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Abstract We investigate sufficient conditions under which
cubic gravity is healthy and viable at the perturbation level.
We perform a detailed analysis of the scalar and tensor per-
turbations. We impose the requirement that the two scalar
potentials, whose ratio is the post-Newtonian parameter γ ,
should deviate only minimally form general relativity. Addi-
tionally, concerning tensor perturbations we impose satis-
faction of the LIGO-VIRGO and Fermi Gamma-ray Burst
observations, and thus we result to a gravitational-wave equa-
tion with gravitational-wave speed equal to the speed of light,
and where the only deviation from general relativity appears
in the dispersion relation. Furthermore, we show that cubic
gravity exhibits an effective Newton’s constant that depends
on the model parameter, on the background evolution, and
on the wavenumber scale. Hence, by requiring its deviation
from the standard Newton’s constant to be within observa-
tional bounds we extract the constraints on the single cou-
pling parameter β.

1 Introduction

Theories of gravity with higher-order invariants arise natu-
rally as an effective description of a complete String Theory
[1], and since they can improve the renormalizability proper-
ties of general relativity [2] they have attracted the interest of
the literature [3]. On the other hand, one may have an addi-
tional motivation of cosmological origin [4–7], since when
applied at a cosmological framework such theories may lead
to new effective sectors of gravitational origin, that can drive

a e-mail: peterr321_@hotmail.com (corresponding author)

inflation or late-time acceleration, or alleviate the H0 and S8

cosmological tensions [8,9].
In order to construct higher-order theories of gravity one

starts from the Einstein–Hilbert Lagrangian and includes
extra higher-order terms, such as in f (R) gravity [10–12],
in f (G) gravity [13,14], in Lovelock gravity [15,16], etc.
Alternatively, but not equivalently, one can construct higher-
order theories of gravity in the torsional formulation, result-
ing in f (T ) gravity [17–19], in f (T, TG) gravity [20,21], in
f (T, B) gravity [22,23], etc.

In general such gravitational constructions involve extra
degrees of freedom, which may be problematic, giving rise
to various pathologies, such as ghost and Laplacian insta-
bilities. Hence, one needs to focus on subclasses of these
theories that are free from pathologies. We stress here that
this has to hold around all backgrounds, and at all orders in
perturbation theory, since a well-behaved background evolu-
tion does not necessarily guarantee well-behaved perturba-
tions (as for instance was the case in the initial versions of
Hořava–Lifshitz [24,25], of new nonlinear massive gravity
[26], of entropic-force dark energy [27], etc).

Nevertheless, theoretical consistency is a necessary but not
sufficient condition for the acceptance of a particular theory,
since observational and experimental viability should also be
obtained. Therefore, every theory should satisfy the bounds
acquired by Solar System experiments [28], as well as be
in agreement with various datasets of cosmological observa-
tions, such as Supernovae Type I (SNIa), Baryonic Acoustic
Oscillations (BAO), direct Hubble constant measurements
with cosmic chronometers (CC), Cosmic Microwave Back-
ground (CMB) shift temperature and polarization, redshift
space distortion ( f σ8) and Large Scale Structure measure-
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ments [29], etc. Finally, since modified theories of gravity
may predict gravitational wave speed cGW different than the
speed of light c, one must guarantee that she can satisfy the
LIGO-VIRGO [30] and Fermi Gamma-ray Burst Monitor
[31] observations, which require |cGW /c− 1| ≤ 4.5 × 10−16

[32].
One interesting class of higher-order gravity is the one that

contains as a Lagrangian the cubic combination of curvature
terms P [33], which was then extended to f (P) gravity [34].
In [35–38] the authors reduced the possible coefficients in
order to obtain second-order field equations that allow for
spherically symmetric black hole solutions, while in [39] an
extra cubic correction, which is trivial for a spherically sym-
metric metric, was added in order to lead to second-order field
equations in a cosmological background too. The resulting
cubic and f (P) gravities prove to have interesting cosmo-
logical applications, and thus they have attracted extensive
investigation [33,34,40–57].

However, despite the significant research on cubic grav-
ity, the scalar and tensor perturbation analysis has not been
performed. Thus, in the present work we are interested in
performing such an analysis, and additionally we desire to
extract conditions on the model parameters that allow for
healthy and viable theories at the perturbation level. The plan
of the work is as follows: In Sect. 2 we present cubic gravity
and we provide the basic requirement in order to have well-
defined cosmological behavior at the background level. Then
in Sect. 3 we perform a detailed scalar and tensor perturbation
analysis, extracting the conditions corresponding to absence
of instabilities as well as to gravitational-wave speed equal
to the speed of light. Finally, in Sect. 4 we summarize and
conclude.

2 Cubic gravity

In this section we briefly review cubic modified gravity. This
theory of gravity is based on adding corrections to the action
of General Relativity, constructed from cubic combinations
of the Riemann tensor. A general such combination is [15]

P = β1Rμ
ρ

ν
σ Rρ

γ
σ

δRγ
μ

δ
ν + β2R

ρσ
μν R

γ δ
ρσ R

μν
γ δ

+β3R
σγ Rμνρσ R

μνρ
γ + β4RRμνρσ R

μνρσ

+β5Rμνρσ R
μρRνσ + β6R

ν
μR

ρ
ν R

μ
ρ

+β7RμνR
μνR + β8R

3, (1)

where βi ’s are eight coefficients. Adding the above invariant
in the Einstein–Hilbert Lagrangian, we can write the action

S =
∫

d4x
√−g

[
1

2κ
(R − 2	) + αP + Lm

]
, (2)

where α is a possible coupling parameter, κ = 8πG is the
gravitational constant, and where for completeness we have

also added the cosmological constant 	, as well as the matter
Lagrangian Lm .

Varying the action with respect to the metric gμν we obtain
the general field equations, namely [34].

Gμν + 	gμν = κ
(
Tμν + αHμν

)
, (3)

with Tμν = − 2√−g
δ(

√−gLm )

δgμν the usual energy-momentum
tensor, and where the form of Hμν is presented in Appendix
A.

Let us now focus on a cosmological background, namely
we consider a flat Friedmann–Robertson–Walker (FRW)
background spacetime metric of the form

ds2 = −dt2 + a(t)2δi j dx
i dx j , (4)

where a(t) is the scale factor. In this case, the cubic invariant
takes the simple form [34]

P = 6β̃H4
(

2H2 + 3Ḣ
)

, (5)

where H = ȧ
a is the Hubble parameter and with dots denot-

ing time derivatives, since under the assumptions of being
neither topological nor trivial and to lead to second-order
field equations, it has only one free parameter, namely

β̃ = −β1 + 4β2 + 2β3 + 8β4, (6)

(note that the four βi in (6) can still be chosen arbitrar-
ily). Moreover, for the matter sector we consider the stan-
dard perfect fluid, whose energy-momentum tensor is Tμν =
(ρm + pm)uμuν − pmgμν .

The two Friedmann equations of cubic gravity in the case
of FRW metric become

3H2 = κ (ρm + ρcub) , (7)

3H2 + 2Ḣ = −κ (pm + pcub) , (8)

where we have defined

ρcub ≡ 6βH6 + 	

κ
, (9)

pcub ≡ −6βH4(H2 + 2Ḣ) − 	

κ
, (10)

and where we have merged α and β̃ in the sole parameter
β ≡ αβ̃. Hence, the cubic terms give rise to an effective
sector of geometric origin with the above energy density and
pressure, and with effective equation-of-state parameter

wcub ≡ pcub
ρcub

. (11)

3 Perturbation analysis

In the previous section we presented cubic gravity and
we extracted the general field equations. Additionally, we
applied them in a cosmological framework, and we provided
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the background Friedmann equations. Although the Fried-
mann equations do not contain higher-order time-derivatives
and thus the theory is well-defined at the background level,
this does not guarantee that instabilities and contradictions
with observations will not appear at the perturbation level.
Hence, in this section we proceed to a detailed investiga-
tion of the perturbations around a cosmological background.
As usual, we will investigate the scalar and tensor pertur-
bations separately, however we will do that simultaneously
since this will give rise to the necessary constraints on the
model parameters.

3.1 Scalar perturbations

Let us start by the examination of scalar perturbations. We
consider the usual perturbed metric of isentropic perturba-
tions in the Newtonian gauge [58–64]

ds2 = −a (η)2 (1 + 2φ) dη2 + a (η)2 δi j (1 − 2ψ) dxidx j ,

where for convenience we use the conformal time η (with
dt = adη), with a(η) the corresponding scale factor, and
with φ,ψ the first-order scalar perturbations. Furthermore,
concerning the perturbations of the matter sector, we write

δT 0
0 = −δρ, (12)

δT i
j = δpδij . (13)

Inserting the above into the general field equations (3),
and transforming as usual to Fourier space, we find that the
time-time component of (3) is

2ψ + καk2

a4

{[
(8β3 + 48β4 + 8β5 + 12β6

+40β7 + 144β8)H2 + (48β2 + 32β3 + 80β4 + 20β5

+24β6 + 56β7 + 144β8)H′]φ
−

[
(8β3 + 32β4 + 12β5 + 24β6 + 72β7 + 288β8)H2

+ (12β1 + 8β3 + 32β4 + 24β5 + 12β6

+72β7 + 288β8)H′]ψ}
= −κa2δρ

k2 , (14)

with k the wavenumber and where H = a′/a is the confor-
mal Hubble function, with primes denoting conformal-time
derivatives. We mention that since we are interested in calcu-
lating the corrections to the gravitational potential, we have
kept only the leading terms in the k � H regime.

Additionally, the non-diagonal space-space component
equation is found to be

φ − ψ − καk2

a4

{[
(4β3 + 16β4 + 6β5

+12β6 + 36β7 + 144β8)H2

+ (6β1 + 4β3 + 16β4 + 12β5

+6β6 + 36β7 + 144β8)H′]φ
−

[
(6β1 + 48β2 + 40β3 + 112β4

+34β5 + 36β6 + 100β7 + 288β8)H2

+ (8β3 + 48β4 + 12β5 + 18β6

+68β7 + 288β8)H′]ψ}
= 0. (15)

3.2 Tensor perturbations

We continue with the consideration of tensor perturbations
around a flat FRW metric, namely we consider

ds2 = −a (η)2 dη2 + a (η)2
(
δi j + hi j

)
dxidx j . (16)

As usual, the tensor hi j is divergenceless (∂ i hi j = 0) and

traceless (hii = 0). The general equation for the tensor per-
turbations around a flat FRW background, in the case of cubic
gravity, whose general field equations are given in (3), is
given in Eq. (B1) in Appendix B.

3.3 Viability conditions

In the above subsections we examined the scalar and tensor
perturbations in cubic gravity. Thus, we can now use them in
order to extract conditions on the model parameters in order
for the theory to be healthy and viable. In particular, we know
that every viable modified gravity is a correction on top of
general relativity, since the latter must always be recovered
at a particular limit of the parameters of the modified grav-
ity (in our case general relativity is recovered for α = 0 or
equivalently β = 0). Obviously, β = 0 is a sufficient con-
dition that no problematic features are present, however the
goal of the present work is to obtain non-trivial versions of
the theory, i.e. with non-zero βi parameters, that still satisfy
the desired requirements, namely we want to find minimal
non-zero deviations from general relativity that are viable.

A first requirement comes from the correction in the Pois-
son’s law. In the case of general relativity we have �e f f ≡
φ+ψ

2 = − κa2δρ

2k2 , which is the quantity that determines the

light bending [65,66], with φ = ψ = − κa2δρ

2k2 . Nevertheless,
in general in a modified gravity theory the post-Newtonian
parameter γ ≡ ψ/φ is different than 1, however this devia-
tion should be quite small in order to pass the observational
tests [28].

A second requirement is that the tensor perturbations,
namely the gravitational waves, should propagate at the speed
of light c, in order to be in agreement with LIGO-VIRGO
[30] and Fermi Gamma-ray Burst Monitor [31] observations,
which require |cGW /c − 1| ≤ 4.5 × 10−16 [32].

Observing the forms of (14) and (15) one sufficient condi-
tion to achieve γ close to one is to choose the model param-

123



207 Page 4 of 9 Eur. Phys. J. C (2024) 84 :207

eters in order to make all new terms apart from one equal to
zero (making all of them zero gives back general relativity).
Furthermore, concerning tensor perturbations, starting from
(B1) we make the standard approximation k2 ∼ H2, while

we consider H′ ∼ H2 and h(4)
i j ∼ H3h(1)

i j , up to h(1)
i j

term, and we impose the same approximations for the hi j
term. Under the above considerations we result to

β1 = 14

39
β3 + 8β4 − 34

39
β5

β2 = −11

78
β3 − 1

26
β5

β6 = 2

39
β3 + 8β4 − 1

13
β5

β7 = −β3 − 8β4 − 1

2
β5,

β8 = 199

936
β3 + 11

9
β4 + 121

1404
β5. (17)

Note that (6) under (17) gives β̃ = 14
13β3 + 28

39β5. Hence, a
theory with (17), plus the background constraint (6), corre-
sponds to a viable non-trivial minimal deviation from general
relativity.

One can clearly see that under conditions (17), equations
(14) and (15) provide the potentials φ and ψ as

φ =
[
−2 + 7a4

14a4+3k2κβ(5H2−7H′)

]
κa2δρ

3k2

ψ = −
[
1 + 7a4

14a4+3k2κβ(5H2−7H′)

]
κa2δρ

3k2 . (18)

Thus, we do verify that the corrections to the gravitational
potentials due to cubic terms depend on the single parame-
ter β and are minimal, satisfying the observed bounds [28].
Hence, the post-Newtonian parameter γ mentioned above
becomes

γ ≡ ψ

φ
= 1

2
+ 1

2 − 4
7μ

(
2H2 + 7Ḣ

) , (19)

where we have introduced the quantity μ ≡ 8πGk2β

a2 for con-
venience. In the limit β → 0 we obtain γ → 1 as expected.

Additionally, we can immediately see that under these
conditions the gravitational-wave propagation equation becomes

h′′
i j + 2H (1 + βP ) h′

i j + k2hi j = 0, (20)

where

βP = −3κβ
(
153H4 − 488H2H′ + 235H′2)

14a4 . (21)

As we observe, under conditions (17), the gravitational waves
in cubic gravity propagate at the speed of light, and thus the
theory is viable. However, the cubic terms affect the disper-
sion relation through the term βP , a feature that appears in
other viable modified theories of gravity too [67–70]. Lastly,

we mention that (20) can be re-written in terms of cosmic
time, using H = aH , H′ = a2(H2 + Ḣ) (note that this will
bring coefficient changes between (21) and (23) below) as

ḧi j + 3H (1 + βP ) ḣi j + k2

a2 hi j = 0, (22)

where now

βP = 1

7

(
100H4 + 18H2 Ḣ − 235Ḣ2

)
κβ. (23)

We proceed by focusing on the scalar perturbations. As
we showed, in cubic gravity the Poisson’s law is modified
according to (18), which implies that we obtain an effective
gravitational constant. Using that κ = 8πG, withG the New-
ton’s constant, we find that the effective Newton’s constant
is given as

Gef f ≡ 1

3
G

[
4 − 7a4

7a4 + 12πGk2β
(
5H2 − 7H′)

]
, (24)

in which case one recovers φ = −4πGef f a2δρ/k2. Note
that in terms of cosmic time we have

Gef f ≡ 1

3
G

⎡
⎣4 + 1

12k2πGβ(2H2+7Ḣ)
7a2 − 1

⎤
⎦ . (25)

Hence, in cubic gravity, as it is typical in modified gravity
theories, we obtain an effective Newton’s constant Gef f that
is in general different than G, and the deviation depends on
the model parameter β as well as on the specific background
Hubble function evolution, namely on H(t). For β = 0,
in which case cubic gravity recovers General Relativity, we
obtain Gef f = G as expected. Note that although the time-
dependence of the effective Newton’s constant is typical in
modified gravity, the scale-dependence appears only in sub-
classes of them [17,62]. According to observations we obtain
Gef f /G = 1.09 ± 0.2 at 1σ confidence level [71–74], and
thus this deviation should satisfy

0.89 � Gef f

G
� 1.29. (26)

Now the quantity μ ≡ 8πGk2β

a2 defined above, using the
redshift 1 + z = a0/a (with the present scale factor set to
a0 = 1) becomes

μ (z) = 8πGβk2 (1 + z)2 . (27)

Thus, we can express the effective Newton’s constant as
Gef f = 1

3G
{
4 + [ 3

14μ(2 H2 + 7Ḣ) − 1]−1
}
. Therefore,

we conclude that if 0 < μ(2 H2 + 7Ḣ) < 14/3 then we
obtain Gef f < G, otherwise Gef f > G, while for μ = 0,
i.e. β = 0, we recover Gef f = G.

In Fig. 1 we depict the late-time evolution of the normal-
ized effective gravitational constant Gef f /G as a function
of the redshift, in the scenario at hand for various choices of
β in units 8πG = 1 and H0 = 1 (the subscript “0” marks
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Fig. 1 The evolution of the normalized effective gravitational constant
Gef f /G as a function of the redshift, at a scale k = 10−3 Mpc−1, and for
β = −0.0001 (black solid), β = −0.005 (green dashed), and β = 0.5
(blue dotted) in units where 8πG = 1 and H0 = 1, where we have set
the present matter density parameter �m0 ≡ 8πGρm0/(3H2

0 ) ≈ 0.31
[75]. The horizontal red dotted lines mark the observational bounds on
Gef f /G [71–74] given in (26)

the value of a quantity at present), at a reference scale k =
10−3 Mpc−1, on top of the observational bounds. For com-
pleteness, in Fig. 2 we depict

∣∣�G
G

∣∣, where �G ≡ Gef f −G,
as a function of the model parameter β, at k = 10−3 Mpc−1 at
present time (where a0 = 1 and Ḣ(z = 0) ≈ −H2

0 (1 + q0)

with q0 ≈ −0.503 the current deceleration parameter [76]).
From these figures we deduce that a viable theory should
have −0.01 � β � 0.1. Restoring natural units (where
G ≈ 6.7×10−39 GeV, k = 10−3 Mpc−1 ≈ 6.4×10−42 GeV,
and H0 = 1.4×10−42 GeV) we obtain that −10200 GeV−2 �
β � 10201 GeV−2. Note that this window is in agreement
with the bounds obtained in higher-order corrections to Ein-
stein gravity through causality and unitarity considerations
on the graviton scattering [77]. Lastly, note also that there is a
specific value of β in which Gef f diverges, as expected from
the form of (25). Finally, we have checked that changing the
reference scale k leads to the same qualitative features.

Note that a varying Gef f (of course inside the observa-
tional bounds), and in particular a Gef f smaller than G by
a suitable amount, is known to be one of the mechanisms
that can alleviate the H0 and σ8 cosmological tensions, since
“weaker” gravity can lead to faster expansion and smaller
matter clustering (see [8] for various models with this prop-
erty). Thus, the aforementioned property in the scenario at
hand could be useful towards the tensions alleviation too.

Let us mention here that the above analysis focuses on late
times, while at very early times the constraints are typically
stronger. If we want to extend the analysis up to very early
times, namely up to the Big Bang Nucleosynthesis (BBN)
epoch (z ∼ 109), then we should also consider the radiation
sector, which was neglected above since we focused on late

Fig. 2 The normalized difference of the effective gravitational con-
stant |�G/G| as a function of the model parameter β, in units where
8πG = 1 and H0 = 1, at present time (a0 = 1 and Ḣ(z = 0) ≈
−H2

0 (1 + q0) with q0 ≈ −0.503 the current deceleration parameter
[76]). The horizontal red dotted line marks the observational bound
|�G/G| � 0.29 [71–74]

times. However, we note that the BBN constraints on cubic
gravity were examined in [54]. Definitely, in the end of the
day, all constraints from various investigations should be used
simultaneously.

In summary, we have extracted the conditions required
for a healthy and viable cubic gravity, in order for scalar and
tensor perturbations to be in agreement with observations,
and we extracted the constraints on the single parameter β.

4 Conclusions

Cubic gravity is a higher-order modified gravity whose
Lagrangian P is built by cubic curvature terms under the
theoretical requirement to lead to second-order field equa-
tions at four dimensions. Since cubic and f (P) gravity are
known to have interesting cosmological phenomenology, in
the present work we investigated the conditions under which
the theory is healthy and viable at the perturbation level.

We performed a detailed analysis of the scalar and ten-
sor perturbations. We imposed the requirement that the two
scalar potentials, whose ratio is the post-Newtonian parame-
ter γ , should deviate only minimally form the general relativ-
ity result. Additionally, concerning the tensor perturbations
we imposed the condition that the obtained gravitational-
wave speed should satisfy the LIGO-VIRGO and Fermi
Gamma-ray Burst observations. Thus, we resulted to a
gravitational-wave equation with gravitational-wave speed
equal to the speed of light, and where the only deviation
from general relativity appears in the dispersion relation.
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Furthermore, we showed that cubic gravity exhibits an
effective Newton’s constant that depends on the model
parameter, on the background evolution, and on the wavenum-
ber scale. Hence, by requiring its deviation from the stan-
dard Newton’s constant to be within observational bounds
we extracted the constraints on the single coupling parame-
ter β.

In summary, in this work we constructed non-trivial ver-
sions of cubic gravity, namely with non-zero parameters,
that satisfy the viable observational requirements. This is
a necessary addition to its known interesting cosmological
phenomenology. Clearly, these are not the only classes of
theories that have this property, since there could be more
complicated theories, namely with less constraints and thus
more parameters, that share this property. Thus, we extracted
theories that deviate form general relativity at the level of the
action, but have minimal deviations (but still non-zero) at the
level of scalar and tensor perturbations.

It would be interesting to apply the results of the present
work in order to study the primordial gravitational waves
and the primordial black holes in the case of cubic gravity.
Such an analysis could be useful in order to extract unique
observational signatures of cubic gravity, and distinguish this
theory from other modified theories of gravity. Additionally,
we could extend the viability investigation in the case of non-
linear f (P) gravity and examine whether the extra degrees
of freedom alter the results, especially those related to the
gravitational wave propagation. Furthermore, although we
have shown that there are no instabilities in our approxi-
mated expressions, other pathologies could be present, and
thus a full stability analysis of tensor perturbations should
be performed too. Finally, it would be interesting to compare
the obtained cosmological constraints with constraints aris-
ing from spherically symmetric solutions. These studies lie
beyond the scope of the present work and are left for future
projects.
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Appendix A: The general field equations of cubic gravity

Varying the action of cubic gravity (2) with respect to the
metric we obtain the general field equations as [34].

Gμν + 	gμν = κ
(
Tμν + αHμν

)
, (A1)

with Tμν = − 2√−g
δ(

√−gLm )

δgμν the energy-momentum tensor,
and where the Hμν tensor reads as

Hμν = 2 (β1 + 4β3 + 40β4 − β5 + β6) gμν R
γ

α Rαβ Rβγ

+2β7Rαβ R
αβ Rμν − 2 (2β3 + β5) Rαβ R

α
μ R β

ν

−
(

9

2
β1 + 9β3 + 88β4 + β7

)
gμν Rαβ R

αβ Rμν

−8β4R
α

μ RναR+6β8Rμν R
2+2β4Rμν Rαβγ δR

αβγ δ

+
(

5

8
β1 + 5

4
β312β4 − β8

)
gμν R

3

+ (3β1+6β3+64β4+β5−3β6) gμν R
αγ RβδRαβγ δ

+
(

8

3
β1 + 3

4
β3 + 7β4

)
gμν RRαβγ δR

αβγ δ

−1

2
[β1 + 2β2 + 3 (β3 + 8β4)] gμν R

εζ
αβ Rαβγ δRγ δεζ

+4 (2β4 + β7) RRαβ Rμανβ + 2 (2β3 + 3β6) Rβγ

×R α
(ν Rμ)βαγ + [4 (β3 + β6) − 6β1] R γ

α Rαβ Rμβνγ

−β3R
α

ν Rαβγ δR
βγ δ

μ − 24β2R
α

ν RαγβδR
βγ δ

μ

+ (6β1 − 4β3 + 4β5) Rαβ RαγβδR
γ δ

μ ν

+4β4RR
αβγ

μ Rναβγ + 6β2Rβγ δε R
αβγ

μ R δε
να

+2 (6β2 + β3) Rαβ R γ δ
μα Rνβγ δ

+2 (12β2 + β3 + β5) Rαβ R γ δ
μ α Rνβγ δ

+ (β3 − 6β2) Rαγ δεR
αβγ

μ R δε
νβ

+9β1Rαδγ εR
αβγ

μ R δε
νβ − β3R

α
μ Rαβγ δR

βγ δ
ν

−24β2R
α

μ RαγβδR
βγ δ

ν + 2 (12β2 + β3 + β5) Rαβ

×R γ δ
μα Rνγβδ + 4β3R

αβ R γ δ
μ α Rνγβδ

−2
[
3β1 + 2 (β3 + β5)

]
Rαβ R γ δ

μ α Rνδβγ

+ (β3 − 6β2) Rβγ δεR
αβγ

μ R δ ε
ν α

+3β1Rβδγ ε R
αβγ

μ R δ ε
ν α

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2024) 84 :207 Page 7 of 9 207

+ [6β1 + 4 (β3 − 6β2)] Rαδγ εR
αβγ

μ R δ ε
ν β

+6β1Rαεγ δR
αβγ

μ R δ ε
ν β

+2 (4β4 + β7) R�Rμν + (β5 + 2β7) Rμν�R

+ (β7 + 12β8) gμν R�R + 2 (β3 + 8β4 + β5

+2β7)∇αRμν∇αR

+
[

3

4
β6 + 2 (β7 + 6β8)

]
gμν∇αRμν∇αR

−2

(
β3 + β5 + 3

2
β6 + 2β7

)
Rα(ν∇α∇μ)R

+2 (2β3+β5) Rαβ∇β∇αRμν+2(2β3+3β6)R α
(μ �Rν)α

+2 (2β5 − 2β3 − 3β6) Rαβ∇β∇(μRν)α

+2β3R
αβγ delta∇β∇(μRν)αγ δ

−2 (3β1 + 12β2 + 2β3 + β5)∇αRνβ∇β R α
μ

+ (24β2 + 8β3 + 6β6) ∇β Rνα∇β R α
μ

+ (2β7 + 3β6 − β5) gμν Rαβ∇β∇αR

+ (8β4 + 2β3 − 3β1) Rμανβ∇β∇αR

+2 (β5 + 2β7) gμν R
αβ�Rαβ

+2 (3β1 + β5) Rμανβ�Rαβ + 2β5R
αβ�Rμανβ

+ (3β6 − 4β5 − 2β3) gμν∇β Rαγ ∇γ Rαβ

−2 (2β3 − 6β1)∇β Rα(μν)γ ∇γ Rαβ

+2
[
β3 + 2 (β5 + β7)

]
gμν∇γ Rαβ∇γ Rαβ

+4 (3β1 + β5)∇γ Rμανβ∇γ Rαβ

−2 (β3 − 6β1)∇β Rα(μν)γ ∇γ Rαβ

+2
[
β3 + 2 (β5 + β7)

]
gμν∇γ Rαβ∇γ Rαβ

+4 (3β1 + β5)∇γ Rμανβ∇γ Rαβ

−2 (β3 − 6β1) Rβγα(ν∇γ ∇β R α
μ)

−4 (12β2 + β3) Rαγβν∇γ ∇β R α
μ

−4 (3β1 + β3 + β5) Rβαγ (ν∇γ ∇μ)R
αβ

+6β1R
αβγ δ∇δ∇β Rμανγ + 2β3R

αβγ
(ν

Rμ)αβγ

+12β2∇αRνδβγ ∇δR αβγ
μ − 6β1∇γ Rνβαδ∇δR αβγ

μ

+2β3∇δRναβγ ∇δR αβγ
μ

+2 (2β3 + 8β4 + β5) gμν Rαγβδ∇δ∇γ Rαβ

+1

2
(β3 + 8β4) gμν∇εRαβγ δ∇εRαβγ δ

+ (6β1 − 2β3 + 2β5 − 3β6) ∇β R α
ν ∇μRαβ

−2

(
β3 + 8β4 + 3

2
β6 + 2β7

)
∇αR∇(μRν)α

+β3∇δR αβγ
ν ∇μRαδβγ

+4 (β3 + β5)∇γ Rαβ∇(μRν)αβγ

+ (6β1 − 2β3 + 2β5 − 3β6) ∇β R α
μ ∇ν Rαβ

+2
[
3β1 + 2 (β5 + β7)

]∇μRαβ∇ν Rαβ

−
[

1

2
β5 + 2 (β7 + 6β8)

]
∇μR∇ν R

−4β4∇μRαβγ δ∇ν Rαβγ δ + β3∇δR αβγ
μ ∇ν Rαδβγ

−4 (β5 + β7) Rαβ∇ν∇μRαβ

−2 (2β4+β7+6β8) R∇ν∇μR−4β4R
αβγ δ∇ν∇μRαβγ δ.

(A2)

Appendix B: The general equation of tensor perturba-
tions

The general equation for the tensor perturbations (16) around
a flat FRW background, in the case of cubic gravity whose
general field equations are given by (A1), is given by

−2ακ
{

[3β1 − 4β3 − 24β4 + β5 − 6 (β6 + β7)]H2

−3 (8β2 + 4β3 + 8β4 + 2β5 + β6 + 2β7)H′} h(4)
i j

−4ακ
{

2 [−3β1 + 4β3 + 24β4 − β5 + 6 (β6 + β7)]H3

+2 (3β1 + 24β2 + 8β3 + 7β5 − 3β6)HH′

−3 (8β2 + 4β3 + 8β4 + 2β5 + β6 + 2β7)H′′} h(3)
i j

+
{
a4 + 2ακ {3β1 − 4 (3β2 + 2β3 − 3β4 + β5

+6β6 + 9β7 + 27β8)H4 − (3β1 − 24β2 + 26β3

+192β4 + 22β5 + 36β6 + 96β7 + 216β8)H2H′

−3 (16β2 + 8β3 + 12β4 + 5β5 + 5β6 + 12β7 + 36β8)H′2

+2k2
{

[−3β1 + 12β2 + 8β3 + 24β4 + β5 + 6 (β6 + β7)]H2

+ (12β2 + 8β3 + 24β4 + 4β5 + 3β6 + 6β7)H′}
− (3β1 + 72β2 + 26β3 + 24β4 + 16β5 − 6β6)HH′′

+3 (8β2 + 4β3 + 8β4 + 2β5 + β6 + 2β7)H′′′}} h′′
i j

+
{

2a4H − 2ακ {6 [5β1 − 4 (β2 + 2β3 + 7β4 + 4β6

+5β7 + 9β8)]H5 + 2 [−63β1 + 2 (−24β2 + 7β3 + 60β4

−28β5 + 54β6 + 30β7)]H3H′ + 2 (39β1 + 72β2 + 26β3

+12β4 + 55β5 − 36β6 + 24β7 + 108β8)HH′2

+ (39β1 + 120β2 + 62β3 + 96β4 + 76β5 + 84β7

+216β8)H2H′′ + (−15β1 − 24β2 + 2β3 + 48β4

−8β5 + 36β6 + 60β7 + 216β8)H′H′′

−k2
{

4 [3β1 − 12β2 − 8β3 − 24β4 − β5 − 6 (β6 + β7)]H3

−12 (β1 + β5 − β6)HH′

+2 (12β2 + 8β3 + 24β4 + 4β5 + 3β6 + 06β7)H′′

− [3β1 + 2 (12β2 + 7β3 + 12β4 + 5β5

+3β6 + 6β7)]HH′′′}}} h′
i j

+k2
{
−2ακk2

{
[3β1 − 10β3 − 3 [8β4 + β5 + 2 (β6 + 2β7)]]H2

−2 (4β3 + 24β4 + 2β5 + 3β6 + 6β7)H′} + a4

−2ακ
{

3 [3β1 − 4 (3β2 + 2β3 + β4 + 3β6 + β7 − 9β8)]H4

− [27β1 − 2 (36β2 + 23β3 + 24β4 + β5 + 42β6

+48β7 + 108β8)]H2H′

+ [(12β1 + 8β3 + 36β4 + 19β5 + 3β6 + 36 (β7 + 3β8)]H′2

123
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+ (15β1 + 10β3 + 24β4 + 20β5 + 6β6 + 24β7)HH′′

− (3β1 + 2β3 + 4β5 + 3β6 + 6β7)H′′′}} hi j = 0. (B1)
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