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Abstract We consider the Lagrangian dynamical system
forced to move on a submanifold Gα(q A) = 0. If for some
reason we are interested in knowing the dynamics of all orig-
inal variables q A(t), the most economical would be a Hamil-
tonian formulation on the intermediate phase-space subman-
ifold spanned by reducible variables q A and an irreducible
set of momenta pi , [i] = [A] − [α]. We describe and com-
pare two different possibilities for establishing the Poisson
structure and Hamiltonian dynamics on an intermediate sub-
manifold: Hamiltonian reduction of the Dirac bracket and
intermediate formalism. As an example of the application of
intermediate formalism, we deduce on this basis the Euler–
Poisson equations of a spinning body, establish the under-
lying Poisson structure, and write their general solution in
terms of the exponential of the Hamiltonian vector field.

1 Three equivalent Hamiltonian formulations for a
system with holonomic constraints

Consider a mechanical system that can be described using a
non-singular Lagrangian L(q A, q̇ A), defined in configuration
space with generalized coordinates q A(t), A = 1, 2, . . . n.
Suppose the “particle” q A was then forced to move on a
k-dimensional surface S

k given by the algebraic equations
Gα(q A) = 0. The task is to construct the Hamiltonian for-
mulation for this theory. There are three possible ways to do
this. Let us first briefly describe and compare them.

(A) The first possibility is to work with unconstrained vari-
ables. Let xi , i = 1, 2, . . . , k be local coordinates onS. Then,
equations of motion follow from the Lagrangian L̃(xi , ẋ i ) ≡
L(q A(xi ), dq A(xi )/dt). If L̃ is also non-singular, we intro-
duce the conjugate momenta pi for xi , the Hamiltonian
H(xi , p j ), and the canonical Poisson bracket {xi , p j } = δij .

a e-mail: alexei.deriglazov@ufjf.br (corresponding author)

Then the Hamiltonian equations are ẋ i = {xi , H}, ṗi =
{pi , H}.

The transition to independent variables xi is not always
desirable. For instance, in the case of a spinning body, the
q A variables are nine elements of an orthogonal 3×3 matrix
Ri j (therefore, Gα = 0 reads as RT R − 1 = 0). To describe
a rigid body, we need to know the evolution of q A and not
xi .

(B) The second possibility is to work with original vari-
ables using the Dirac version of Hamiltonian formalism [1–
6]. Equations of motion follow from the modified Lagrangian
action, where the constraints are taken into account with the
help of auxiliary variables λα(t) as follows [6,7]:

S =
∫

dt L(q A, q̇ A) − λαGα(q A). (1)

We should pass to the Hamiltonian formulation introduc-
ing the conjugate momenta pA, pλα to all original variables
q A, λα . The Hamiltonian equations are then obtained using
canonical Poisson brackets {q A, pB} = δAB , {λα, pλβ} =
δαβ and a Hamiltonian of the form H(q A, pB, λα, pλβ). The
resulting equations depend on the auxiliary variables λα and
pλα . The systematic method for excluding them is to pass
from the canonical to the Dirac bracket. The latter is con-
structed using second-class constraints

Gα(q A) = 0, �α(q A, pB) = 0, (2)

that appear in the Hamiltonian formulation of the theory
(1). Working with the Dirac bracket, all terms with auxil-
iary variables disappear from the final equations. This gives
the Hamiltonian formulation on the phase space with coor-
dinates q A, pB .

(C) In the case of a spinning body, a kind of intermediate
formulation arises between (A) and (B). The freely spinning
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body can be described by 9 + 3 Euler–Poisson equations1

Ṙi j = −ε jkm�k Rim, I �̇ = [I�,�], (3)

where I is a numerical 3 × 3 matrix. They turn out to be the
Hamiltonian equations [8–12], with the configuration-space
variables assembled into a 3 × 3 matrix Ri j (t), while �i (t)
are three components of momenta. There are nine redundant
coordinates Ri j , but only three independent momenta �i .
So, if in case (A) we worked with unconstrained set (xi , p j )

and in case (B) with redundant set (q A, pB), then now we
have an intermediate situation: (q A, p j ). This gives the most
economical Hamiltonian formulation of a theory for which
we are interested in knowing the dynamics of all variables
q A.

An intermediate formulation for the theory (1) can be
obtained in the Dirac formalism, by first constructing the
Dirac bracket (which is a degenerate Poisson structure on
original phase space (q A, pB)), and then reducing it on the
submanifold �α = 0. Let us call it the intermediate subman-
ifold.2 In the present work we develop an alternative way,
allowing us to construct the Poisson structure on this sub-
manifold, without the need for the Dirac bracket. Roughly
speaking, this works as follows. For any theory of the form (1)
with positive-definite Lagrangian L , we present a universal
procedure to find (non-canonical) phase-space coordinates
(q A, πi , πα) with special properties. They are constructed
using the matrix GαA ≡ ∂Gα/∂q A and fundamental solu-
tions of the linear system GαAxA = 0. The intermediate
formulation of the theory (1) is obtained by first rewriting
the Hamiltonian formulation of unconstrained theory L in
terms of new coordinates, and then excluding the variables
πα from all resulting expressions with the help of the con-
straint �α = 0. In particular, the Poisson structure on the
intermediate submanifold turns out to be the canonical Pois-
son bracket of the original variables (q A, pB), first rewritten
in terms of new coordinates (q A, πB), and then restricted to
this submanifold.

As we saw above, an interesting application of the interme-
diate formalism lies in the branch of spinning body dynam-
ics. This issue is also of interest in modern studies of various
aspects related to the construction and behaviour of spinning
particles and rotating bodies in external fields beyond the
pole–dipole approximation [13–21]. For simple mechanical
systems (point particle in an external field or several mutually
interacting particles), their equations of motion are postulated
based on the analysis of experimental data. Unfortunately, a
spinning body turns out to be too complex a system to find
its equations in this way. Thus, even writing the equations of

1 We denote the scalar and vector products of the vectors a and b by
(a, b), and [a, b] .
2 All solutions of the theory (1) lie in the phase-space submanifold
�α = 0, Gα = 0, hence the term “intermediate”.

motion of a spinning body turns out to be a non-trivial task. At
the dawn of the development of mechanics, this was consid-
ered one of the central problems, for which several branches
of classical mechanics were developed, including Lagrangian
mechanics on a submanifold, Hamiltonian mechanics with
constraints, symmetry groups and their relation to conserva-
tion laws and integrals of motion, and integrable systems. As
a result, the basic theory of a rotating body was formulated
in the works of Euler, Lagrange, Poisson, Poinsot, and many
others [22–25]. However, a didactically systematic formula-
tion and application of these methods to various problems
of rigid body dynamics is still regarded as not an easy task
[9,10]. For instance, Marsden, Holm and Ratiu in their work
[9] in 1998 write: “It was already clear in the last century that
certain mechanical systems resist the usual canonical formal-
ism, either Hamiltonian or Lagrangian, outlined in the first
paragraph. The rigid body provides an elementary example
of this.”

Second-order Lagrangian equations of a spinning body
can be obtained as the conditions of extrema of a variational
problem, where the body is considered a system of particles
subjected to holonomic constraints [11,12]. However, the
most convenient for applications turn out to be the equations
written in a first-order (Hamiltonian) form (3). Therefore, it is
desirable to have a formalism that allows one to deduce these
equations starting from the Lagrangian variational problem
by direct application of the standard prescriptions of classical
mechanics for the passage from Lagrangian to Hamiltonian
formulations. The intermediate formalism seems to be the
most economical way to do this. It should also be noted that
a thorough analysis of the Lagrangian and Hamiltonian for-
mulations reveals some specific properties of the formalism,
which are not always taken into account in the literature,
when formulating the laws of motion and applying them. In
several cases this even leads to the need to revise some classi-
cal problems of the dynamics of a spinning body, see [11,12]
and references therein.

The remainder of the paper is organized as follows.
In Sect. 2, we briefly discuss the dynamics on a surface
Gα(q A) = 0 in terms of unconstrained variables, and out-
line the Liouville integration procedure in a form conve-
nient for later comparison with the integration method based
on the Hamiltonian vector field. We then describe Hamilto-
nian reduction on an intermediate submanifold using a Dirac
bracket in Sect. 3. In Sect. 4, we present our intermediate
formalism for establishing the Poisson structure and Hamil-
tonian equations on the intermediate submanifold. In Sect. 5,
we present the method for integration of first-order equations
using the Hamiltonian vector field. We illustrate the inter-
mediate formalism on a simple example of a point particle
forced to move on a sphere in Sect. 6. In Sect. 7, we use the
intermediate formalism to establish the Poisson structure that
lies behind the Euler–Poisson equations of a spinning body,
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and write their general solution in terms of power series with
respect to the evolution parameter, and with the coefficients
determined by derivatives of the Hamiltonian vector field.

2 Motion on a surface in terms of unconstrained
variables and integrability according to Liouville

We assume that the original Lagrangian is non-singular

det
∂2L(q A, q̇ A)

∂q̇ A∂q̇ B
≡ det MAB �= 0, (4)

and that the particle q A was forced to move on a k-
dimensional surface S

k determined by n − k functionally
independent equations

Gα(q A) = 0, α = 1, 2, . . . , n − k,

rank
∂Gα

∂q A
≡ rank GαA = k. (5)

Let xi , i = 1, 2, . . . , k be local coordinates onSk , and q A(xi )
be parametric equations of Sk : Gα(q A(xi )) ≡ 0 for any xi .
Then, equations of motion follow from the following uncon-
strained Lagrangian

L̃(xi , ẋ i ) ≡ L(q A(xi ), q̇ A(xi )) = L

(
q A(xi ),

∂q A

∂xi
ẋ i

)
,

(6)

and read as follows:

∂ L̃

∂xi
− d

dt

∂ L̃

∂ ẋ i
= 0. (7)

By construction, for any solution xi (t) to the problem
(7), the trajectories q A(xi (t)) lie on the surface (5). This
recipe is well-justified [6,7,26] for Lagrangians of the form
T = 1

2mA(q̇ A)2 − U (q A) with mA > 0. For more general
Lagrangians, it should be taken as the definition of a particle
constrained to a surface.

We add one more technical restriction, assuming that the
matrix MAB is positive-definite, that is, YT MY > 0 for any
non-zero column Y. Then the matrix

Mi j ≡ ∂ L̃

∂ ẋ i∂ ẋ j
= MAB

∂q A

∂xi
∂qB

∂x j
≡ (QT )i AMABQBj , (8)

is non-degenerate, see Appendix. In view of this, for
positive-definite L(q A, q̇ A), the Lagrangian L̃(xi , ẋ j ) is
non-singular.

The Hamiltonian formulation in terms of unconstrained
variables can be obtained as follows. Introduce the conjugate
momenta pi = ∂ L̃/∂ ẋ i for xi . As det Mi j �= 0, these equa-
tions can be resolved with respect to ẋ i , say ẋ i = vi (x j , pk).
Using these equalities, we construct the Hamiltonian by
excluding ẋ i from the expression H = pi ẋ i − L̃(xi , ẋ j ).

Then, using the canonical Poisson brackets {xi , p j } = δij ,
the Hamiltonian equations of the theory are

ẋ i = {xi , H} = ∂H

∂pi
, ṗi = {pi , H} = −∂H

∂qi
. (9)

If the Hamiltonian does not explicitly depend on time,
it is an integral of motion. If, in addition, there are extra
k−1 integrals of motion, then according to Liouville’s theo-
rem, a general solution to equations of motion can be found
in quadratures (that is, calculating integrals of some known
functions and doing the algebraic operations).

Liouville’s theorem. Let the Hamiltonian equations (9)
admit k integrals of motion F1 = H, F2, F3. . . . , Fk . We
assume that they are in involution and functionally indepen-
dent with respect to momenta

{Fi , Fj } = 0, or
∂Fi
∂xa

∂Fj

∂pa
= ∂Fj

∂xa
∂Fi
∂pa

, (10)

det
∂Fi (x j , pk)

∂p j
�= 0. (11)

Then the equations of motion are integrable in quadratures.

Proof The proof consists in formulating a recipe for con-
structing the general solution.

(A). Consider the equations Fi (xi , p j ) = ci = const for
the constant-level surface of integrals of motion. Due to the
condition (11), they can be solved with respect to pi

Fi (x
i , p j ) = ci , ↔ pi = fi (x

i , c j ), then

Fi (x
p, f j (x

n, ck)) = ci . (12)

We first confirm that the vector function fi is a gradient of
some scalar function. Omitting x j , which we temporarily
regard as parameters, we have Fi ( f j (ck)) = ci , that is, Fi
and f j are mutually inverse transformations. Calculating the
derivative of this equality with respect to c j , we obtain

∂Fi
∂pa

∣∣∣∣
p= f

∂ fa
∂c j

= δi j , then
∂ fi
∂ca

∂Fa
∂p j

∣∣∣∣
p= f

= δi j ,

and det
∂ fa
∂c j

�= 0. (13)

Contracting Eq. (10) with ∂ fk/∂ci and using (13), we obtain
the identity

∂Fj

∂xk

∣∣∣∣
p= f

= ∂ fk
∂cb

∂Fb
∂xa

∂Fj

∂pa

∣∣∣∣
p= f

. (14)

Contracting ∂ fb/∂c j with the derivative of (12) with respect
to xk and using Eq. (13), we obtain the following expression
for the derivative of fb

∂ fb
∂c j

[
∂Fj

∂xk

∣∣∣∣
p= f

+ ∂Fj

∂pa

∣∣∣∣
p= f

∂ fa
∂xk

]
= 0,

then
∂ fb
∂xk

= − ∂ fb
∂c j

∂Fj

∂xk

∣∣∣∣
p= f

. (15)
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Together with (14), this implies that ∂k fb is an antisymmetric
matrix

∂ fb
∂xk

= − ∂ fb
∂c j

∂Fj

∂xk

∣∣∣∣
p= f

= − ∂ fb
∂c j

∂ fk
∂cn

∂Fn
∂xa

∂Fj

∂pa

∣∣∣∣
p= f

= − ∂ fk
∂cn

∂Fn
∂xb

∣∣∣∣
p= f

= ∂ fk
∂xb

, or ∂i f j − ∂ j fi = 0.

(16)

Then, Eq. (10) implies that the quantities pi − fi (xk, c j ) are
in involution

{pi − fi , p j − f j } = 0. (17)

According to (16), fi (xk) is a curl-free vector field, so there is
the potential �: fi (xk, c j ) = ∂�(xk, c j )/∂xi . In the result,
we demonstrated that equations of a constant-level surface
(12) can be written in the form

pi = ∂i�(x j , ck). (18)

(B). According to Stokes’ theorem, the line integral of a
curl-free field does not depend on the choice of the integration
path, and gives the potential

�(xk, c j ) =
∫ xk

0
fi (z

i , c j )dz
i . (19)

(C). Substituting the solution (18) to the equation H(xi , p j )

= c1 ≡ E into this equation, we have the identity

H

(
xi ,

∂�(xi , c j )

∂x j

)
= E . (20)

Then the function

S(t, xi , c j ) = −Et + �(xi , c j ), (21)

with the property

det
∂2S

∂xi∂c j
= det

∂ fi
∂c j

�= 0, (22)

by construction obeys the Hamilton–Jacobi equation

∂S

∂t
+ H

(
xi ,

∂S

∂x j

)
= 0. (23)

According to the theory of canonical transformations (see
Sect. 4.7 in [6]), the general solution to the Hamiltonian
equations (9) with 2k integration constants ck, bi can be now
obtained by solving the algebraic equations

pi = ∂S(t, x j , ck)

∂xi
= fi (x

j , ck),

bi = ∂S(t, x j , ck)

∂ci
= −tδi E + ∂�(x j , ck)

∂ci
, (24)

with respect to xi and p j . The resolvability of the second
equation is guaranteed by (22).

As a result, the problem of integrating the Hamiltonian
system (9) is reduced to the calculation of line integral (19).
In turn, this can be reduced to the calculation of definite
integrals. To see this, let us specify the equations (24) to the
case of a theory with two configuration-space variables xi =
(x, y) and two integrals of motion H(x, y, px , py) = E
and F(x, y, px , py) = c. Solving these algebraic equations,
we obtain px = fx (x, y, E, c) and py = fy(x, y, E, c).
Taking the path of integration to be the pair of intervals,
(0, 0) → (x, 0) → (x, y), we obtain the potential

�(x, y, E, c) =
∫ x

0
fx (x

′, 0, E, c)dx ′

+
∫ y

0
fy(x, y

′, E, c)dy′. (25)

Then Eq. (24) reads as follows:
px = fx (x, y, E, c), py = fy(x, y, E, c),

bx = −t +
∫ x

0

∂ fx (x ′, 0, E, c)

∂E
dx ′+

∫ y

0

∂ fy(x, y′, E, c)

∂E
dy′,

by =
∫ x

0

∂ fx (x ′, 0, E, c)

∂c
dx ′ +

∫ y

0

∂ fy(x, y′, E, c)

∂c
dy′.

(26)

Thus the problem is reduced to the calculation of four definite
integrals indicated in these equations.

3 Motion on a surface in terms of original variables

To work with a particle on a surface in terms of original vari-
ables, we can use the variational problem with the modified
Lagrangian (1), where the constraints are taken into account
with the help of auxiliary dynamical variables λα(t), called
Lagrangian multipliers. In all calculations they should be
treated on equal footing with q A(t). In particular, looking
for the equations of motion, we take variations with respect
to q A and all λα . The variation with respect to λα implies

Gα(q A) = 0, (27)

that is, the constraints arise as part of the conditions of
extrema of the action functional. Thus the presence of λα

allows q A to be treated as an unconstrained variable that
should be varied independently in obtaining the equations of
motion. Taking the variation with respect to q A, we obtain

− d

dt

∂L

∂ q̇ A
+ ∂L

∂q A
− λαGαA = 0. (28)

Computing the time derivative, these equations read

q̈ A = K A(q, q̇) − M̃ ABGβBλβ, (29)

where M̃ AB is the inverse of MAB(q A, q̇ B) and K A ≡
M̃ AB

[−q̇C∂2L/(∂q̇ B∂qC ) + ∂L/∂qB
]
. The theories (29)

and (7) turn out to be equivalent, see [6,7].
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The auxiliary variables λα can be excluded from the sys-
tem (28) (or (29)) as follows. For any solutionq A(t), the iden-
tity Gα(q A(t)) = 0 implies Ġα = GαAq̇ A = 0. Calculating
one more derivative, we obtainGαAq̈ A+∂B∂AGα q̇ Aq̇ B = 0.
Using the expression for q̈ A from (29), we obtain

Cαβλβ = GαAK
A + ∂A∂BGαq̇

Aq̇ B,

where Cαβ ≡ GαAM̃
ABGβB . (30)

According to the Appendix, C has the inverse matrix C̃ , so
we can separate λβ as follows:

λβ = C̃βα[GαAK
A + ∂A∂BGα q̇

Aq̇ B]. (31)

Inserting this λβ into Eq. (28) or (29), we obtain closed equa-
tions for determining the physical variables q A(t).

Comment. If the condition (8) is not satisfied, the invert-
ibility of C is not guaranteed, and we need to continue the
analysis of the system (30). The general procedure can be
found in Appendix C of [3]. Here we will only show that in
a theory with kinematic constraints, the auxiliary variables
can always be excluded from the equations for physical vari-
ables. Without loss of generality, we can assume that the
coordinates q A were enumerated in such a way that the non-
vanishing minor of the matrix GαA is located in the first n−k
columns. Then

q A = (qα, qi ), det
∂Gα

∂qβ
�= 0. (32)

Let us consider the original theory (1) in special coordinates
q ′A, adapted to the surface and defined as follows:

q A = (qα, qi ) ↔ q ′A = (q ′α = Gα(q A), q ′i = qi ). (33)

That is, we take the constraint’s functions Gα(q A) as part of
the new coordinates. In the adapted coordinates, our surface
is just the hyperplane q ′α = 0, and q ′i can be taken as its
local coordinates. For the inverse transformation, we obtain

q A = (qα = G̃α(q ′A), qi = q ′i ) then

q̇ ′α = ∂G̃α

∂q ′A q̇
′A, q̇i = q̇ ′i , (34)

where G̃α(q ′A) is the solution to equationsq ′α = Gα(qα, q ′i ):
Gα(G̃β(q ′A), q ′i )) = q ′α . An invertible change of variables
can be made directly in the Lagrangian (1), which leads to an
equivalent formulation of the original theory, see Sect. 1.4.2
in [6]. Substituting the expressions (34) into (1), we obtain the
Lagrangian of the form L ′(q ′A, q̇ ′A)−λαq ′α , which implies
equations of the following structure:

λα = Aα(q ′A, q̇ ′A, q̈ ′A), (35)

Bi (q
′A, q̇ ′A, q̈ ′A) = 0, q ′α = 0. (36)

That is, we have a closed system (36) for determining q ′A(t),
while λα(t) then can be found algebraically from (35).

For the latter use, observe that

M ′
AB = ∂2L ′

∂ q̇ ′A∂ q̇ ′B , (37)

and its inverse are positive-definite matrices together with
MAB .

Hamiltonian formulation of the theory (1) on phase
space (q A, pB). Without loss of generality, we assume that
equations of the surface Gα(q A) = 0 can be resolved with
respect to the first n − k-coordinates. Accordingly, the set
q A is divided into two subgroups, qα and qi . Greek indices
from the beginning of the alphabet run from 1 to n−k, while
Latin indices from the middle of the alphabet run from 1 to
k. Thus

S
k =

{
q A = (qα, qi ), Gα(q A) = 0,

det
∂Gα

∂qβ

∣∣∣∣
S

= n − k, α = 1, 2, . . . , n − k

}
, (38)

and our variational problem is (1). Applying the Dirac
method, we introduce conjugate momenta pA = ∂L/∂q̇ A

and pλα = ∂L/∂λ̇α for all configuration-space variables q A

and λα . Conjugate momenta for λα are the primary con-
straints: pλα = 0. Since the Lagrangian L was assumed
non-singular, the expressions for pA can be resolved with
respect to velocities:

pA = ∂L

∂ q̇ A
, then q̇ A = vA(q, p). (39)

To find the Hamiltonian, we exclude velocities from the
expression H = pAq̇ A − (L − λαGα) + ϕα pλα , obtaining

H = H0 + λαGα(q A) + ϕα pλα ,

where H0 ≡ pAvA(q, p) − L(q A, vB(q, p)). (40)

By ϕα we denoted the Lagrangian multipliers for the primary
constraints. Preservation in time of the primary constraints,
ṗλα = {pλα , H} = 0 implies Gα = 0 as the secondary
constraints. In turn, the equation dGα/dt = {Gα, H} =
{Gα, H0} = 0 implies tertiary constraints, which should be
satisfied by all true solutions

�α ≡ {Gα, H0} = GαB(q)vB(q, p) = 0,

where GαB ≡ ∂Gα(q)

∂qB
. (41)

The Lagrangian counterpart of these constraints is q̇ A∂AGα =
0, and means that for true trajectories, the velocity vector is
tangent to the surface S

k . Calculate

rank
∂�α

∂pB
= rank (GαAM̃

AB) = n − k,

where M̃ AB ≡ ∂vA(q, p)

∂pB
. (42)
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Note that M̃ AB is the inverse of the Hessian matrix MAB . This
implies that the constraints �α are functionally independent
and can be resolved with respect to some n − k momenta
of the set pA. This also implies that the constraints Gβ and
�α are functionally independent. Calculating their Poisson
brackets, we obtain the matrix

{Gα,�β} = GβA(q)M̃ ABGαB ≡ bαβ. (43)

For our Lagrangian with positive-definite MAB , this matrix
is non-degenerate, see Appendix.

For the latter use, we introduce the matrix composed of
brackets of the constraints TI = (Gα,�β)

�I J =
(

0 b
−bT c

)
, �−1

I J =
(
b−1T cb−1 −b−1T

b−1 0

)
, (44)

where the first block corresponds to {Gα,Gβ} = 0, and
cαβ = {�α,�β}. As b is invertible, the matrix �I J is invert-
ible, so our constraints Gβ and �α are of second class.

Preservation in time of the tertiary constraints gives
fourth-stage constraints that involve λα , and can be used to
find them through q A and pB

λα = b−1T
αβ {�β, H0}. (45)

Finally, preservation in time of the fourth-stage constraints
gives an equation that algebraically determines the Lagrangian
multipliers ϕα through other variables

ϕα = b−1
αβ

[{{�α, H0}, H0} + λγ {{�α, H0},Gγ }
−{bβγ , H0}λγ − {bβγ ,Gσ }λγ λσ

]
. (46)

In the absence of new constraints, the Dirac procedure is
completed.

In summary, we revealed the following chain of con-
straints

pλα = 0, Gα(q) = 0, �α ≡ GαB(q)vB(q, p) = 0,

λα = b−1T
αβ {�β, H0}, (47)

and determined the auxiliary variables ϕα . Note that the
phase-space variable pλα is just a constant, while λα is pre-
sented through q A and pB . So we only need to write the
dynamical equations for q A and pB . The variables λα can
be excluded from the Hamiltonian (40) using the constraint
(45). In addition, we can omit the term ϕα pλα , since it does
not contribute to Hamiltonian equations for the phase-space
variables q A, pB . With the resulting Hamiltonian, the equa-
tions read as follows:

q̇ A = {q A, H0 + b−1T
αβ {�β, H0}Gα}

= {q A, H0} + {q A,Gα}b−1T
αβ {�β, H0},

ṗA = {qA, H0 + b−1T
αβ {�β, H0}Gα}

= {pA, H0} + {pA,Gα}b−1T
αβ {�β, H0}. (48)

Writing the last equalities, we take into account that Gα = 0
for true solutions.

Dirac observed that these equations can be rewritten in
terms of a canonical Hamiltonian without auxiliary variables

H0(q
A, pB) = pAvA(q, p) − L(q A, vB(q, p)), (49)

if, instead of a canonical Poisson bracket, we introduce
the famous Dirac bracket. Given two phase-space functions
A(q, p) and B(q, p), their Dirac bracket is

{A, B}D = {A, B} − {A, TI }�−1
I J {TJ , B}. (50)

This has all the properties of the canonical Poisson bracket,
including antisymmetry and the Jacobi identity [27]. In addi-
tion, its remarkable property is that TI = (Gα,�β) rep-
resent its Casimir functions, that is, the Dirac bracket of
any phase-space function with any constraint TI vanishes:
{A, TI }D = 0. The equations constructed with the help of
H0 and the Dirac bracket

q̇ A = {q A, H0}D, ṗA = {pA, H0}D, (51)

differ from (48) by terms proportional to the constraints,
and therefore are equivalent. The final equations (51) do not
involve the auxiliary variables and are written on the phase
space (q A, pB). The Dirac bracket determines the Poisson
structure of this space.

Hamiltonian reduction to the intermediate submani-
fold. Using the Dirac formalism, we obtained 2n + 2(n − k)
equations of our theory written in 2n-dimensional phase
space with coordinates (q A, pB). They are the dynami-
cal equations (51) and the constraints Gα(q A) = 0 and
�α(q A, pB) = 0. All solutions to our equations lie on a 2k-
dimensional submanifold specified by these algebraic con-
straints. They could be used to exclude 2(n − k) variables
from the formalism. However, as we saw above, it may be
desirable to work with our theory keeping all q A. Therefore,
we exclude only some of the momenta, reducing our theory to
the intermediate submanifold of equations �α(q A, pB) = 0.
Let

pα = fα(q A, pi ), (52)

be a solution to the constraints �α(q A, pB) = 0. The reduc-
tion can be done while at the same time keeping the Hamilto-
nian character of the resulting equations, that is, we establish
the Poisson structure and Hamiltonian for our equations on
the intermediate submanifold with the coordinates (q A, pi ).
Because of the property that the constraints are composed of
Casimir functions, the reduction consists in eliminating the
variables pα from the formalism as follows.
1. It is known [27] that, together with �α = 0, the func-
tions pα − fα(q A, pi ) also represent Casimir functions of the
Dirac bracket, so for any phase-space function A(q A, pB),
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we obtain

{A(q A, pB), pα}D = {A(q A, pB), fα(q A, pi )}D. (53)

As a consequence, computation of the Dirac bracket and sub-
stitution (52) are commuting operations:

{A(q A, pB), B(q A, pB)}D
= {A(q A, pi , fα), B(q A, pi , fα)}D. (54)

2. Using (50) and (52), we define the following brackets on
the submanifold (q A, pi ):

{A(q A, pi ), B(q A, pi )}′
= {A(q A, pi ), B(q A, pi )}D

∣∣∣
pα= fα(q A,pi )

. (55)

Because of the property (53), the brackets {, }′ obey the Jacobi
identity (for the direct proof, see Sect. 4.2 in [27]), and hence
determine the Poisson structure on the submanifold (q A, pi ).
3. Let us replace pα on fα(q A, pi ) in the Hamiltonian (49),
denoting the resulting expression by H ′

0(q
A, p j )

H ′
0(q

A, p j )

=
[
pAvA(q, p) − L(q A, vB(q, p))

]∣∣∣
pα= fα(q A,pi )

.(56)

Because of the property (53), H0 can be used in Eq. (51)
instead of H , which will give equivalent Hamiltonian equa-
tions. Replacing pα according to (52) on the r.h.s. of these
equations, we obtain equivalent equations with the bracket
(55)

q̇ A = {q A, H ′
0(q

B, p j )}′ ṗi = {pi , H ′
0(q

B, p j )}′. (57)

Together with the algebraic equations Gα = 0 and pα =
fα(q A, pi ), they are equivalent to the original system com-
posed of (51), Gα = 0 and �α = 0. This completes the
procedure for the reduction to the intermediate submanifold
�α = 0.

4 Intermediate formalism

Here we present a more economical way to construct the
Hamiltonian formulation of the theory (1) on the intermediate
submanifold, which does not require constructing the Dirac
bracket and then reducing it to the submanifold.

To this end, we rewrite the obtained Hamiltonian theory
(47), (48) in non-canonical phase-space coordinates with spe-
cial properties. The matrix GαB(q A) of Eq. (41) is composed
of (n− k) linearly independent vector fields Gα(q A) orthog-
onal to the surface S

k of the configuration space q A. Let
us consider the linear system GαBxB = 0. It has a general

solution3 of the form xB = ciGi B , where the linearly inde-
pendent vectors Gi are fundamental solutions to this system.
They have the following structure:

Gi = (Gi1(q),Gi2(q), . . . ,Gi,n−k(q), 0, . . . , 1, 0 . . . , 0),

then GαBGi B = 0. (58)

By construction, these vector fields form a basis of tangent
space to the surface Sk . Together with Gα , they form a basis
of tangent space to the entire configuration space. Using the
rows Gβ and G j , we construct an invertible matrix GBA,
and use it to define the new momenta πB of the phase space
(q A, pB) as follows:

GBA(q) =
(
GβA

G j A

)
, πB = GBA(q)pA,

then pA = G−1
AB(q)πB ≡ G̃ AB(q)πB . (59)

Let us take q A and πB as the new phase-space coordinates.
Their special property is that both q A and πi have vanishing
brackets with the original constraints Gα

{q A,Gα} = 0, {πi ,Gα} = 0, (60)

where the latter equality is due to Eq. (58).
Let us rewrite our theory in the new variables. Using

the canonical brackets {q A, pB} = δAB , we obtain Poisson
brackets of the new variables

{q A, qB} = 0, {q A, πB} = GBA(q),

{πA, πB} = −cAB
D(q)G̃DE (q)πE , (61)

where the Lie brackets of basic vector fields GA appear

cAB
D = [GA, GB]D ≡ GAE∂EGBD − GBE∂EGAD, (62)

ci j
k = 0. (63)

Therefore, the Lie bracket of the vector fields GA determines
the Poisson structure of our theory in the sector πA. The
structure functions ci j k vanish for our choice of basic vectors
Gi of special form, see Eq. (58). In particular, the Poisson
brackets of the coordinates q A and πi are

{q A, qB} = 0, {q A, πi } = Gi A(q),

{πi , π j } = −ci j
α(q)G̃αE (q)πE . (64)

The Hamiltonian (40) reads

H = H0 + λαGα(q),

H0 = G̃ ACπCvA(q, G̃π) − L(q A, vB(q, G̃π)). (65)

Finally, our second-class constraints in the new coordinates
are

Gα(q) = 0, �α ≡ GαA(q)vA(q, G̃π) = 0. (66)

3 To avoid possible confusion, we point out that in the similar equation
(41), representing the tertiary constraints, f A are given functions of q
and p.
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Let us confirm that the tertiary constraints �α can be
resolved with respect to πα . To this end we compute the
matrix ∂�α/∂πβ , and show that its determinant is not zero

det
∂(GαAvA(q, G̃π))

∂πβ

= det[GαAM̃
AD(q, G̃π)G̃Dβ ] �= 0.

(67)

It is not zero for our class of positive-definite Lagrangians
(8); see Appendix. Resolving the constraints �α = 0, say

πα = fα(q A, πi ), (68)

we use the resulting expressions to exclude πα from (64) and
(65), thus obtaining

{q A, qB}′ = 0, {qα, πi }′ = Giα(q), {q j , πi }′ = δ j
i ,

{πi , π j }′ = −ci j
α[G̃αkπk + G̃αβ fβ(q A, πi )]. (69)

H ′
0(q

A, π j ) = G̃ ACπCvA(q, G̃π)

−L(q A, vB(q, G̃π))

∣∣∣
πα= fα(q A,πi )

. (70)

In general, the brackets (69) are non-linear for both q A and
πi . Their dependence on the choice of tangent vector fields
Gi to the surface Sk is encoded in three places: in the brackets
{qα, πi }′, in the matrix G̃, and in the structure functions ci jα ,
see Eq. (62).

Using these brackets and the Hamiltonian, let us write the
following system of equations:

q̇ A = {q A, H ′
0(q

B , π j )}′, π̇i = {πi , H
′
0(q

B, π j )}′; (71)

Gα(q) = 0, πα = fα(q A, πi ). (72)

Affirmation. The brackets (69) obey the Jacobi identity
and hence determine the Poisson structure on the interme-
diate submanifold �α = 0 equipped with the coordinates
(q A, πi ). In addition, Eqs. (71) and (72) represent an equiv-
alent formulation of the original theory (51), (47).

Proof Using the constraints (66), we construct a Dirac
bracket on the phase space (q A, πB) as follows:

{A, B}D = {A, B} − {A, TI }�−1
I J {TJ , B}. (73)

Here,TI is the set of all constraints:TI = (Gα(q),�β(q, π)).
In addition, denoting symbolically the blocks b = {G,�}
and c = {�,�}, the matrices � and �−1 are

� =
(

0 b
−bT c

)
, �−1 =

(
b−1T cb−1 −b−1T

b−1 0

)
. (74)

The constraint’s functions (66) are Casimir functions of the
Dirac bracket (73). Similarly to the previous section, as
Hamiltonian equations of our theory we can take

q̇ A = {q A, H}D, π̇A = {πA, H}D, (75)

with H written in Eq. (65). Equation (74) implies the follow-
ing structure of the Dirac bracket

{A, B}D = {A, B} − {A,G}�′{G, B} + {A,G}�′′{�, B},
(76)

that is, the last two terms on the r.h.s. involve at least one
constraint Gα . Taking into account Eq. (60), we conclude
that in the passage from the Poisson bracket (61) to the Dirac
bracket (73), the brackets (64) of basic variables q A and πi

will not be modified, retaining their original form. Excluding
πα from their r.h.s. using (68), we arrive at the brackets (69).
Since πα − fα(q A, πi ) are Casimir functions of the Dirac
bracket (73), the brackets (69) obey the Jacobi identity, see
Sect. 4.2 in [27] for the direct proof.

To reduce Eq. (75) to the intermediate submanifold �α =
0, we proceed in the same way as in the previous section.
First, working with Eq. (75), we can omit the terms with
constraints in the Hamiltonian (65), and then use (68) in the
resulting expression. This gives the Hamiltonian (70), which
therefore can be used instead of H in Eq. (75) for q A and πi .
Second, excluding πα from the r.h.s. of these equations using
(68), they acquire the form (71). This completes the proof of
the affirmation.

Another set of non-canonical variables. Instead of (59),
we can equally consider the following non-canonical set q A,
πB :

πα = GαAvA(q, p) ≡ �α, πi = Gi A pA. (77)

That is, we take the third-stage constraints �α as part of
the new momenta. Using the adapted coordinates (33), we
conclude that the change (77) is invertible with respect to pA

∂πA

∂pB
=

(
G ′

αAM̃
′Aβ G ′

αAM̃
′Aj

G ′
iα G ′

i j

)
=

(
M̃ ′αβ M̃ ′α j

0 δi j

)
.(78)

Here, we used that in adapted coordinates G ′
αA = (δαβ, 0)

and G̃ ′
Dβ = (δαβ, 0)T . As M̃ ′AB is a positive-definite matrix

(see (37)), we have det M̃ ′αβ > 0. Together with (78), this
implies det(∂πA/∂pB) �= 0.

Representing pA through q A and πB , we can rewrite the
theory in terms of new variables. Our second-class con-
straints in the new coordinates are

Gα(q) = 0, πα = 0. (79)

Using the canonical brackets {q A, pB} = δAB , we obtain the
following Poisson brackets for the variables q A and πi

{q A, qB} = 0, {qα, πi } = Giα(q),

{q j , πi } = Gi j (q) = δi j ,

{πi , π j } = −ci j
D(q)pD(q A, πi , πα), (80)

where the Lie brackets of basic vector fields Gi appear

ci j
D = [Gi , G j ]D ≡ GiE∂EG jD − G jE∂EGiD . (81)
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As above, the special property of the new variables is that q A

and πi have vanishing brackets with the original constraints
Gα

{q A,Gα(q)} = 0, {πi ,Gα(q)} = {Gi A(q)pA,Gα(q)}
= −Gi AGαA = 0, (82)

the latter equality being due to Eq. (58). For this reason, when
we pass to the Dirac bracket, the brackets (80) will not be
modified, while the brackets of πα = �α with any phase-
space function vanish. The final Hamiltonian is obtained
from (40) disregarding the last two terms and substituting
pA(q A, πi , πα = 0) into the remaining terms

H ′
0(q

A, π j ) = pA(q A, π j , 0)vA(qB, pC (q A, π j , 0))

−L(qB, pC (q A, π j , 0)). (83)

The final brackets are (80), where we substitute πα = 0 on the
r.h.s. of the last equation. Hamiltonian equations are obtained
using the final brackets as follows: q̇ A = {q A, H ′

0(q
B , π j )}′,

π̇i = {πi , H ′
0(q

B, π j )}′.

5 Integration of first-order equations using the
Hamiltonian vector field

To apply in practice Liouville’s theorem discussed in Sect. 2,
we need to find the integrals of motion, then solve the alge-
braic equations (12); then we need to calculate the integrals
given in Eq. (26) (for the rigid body they typically are the
elliptic integrals), and finally, solve the algebraic equations
(26). In this section we present another possibility for inte-
grating first-order equations in terms of power series with
respect to t .

Consider the differential operator acting on the space of
functions f (x) and defined by formal series

eh∂x = 1 + h∂x + 1

2
h∂x (h∂x ) + · · · =

∞∑
n=0

1

n! (h∂x )
n, (84)

where h = const, and ∂x = ∂
∂x . This obeys the properties

eh∂x x = x + h, eh∂x f (x) = f (eh∂x x), as can be verified by
expansion in power series of both sides of these equalities.
There is a generalization of the last equality for the case of a
function h(x). For the latter use we introduce the parameter
t . Then

eth(x)∂x f (x) = f (eth(x)∂x x), in particular eth(x)∂x h(x)

= h(eth(x)∂x x). (85)

To prove this,4 let us consider the following Cauchy problem
for partial differential equation

∂tϕ(t, x) = h(x)∂xϕ(t, x), ϕ(0, x) = f (x), (86)

4 This proof was suggested by Andrey Pupasov-Maksimov.

where h(x) and f (x) are given functions. It is known (see
Sect. 60 in [28]) that this problem has unique solution ϕ(t, x).
The function eth(x)∂x f (x) obeys this problem

∂t [eth(x)∂x f (x)] = ∂t

[
1 + th∂x + t2

2! (h∂x )
2 + · · ·

]
f (x)

= [h∂x + t (h∂x )
2 + t2

2! (h∂x )
3 + · · · ] f (x)

= h∂x [eth(x)∂x f (x)]. (87)

Denoting eth(x)∂x x ≡ y(x), we verify that the function
f (eth(x)∂x x) also obeys this problem

∂t [ f (eth(x)∂x x)] = ∂y f
∣∣
y(x) ∂t [eth(x)∂x x]

= ∂y f
∣∣
y(x) ∂t

[
1 + th∂x + t2

2! (h∂x )
2 + · · ·

]
x

= ∂y f
∣∣
y(x)

[
h∂x + t (h∂x )

2 + t2

2! (h∂x )
2 + · · ·

]
x

= ∂y f
∣∣
y(x) h∂x

[
1 + t (h∂x ) + t2

2! (h∂x )
2 + · · ·

]
x

= h ∂y f
∣∣
y(x) ∂x y(x) = h∂x [ f (y(x))]

= h∂x [ f (eth(x)∂x x)]. (88)

Since the solution is unique, the two functions must coincide,
which proves the equality (85).

As a consequence, the series z(t, x) = eth(x)∂x x turns out
to be a general solution to the equation

ż = h(z), (89)

with x being the integration constant. Indeed, we have

ż = d

dt
[eth(x)∂x x] = ∂t

[
1 + th∂x + t2

2! (h∂x )
2 + · · ·

]
x

=
[
h∂x + t (h∂x )

2 + t2

2! (h∂x )
3 + · · ·

]
x

= h + t (h∂x )h + t2

2! (h∂x )
2h + · · ·

= eth(x)∂x h(x) = h(eth(x)∂x x) = h(z),

(90)

where the penultimate equality is due to (85).
This observation is immediately generalized for the case

of several variables: the functions

zi (t, z j0) = e
thk (z j0) ∂

∂zk0 zi0, (91)

provide a general solution to the system

żi = hi (z j ). (92)

Any Hamiltonian system ẋ i = {xi , H}, ṗ j = {p j , H} has
this form. Thus its general solution is

xi (t, x j
0 , p0k) = e

t{xk0 ,H(x0,p0)} ∂

∂xk0
+t{p0k ,H(x0,p0)} ∂

∂p0k xi0,
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pi (t, x
j
0 , p0k) = e

t{xk0 ,H(x0,p0)} ∂

∂xk0
+t{p0k ,H(x0,p0)} ∂

∂p0k p0i .

(93)

For a generalization of these formulas to the case of the time-
dependent Hamiltonian, see [6].

6 Application of intermediate formalism to a toy model

Here, we illustrate the intermediate formalism on the exam-
ple of a particle on a sphere, obtaining a non-standard Hamil-
tonian description of this model in a five-dimensional sym-
plectic manifold.

Consider a point particle with coordinates xi (t) in three-
dimensional Euclidean space, forced to move freely on the
sphere x2 = c2. It can be described by the Lagrangian action

S =
∫

dt
m

2
ẋ2 + λ(x2 − c2). (94)

In the phase space with canonically conjugated coordi-
nates (x, p), this action implies two second-class constraints
x2 −c2 = 0 and (x, p) = 0. The first is analogous to Gα = 0
of the general formalism, while the second is analogous to
�α = 0 and determines the five-dimensional intermediate
submanifold in the phase space. Then the analogue of GαA

is the vector 1
2 grad(x2 − c2) = (x1, x2, x3). Assuming that

we work in the local coordinate chart with x3 �= 0 funda-
mental solutions to the equation (x, z) = 0 are (1, 0,− x1

x3
)

and (0, 1,− x2
x3

). The change of variables (59) reads

⎛
⎝π1

π2

π3

⎞
⎠ =

⎛
⎝

1, 0 − x1
x3

0 1 − x2
x3

x1 x2 x3

⎞
⎠

⎛
⎝ p1

p2

p3

⎞
⎠ . (95)

We obtain

π1 = p1 − x1

x3
p3, π2 = p2 − x2

x3
p3, π3 = (x, p). (96)

Hence, in the new coordinates x and π , the intermediate sub-
manifold is just the hyperplane π3 = 0. The inverse trans-
formation to (96) is

p1 = π1 − x1

x2 [x1π1 + x2π2 − π3] ,

p2 = π2 − x2

x2 [x1π1 + x2π2 − π3] ,

p3 = − x3

x2 [x1π1 + x2π2 − π3] . (97)

The next step is to rewrite the canonical Poisson brackets
{xi , p j } = δi j and Hamiltonian H = 1

2m p2 in terms of
new coordinates, and then substitute π3 = 0 in all result-
ing expressions. Using the expressions (95) and the canoni-
cal brackets, we obtain the following non vanishing brackets
for the coordinates (x1, x2, x3, π1, π2) of the intermediate

submanifold

{x1, π1} = 1, {x2, π2} = 1, {x3, π1} = − x1

x3
,

{x3, π2} = − x2

x3
. (98)

They do not involveπ3, so they already give the Poisson struc-
ture of intermediate manifold. Using Eq. (97) in the canonical
Hamiltonian, and then setting π3 = 0, we obtain the Hamil-
tonian reduced to the intermediate submanifold

H = 1

2m

{
π2

1 + π2
2 − (x1π1 + x2π2)

x2

}
. (99)

Equations (98) and (99) represent a Hamiltonian system on a
five-dimensional symplectic manifold foliated by the leaves
x2 = c2, c ∈ R. The quantity x2 is a Casimir function of
the Poisson structure (98). Thus, any trajectory that passes
through a point of the symplectic leaf x2 = c2 with given c,
lies entirely in this leaf.

7 Rotating asymmetric body in the intermediate
formalism

Here, we apply the intermediate formalism to a spinning
body. We show that Euler–Poisson equations turn out to be
a Hamiltonian system on the intermediate submanifold and
deduce the Poisson geometry (112) that lies behind these
equations.

Motions of a spinning body can be described [11,12] start-
ing from the Lagrangian action of the form (1)

S =
∫

dt
1

2
gi j Ṙki Ṙk j − 1

2
λi j

[
Rki Rk j − δi j

]
, (100)

where RT R − 1 play the role of Gα of the general formal-
ism. The action is written in the laboratory system with the
origin chosen at the centre of mass of the body. Ri j (t) is a
3 × 3 matrix. Its nine elements are the dynamical degrees of
freedom which, at the end, describe the rotational motions of
the body. The numerical symmetric matrix gi j encodes the
distribution of the mass of the body at the initial instant

gi j ≡
n∑

N=1

mN x
i
N (0)x j

N (0), (101)

where mN are masses of the body’s particles with position
vectors xN (t). The mass matrix and inertia tensor are related
as follows: Ii j = gkkδi j − gi j . Choosing laboratory axes at
t = 0 in the directions of axes of inertia, the two tensors
acquire a diagonal form, gi j = giδi j , Ii j = Iiδi j . For a
non-planar body, gi are positive numbers [12], so the Hes-
sian matrix of the theory (100) is evidently positive-defined.
Therefore, we can apply the intermediate formalism devel-
oped in Sects. 3 and 4.
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Introducing the conjugate momenta for all dynamical vari-
ables pi j = ∂L/∂ Ṙi j and pλi j = ∂L/∂λ̇i j , we obtain the
expression for pi j in terms of velocities

pi j = Ṙikgk j , then Ṙi j = pikg
−1
k j , (102)

and the primary constraints pλi j = 0. To construct the final
Hamiltonian of the intermediate formalism, we will need
only the canonical part H0 = pi j Ṙi j (p) − L(Ṙi j (p)) of the
complete Hamiltonian (40). For the present case, its explicit
form is

H = 1

2
g−1
i j pki pk j . (103)

The non-vanishing Poisson brackets of canonical variables
are as follows (there is no summation over i and j):
{Ri j , pi j } = 1, {λi j , pλi j } = 1. Next, the explicit form of
tertiary constraints (41) in our case is

{Rki Rk j , H0} =
[
RT pg−1 + (RT pg−1)T

]
i j

≡
[
RT RR−1 pg−1 + (RT RR−1 pg−1)T

]
i j

= 0.

(104)

The surface determined by equations RT R = 1 and (104) is
equally determined by 6 + 6 equations

RT R = 1, (105)

�i j ≡
[
R−1 pg−1 + (R−1 pg−1)T

]
i j

= 0. (106)

We take these �i j as analogues of the constraints (41) of the
general formalism.

According to the intermediate formalism, we now need
to find non-canonical momenta with two properties. First,
9 − 6 = 3 of them should have vanishing Poisson brackets
with the orthogonality constraint, see Eq. (60). Second, the
constraints (106) can be used to represent other momenta
through these three, see Eq. (68). To achieve this, consider
the phase-space functions

Pi j ≡ 2(R−1 p)i j , then pi j = 1

2
(RP)i j . (107)

They are constructed from pi j with the use of an invertible
matrix, so the transition (Ri j , pi j ) → (Ri j ,Pi j ) is a change
of variables on the phase space. We emphasize that Ri j in the
action (100) is an arbitrary (not orthogonal!) matrix.

We decomposePi j on symmetric and antisymmetric parts,
Pi j = Si j − M̂i j , where S = R−1 p + (R−1 p)T and
M̂ = R−1 p − (R−1 p)T , and then replace the antisym-
metric matrix M̂ on an equivalent vector5: M̂i j = εi jkMk ,

5 The phase-space functions Mk , being rewritten back in terms of Ri j

and Ṙi j , are just the components of angular momentum in the body-
fixed frame [12]: Mk = R−1

ki mi , mi = ∑
N mN [xN (t), ẋN (t)]i .

Mk ≡ 1
2εki j M̂i j = −εki j (R−1 p)i j . Therefore, the final form

of the decomposition is

Pi j = Si j − εi jkMk, where

Si j =
[
R−1 p + (R−1 p)T

]
i j

, Mk = −εki j (R
−1 p)i j .

(108)

Accordingly, we consider the following change of variables:

(Ri j , pi j ) → (Ri j , Si j , i ≤ j, Mk). (109)

The coordinates Mk have the desired properties: their brack-
ets with orthogonality constraint vanish: {Mk, Rpi Rpj −
δi j } = 0, and the variables Si j can be presented through
Mk , resolving (106) as follows (there is no summation on i
and j in this expression):

Si j = gi − g j

gi + g j
εi jkMk = I j − Ii

Ik
εi jkMk . (110)

Therefore, the change of variables (109) is analogous to the
change (59) of the general formalism. To obtain the last equal-
ity, we used the following relations among elements of diag-
onal mass matrix and inertia tensor [12]:

2g1 = I2 + I3 − I1, 2g2 = I1 + I3 − I2,

2g3 = I1 + I2 − I3, I1 = g2 + g3, I2 = g1 + g3,

I3 = g1 + g2, gi − g j = I j − Ii . (111)

Computing the canonical Poisson brackets of the new vari-
ables Ri j , Mk and Si j , we obtain

{Ri j , Rab} = 0, {Mi , Mj } = −εi jk((R
T R)−1M)k ,

{Mi , R jk} = −εikm R−1T
jm ; (112)

{Ri j , Sab} = R−1T
ia δ jb + R−1T

ib δ ja,

{Mk , Sab} = −2Mk(R
T R)−1

ab + δka((R
T R)−1M)b

+δkb((R
T R)−1M)a,

{Si j , Sab} = −(RT R)−1
ia ε jbnMn − (RT R)−1

jb ε janMn + (a ↔ b).

(113)

According to Sect. 4, to reduce our theory on the subman-
ifold �i j = 0, it is sufficient to rewrite it in the variables
Ri j , Mk , Si j , and then, using Eq. (110), to exclude from all
resulting expressions the variables Si j . The brackets (112)
do not involve Si j , so they already give a Poisson structure
of intermediate submanifold �i j = 0. Using Eqs. (107) and
(108) in the canonical Hamiltonian (103), the latter can be
written as follows:

H0 = 1

8
g−1
i j (Sai − εaikMk)

(Saj − εajpMp) + 1

8
g−1
i j (RT R − 1)ab

(Sai − εaikMk)(Sbj − εbjpMp). (114)

The second term is proportional to the orthogonality con-
straint. Therefore, it does not contribute to the Hamiltonian
equations for the variables Ri j and Mk , and hence it can be
omitted. The remaining term can be written as follows:
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H0 = 1

8

∑
j

1

g j
(Si j − εi jkMk)

2. (115)

Using the relations (111), for any chosen i �= j we obtain
1
g j

(Si j − εi jkMk)
2 = 4g j

I 2
k
M2

k . Using this in (115), we obtain

the final form of our Hamiltonian on the intermediate sub-
manifold

H0 = 1

2
I−1
i j Mi M j . (116)

Note that the final expression, which is composed of tensors
and vectors, is invariant under rotations. Hence, the Hamil-
tonian will be of this form in any laboratory system. If the
laboratory frame was not adapted with the axes of inertia at
the initial instant, the inertia tensor in this expression would
be a numerical symmetric matrix with non-vanishing off-
diagonal elements.

Using this H0 with the brackets (112), the Hamilto-
nian equations ż = {z, H0} read as follows: Ṙi j =
−ε jkm(I−1M)k Rim , Ṁ = [M, I−1M]. Introducing the
phase-space quantity �i = I−1

i j M j , they acquire the stan-
dard form of Euler–Poisson equations:

Ṙi j = −ε jkm�k Rim, I �̇ = [I�,�]. (117)

By this, we have completed Hamiltonian reduction on the
intermediate submanifold (106), showing that Euler–Poisson
equations are the Hamiltonian system on this submanifold,
with the Poisson structure given by the brackets (112).

The Chetaev bracket is the Dirac bracket. Using the
orthogonality constraint on the r.h.s. of the brackets (112),
we obtain simpler expressions

{Ri j , Rab} = 0, {Mi , Mj } = −εi jkMk,

{Mi , R jk} = −εikm R jm . (118)

By direct computation, it can be verified that they still satisfy
the Jacobi identity and lead to the same equations (117).
They were suggested by Chetaev [8] as the possible Poisson
structure corresponding to the Euler–Poisson equations.

General solution to the Euler–Poisson equations and
the motions of a rigid body. Not all solutions to Eq. (117)
describe the motions of a spinning body. By construction [11,
12], they should be solved with the universal initial conditions

Ri j (0) = δi j , �i (0) = �0i , (119)

where �0i is the initial angular velocity measured in the
body-fixed frame. That is, only those trajectories that at some
instant of time pass through the unit of SO(3)-group can
describe possible motions of the body.6 Let us denote the
r.h.s. of Eq. (117) as follows: Hi j (R,�) and Hk(�). Then,
according to Eq. (91), we can write for their general solution

6 Misunderstanding of this point leads to considerable confusion, see
[11,12] and references therein.

Ri j (t, R0kp,�0k) = e
t Hkp(R0,�0) ∂

∂R0kp
+t Hk(�0) ∂

∂�0k R0i j .

(120)

After applying the differential operator in the exponential,
R0kp should be replaced on δkp in each term of the obtained
power series. The resulting function Ri j (t,�0k) will repre-
sent the motion of a spinning body, that at t = 0 has its
inertia axes parallel to the laboratory axes, and the initial
angular velocity equal to �0i .

8 Conclusion

The most economical Hamiltonian formulation of the theory
(1), in which we are interested in knowing the dynamics of
all variables q A, is achieved on the intermediate submani-
fold of phase space determined by the constraints (41) (or,
equivalently, by (68)). We have described and discussed two
methods of Hamiltonian reduction to this submanifold. The
final result of the reduction using the Dirac bracket is writ-
ten out in Eqs. (55)–(57). The intermediate formalism gives
Eqs. (69)–(72). As we have shown in the last section, the
intermediate formalism leads directly to the Euler–Poisson
equations of a spinning body.

To further compare the two reductions, let us denote coor-
dinates (q A, pB) of the original phase space by zi , and coor-
dinates (q A, p j ) of the intermediate submanifold by za . The
Poisson tensor of the original space is ωi j , the Dirac ten-
sor is ω

i j
D , and the Poisson tensor induced on the inter-

mediate submanifold is ω̄ab. Generally, in the process of
reduction using the Dirac bracket, ωi j → ω

i j
D → ω̄ab, we

have ωab �= ωab
D �= ω̄ab. An alternative possibility, devel-

oped in this work, is as follows: In the theory (1) with a
positive-definite Lagrangian L , there are phase-space coor-
dinates z′i = (q A, πB) such that in the process of reduction
ω′i j → ω

′i j
D → ω̄′ab we have ω′ab = ω′ab

D �= ω̄′ab. In
view of this, the reduction consists in excluding the redun-
dant momenta (see Eq. (68)) from the block ω′ab of original
tensor ω′i j .
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Appendix

Here we enumerate some properties of a positive-definite
matrix.

A symmetric real-valued n × n-matrix with the elements
Mi j is called a positive-definite (M � 0) if for any non-zero
column Y we have YT MY > 0. The following affirmations
turn out to be equivalent [29]:
1A. M � 0.
1B. There exists an n×n positive-definite matrix B such that
M = B2 ≡ BT B.
1C. All principal minors of M are positive numbers. In par-
ticular, det M > 0.
1D. M is the Gram matrix of some set of p-dimensional
linearly independent vectors, say Zi . That is, Mi j = (Zi , Z j ).
If ZAi , A = 1, 2, . . . p is the matrix formed by the columns
Zi , and we can write Mi j = (ZT )i A Z Aj .
1E. All eigenvalues of M are positive numbers.

In addition, there are the following properties:
2A. Diagonal elements of the positive-definite matrix are
positive numbers: Mii > 0 for any i . Then trace M > 0.
2B. The positive-definite matrix is invertible, and its inverse
is a positive-definite matrix.

Affirmation. Let rank QAi = k, where A = 1, 2, . . . p,
i = 1, 2, . . . k, k < p, and MAB is positive-definite. Then
the matrix

Ni j = (QT )i AMABQBj , (121)

is non-degenerate, det N �= 0.

Proof Using 1B, we write M = BT B; then

Ni j = (BQ)Ti A(BQ)Aj , (122)

where, according to 2B, the matrix B is nondegenerate. Since
the columns of QAj are linearly independent, the matrix
(BQ)Aj is also composed of linearly independent columns.
Then (122) means that Mi j is the Gram matrix. According
to 1D, it is positive-definite. In particular, det N > 0.
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