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Abstract In this paper, we explore one of Einstein’s alter-
native formulations which involves the non-metricity scalar,
Q, within the framework of f (Q) theory. Our study focuses
on solving the modified Friedmann equations for the case of
dust matter, ρ = ρm , and a form of f (Q) = α + βQn . We
investigate the behavior of our model in both linear (n = 1)

and nonlinear (n �= 1) scenarios at the background and
perturbation levels. By employing the Markov chain Monte
Carlo (MCMC) method, we constrain our model using obser-
vational datasets including redshift space distortion, cosmic
chronometers, and Pantheon+. Without using any parameter-
ization of the growth rate index which quantifies the deviation
from the �CDM model, both models exhibit good accuracy
in describing the redshift space distortion. We further analyze
the dynamics of the Universe using cosmography parameters,
where our model exhibits a phase transition between decel-
eration and acceleration phases at z = 0.789. Our findings
reveal that our model exhibits a phantom-like behavior based
on statefinder diagnostic analysis. Interestingly, the model
demonstrates a rich variety of behaviors, resembling either a
quintessence-like scenario for (n < 1) or phantom-like sce-
nario for (n ≥ 1). Using the MCMC best fit and parameteriz-
ing the growth index, the evolution of the growth index also
depends on the parameter n, either remaining constant (in the
linear case) or showing a decreasing trend (in the nonlinear
case), indicating a weaker growth rate of density perturba-
tions during earlier cosmic times. Finally, we compare our
findings of the growth index with the values obtained in the
literature.
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1 Introduction

Observations evidenced by astronomical probes, such as type
Ia supernovae [1–3], cosmic microwave background radia-
tion [4,5], and large-scale structures [6,7], indicate that the
Universe underwent a shift from a decelerating phase in its
early history to an accelerating phase in its more recent his-
tory. In modern cosmology, one of the most significant and
intricate challenges is to pinpoint the agent responsible for
the late-time cosmic accelerated expansion. The presence of
dark energy with negative pressure is one of the most plau-
sible explanations for this acceleration [8,9]. Among several
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dark energy models [10–13], �CDM has proven to be rel-
atively successful, explaining many cosmological phenom-
ena such as the formation of large-scale structures and accu-
rately describing type Ia supernovae observations. However,
its incorporation is impeded by theoretical obstacles related
to fine-tuning [14–16] and the cosmic coincidence [17,18].

Another way of approaching the issue of dark energy is
to consider alternative theories of gravity that differ from
Einstein’s theory of general relativity. These theories may
provide an explanation for the accelerating expansion of the
Universe without the need for dark energy. Several inno-
vative theories of modified gravity have been suggested,
one of which is f (R) gravity [19]. This model relies on a
Lagrangian that is dependent on the scalar curvature R and
has been successful in elucidating the accelerated expan-
sion of the Universe without invoking the need for dark
energy. In addition to the scalar curvature, torsion T and
non-metricity Q can also represent affine properties of man-
ifolds. The teleparallel equivalent to GR (TEGR) theory, in
which gravity is defined by torsion T with the corresponding
action S = ∫ √−gT d4x , is also extended to f (T ) grav-
ity [20]. TEGR is an alternative way to describe the geo-
metric concept of gravity, in which the dynamical objects
are the four linearly independent tetrads [21–23]. Further-
more, TEGR explains the late-time acceleration of the Uni-
verse [24,25], avoiding the Big Bang singularity [26], and
provides an alternative to inflation [27]. However, some
intrinsic problems arise in TEGR gravity such as the viola-
tion of local Lorentz invariance [28]. Furthermore, the sym-
metric teleparallel equivalent to GR (STEGR) is the under-
lying gravitational interaction using non-metricity Q with-
out the presence of torsion and curvature. f (Q) gravity is a
STEGR theory extension in which the action is defined by
S = ∫ √−g f (Q)d4x [29].

Symmetric teleparallel gravity f (Q) is the central focus
of this article. So far, constraints have been integrated
into the background level by utilizing data from differ-
ent sources such as the expansion rate from early-type
galaxies, supernovae type Ia (SNIa), gamma ray bursts,
quasars, cosmic microwave background (CMB), and bary-
onic acoustic oscillations (BAO). The latter have been used
to constrain various f (Q) parameterizations that explic-
itly depend on the redshift z [30]. Another investigation
examines a power law expression for f (Q), specifically
f (Q) = Q + βQn , which has been studied in terms
of cosmological solutions and the evolution of the growth
index of matter perturbations [31,32]. A new proposal sug-
gests an exponential form for the f (Q) function, specif-

ically f (Q) = Qeλ
Q0
Q [33]. Surprisingly, the combina-

tion of cosmic chronometers (CC), type Ia supernovae, and
baryon acoustic oscillation datasets, without the use of CMB,
shows that this exponential form demonstrates a statistical

preference over �CDM, while with the inclusion of CMB
data [34], the �CDM model regains its statistical prefer-
ence.

Moreover, the perturbation level constraints for the f (Q)

model have also been obtained using redshift space distor-
tions data (RSD) [35]. This model accurately reproduces the
expansion history of the �CDM model. By examining mod-
ifications in the evolution of matter density fields, it has been
demonstrated that this model has the capability to alleviate
the tension associated with σ8 [36]. Additionally, observable
effects such as the characterization of the matter power spec-
trum, the lensing effect on the CMB angular power spectrum,
CMB temperature anisotropy, and the propagation of gravi-
tational waves have been identified in [37].

The motivation behind this article is to explore the form
f (Q) = α + βQn , which was reconstructed by Capozziello
and D’Agostino in [38]. However, this form has only been
tested at the background level using a method based on
rational Padé approximations [38]. Therefore, the aim of
our study is twofold: firstly, to constrain f (Q) gravity by
means of Bayesian analysis using redshift space distortion
data, and secondly, to investigate whether this model can
effectively explain the accelerated phase of the Universe
without the need to introduce dark energy. To achieve this
aim, we initially solve the modified Friedmann equations
under the assumption that the Universe is exclusively com-
posed of dust matter with zero pressure (p = 0). We rigor-
ously evaluate the performance of this model by assessing
its accuracy at both the background and perturbation lev-
els. To estimate model parameters, we use data from vari-
ous probes, including redshift space distortion [39–51], cos-
mic chronometers [52–63], and Pantheon+ datasets [64], in
order to constrain f (Q) gravity in linear (n = 1) and non-
linear (n �= 1) forms. It is worth noting that we numeri-
cally solve the evolution of the matter perturbation equation
instead of the analytical approximation of the growth factor
f . Then, using a Markov chain Monte Carlo (MCMC) anal-
ysis [65], we extract the best-fit values of the free parameters
for both cases. On the basis of these statistical results, the
two f (Q) gravity cases are compared, analyzed, and clas-
sified with respect to the standard �CDM model using the
corrected Akaike information criterion (AICc) [66,67] and
the Bayesian information criterion (BIC) [68].

In the next step of this work, we examine how these fit-
ting results impact the current acceleration of the universe
by studying the evolution of the equation of state (EoS) and
the cosmographic parameters [69–71]. The EoS parameter
is a commonly used tool for characterizing dark energy in
various models, as it describes the relationship between the
pressure P and the energy density ρ of the Universe. In the
case of an accelerating expanding Universe, it can be clas-
sified into two models: (i) quintessence models, where the

123



Eur. Phys. J. C           (2024) 84:310 Page 3 of 16   310 

null energy condition 0 ≤ ρ + P is preserved, resulting in an
EoS parameter always greater than −1 but less than −1/3;
and (ii) phantom models, where the null energy condition is
violated, allowing the EoS parameter to fall below −1 [10]. In
this study, we incorporate an effective EoS parameter within
the framework of f (Q) gravity to explain the present accel-
eration of the Universe for both cases. Various cosmographic
parameters have been proposed for analyzing the early and
late evolution of the Universe, including deceleration (q),
jerk ( j), and snap (s) [69,70,72]. These parameters describe
the past history and the evolution of the scale factor a(t)
through its derivatives, offering advantages in that they are
not dependent on any model-specific assumptions. For geo-
metric comparisons between models, we use the statefinder
pairs {r, s} and {r, q} introduced by Sahni et al. in [69,70].

In the last step of this work, we focus on the growth
rate index of matter perturbations γ , which provides an
effective approach for estimating the distribution of matter
in the Universe and differentiating between modified grav-
ity. The growth rate, f , can be approximated as 


γ
m . In

the �CDM model, the theoretical value of γ is approxi-
mately 6/11 � 0.545 [73,74]. However, in various param-
eterized dark energy models, γ is around 0.55 [74], and
for the flat DGP (Dvali–Gabadadze–Porrati) model, γ =
11/16 � 0.6875 [73]. In certain f (R) gravity models, γ can
range from approximately 0.40 to 0.55 for different param-
eter values [76,77], while in Finsler–Randers cosmology,
γ ≈ 9/14 [78]. For the f (T ) gravity, the growth index γ

approaches 0.58 [79]. In the present work, the growth index
is equal to 0.553 and 0.552 for linear and nonlinear f (Q)

gravity, respectively.
The current paper is organized as follows. Firstly, in

Sect. 2, we provide an introduction to f (Q) gravity. Next,
in Sect. 3, we present the solution of the modified Friedman
equations for f (Q). Moving on to Sect. 4, we describe three
datasets RSD, CC, and Pantheon+, and we discuss the use of
the MCMC method to constrain the f (Q) model parameters.
Additionally, in the same section, we present the mean values
of cosmological parameters and the results of the information
criteria, i.e., the corrected Akaike information criterion and
the Bayesian information criterion. In Sect. 5, we examine the
effective equation of state and the ωd − ωd

′ plane. Section 6
focuses on the cosmography parameters and the statefinder
diagnostic, while in Sect. 7 we explore the growth index γ

of the studied model. Finally, the paper concludes with a
summary in Sect. 8.

2 Basic formalism of f (Q) gravity

The main focus of this study is on f (Q) modified gravity
models, which are characterized by the non-metricity ten-

sor [80]

Qαμν = ∇αgμν, (2.1)

where the non-metricity scalar Q is defined as

Q = −Qαμν P
αμν. (2.2)

The non-metricity conjugate is represented by the tensor
Pαμν

Pα
μν = −1

2
Lα

μν + 1

4

(
Qα − Q̃α

)
gμν − 1

4
δα
(μQν), (2.3)

where Lα
μν = 1

2 Q
α
μν − Qα

(μν), Qα = gμνQαμν and Q̃α =
gμνQμαν .

The f (Q) modified gravity models under consideration
are based on the following action [29]

S =
∫

d4x
√−g

[

− f (Q)

16πG
+ Lm

]

. (2.4)

From now on, we assume that 8πG = 1 and c = 1. In this
expression, Lm represents the Lagrangian for matter fields,
G is the Newtonian constant, f (Q) is a general function
of the non-metricity scalar, and g is the determinant of the
metric tensor gαβ . In flat spacetime, the action (2.4) is equiv-
alent to general relativity for f (Q) = Q [81]. The energy–
momentum tensor can be expressed as

Tμν = −2√−g

δ
(√−gLm

)

δgμν
. (2.5)

By varying the modified Einstein–Hilbert action (2.4) with
respect to the metric tensor gαβ , the gravitational field equa-
tions can be expressed as

−2√−g
�α(

√−g fQ Pα
μν) − 1

2
gμν f − fQ(Pμαi Q

αi
ν − 2QαiμP

αi
ν )

= Tμν, (2.6)

where fQ = ∂ f
∂Q . The variation in the action (2.4) with respect

to the connection can be formulated as

∇μ∇ν(
√−g fQ Pμν

α ) = 0. (2.7)

To incorporate this modified gravity theory into cosmology,
we consider the Friedmann–Lemaître–Robertson–Walker
(FLRW) line element, which is described as

ds2 = −dt2 + a2(t)
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
, (2.8)

where a(t) is the scale factor and t represents the cosmic
time. The non-metricity invariant Q, as defined in Eq. (2.2),
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is given by Q = 6H2, where H = ȧ
a represents the Hubble

function and the dot denotes the derivative with respect to the
cosmic time. We assume that the energy–momentum tensor
is described by a perfect fluid, i.e.,

Tμν = (p + ρ) uμuν + Pgμν, (2.9)

where P denotes the pressure, and ρ denotes the energy den-
sity.

Using Eqs. (2.8) and (2.9), we can derive the modified
Friedmann equations for f (Q) gravity

6H2 fQ − 1

2
f = ρ, (2.10)

(
12H2 fQQ + fQ

)
Ḣ = −1

2
(ρ + P) , (2.11)

where fQQ = ∂2 f
∂Q2 .

Within the framework of any dark energy model, including
those involving modified gravity, it is widely acknowledged
that on sub-horizon scales, the dark energy component is
expected to be smooth. Therefore, we focus our considera-
tion solely on perturbations in the matter component of the
cosmic fluid. For a thorough analysis of calculations, we rec-
ommend referring to the comprehensive details provided in
the references [82–84]. Moving to the perturbation level, one
can derive the evolution equation for the matter overdensity
at sub-horizon scales in terms of the cosmic time [36]

δ̈m + 2H δ̇m − 4πG

fQ
ρmδm = 0, (2.12)

where δ = δρm
ρm

. It is useful to express Eq. (2.12) in terms of
the derivative with respect to ln(a), labeled by a prime, and
using δ̇ = Hδ′

δ′′
m +

(
H(x)′

H(x)
+ 2

)

δ′
m − ρm

2 fQH(x)2 δm = 0. (2.13)

3 The model solution

In this study, we propose a cosmological form of f (Q) moti-
vated by Capozziello and D’Agostino in [38]

f (Q) = α + βQn, (3.1)

where α, β, and n are free parameters of the model. This
model exhibits intriguing characteristics that establish con-
nections with both general relativity and �CDM. More
specifically, for α = 0 and β = n = 1, the model cor-
responds to general relativity, while for n = β = 1 and
α > 0, it corresponds to the �CDM model. To solve the
modified Friedmann equations (2.10) and (2.11), we narrow

our focus on the scenario where matter dominates (ρ = ρm
and P = Pm = 0). In this context, the dynamical equation,
as presented in Eq. (2.11), describes the model’s dynamics
as follows:

Ḣ = −3H2

2n

(
α6−nH−2n

β − 2βn
+ 1

)

. (3.2)

Indeed, the derivative of the Hubble parameter with respect
to the cosmic time can be obtained using the conversion rule,

dH

dt
= − (1 + z) H(z)

dH

dz
. (3.3)

The dynamic of Eq. (3.2) can be transformed to the form

dH

ddz
− 3H

2n(z + 1)

(
α6−nH−2n

β − 2βn
+ 1

)

= 0. (3.4)

Using the current value of the Hubble parameter, H(z =
0) = H0, we derive the following subsequent solution

H(z) =
(

(z + 1)3
(
H2n

0 (β − 2βn) + α6−n
) − α6−n

β − 2βn

) 1
2n

.

(3.5)

The corresponding normalized Hubble parameter, denoted
as E2 (z) = H2(z)/H2

0 , can be expressed as follows:

E2 (z) =
[(

6−n3
α

β − 2βn
+ 1

)

(z + 1)3 − 6−n3
α

β − 2βn

]1/n

,

(3.6)

where we have defined the dimensionless quantity 
α as

α = α

3H2n
0

. In the linear case where n = 1, and by analogy

with the standard model, we can recognize that 
m = 1− 
α

2β

and 
� = 
α

2β
, where 
m and 
� represent the critical

density of matter and dark energy, respectively. This specific
case is referred to as “case I” throughout the article. On the
other hand, “case II” represents the nonlinear form of f (Q),
expressed as f (Q) = α + βQn .

4 Observational data and likelihood analysis

4.1 Methodology

In this subsection, we provide a brief overview of the Markov
chain Monte Carlo (MCMC) technique used to constrain our
model. MCMC is frequently used in the field of cosmology
for exploring the parameter space of complex models and
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generating probability distributions for cosmological param-
eters [65]. The fundamental concept behind MCMC is to
create a Markov chain that samples the parameter space of a
model based on a probability distribution. This chain com-
prises a series of parameter values, with each value gener-
ated from the preceding one using a set of transition rules
that are guided by a proposal distribution [85,86]. In our
analysis, we use three observational datasets, namely the
redshift space distortion, the cosmic chronometers, and the
Pantheon+ dataset, which consist of 20, 36, and 1701 data
points, respectively. Additionally, we perform the fit using
various information criteria. The analysis focuses on the fol-
lowing cases:

• Case I: Linear form with the free parameters {σ8, H0, M,


α, β}.
• Case II: Nonlinear form with the free parameters {σ8, H0,

M,
α, β, n},

where σ8 and M represent the amplitude of the matter power
spectrum and the absolute magnitudes, respectively. The
mean values of the model parameters 
α , β, and n are deter-
mined by minimizing the chi-square χ2 or maximizing the
likelihood function L . The total likelihood function Ltot is
defined as

Ltot ∝ e−χ2
tot/2. (4.1)

Additionally, the expressions for Ltot and χ2
tot are given as

Ltot = LRSD × LCC × LPantheon+ , (4.2)

and

χ2
tot = χ2

RSD + χ2
CC + χ2

Pantheon+ , (4.3)

respectively.

4.2 Datasets

4.2.1 RSD dataset

We consider the more consistent and reliable value derived
from redshift surveys, namely the product of the growth rate
f (z) and the amplitude of the matter power spectrum σ8(z).
This cosmological probe, f σ8(z) ≡ f (z)σ8(z), is almost
model-independent and results from the study of distortions
in redshift space, where σ8(z) = σ8δ(z)/δ0 [88–90]. In this
article, we use f σ8 data from Table 1 comprising 20 data
points. The χ2

RSD function is defined as

χ2
RSD (
α, β, n, σ8)

Table 1 The data in this table present measurements of f σ8 obtained
from various independent surveys

Redshift f σ8 References

0.02 0.398 ± 0.065 [39]

0.025 0.39 ± 0.11 [40]

0.067 0.423 ± 0.055 [41]

0.10 0.37 ± 0.13 [42]

0.15 0.53 ± 0.16 [43]

0.32 0.384 ± 0.095 [44]

0.38 0.497 ± 0.045 [43]

0.44 0.413 ± 0.080 [45]

0.57 0.453 ± 0.022 [46]

0.59 0.488 ± 0.060 [47]

0.70 0.473 ± 0.041 [43]

0.73 0.437 ± 0.072 [45]

0.74 0.50 ± 0.11 [48]

0.76 0.440 ± 0.040 [49]

0.85 0.52 ± 0.10 [48]

0.978 0.379 ± 0.176 [50]

1.05 0.280 ± 0.080 [49]

1.40 0.482 ± 0.116 [51]

1.48 0.30 ± 0.13 [48]

1.944 0.364 ± 0.106 [50]

=
20∑

i=1

(
f σ8,i − f σ8(zi ,
α, β, n, σ8)

σ (zi )

)2

. (4.4)

In this expression, σ(zi ) represents the standard error asso-
ciated with the observed value of f σ8. The terms f σ8,i and
f σ8(zi ) correspond to the observed and theoretical values of
f σ8, respectively. The growth rate is expressed as [87]

f σ8 (zi ,
α, β, n, σ8) = σ8
δ′
m(zi ,
α, β, n)

δm (z = 0)
, (4.5)

where a prime denotes the derivative with respect to ln(a).
The quantity σ8 stands for the amplitude of the matter power
spectrum at the scale of 8 h−1 Mpc at the present time, i.e.
z = 0. It is directly connected to the amplitude of the pri-
mordial fluctuations and is determined by the growth rate of
cosmological fluctuations [91]. The values δ′

m(z) and δm(0)

are obtained by numerically solving Eq. (2.12) for a given
set of cosmological parameters. This theoretical prediction
may now be used to constrain, via f σ8 data, the parameters
σ8, 
α , β, and n in the context of our f (Q) model solution
(Eq. 3.5).
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Table 2 Measurements of the
Hubble expansion, with the
corresponding H(z) data used in
our analysis expressed in units
of km s−1 Mpc−1

Redshift H(z) References Redshift H(z) References

0.070 69 ± 19.6 [52] 0.480 97 ± 62 [58]

0.090 69 ± 12 [53] 0.570 92.5±4.5 [59]

0.120 68.6 ± 26.2 [52] 0.593 104± 13 [55]

0.170 83 ± 8 [54] 0.680 92± 8 [55]

0.179 75 ± 4 [55] 0.781 105 ± 12 [55]

0.199 75 ± 5 [55] 0.875 125 ± 17 [52]

0.200 72.9 ± 29.6 [52] 0.880 90 ±40 [58]

0.270 77 ± 14 [54] 0.900 117 ± 23 [54]

0.240 79.69 ± 2.65 [56] 1.037 154 ± 20 [55]

0.280 88.8 ± 36.6 [52] 1.300 168 ± 17 [54]

0.352 83 ± 14 [55] 1.363 160 ± 33.6 [60]

0.3802 83.0 ± 13.5 [57] 1.430 177 ± 18 [54]

0.400 95 ± 17 [54] 1.530 140 ± 14 [54]

0.4004 77.0 ± 10.2 [57] 1.750 202 ± 40 [54]

0.4247 87.1 ± 11.2 [57] 1.965 186.5± 50.4 [60]

0.430 86.45 ±3.68 [56] 2.3 224± 8 [61]

0.4497 92.8 ± 12.9 [57] 2.340 222± 7 [62]

0.4783 80.9 ± 9.0 [57] 2.360 226± 8 [63]

4.2.2 CC dataset

To improve the robustness of our analysis, we incorporate
the cosmic chronometers as an additional dataset, imposing
more stringent constraints. The Hubble rate can be deter-
mined by two methods: detecting baryon acoustic oscilla-
tions in the radial direction by examining the clustering of
galaxies/quasars, or utilizing the differential age approach,
which represents the Hubble parameter as the rate of redshift
change.

H(z) = − 1

1 + z

dz

dt
. (4.6)

By employing the aforementioned methods, a compilation of
36 data points for the Hubble parameter H(z) in the redshift
range of 0.07 ≤ z ≤ 2.36 is obtained and is presented in
Table 2. The chi-square value for the cosmic chronometers
is calculated according to the following definition:

χ2
CC (
α, β, n, H0)

=
36∑

i=1

[
Hobs (zi ) − Hth (zi ,
α, β, n, H0)

σ (zi )

]2

, (4.7)

where Hobs and Hth denote the observed and the theoretical
value of the Hubble parameter, respectively. On the other
hand, σ (zi ) corresponds to the error on the observed values
of the Hubble parameter H(z).

4.2.3 Pantheon+ dataset

We include the Pantheon+ compilation supernovae dataset
[64] as our final data source. These datasets, comprising 1701
data points, are obtained from 1550 type Ia supernovae span-
ning a redshift range of 0.001 ≤ z ≤ 2.3. The χ2 function
for the supernovae datasets is given by

χ2
Pantheon+ (
α, β, n, M, H0) = �FT · C−1

Pantheon+ · �F, (4.8)

where CPantheon+ represents the covariance matrix obtained
from the Pantheon+ dataset, accounting for both statisti-
cal and systematic uncertainties. In this equation, �F =
mBi −M−μmodel , withmBi and μmodel denoting the appar-
ent magnitudes and the predicted distance modulus, respec-
tively. The predicted distance modulus is given according to
a selected cosmological model, as follows:

μmodel(zi ,
α, β, n, H0)

= 5 log10 DL(zi ,
α, β, n, H0) + 25, (4.9)

where DL denotes the luminosity distance, defined as

DL (zi ,
α, β, n, H0)

= (1 + z)
∫ z

0

cdz′

H (z′,
α, β, n, H0)
, (4.10)

where c represents the speed of light. In contrast to the Pan-
theon dataset, the Pantheon+ dataset introduces a break in
the degeneracy between the absolute magnitude M and the
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Table 3 Summary of the mean values and standard deviations of the cosmological parameters for �CDM, case I, and case II

Model Parameters Priors RSD RSD + CC RSD + CC + Pantheon+

�CDM 
m [0, 1] 0.3128 ± 0.0657 0.2680 ± 0.0283 0.2819± 0.0122

σ8 [0, 2] 0.7957 ±0.0434 0.8150 ± 0.0301 0.8049 ± 0.0254

H0 [40, 100] − 69.7389± 2.1738 71.4623±0.7609

M [−20,−19] − − −19.3226±0.0214

Case I 
α [0, 1] 0.6688±0.2091 0.6904±0.2022 0.69+0.27
−0.13

β [0, 2] 0.4949 ±0.1608 0.4733±0.1381 0.484+0.190
−0.095

σ8 [0, 2] 0.7903±0.0388 0.8123±0.0297 0.804±0.025

H0 [40, 100] − 69.552±2.123 71.38 ±0.86

M [−20,−19] − − −19.325±0.024

Case II 
α [0, 1] 0.592±0.240 0.717 ± 0.188 0.751+0.21
−0.094

β [0, 2] 0.593± 0.470 0.408 ± 0.122 0.336+0.089
−0.070

n [0, 2] 1.012±0.241 1.077 ± 0.064 1.167+0.054
−0.063

σ8 [0, 2] 0.788 ± 0.040 0.783±0.035 0.76 ± 0.027

H0 [40, 100] − 68.941± 2.368 71.65 ±0.834

M [−20,−19] − − − 19.308±0.024

Hubble constant H0. This is attained by rewriting the vector
�F in Eq. (4.8) in terms of the distance modulus of SNIa in

Cepheid hosts. This gives rise to an independent constraint
on M , resulting in the following expression:

�F ′
i =

{
mBi − M − μ

Ceph
i i ∈ Cepheid hosts

mBi − M − μmodel (zi ) otherwise

(4.11)

where μ
Ceph
i denotes the distance modulus associated with

the Cepheid host of the i th SNIa, independently measured by
Cepheid calibrators. Consequently, Eq. (4.8) can be rewritten
as

χ2
SN = �F ′T · C−1

Pantheon + · �F ′ (4.12)

4.3 Statistical results

4.3.1 Cosmological parameters

In Table 3, we present the mean values and their associated
errors at 1σ (68% confidence level, CL) for the studied mod-
els, namely �CDM, case I, and case II, using the data combi-
nations RSD, RSD+CC, and RSD+CC+Pantheon+. For the
�CDM model, the free parameter vector P�CDM consists
of (
m, σ8, H0, M). In case I, the free parameter vector PI
includes (
α, β, σ8, H0, M), while in case II, the vector PI I
includes (
α, β, n, σ8, H0, M). It is worth noting that the
number of free parameters Np varies among the three mod-
els.

Additionally, Figs. 1 and 2 illustrate the confidence con-
tour plots in two dimensions (2D) for the model param-
eters in case I and case II, respectively, based on the
RSD+CC+Pantheon+ datasets. These plots visually repre-
sent the correlations and uncertainties among the parameters
within each case, at the 1σ and 2σ confidence levels. Specifi-
cally, we observe a positive correlation between M and H0 as
well as between 
α and β in both cases. On the other hand,
a negative correlation is found between the parameters n and
σ8 in case II.

Constraining �CDM, case I, and case II with RSD+CC+
Pantheon+ datasets, we obtain σ8 = 0.805 ± 0.025, H0 =
71.46 ± 0.76 km/s/Mpc, and M = −19.320 ± 0.021 mag
for �CDM . In addition, we obtain σ8 = 0.804 ± 0.025
(σ8 = 0.761 ± 0.027), H0 = 71.38 ± 0.86 km/s/Mpc (H0 =
71.65 ± 0.84 km/s/Mpc), and M = −19.325 ± 0.024 mag
(−19.308 ± 0.024 mag) for case I (case II). In addition, in
case I, the parameter values obtained are 
α = 0.69+0.27

−0.13

and β = 0.484+0.190
−0.095. Moving on to case II, the obtained

values are 
α = 0.751+0.210
−0.094, β = 0.336+0.089

−0.070, and n =
1.167+0.054

−0.063.

4.3.2 Comparison with the data points

We use the mean values obtained previously (Table 3) to
assess the alignment of our model’s prediction with obser-
vational data in both the background (CC+Pantheon+) and
perturbation (RSD) levels.

• Comparison with RSD dataset:
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Fig. 1 The 1σ and 2σ confidence contours and the posterior distributions obtained from the RSD+CC+Pantheon+ datasets for case I

Initially, we compare each case to the 20-redshift-space dis-
tortion dataset, along with its 1σ error bands, and the �CDM
model. The results of this comparison are presented in Fig. 3.
This figure clearly illustrates the effective alignment of each
case with the RSD measurements.

• Comparison with CC dataset:

Then, we compare each case with the 36-cosmic-chronometer
dataset and with their 1σ error bands, and the �CDM model.
The results of this comparison are presented in Fig. 4, where
it is clearly demonstrated that each model provides a precise
fit to the CC measurements.

• Comparison with Pantheon+ dataset:

Lastly, each case is compared with the 1701 Pantheon+
dataset and with their 1σ error bands, and the �CDM model.

These comparison findings are shown in Fig. 5. One can see
that each case matches the Pantheon+ dataset quite well.

4.3.3 Information criteria

Due to the different numbers of cosmological parameters
among the three models, the χ2

min statistic cannot be regarded
as an optimal criterion for selecting the best models. To com-
pare a set of cosmological models based on their theoreti-
cal predictions using various observational data, we employ
three criteria: the reduced chi-square χ2

red , the corrected
Akaike information criterion [66], and the Bayesian infor-
mation criterion [68]. These criteria are respectively defined
as follows:

χ2
red = −2 lnLmax

Nd − Np
, (4.13)
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Fig. 2 The 1σ and 2σ confidence contours and the posterior distributions obtained from the RSD+CC+Pantheon+ datasets for case II

AICc = −2 lnLmax + 2Np + 2Np
(
Np + 1

)

Nd − Np − 1
, (4.14)

and

BIC = −2 lnLmax + Np log (Nd) . (4.15)

Here, χ2
min = −2 lnLmax corresponds to the maximum like-

lihood, Nd represents the total number of data points, which
is equal to 1757, and Np represents the number of free param-
eters. In practice, when comparing models, the one with the
lowest values of AICc and BIC is considered to be the one
preferred by data. The AICc and BIC values for all studied
models can be found in Table 4.

In Table 4, we summarize the statistical analysis per-
formed to determine the quality of our fit and the statisti-
cal significance of the studied models. The AICc and BIC

Fig. 3 Error bar plots of 20 data points from the f σ8 datasets, showing
the fitting of the f σ8 function with respect to redshift z for cases I and
II, alongside a comparison to the �CDM model
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Table 4 Information criteria χ2
red , AICc, and BIC for �CDM, case I, and case II, along with the corresponding differences �AIC = AICcmodel −

AICc�CDM and �BIC = BICmodel − BIC�CDM

Np χ2
min χ2

red AICc �AIC BIC �BIC

RSD + CC + Pantheon+

�CDM 4 1572.25 0.8968 1580.27 0 1602.14 0

Case I 5 1572.20 0.8979 1582.23 1.96 1609.56 7.42

Case II 6 1563.73 0.8930 1575.78 −4.49 1608.56 6.42

Fig. 4 Error bar plots of 36 data points from the cosmic chronometers
datasets, including the fitting of Hubble function H(z) versus redshift
z for cases I and II, along with a comparison to the �CDM model

Fig. 5 Error bar plots of 1701 data points from the Pantheon+ datasets,
showing the fitting of the μ(z) function with respect to redshift z for
cases I and II, alongside a comparison to the �CDM model

must be used as long as the number of free parameters dif-
fers from one model to another, i.e. case I (Np = 5), case
II (Np = 6), and �CDM (Np = 4). According to the AICc

criterion, case II is the most preferred, followed by �CDM
and then case I. On the other hand, the BIC criterion indicates
that �CDM is most supported by observations, followed by
case II and finally case I. Moreover, in the AICc analysis, the
�CDM model is kept as the reference model even if it does
not correspond to the lowest value of AICc, which explains
the negative value �AIC = −4.49.

To compare between the two cases, we find that�AICcase II

< �AICcase I and �BICcase II < �BICcase I, which means
that case II is preferred over the case I model.

5 EoS parameter and ωd − ωde
′ plane

The equation of state parameter is a useful tool for investi-
gating the properties of dark energy models. It is defined as
ωde = Pde

ρde
, where P represents the pressure and ρ represents

the energy density of the Universe. For a cosmic acceleration
to occur, the value of ωde needs to be less than − 1

3 , while
for the �CDM model, ωde = −1. In the case of dynamical
dark energy (DE) models such as quintessence, the range is
−1 < ωde < − 1

3 , whereas for phantom energy, ωde < −1.
Observing the form of Eqs. (2.10) and (2.11), we deduce

that it is possible to define an effective dark energy sector with
energy density and pressureρ = ρm+ρde and P = Pm+Pde,
respectively.

3H2 = ρm + ρde, (5.1)

Ḣ + H2 = −1

6
(ρm + ρde + 3Pde), (5.2)

where ρde (Pde) and ρm (Pm = 0) are the effective dark
energy density (effective pressure) and the matter energy den-
sity (pressure), respectively. The explicit expressions of ρde
and Pde are respectively as follows:

ρde = 3H2
0

[
(
(
Q + 1)(z + 1)3 − 
Q

)1/n

− (

Q + 1

)
(z + 1)3

]

(5.3)

and

Pde = 3H2
0

[(

Q + 1

)

n
(z + 1)3 (

(
Q + 1)(z + 1)3 − 
Q
) 1
n −1

− (
(
Q + 1)(z + 1)3 − 
Q

) 1/n

]

, (5.4)

where 
Q = 3 
α

6nβ(1−2n)
. Consequently, the effective equation

of state can be formulated as

ωde = −2(Ḣ + H2) + 1
3ρm

3H2 − ρm
− 1

3
, (5.5)
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Fig. 6 Evolution of the effective EoS parameter as functions of the
redshift variable z

Fig. 7 Evolutionary trajectories of ωd − ωd
′ plane

The behavior of the EoS parameter is depicted in Fig. 6
for both case I and case II using the value obtained from
RSD+CC+Pantheon+ datasets. It is clear that the EoS param-
eter of case I exhibits the same behavior as the �CDM model,
while in case II, it behaves as a phantom dark energy one with
ωde = −1.083 which leads to the current cosmic accelera-
tion. Additionally, to analyze the impact of the parameter n
on the model, we also consider the case where n = 0.99,
which is rejected by observational data. This case is shown
in the same figure and falls within the quintessence region,
with ωde = −0.996.

The ωde − ωde
′ plane, which was initially proposed by

Caldwell and Linder [93], is depicted in Fig. 7 for both case
I and case II, where ωde

′ represents the first derivative of
ωde with respect to ln(a). This plane can be divided into two
regimes based on the value of ωde

′: a thawing regime where
ωde

′ > 0, and a freezing regime where ωde
′ < 0. The fixed

point (ωde = −1, ωde
′ = 0) corresponds to the �CDM

model, which is also associated with case I and represented
by a star. The arrows indicate the time evolution. Notably,

Fig. 8 Evolution of the deceleration parameter q(z) as functions of the
redshift variable z

case II evolves within the thawing region, while the n = 0.99
case evolves within the freezing region.

6 Dynamical analysis of the model

6.1 Cosmographic parameters

The goal of this study is to assess a cosmological model that
can effectively depict the overall dynamics of the Universe
by analyzing its physical and geometric parameters on a large
scale. Consequently, it is appropriate to use the Taylor series
expansion of a(t) around the present time t0.

a(t)

a0
= 1 + (t − t0)

1!
da

dt

∣
∣
∣
t0

+ (t − t0)2

2!
d2a

dt2

∣
∣
∣
t0

+ (t − t0)3

3!
d3a

dt3 + (t − t0)4

4!
d4a

dt4 + . . . (6.1)

where a0 is the current value of the scale factor. The signifi-
cant terms that define the series expansion above are

H = 1

a

da

dt
, q(t) = − 1

aH2

d2a

dt2 , (6.2)

j (t) = 1

aH3

d3a

dt3 , s(t) = 1

aH4

d4a

dt4 , (6.3)

which are usually known as the Hubble, deceleration, jerk,
and snap parameters, respectively. These four geometrical
quantities are sufficient to study the overall dynamics of the
Universe. For this purpose, we give the specific expressions
of these parameters using the redshift z [94,95]

q(z) = −1 + (1 + z)
E ′(z)
E(z)

, (6.4)

j (z) = (1 + z)2 E
′′(z)
E(z)

+ q2(z), (6.5)

s(z) = −(1 + z) j ′(z) − 2 j (z) − 3q(z) j (z). (6.6)
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Fig. 9 Evolution of the jerk parameter j (z) as functions of the redshift
variable z

Fig. 10 Evolution of the snap parameter s(z) as functions of the red-
shift variable z

First, we examine the evolutionary behavior of the cos-
mography parameters by employing the previously deter-
mined mean value, obtained through the combination of
RSD+CC+Pantheon+ datasets (see Table 3). Figure 8 illus-
trates the evolution of the deceleration parameter q as a func-
tion of redshift z for three scenarios: �CDM, case I, and
case II. This parameter measures the rate at which the expan-
sion of the Universe slows. A positive value of q indicates a
standard decelerating model, while a negative value suggests
accelerating expansion behavior. It is worth noting that case
I closely resembles the behavior of �CDM at both high and
low redshifts, experiencing a transitional phase at z = 0.718.
Similarly, case II exhibits behavior similar to both �CDM
and case I only at low redshifts, with a transition occurring
at z = 0.7897. In all cases, the Universe finally enters a de
Sitter phase characterized by q = −1. The present values of
the deceleration parameter are q0 = −0.576 (q0 = −0.512)
for case I (case II), respectively.

Figure 9 displays the evolution of the jerk parameter j as
a function of redshift z. Notably, in the �CDM model, the
jerk parameter remains constant at j = 1. Similarly to ωde

and q, both �CDM and case I exhibit identical behavior at
both high and low redshifts. However, the trajectory of case
II demonstrates a decreasing trend with respect to z. The
present values of the jerk parameter are j0 = 1 ( j0 = 0.92)
for case I (case II), respectively.

Fig. 11 The evolutionary trajectory of the {s, r} plane for case I, case
II, and for n = 0.99. The statefinder of the �CDM model is a fixed
point and is indicated by a star symbol, and the solid points indicate the
present values

In addition, the redshift evolution of the snap parameter
s(z) in case I, case II, and �CDM is plotted in Fig. 10. In
the �CDM model, the snap parameter remains fixed at s =
0. Unlike ωde, q, and j , the snap parameter s breaks the
similarity between case I and the �CDM model. The present
values of the snap parameter are s0 = −1.273 (s0 = −1.347)
for case I (case II), respectively.

6.2 Statefinder diagnostic

The so-called statefinder diagnostic technique is widely
employed to distinguish and compare different models of
dark energy, using higher-order derivatives of the scale fac-
tor. This technique involves the use of the cosmological
statefinder diagnostic pair {r, s}, which allows for the exami-
nation of the cosmic properties of DE in a model-independent
way. The statefinder parameters are defined as [69,70]

r =
...
a

aH3 , (6.7)

s = r − 1

3
(
q − 1

2

) . (6.8)

The trajectories in the {s, r} plane play a significant role
in classifying distinct cosmological regions. For instance, in
this plane, the �CDM model is characterized by the point
(r = 1, s = 0), the holographic DE model is represented
by (r = 1, s = 2

3 ), the phantom region is associated with
(r > 1, s < 0), and the quintessence region is identified by
(r < 1, s > 0).
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Fig. 12 The evolutionary trajectory of the {q, r} plane for case I and
case II

Figure 11 shows the evolutionary trajectory for both case
I and case II. The star represents the �CDM model, and
the arrows indicate the time evolution. In both cases, the
evolution starts from the phantom region and moves towards
the quintessence region. However, in case II, the evolutionary
trajectory eventually returns to the phantom region in the
future (z −→ −1). At the present time, i.e. z = 0, both cases
exhibit behavior within the phantom region. Additionally,
the evolutionary trajectory for case n = 0.99 is depicted
in the same figure. It is worth noting that the parameter n
can influence the behavior of the model f (Q) = α + βQn ,
which can exhibit quintessence-like behavior when n < 1 or
phantom-like behavior when n ≥ 1.

Figure 12 represents the plane {r, q} for cases I and II. It
is evident that in the decelerating phase, case I initiates its
evolution from the point (q = 0.5, r = 1), representing a
matter-dominated Universe. Conversely, during the acceler-
ating phase, both cases I and II end their evolution near the
steady-state cosmology at (q = −1, r = 1).

7 Growth index

An alternative method for determining the growth factor f
without the need to solve Eq. (2.13) is by employing an
approximation, i.e., by specifying a growth index parame-
terization form, which is defined in relation to 
m as fol-
lows [96,97]:

f (z) � 

γ
m(z), (7.1)

where the fractional energy density of matter is given by


m(z) ≡ ρm

3H2 = 
m0(1 + z)3

E2(z)
, (7.2)

and γ represents the growth index parameter expressed by a
parameterization. In the context of general relativity, when
considering dark energy scenarios with a constant equation

Fig. 13 The evolution of γ for f (Q) = α + βQn as a function of
parameter n; the red line γ = 6/11 corresponds to the �CDM model

Fig. 14 The evolution of growth index γ against redshift z for �CDM,
case I, and case II

of state parameter ωde, the growth index can be accurately
approximated by γ � 3(ωde−1)

6ωde−5 [32,98–100]. This approxi-
mation converges to 6/11 for the specific case of the �CDM
model (ωde = −1). In this study, we examine the widely
recognized functional form γ (z) = γ0 +γ1y(z) proposed by
Wang and Steinhardt in [100], where the variables y(z), γ0,
and γ1 are defined as

y(z) = 1 − 
m(z), (7.3)

γ0 = 3 (1 − ωde(z))

5 − 6ωde(z)
, (7.4)

and

γ1 = 3

125

(1 − ωde(z))
(
1 − 3

2ωde(z)
)

(
1 − 6

5ωde(z)
)3 , (7.5)

respectively.
In the last part of this paper, we analyze the growth index

using the best-fit value obtained through the numerical reso-
lution of Eq. 2.12 with the RSD+CC+Pantheon+ datasets, as
well as by employing the parameterization form of the growth
index. We present the results of our analysis by plotting the
growth index as a function of a parameter n and comparing
it with the theoretical growth index of the �CDM model.
Figure 13 illustrates this comparison, demonstrating that for
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Table 5 Summary of the present-day values of ωde, q0, j0, s0, and γ parameters for case I and case II using the RSD, CC, and Pantheon+ datasets

Model Parameters RSD RSD+CC RSD+ CC +Pantheon+

Case I ωde −1 −1 −1

q0 −0.513 −0.593 −0.562

j0 1 1 1

s0 −1.458 −1.210 −1.312

γ 0.553 0.553 0.553

Case II ωde −1.01 −1.04 −1.09

q0 −0.224 −0.528 −0.5122

j0 0.98 0.96 0.92

s0 −2.29 −1.36 −1.34

γ 0.552 0.552 0.550

the f (Q) = α + βQn model, the growth index consistently
exhibits greater values relative to the �CDM model only
for 0.7 < n < 1.3. Notably, when n = 0.7 or n = 1.3,
the growth index recovers the standard value of 6/11 corre-
sponding to the �CDM model.

To further investigate the behavior of the growth index,
we examine its evolution with redshift z for different cases
in Fig. 14. Our findings reveal distinct trends between the two
cases. In case I, the growth index shows a smooth deviation
both in the low redshift region and in the future from the the-
oretical value of �CDM. However, we observe good agree-
ment between �CDM and case I at high redshift 
m(z) � 1,
where γ∞ � γ0 � 6/11. Additionally, case I closely resem-
bles the behavior of case II in the future. Conversely, in case
II, the growth index demonstrates a decreasing trend with
increasing redshift, indicating a weaker growth rate of den-
sity perturbations at earlier cosmic times.

The present values of the growth index parameter are γ =
0.553 for case I and γ = 0.550 for case II. Comparing these
results, we find that the values for case I and case II are in
good agreement with the �CDM model (γ = 6/11), with
differences of 1.47% and 0.92%, respectively.

8 Conclusions

In this study, we used observational data from RSD, CC, and
Pantheon+ datasets to constrain the f (Q) gravity theory. By
solving the modified Friedmann equations for the specific
scenario of dust matter and considering the form of f (Q) =
α + βQn , we examined linear (n = 1) and nonlinear cases.
Our analysis yielded the following values: for case I, 
α =
0.69+0.27

−0.13 and β = 0.485+0.190
−0.095, while for case II, 
α =

0.751+0.210
−0.094, β = 0.336+0.089

−0.070, and n = 1.167+0.054
−0.063. Based

on the AICc and BIC criteria, we conclude that the nonlinear
form (case II) is preferred over the linear form (case I) using
these three datasets.

We also examined the effective equation of state parame-
ter, finding ω = −1 (ω = −1.083) for case I (case II). This
indicates that case I aligns with the �CDM value, while case
II evolves in the phantom region (ω < −1). Furthermore,
we analyzed the ωde − ωde

′ plane and observed that case II
evolves in the thawing region.

To gain insight into the dynamics and the behavior of
our model, we analyzed cosmography parameters, includ-
ing deceleration q, jerk j , and snap s. We found that case I
behaves similarly to the �CDM model in terms of q and j ,
but the snap parameter breaks this degeneracy. In contrast,
for the model f (Q) = α+βQn (case II), we observed a tran-
sition from a decelerating to an accelerating phase at redshift
z = 0.789. We also employed the statefinder diagnostic to
further investigate the behavior of each case, and our analysis
demonstrates that both cases exhibit phantom-like behavior
in the present epoch. In addition, we explored the impact of
the n parameter on the model and found that if (n ≥ 1), the
model behaves as a phantom, while for (n < 1), it behaves as
quintessence. The lifting of the degeneracies between case I
and �CDM at the snap parameter opens a new perspective
to examine other theories of modified gravity in this line.

Finally, we adopted an alternative method to determine the
cosmic growth factor f by relating it to 
m , i.e., using the
best-fit values of the parameters obtained previously. Our
results consistently show that in a modified gravity model
( f (Q) = α + βQn), the growth factor had greater values
relative to the �CDM model only for 0.7 < n < 1.3. How-
ever, when n = 0.7 or n = 1.3, the growth index recov-
ered the standard value of 6/11. The evolution of the growth
factor with redshift depended on the parameter n: it either
remained constant (case I) or exhibited a decreasing trend
(case II), indicating a weaker growth rate of density perturba-
tions at earlier cosmic time. We found that the present values
of the growth index parameter are γ = 0.553 (γ = 0.550)
for case I and case II, respectively. For greater precision in
determining the γ value, future efforts will be dedicated to
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constraining the γ parameter of our f (Q) model by treat-
ing it as a free parameter through MCMC analysis. Another
research area worth exploring is obtaining the Newtonian
and the post-Newtonian approximations of the present f (Q)

gravity. Additionally, it is crucial that studies investigate the
limitations imposed by local gravity at the solar system level
on the theory and determine how these constraints impact
the free parameters. Furthermore, assessing the compatibil-
ity of these constraints with cosmological observations is
an important aspect of this exploration. The Newtonian and
the post-Newtonian limits could also be highly valuable for
deriving physical constraints from a vast array of astrophys-
ical observations.
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