posterior on the model parameters broadens as we increase
the uncertainty on the low level observables in Fig. 10 for a
fixed set of events.

As expected, the spread of the posterior increases as the
detector resolution on the energy and/or the angles deterio-
rates. As discussed above, it is hard to pin down the ALP
lifetime even in the best-case scenario, and the spread of the
marginal posterior in the lifetime does not change signifi-
cantly from the best to the worst case scenario. The reason
for this can be understood when looking at the ideal scenario
where the vertex is perfectly reconstructed. The decay ver-
tex position is mainly determined by the particle lifetime,
but also by the requirement that both produced photons hit
the calorimeter with sufficient separation. We can use our
training dataset to fit the joint distribution of vertex position
and unboosted lifetime. However, even in the case the exact
vertex position is known, it is not possible to extract sig-
nificant information on the particle lifetime. This results in
roughly flat likelihoods and posteriors closely following the
prior. Thus, regardless of the detector setup or inference pro-
cedure, we will recover a roughly constant uncertainty on the
unboosted lifetime. As mentioned earlier, the situation would
change if we considered an unrealistically large decay vol-
ume, which in general leads to more peaked posteriors in the
lifetime.

The width of the marginal posterior on the mass, on the
other hand, does exhibit significant changes with the detector
resolution. But even in the case of poor energy and angular
resolution, we can estimate the ALP mass with relative low

uncertainty. Indeed, in this case the cINN significantly out-
performs the diphoton invariant mass, as we will see in the
next section.

5 Results

5.1 Performance evaluation: on-axis

We are now ready to discuss how we evaluate the detector
performance for a given setup. In our scenario, three signal
events have been observed by the experiment and we want to
use these three events to infer the model parameters. The best
detector for this purpose will be the one that has the highest
model discrimination. Qualitatively speaking, the more non-
overlapping posterior surfaces we can fit into the parameter
space, the better we are at discriminating models. In other
words, the posterior should be as narrow as possible, so the
area enclosed by it should be small.

To evaluate the performances, we build three test datasets.
Each of these datasets contains 10,000 samples, and they are
all generated for a fixed lifetime of cτa = 1 m, and three dif-
ferent ALP masses: a low ALP mass of 200 MeV, a medium
ALP mass of 1 GeV and a large ALP mass of 4 GeV.

In the following, we compare the cINN performance with
the standard approach of using the diphoton invariant mass

m2
γ γ ≡ (pμ

γ1
+ pμ

γ2
)2 = (E1 + E2)

2 − |p1 + p2|2 (17)

where pμ
γi and pi are respectively the photon 4-momenta and

3-momenta. The diphoton invariant mass can be interpreted
as a simple and powerful analytic mass regressor. Since our
observation consist of three events, we will take as mass
estimator the average of the three diphoton invariant masses.
Like for any regressor, this procedure will only return an
estimate for the ALP mass and not its uncertainty. In order to
estimate the mass uncertainty for a single set of three events,
we apply the smearing several times. In this way we will
get a collection of several imperfect events coming from the
same truth values. Once we have this collection of events,
we can apply the regressor to obtain a distribution of masses.
The standard deviation of this distribution then measures the
uncertainty on the inferred mass. The same procedure could
be applied when using a NN regressor trained to reconstruct
the mass.

We note that, while the diphoton invariant mass is expected
to yield an optimal mass estimator for detectors with very
high energy and angular resolution, for other detector setups
it may be possible to improve the regressor further, for
instance by applying vertex fitting to correct the photon direc-
tions. We have found no qualitative differences when using
improved analytic regressors or NN regressors trained on the
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Fig. 10 Comparison between the joint posteriors on the same set of
events, but for different detector setups. In this figure we keep the
calorimeter hit resolution fixed, while we vary the energy resolution
and the angular resolution. The figure does not show the whole prior

range, but is zoomed on the region where the posterior is non-zero. The
three contours indicate the 50%, 68% and 95% credible regions. The
sampled posterior points outside of the 95% credible region are also
shown in the plot

same datasets used by the cINN. A detailed study of alterna-
tive possibilities is outside the scope of the current work.

Let us now evaluate the cINN and the diphoton invari-
ant mass on our test datasets and look at the distribution of
the mass estimators in Fig. 11. First we consider three detec-
tor setups of varying angular resolution, which turns out to
be the most important detector property. The three detec-
tor setups are represented by lines of different colour, while
the three rows correspond to the three different values of the
ALP mass. These plots are indicative of the performance, but
most importantly they are useful to identify possible biases.
We can see that the cINN is generally unbiased for all our
benchmarks, while for detectors with poor angular resolution
the diphoton invariant mass exhibits a bias towards larger
masses especially for small ALP masses.

In principle, one could use the distribution of estimated
masses over the entire test dataset to extract the variance in
the mass estimator. However, to properly evaluate the per-
formance, it is preferable to evaluate σm = σ(log10 m̂) for
each sample separately, because this makes it possible to
also evaluate the variance of σm over the dataset. We also
point out that the error on the logarithm of the ALP mass is
related to the relative error on the ALP mass, such that we can
directly compare our results for different assumptions on the
true ALP mass. Given the number of different detector setups
that we consider, it is difficult to visualize the distributions
of σm for all cases. In the following we will therefore focus
on ma = 1 GeV while taking some representative detector
setups which highlight our conclusions. The distributions for
the other masses are provided in Appendix A.
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Fig. 11 Mass reconstruction performed by the cINN (left) and by using
the diphoton invariant mass (right). Different colors correspond to dif-
ferent detector setups (as indicated in the legend), while the three rows

correspond to the ALP masses ma = 200 MeV, 1 GeV and 4 GeV. Ver-
tical black lines indicate the true mass values. Different bin widths have
been used for the three benchmark masses

In Fig. 12 we compare the performances for different
detector setups, focusing again on the impact of changing the
angular resolution. By showing the distribution of σm , this
figure adds new information with respect to Fig. 11, which
showed the distribution of m̂. As expected, we see that the ML
approach does not perform better than the diphoton invariant
mass in the case of good angular resolution. The distribu-
tions of σm from cINN and diphoton are in this case very
similar, indicating that the network has learnt to reconstruct
exactly this high-level observable. This finding also enables
us to assess the accuracy of the posteriors obtained from the
cINN. For a detector with good angular resolution, we expect
the marginal posterior on the ALP mass to follow the same
distribution as the diphoton invariant mass. The fact that the
m̂a distribution given by the cINN agrees with the diphoton

invariant mass distribution therefore indicates that the cINN
performs well and yields accurate posteriors. The situation
changes when the resolution on the angles is decreased, as in
this case the cINN can do significantly better than the naive
mγ γ .

Our analysis shows that the angular resolution of the detec-
tor is a major factor for our ability to constrain the ALP mass.
The effect of also changing the energy resolution is investi-
gated in Fig. 13. For both values of the energy resolution
considered, we find that, as long as the angular resolution
is sufficiently good, the distributions of σm for the cINN
and for the diphoton invariant mass are very similar. This
finding suggests that also for poorer energy resolution, the
diphoton invariant mass remains the most informative high-
level observable. However, the conclusion changes when we

123



Eur. Phys. J. C (2024) 84 :200 Page 17 of 26 200

Fig. 12 Mass uncertainty distribution over the 10k samples of the test dataset varying the angular resolution of the detector for ma = 1 GeV

Fig. 13 Mass uncertainty distribution over the 10k samples of the test dataset varying energy and angular resolution for ma = 1 GeV

decrease the angular resolution. In this case the cINN per-
forms better for both values of the energy resolution. More-
over, the cINN distribution shifts considerably when chang-
ing the energy resolution, while the mγ γ distribution is basi-
cally unaffected. This observation suggests that the cINN
uses additional information contained in the photon energies,
and consequently an improvement in the energy resolution
helps the inference process.

5.2 Performance evaluation: off-axis

In our discussion so far we have neglected the role of back-
grounds in the sense that we have assumed that the exper-
imental collaboration is able to provide a background-free
sample. If that is not the case we have designed a test statis-
tic that can be extracted from our network in order to diag-
nose the possible presence of background events. In reality,
substantial experimental efforts are devoted to reducing the
number of background events as much as possible. One of

the possible ways in which this can be achieved is by placing
the decay volume and calorimeter off-axis with respect to the
proton beam line. This possibility is interesting to investigate
with our approach, since the different geometry implies dif-
ferent particle kinematics. Here we will take inspiration from
the SHADOWS proposal [14] and consider a displacement
of xcal = 2.25 m, such that the edge of the decay volume is
at a distance of 1 m.

Displacing the detector affects not only the backgrounds
but also the distribution of signal events. ALPs produced
off-axis typically have smaller energies than those produced
on-axis. This also leads to larger separation between the
calorimeter hits. In combination these effects imply that an
off-axis detector is sensitive to somewhat different regions
of parameter space (i.e. longer ALP lifetimes) and generally
exhibits a better performance in terms of the ALP mass recon-
struction. Rather than comparing the two different detector
positions in terms of the reconstruction performance, we will
instead repeat the analysis from above, and explore the per-
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Fig. 14 Uncertainty distribution over the 10k samples of the test dataset varying the only angular resolution (left) or both the angular resolution
and energy (right) for the case of an off-axis detector for ma = 1 GeV

formance of an off-axis detector for varying detector resolu-
tions.

Given the similarity of this geometry with the previous
one, we do not need to adapt the network architecture or
the hyperparameters. However, we will need to generate new
training samples and re-train our network. We can then apply
our cINN to new test datasets generated for the off-axis geom-
etry. We consider the same benchmark points as before, but
emphasize that the off-axis geometry inherently has a differ-
ent sensitivity to them compared to the on-axis geometry.

As we did in Figs. 12 and 13 for the case of an on-axis
detector, we can visualize the performance at varying angular
and energy resolution for an off-axis detector in Fig. 14. We
drop the comparison with the diphoton invariant mass, as
the conclusion is the same as before: for the best angular
resolution our cINN reproduces the analytic regressor result,
while it outperforms the latter for poor angular resolution.

In the left panel of Fig. 14, we keep high energy res-
olution and vary the angular resolution, which is found
to still play a major role. However, even in the case of
σ(θ) = σ(φ) = 10 mrad we can reconstruct the ALP mass
with low relative uncertainty. When considering variations
in both the angle and energy resolution in the right panel of
Fig. 14, we observed a similar behaviour as for the on-axis
case, but with an even stronger effect. In the on-axis case we
saw that given an angular resolution of 10 mrad decreasing
the energy resolution increased the uncertainty on the loga-
rithm of the mass by 25% (dark green and light green curves
in Fig. 13). The same variation in the off-axis case leads to
an increase in the logarithmic mass uncertainty by 50%. We
conclude that different aspects of the detector resolution are
important for different geometries. It is therefore essential
to understand for each possible geometry individually which
variables are most useful to infer the model parameters. The

distributions obtained from the cINN analysis are an impor-
tant diagnostic tools for this goal.

5.3 Performance comparison

To conclude our discussion, let us summarize the perfor-
mance comparison for the different detector setups in a com-
pact way. As before, we consider the three benchmark masses
ma = 0.2 GeV, 1 GeV, 4 GeV, while for the lifetime we will
always keep cτa = 1 m. We consider separately the on-axis
and off-axis geometries and compare the 9 detector setups
summarized in Table 2 with the calorimeter hit resolution
fixed to 0.1 cm. Results for the case of worse angular resolu-
tion (σ(θ) = σ(φ) = 100 mrad) and worse resolution of the
calorimeter hit positions can be found in Appendix B.

The comparison of the different detector setups is shown
in Fig. 15 for the case of an on-axis detector (upper plot)
and of an off-axis detector (lower plot). We observed two
general trends: Larger ALP masses are easier to constrain,
and (apart from a few exceptions) detectors that perform bet-
ter at constraining larger masses also perform better at con-
straining lower masses. The exceptions to this rule seem to
indicate that constraining lower masses favors angular reso-
lution over energy resolution. We furthermore conclude that
the angular resolution plays a major role in being able to con-
strain the ALP mass, but its relevance also depends on the
available energy resolution and the specific mass under con-
sideration. For instance we can observe that having a good
angular resolution is most relevant when we also have a good
energy resolution. While the same trends are present for both
on-axis and the off-axis detectors, there are some quantita-
tive differences in the relation between detector resolution
and reconstruction performance, suggesting that the relative
importance of angular and energy resolution may be different
for the two cases.
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Fig. 15 Compact performance comparison for fixed calorimeter hit
resolution for on-axis (upper plot) and off-axis geometry (lower plot).
Different colors correspond to different detector setups and different

markers are used for the benchmark masses. The vertical bands indi-
cate the 25 and 75 percentile of the distribution

Comparison plots like Fig. 15 not only allow to compare
different detector setups (where unsurprisingly the detector
with best resolution is the best at constraining the ALP mass),
but also to quantify by how much. This means that it is pos-
sible to use this type of plot to understand whether it is worth

or not to invest more resources toward improving the resolu-
tion for measuring a specific kinematic variable. Conversely,
if we want to measure the ALP mass with a given relative
uncertainty, we can understand which detector setups would
achieve that.
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At first sight, a naive comparison of the top and bot-
tom panel of Fig. 15 suggests that moving the detector off-
axis improves the detector performance. This finding likely
reflects the fact that ALPs produced at an angle relative to the
beam direction typically have smaller boost factors, which
leads to larger photon opening angles and facilitates the
reconstruction of the underlying process. At the same time,
the distribution of transverse momenta carries information
about the ALP mass, which may be more easily extracted
from an off-axis experiment. We emphasize however that
moving the detector off-axis leads to a significantly smaller
signal acceptance, such that one should really compare the
performance for a different number of observed events in the
two cases. We expect that σm scales approximately propor-
tional to 1/

√
n with the number n of observed events, such

that the different performances shown in Fig. 15 could be
easily compensated by increasing n by a factor of 2–4.

Finding the best detector placement and resolution then
becomes a difficult optimisation problem, which also needs
to include the expected number of background events and
their distribution. In practice, one would also vary additional
parameters, such as the distance and length of the decay vol-
ume and the transverse size of the detector. Since considering
all of these possibilities is beyond the scope of this work, the
two panels of Fig. 15 cannot be directly compared in a mean-
ingful way.

6 Conclusions

The inverse problem refers to the challenges and limitations
of performing parameter inference from experimental data
for physical scenarios of interest. Usually, this problem is
considered in the context of constructing optimal high-level
observables for existing experiments. In the present work we
have instead considered the inverse problem in the context of
experimental design, i.e. we have compared different detector
setups in terms of their performance with respect to parame-
ter inference. Doing so requires a fast and adaptable way to
perform inference while varying the experimental properties.

Our scenario of interest is the detection of ALPs decaying
to photons in proton beam-dump experiments. This scenario
is not only well-motivated from the physical and experimen-
tal point of view, but it also illustrates the key challenges of
parameter inference. For beam dumps with very large decay
volumes, photon energy and direction resolution are gener-
ally not good enough to directly infer the decay vertex and
the invariant mass of the decaying particle with high pre-
cision. To infer the underlying ALP parameters, one then
needs to include additional information from other kinematic
variables. In such a case, the interplay between the different
observables will depend on the specific angular and energy
resolution of the detector under consideration.

In this work we have demonstrated that in spite of these
difficulties, conditional invertible neural networks are able to
accurately reconstruct the posterior of the ALP model param-
eters for a given detector setup without the need for complex
network architectures or explicit physical intuition [58–60].
For detectors with limited resolution, these networks signif-
icantly outperform conventional approaches, such as recon-
structing the ALP mass from the invariant mass of the photon
pair, suggesting that the conditional invertible neural network
learns to extract additional information from the ALP distri-
bution. The speed and adaptability of this machine-learning
algorithm allow for the comparison of different detector
setups, thus addressing the inverse problem already at the
stage of experimental design. In our work we have focused
our attention on a simplified simulation. However, the frame-
work we have discussed directly extends to more accurate
simulations. Not only that, but other sources of uncertainty
not considered in this work can be integrated in the frame-
work by suitably modifying the input features.

To obtain robust results, it is essential that we can trust our
neural networks to perform correct inference and that we can
trust the experimental observation to not be contaminated by
background events. We address the first issue by comparing
the empirical coverage against the expected coverage (see
Fig. 5). This comparison demonstrates that on average the
cINN correctly determines the model parameters and their
uncertainties. Moreover, we show that in the case of good
angular and energy resolution the mass estimate and uncer-
tainty obtained from the cINN agree with the ones obtained
from the diphoton invariant mass distribution. To address the
second issue, we consider sets of three signal events, which
enables us to check the compatibility between them. We have
proposed a test statistic derived from the same cINN that eval-
uates the posterior to confirm that there are no background
events in a given set of events.

In order to evaluate the inference power and hence the
performance of a given detector, we consider the width of
the posterior on the model parameters, i.e. the ALP mass
and lifetime. We have shown that (at least for experiments
with a relatively short decay volume), it is possible to avoid
degeneracies between the two parameters, which makes it
possible to integrate over the ALP lifetime and focus on the
marginal posterior for the mass. The width of this posterior,
σm = σ(log10 m̂), then serves as performance measure for
the different detector setups.

In our analysis we have considered a total of 18 different
detector resolutions (varying independently the energy res-
olution, angular resolution and position resolution) as well
as two detector geometries that differ in their displacement
xcal relative to the beam axis. The performances of the differ-
ent detector setups are summarized and visualized in Fig. 15.
This figure illustrates the way in which our approach can be
used to guide experimental design and explore the interplay
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and trade-offs between different aspects of detector resolu-
tion and geometry. We emphasize, however, that these plots
do not include the effect of changing the detector geome-
try on the signal acceptance and the background suppression
and therefore should not be directly compared to each other.
Moreover, the detector geometries and experimental uncer-
tainties have been simplified and do not necessarily repre-
sent the performance of realistic experiments. Nevertheless,
it is possible to quantify the role of the detector resolution
for different geometries with a single algorithm, highlighting
the adaptability of our approach.

The idea to search for feebly-interacting particles using
new beam-dump experiments with state-of-the-art detectors
is rapidly gaining momentum in the community. As differ-
ent proposals are being put forward that vary in many aspects
from the beam type over the detector geometry to the specific
instrumentation, it becomes essential to understand which
avenue promises the greatest gain of knowledge from a suc-
cessful detection. The goal of the present work is to pro-
vide a consistent, fast and adaptable algorithm to facilitate
this discussion and allow for the comparison of experimen-
tal proposals. The next step will be to apply this framework
to realistic proposals and background distributions in order
to optimize detector design and guide the experimental pro-
gram.
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A Further performance plots

In Sects. 5.1 and 5.2 we have focused on the case of ma =
1 GeV. In Figs. 16 and 17 we show the same distributions for
the other benchmark masses of 0.2 GeV and 4 GeV. While
the same qualitative conclusions about the role of angular
and energy resolution hold in these cases, their quantitative
effects differ. It is also worth remembering that the cINN
does not (and should not) combine the low-level observables
in the same way for different detector setups. This implies
that the shape of the σm distributions can vary considerably
when we change the detector resolutions.
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Fig. 16 Same as Figs. 12 and 13, but for ma = 0.2 GeV (top) and ma = 4 GeV (bottom)
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Fig. 17 Same as Fig. 14, but for ma = 0.2 GeV (top) and ma = 4 GeV (bottom)

B Performance in the case of poor angular resolution

In this appendix we show the results for the case σ(θ) =
σ(φ) = 100 mrad and varying calorimeter hit uncertainty
σ(h) (see Table 3) for the on-axis and off-axis geometries in
the upper and lower plots of Fig. 18 respectively.

These performance plots are useful to illustrate two things
we have mentioned in the main text. First, the calorimeter
hit resolution becomes important only in the case of poor
angular resolution as can be seen for both the on-axis and
off-axis detectors. The effect is particularly relevant when the
calorimeter hit resolution is low (σ(h) � 10 cm). Second,
the energy resolution is more important when the angular
resolution is good (σ(θ) = σ(φ) � 10 mrad). In the cases
portrayed here of poor angular resolution, we see that having
good energy resolution does not help in inferring the ALP
mass.

Table 3 Summary of the detector setups considered in this appendix.
Each uncertainty value is combined with each of the other uncertainty
values for a total of 9 combinations. These combinations focus on the
case of poor angular resolutions

Feature uncertainty Values scanned

σ(E)/E [0.01, 0.05, 0.1]
σ(h) [0.1 cm, 1 cm, 10 cm]
σ(θ), σ (φ) [100 mrad]
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Fig. 18 Compact performance comparison for fixed and large angular
uncertainty for the case of on-axis (upper plot) and off-axis geometry
(upper plot)). Different colors correspond to different detector setups

and different markers are used for the benchmark masses. The vertical
bands indicate the 25 and 75 percentile of the distribution
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