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Abstract In this paper, the properties of higher dimensional
holographic superconductors are studied in the background
of f (R) gravity and Born–Infeld electrodynamics. A specific
model of f (R) gravity is considered, allowing a perturbative
approach to the problem. The Sturm–Liouville eigenvalue
problem is used to analytically calculate the critical temper-
ature and the condensation operator. An expression for the
critical temperature in terms of the charge density including
the correction from modified gravity is derived. It is seen
that the higher values of the Born–Infeld coupling parame-
ter make the condensation harder to form. In addition, the
limiting values of this parameter, above which Born–Infeld
electrodynamics cannot be applied, are found for different
dimensions. Another interesting property is that the increas-
ing modifications of f (R) gravity lead to larger values of the
critical temperature and a decrease in the condensation gap,
which means that the condensation is easier to form.

1 Introduction

The discovery of the AdS/CFT correspondence [1,2], which
states that a d-dimensional asymptotically AdS spacetime
can be described by a (d − 1)-dimensional conformal field
theory on the boundary, has allowed theorists to use a
gravitational description of problems in condensed matter
physics. One such application in superconductivity has been
researched for the past 15 years. For the first time, in [3–5] it
was shown that the gauge/gravity duality can allow the gravi-
tational description of superconductor phase transitions with
the help of black holes.

There are numerous models of such holographic supercon-
ductors that have been researched since then. These include
superconductors in different dimensions [6–9], as well as
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holographic superconductors in different backgrounds, e.g.
in an external magnetic field [10–15], with Weyl correc-
tions [16–18], in Horava-Lifshitz gravity [19–22], Gauss-
Bonnet gravity [7,9,12,23–36], and f (R) gravity [37,38].
Some studies also include non-linear electrodynamics [13,
14,30,31,38–45]. In particular, Born–Infeld electrodynam-
ics is especially interesting: it has finite self energies for
charged point particles, and is the only non-linear electro-
magnetic theory that possesses invariance under electromag-
netic duality and has no birefringence. This theory has also
had important applications in cosmology [46–53], such as
predicting early-time inflation. Furthermore, the Born–Infeld
action can describe D-branes at low energy in string theory
[54,55] – one of the main reasons for the renewed interest in
Born–Infeld theory.

We can see that some modified gravity theories, such
as Gauss-Bonnet gravity, have been researched thoroughly.
However, that is not the case for generic f (R) gravity. This
framework has very special properties, making it an essential
part of the study of modified gravity theories. For example,
f (R) gravity can give an alternative explanation to cosmo-
logical phenomena that are otherwise related to the intro-
duction of exotic dark components, such as dark energy and
dark matter. This higher-order theory predicts both early-
time inflation and late-time cosmic acceleration, and is also
the only modified gravity theory that avoids the Ostrograd-
sky instability [56,57]. f (R) gravity is known to be Lorentz
invariant, while higher-order curvature corrections appear in
string theory as well, which makes f (R) gravity suitable
for models using AdS/CFT [37,38,58]. Thus, f (R) gravity
is an appropriate framework for the analysis of holographic
superconductors.

An additional inspiration to consider the combination of
f (R)gravity and Born–Infeld electrodynamics is the fact that
they have been particularly important for higher-dimensional
brane-world models (see [59–61] and references therein).
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Hence, we note that these two theories have a key role in
both cosmology and string theory.

Currently, holographic superconductors in f (R) gravity
have been analyzed in 4-dimensional spacetime in linear and
nonlinear Maxwell electrodynamics only. Motivated by all
the aforementioned features of f (R) gravity and Born–Infeld
electrodynamics, this paper presents analysis of holographic
superconductors in the context of both of these theories, while
also giving a generalization to higher dimensions, which
allows the applicability of the results here in the investigation
of higher-dimensional theories (e.g. string theory).

One common method in analyzing holographic supercon-
ductor models is the matching method [7,14,20,23,32,37,
38]. The idea behind this analytic method is to take the solu-
tions of the field equations near the horizon and the boundary
and to match them at an intermediate point. Another ana-
lytic method is based on the Sturm–Liouville (SL) eigenvalue
problem [6,9,22,24,31,40–42,62], which has been shown to
yield more accurate results [14,27,63]. For this reason, this
paper will employ the SL method in the following analysis.

In this paper, we will look at higher dimensional holo-
graphic superconductors in Born–Infeld electrodynamics
and f (R) gravity in the probe limit using the SL method.
The framework of f (R) gravity is analyzed using pertur-
bative techniques. We get the equation relating the critical
temperature and the charge density in d-dimensions, while
also studying the cases for d = 5, 6, 7 more thoroughly. It
is seen that the critical temperature decreases with the larger
values of the Born–Infeld parameter, as expected. However,
it increases with larger modifications of f (R) gravity, while
the condensation gap becomes smaller. This shows that the
condensation is easier to form when the f (R) gravity con-
figuration considered here is present.

The structure of the paper is as follows. In Sect. 2 the par-
ticular model of f (R) gravity is constructed. In Sect. 3 the
basic setup of the holographic superconductors is given. In
Sects. 4 and 5 the critical temperature and the condensate,
respectively, are computed. Section 6 contains concluding
remarks.

2 Model of f (R) gravity

In this section, the specific model of f (R) gravity that we
are going to study in this paper is introduced. We will follow
some of the steps in [9,37,64–67].

First, we begin the analysis by writing down the action for
f (R) gravity with a matter field in d-dimensions:

S = 1

16πGd

∫
dd x

√−g ( f (R) + 16πGdLm) , (1)

where f (R) is a function of the Ricci scalar and Gd is the d-
dimensional Newtonian gravitational constant. We consider

the probe limit, so we can take Gd → 0. This is equiva-
lent to considering the action in the absence of matter fields.
Therefore, we have for the following equation of motion:

RμνF(R) − 1

2
f (R)gμν + (gμν∇2 − ∇μ∇ν)F(R) = 0,

(2)

where F(R) = d f (R)
dR . Taking the trace, we obtain:

F(R)R − d

2
f (R) + (d − 1)∇2F(R) = 0. (3)

Therefore, we have for f (R)

f (R) = 2

d
(F(R)R + (d − 1)∇2F(R)). (4)

After substituting this in Eq.(2), we get

RμνF(R)−∇μ∇νF(R)= gμν

d

(
F(R)R−∇2F(R)

)
. (5)

Therefore, we can easily see that the expression

F(R)Rμμ − ∇μ∇μF(R)

gμμ

(6)

does not depend on the index μ. In order to have a super-
conducting phase transition, we need a planar black hole
solution. For this reason, we will take the following plane-
symmetric metric:

ds2 = −A(r)dt2 + B(r)dr2 + r2hi j dx
i dx j , (7)

where hi j dxi dx j is the line element of a (d−2)-dimensional
hypersurface with zero curvature. The only non-zero com-
ponents of the Ricci tensor of this metric are

R00 = A′′

2B
− A′B ′

4B2 − A′2

4AB
+ A′

2Br
(d − 2);

R11 = − A′′

2A
+ A′2

4A2 + A′B ′

4AB
+ B ′

2Br
(d − 2);

R22= · · · = Rii= · · · = Rdd=− A′r
2AB

+ B ′r
2B2 −d − 3

B
,

(8)

where 2 ≤ i ≤ d and the prime denotes the derivative with
respect to r . Thus, if we define X = AB, and using the fact
that the quantity in Eq. (6) is the same for any value of μ, we
have the following differential equations

F ′′ − F ′

2

X ′

X
− F(d − 2)

2r

X ′

X
= 0; (9)

A′′ + F ′

F

(
A′ − 2A

r

)
− 2A(d − 3)

r2

+ A

r

(
B ′

B
+ A′

A
(d − 3)

)
− A′

2

X ′

X
= 0. (10)

Next, we will assume that F(r) is of the form

F(r) = ar + b. (11)
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From Eq. (9) it follows that X is a constant, i.e. we will take
X = c3. Then, solving Eq. (10) gives

A(r) = c2r
2

(
(−1)d

ad−1

bd
ln

(
ar + b

r

)

+
d∑

k=2

(−1)d−kad−k

bd−k+1rk−1(1 − k)

)
+ c1r

2. (12)

In order for this solution to be correct in the limit of higher
dimensional Schwarzschild-AdS/dS black holes, one can see
that

c2 = 2Mb(d − 1), (13)

where M is the mass of the black hole. From now on, we will
also take c3 = 1 for simplicity, as was done in [37].

Calculating the Ricci scalar, we obtain:

R(r) = − A′′

AB
+ A′B ′

2AB2 + A′2

2A2B
− A′(d − 2)

ABr

+ B ′(d − 2)

B2r
− (d − 2)(d − 3)

Br2 . (14)

Using Eq. (12) and the fact that now X = 1, after taking the
limit r → ∞ we get:

R(r) = −d(d − 1)c1 − (−1)d
2d(d − 1)2ad−1M

bd−1 ln a.

(15)

Thus, we can see that the spacetime is asymptotically
AdS/dS. For the purpose of this paper, we will take it to
be AdS. Therefore, taking into account that under these con-
ditions the Ricci scalar in Eq. (15) is

R(r) = 2d�

d − 2
= −d(d − 1)

l2
, (16)

where � is the cosmological constant and l is the AdS radius,
we have for the effective values of these two parameters:

�e f f = − (d − 1)(d − 2)

2
c1

−(−1)d
(d − 1)2(d − 2)ad−1M

bd−1 ln a; (17)

le f f =
√

− (d − 1)(d − 2)

2�e f f
. (18)

For the model in this paper, the valuea defined in Eq. (11) will
be considered as a small parameter. Thus, we can calculate
the Ricci scalar to the first order of a:

R(r) ≈ d(1 − d)c1 + 4M(d − 1)a

(2 − d)brd−2 . (19)

From this expression we can easily obtain r as a function of
R:

r(R) =
(

4M(d − 1)a

b(2 − d)(R + d(d − 1)c1)

) 1
d−2

. (20)

We substitute this result in Eq. (11) and after integration:

f (R) = c4 + bR + a(d − 2)

d − 3

×
(

− 4aM(d − 1)

b(d − 2)(c1(d − 1)d + R)

) 1
d−2

×(c1(d − 1)d + R). (21)

In order for this expression to be correct in the limit of a → 0
(Einstein–Hilbert action), we set b = 1 and c4 = −2�. If
we also look at Eq. (15) for a → 0, using Eq. (16) we see
that

c1 = − 2�

(d − 1)(d − 2)
= 1

l2
. (22)

This is the f (R) gravity model that we are going to analyze
in this paper. The final form of the metric is

A(r) = r2

l2
+ 2M(d − 1)

(
(−1)dad−1r2 ln

(
1 + ar

r

)

+
d∑

k=2

(−1)d−kad−k

rk−3(1 − k)

)
; (23)

B(r) = 1

A(r)
. (24)

To find the radius of the outer horizon, we can approximate
it to the first order of a in the following form:

r+ = r0 + ar1 + O(a2). (25)

Using the condition A(r+) = 0, we obtain:

r+ = r0 − ar2
0

d − 2
, (26)

where r0 = (2Ml2)
1

d−1 .
Finally, we can get the result for the Hawking temperature

to the first order of a:

T = A′(r+)

4π
= (d − 1)r0

4πl2
, (27)

which shows that there are no corrections to the first order of
a, agreeing with [37].

For the rest of the paper, we will focus on the smallness
of the dimensionless quantity ar0 rather than just a, which
does not change the results presented above.
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3 Basic setup

We can now start analyzing the main model. The equations
here have also been derived in [9] for a general metric.

The Lagrangian densityLm in Eq. (1) can be written down
as

Lm = 1

b

(
1 −

√
1 + bFμνFμν

2

)
− |∂μψ − iq Aμψ |2

−m2|ψ |2, (28)

where Fμν = ∂μAν − ∂ν Aμ, and Aμ and ψ are respectively
the gauge and scalar fields. We will take the following ansatz:

Aμdx
μ = φ(r)dt;
ψ = ψ(r). (29)

Therefore, we have for the equations of motion:

φ′′(r) + φ′(r)(1 − bφ′(r)2)
d − 2

r

−2q2φ(r)ψ2(r)

A(r)
(1 − bφ′(r)2)

3
2 = 0 (30)

ψ ′′(r) + ψ ′(r)
(
d − 2

r
+ A′(r)

A(r)

)

+
(
q2φ2(r)

A(r)
− m2

)
ψ(r)

A(r)
= 0. (31)

Due to the scaling symmetry we can also choose q = 1
without loss of generality.

To solve these equations, we must first look at the bound-
ary conditions. At the horizon, in order for the fields to be
finite we require that φ(r+) = 0 and ψ(r+) is finite. At
r → ∞, for asymptotically AdS spacetime, we have:

φ(r) = μ − ρ

rd−3 ; (32)

ψ(r) = ψ−
r	− + ψ+

r	+ , (33)

where

	± = (d − 1) ± √
(d − 1)2 + 4m2l2

2
, (34)

and μ and ρ are the chemical potential and the charge density
in the dual field theory. We can also choose either ψ− or ψ+ to
vanish [5]. In this paper we will have the condition ψ− = 0,
while ψ+ is dual to the expectation value of the condensation
operator on the boundary.

If we transform the coordinates as z = r+
r , Eqs. (30) and

(31) become

φ′′(z) − φ′(z)
z

(d − 4) + (d − 2)bz3φ′(z)3

r2+

−2r2+φ(z)ψ2(z)

A(z)z4

(
1 − bz4φ′(z)2

r2+

) 3
2

= 0 (35)

ψ ′′(z) + ψ ′(z)
(
A′(z)
A(z)

− d − 4

z

)

+ r2+
A(z)z4

(
φ2(z)

A(z)
− m2

)
ψ(z) = 0. (36)

We can see that in the new coordinates the interval r+ < r <

∞ is now 1 > z > 0, while the condition φ(r+) = 0 is now
φ(1) = 0.

4 Critical temperature

To obtain the critical temperature as a function of the charge
density, we start with Eq. (35). By definition, at the criti-
cal temperature we have that ψ = 0. Therefore, Eq. (35)
becomes

φ′′(z) − φ′(z)
z

(d − 4) + (d − 2)bz3

r2
+(c)

φ′(z)3 = 0, (37)

where r+(c) is the horizon in this configuration. We solve this
equation as follows [9,41]. Choosing that b = 0, it reduces
to

φ′′(z) − φ′(z)
z

(d − 4) = 0. (38)

Taking into account the boundary condition in Eq. (32), the
solution is:

φ0(z) = λr+(c)(1 − zd−3), (39)

where

λ = ρ

rd−2
+(c)

. (40)

After substituting this solution in the last term of Eq. (37),
we get

φ′′(z) − φ′(z)
z

(d − 4)

−bλ3r+(c)(d − 2)(d − 3)3z3(d−3) = 0. (41)

Again using Eq. (32), we obtain a solution to the first order
of b:

φ(z) = λr+(c)

(
(1 − zd−3) − bλ2

0(d − 3)3

2(3d − 7)
(1 − z3d−7)

)
,

(42)

where it has been used that bλ2 = bλ2
0 + O(b2), and λ2

0 is
the value for λ2 when b = 0 [9].

If we express A(z) to the first order of ar0(c) as

A(z) = r2
+(c)

z2 g(z), (43)
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with

g(z) = 1

l2
+ d − 1

l2

(
− zd−1

d − 1
+ ar0(c)zd−2

d − 2
(1 − z)

)
, (44)

for Eq. (36) near Tc we have

ψ ′′(z) + ψ ′(z)
(
g′(z)
g(z)

− d − 2

z

)

+ 1

g(z)

(
φ2(z)

g(z)r2
+(c)

− m2

z2

)
ψ(z) = 0. (45)

We define near the AdS boundary [68]:

ψ(z) = 〈J 〉
r	+
+(c)

z	+F(z), (46)

with F(0) = 1 and J being the condensation operator. Then,
Eq. (45) becomes [9,62]

F ′′(z) +
(

2	+ − d + 2

z
+ g′(z)

g(z)

)
F ′(z)

+
[
	+(	+ − 1)

z2 +
(
g′(z)
g(z)

− d − 2

z

)
	+
z

− m2

g(z)z2

]
F(z) + λ2

g2(z)

[
(1 − zd−3)2

− bλ2
0(d − 3)3

3d − 7
(1 − zd−3)(1 − z3d−7)

]
F(z) = 0, (47)

the solution of which has to satisfy the condition F ′(0) =
0. This equation can be transformed to the Sturm–Liouville
form:

d

dz
(p(z)F ′(z)) + q(z)F(z) + λ2r(z)F(z) = 0, (48)

where

p(z) = z2	+−d+2g(z); (49)

q(z) = z2	+−d+2g(z)

[
	+(	+ − 1)

z2

+
(
g′(z)
g(z)

− d − 2

z

)
	+
z

− m2

g(z)z2

]
; (50)

r(z) = z2	+−d+2

g(z)

(
(1 − zd−3)2

−bλ2
0(d − 3)3

3d − 7
(1 − zd−3)(1 − z3d−7)

)
. (51)

Using the Sturm–Liouville eigenvalue problem, the eigen-
values of Eq. (48) are

λ2 =
∫ 1

0 dz
(
p(z)F ′(z)2 − q(z)F2(z)

)
∫ 1

0 dzr(z)F2(z)
. (52)

We take the form of the trial function F(z) to be F(z) =
1 − αz2, which obviously satisfies the boundary conditions.

From Eqs. (26), (27), and (40) we get an important result
for the dependence of Tc on the charge density:

Tc = d − 1

4πl2
(

1 − ar0(c)
d−2

) (ρ

λ

) 1
d−2

. (53)

From now on, we will take m = − d−2
l2

, which satisfies the
Breitenlohner–Freedman (BF) bound [69–71], and l = 1 for
simplicity. Therefore, we now have that 	+ = d − 2. All
this gives us the following expressions for Eqs. (49), (50),
and (51):

p(z) = zd−2
[

1+(d − 1)

(
− zd−1

d − 1
+ar0(c)zd−2(1 − z)

d − 2

)]

(54)

q(z) = zd−2
[

1 + zd−2(d − 1)

(
ar0(c)(1 − z)

d − 2
− z

d − 1

)]

×
{

(d − 2)(d − 3)

z2 + d − 2

z

[
(d − 1)zd−3ar0(c)

1 − zd−1

− (d − 1)zd−2

1 − zd−1 − (d − 1)2zd−2ar0(c)

(d − 2)(1 − zd−1)

+ z2d−4(d − 1)2(1 − z)ar0(c)

(d − 2)(1 − zd−1)2 − d − 2

z

]

+d − 2

z2

[
1

1 − zd−1

−ar0(c)zd−2(d − 1)(1 − z)

(d − 2)(1 − zd−1)2

]}
(55)

r(z) = zd−2(1 − zd−3)

1 − zd−1

×
(

1 − zd−3 − bλ2
0(d − 3)3

3d − 7
(1 − z3d−7)

)

×
(

1 − ar0(c)zd−2(d − 1)(1 − z)

(1 − zd−1)(d − 2)

)
. (56)

Here, we will analyze the cases for d = 5, 6, 7. We pro-
ceed by calculating λ0 for b = 0 from Eq. (52). Then, we find
the value of α for which λ0 is at its minimum. After that we
repeat this procedure for b = 0.01 and b = 0.02. As noted
earlier, we focus on the quantity ar0(c), which is varied to get
different results. This makes the calculations much simpler

and more accurate than if we vary, for example, aρ
1

d−2 , and
leads to the same findings. The results are shown in Tables
1, 2, and 3. It is interesting to note that for d = 6 and d = 7
there are no meaningful values for b = 0.02 and b = 0.01,
b = 0.02, respectively. The reason for this is that for each
d and for different ar0(c), there is a limiting value for b,
above which we cannot get algebraically reasonable results,
as λ2 is negative. Table 4 shows these limiting values for the
different configurations. Thus, it can be confirmed that the
approximation for small b is accurate.
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Table 1 Values of the parameters for d = 5

ar0(c) b α λ2 (aρ1/3) (r0(c)/ρ
1/3) (Tc/ρ1/3)

0.1 0 0.7285 18.76 0.1576 0.6346 0.2020

0.01 0.7608 26.95 0.1674 0.5974 0.1902

0.02 0.8301 47.01 0.1836 0.5445 0.1733

0.2 0 0.7349 19.31 0.3057 0.6541 0.2082

0.01 0.7674 28.04 0.3254 0.6147 0.1957

0.02 0.8391 50.22 0.3585 0.5578 0.1776

0.3 0 0.7412 19.86 0.4443 0.6752 0.2149

0.01 0.7737 29.17 0.4737 0.6333 0.2016

0.02 0.8480 53.74 0.5245 0.5720 0.1821

Table 2 Values of the parameters for d = 6

ar0(c) b α λ2 (aρ1/4) (r0(c)/ρ
1/4) (Tc/ρ1/4)

0.1 0 0.7963 23.09 0.1444 0.6927 0.2756

0.01 0.9856 119.8 0.1773 0.5639 0.2244

0.02 – – – – –

0.2 0 0.8000 23.53 0.2820 0.7093 0.2822

0.01 0.9950 129.9 0.3491 0.5729 0.2279

0.02 – – – – –

0.3 0 0.8036 23.96 0.4128 0.7268 0.2892

0.01 1.005 141.4 0.5153 0.5822 0.2316

0.02 – – – – –

Table 3 Values of the parameters for d = 7

ar0(c) b α λ2 (aρ1/5) (r0(c)/ρ
1/5) (Tc/ρ1/5)

0.1 0 0.8401 28.92 0.1372 0.7289 0.3480

0.01 – – – – –

0.02 – – – – –

0.2 0 0.8425 29.31 0.2692 0.7431 0.3548

0.01 – – – – –

0.02 – – – – –

0.3 0 0.8447 29.7 0.3958 0.7579 0.3619

0.01 – – – – –

0.02 – – – – –

Some plots showing Tc as a function of ρ are also shown
(Fig. 1). As expected, the critical temperature decreases with
increasing b. We can see that for the configuration that was
chosen, Tc increases for largerar0(c). Of course, at first glance
this itself does not mean that, for a given ρ, a is increasing
with ar0(c). However, one can directly check using Eqs. (26),
(40) and the values from Tables 1, 2 and 3 that for increasing
ar0(c) and given b and ρ, both values of a and r0(c) rise (the
5th and 6th columns of the same tables). Therefore, as we
choose some ρ, there is an increase in a when ar0(c) is larger.

Table 4 Limiting values for b

ar0(c) = 0.1 ar0(c) = 0.2 ar0(c) = 0.3

b (d = 5) 0.0385 0.0374 0.0364

b (d = 6) 0.0138 0.0135 0.0133

b (d = 7) 0.00615 0.00607 0.00599

Thus, the plots show that the critical temperature rises as a
increases, meaning that the condensation is easier to form.
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Fig. 1 Tc as a function of ρ for d = 5 (a), d = 6 (b), d = 7 (c)

Table 5 Values of β for d = 5

ar0(c) b α λ2 β

0.1 0 0.7285 18.76 218.973

0.01 0.7608 26.95 248.817

0.02 0.8301 47.01 296.439

0.2 0 0.7349 19.31 199.961

0.01 0.7674 28.04 227.746

0.02 0.8391 50.22 272.631

0.3 0 0.7412 19.86 181.881

0.01 0.7737 29.17 207.645

0.02 0.8480 53.74 249.793

Table 6 Values of β for d = 6

ar0(c) b α λ2 β

0.1 0 0.7963 23.09 488.402

0.01 0.9856 119.8 803.154

0.02 – – –

0.2 0 0.8000 23.53 444.717

0.01 0.9950 129.9 738.036

0.02 – – –

0.3 0 0.8036 23.96 403.792

0.01 1.005 141.4 676.475

0.02 – – –

Table 7 Values of β for d = 7

ar0(c) b α λ2 β

0.1 0 0.8401 28.92 772.493

0.01 – – –

0.02 – – –

0.2 0 0.8425 29.31 702.237

0.01 – – –

0.02 – – –

0.3 0 0.8447 29.7 636.944

0.01 – – –

0.02 – – –

5 The condensate

We continue by analyzing how the Born–Infeld parameter
and the f (R) gravity corrections affect the values of the con-
densation operator near Tc. The procedure in [9] will be fol-
lowed (see also [31,41,62]). To that end, we use Eqs. (35)
and (46) to get:

φ′′(z) − φ′(z)
z

(d − 4)

123



183 Page 8 of 11 Eur. Phys. J. C (2024) 84 :183

+ (d − 2)bz3φ′(z)3

r2+
= 〈J 〉2

r2+
B(z)φ(z) (57)

with B(z) = 2z2	+−4F2(z)

r
2	+−4
+ A(z)

(
1 − bz4φ′(z)2

r2+

) 3
2

. After expand-

ing φ(z) including the small term 〈J 〉2

r2+
, we have:

φ(z)

r+
= λ

(
(1 − zd−3) − bλ2

0(d − 3)3

2(3d − 7)
(1 − z3d−7)

)

+〈J 〉2

r2+
ζ(z), (58)

where ζ(1) = ζ ′(1) = 0. As we substitute this equation in

Eq. (57) and compare the coefficients of 〈J 〉2

r2+
, we obtain:

ζ ′′(z) −
(
d − 4

z
+ 3bλ2

0(d − 2)(d − 3)2z2d−5
)

ζ ′(z)

= λ
2z2	+−4F2(z)

r2	+−4
+ A(z)

A1(z), (59)

with

A1(z) = 1 − zd−3 − 3bλ2
0(d − 3)2

2

(
(1 − zd−3)z2d−4

+ d − 3

3(3d − 7)
(1 − z3d−7)

)
. (60)

We solve this equation by multiplying it by z−(d−4)

e
3(d−2)(d−3)2bλ2

0z
2d−4

2d−4 , which gives

d

dz

(
z−(d−4)e

3(d−2)(d−3)2bλ2
0z

2d−4

2d−4 ζ ′(z)
)

= λ
2zd−2F2(z)

r2d−6+ g(z)

×e
3(d−2)(d−3)2bλ2

0z
2d−4

2d−4 A1(z), (61)

where we used Eq. (43). After integration in the range (0, 1),
taking into account the boundary conditions stated above, we
arrive at the following result:

ζ ′(z)
zd−4

∣∣∣∣
z→0

= − λ

r2d−6+
A2, (62)

with

A2 =
∫ 1

0
dz

2zd−2F2(z)

g(z)
e

3(d−2)(d−3)2bλ2
0z

2d−4

2d−4 A1(z). (63)

Now, we will look at the asymptotic behaviour of φ(z). We
already know that it satisfies Eq. (32). If we compare this
equation with Eq. (58) in this limit, we get

μ − ρ

rd−3+
zd−3 = λr+

[
(1 − zd−3)

−bλ2
0(d − 3)3

2(3d − 7)
(1 − z3d−7)

]
+ 〈J 〉2

r+

[
ζ(0)

+zζ ′(0) + . . . + ζ (d−3)(0)

(d − 3)! z
d−3 + . . .

]
, (64)

where ζ (d−3)(0) denotes the derivative of order (d − 3) at
z = 0. If we compare the coefficients of zd−3, we see that

− ρ

rd−3+
= −λr+ + 〈J 〉2ζ (d−3)(0)

r+(d − 3)! . (65)

Thus, if we require that

ζ (d−3)(0)

(d − 4)! = ζ ′(z)
zd−4

∣∣∣∣
z→0

, (66)

and using Eqs. (62) and (65), we obtain:

ρ

rd−2+
= λ

(
1 + 〈J 〉2A2

r2d−4+ (d − 3)

)
. (67)

Taking into account Eqs. (40), (53) and that T → Tc, this
reduces to

〈J 〉2 = (d − 3)

A2

⎛
⎝4πTc

(
1 − ar0(c)

d−2

)

d − 1

⎞
⎠

2d−4

×
(

1 −
(
T

Tc

)d−2
)

. (68)

Therefore,

〈J 〉 = βT d−2
c

√
1 − T

Tc
, (69)

where

β =
√

(d − 3)(d − 2)

A2

⎛
⎝4π

(
1 − ar0(c)

d−2

)

d − 1

⎞
⎠

d−2

. (70)

As expected, the critical exponent is 1/2. We now calculate
A1, A2 and β for d = 5, 6 and 7 (a similar procedure for
d = 5 was shown in [9]). The results are shown in Tables 5,
6 and 7. Plots of 〈J 〉

T d−2
c

as a function of T
Tc

are also shown in

Fig. 2. The condensation gap increases with larger values of
b. One can also see that it decreases with increasing ar0(c)

and, hence, with increasing a, as noted earlier.

6 Conclusion

In this paper, higher dimensional holographic superconduc-
tors were analyzed in the background of modified f (R)

gravity and Born–Infeld electrodynamics using the Sturm–
Liouville method. For the model of f (R) gravity that was
used, a small correction parameter was introduced, which
allows a perturbative analysis of the problem. The calcula-
tions of the critical temperature and the dimensionless con-
densation show that the higher values of the Born–Infeld
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Fig. 2 〈J 〉
T d−2
c

as a function of T
Tc

for d = 5 (a), d = 6 (b), d = 7 (c)

parameter make the condensation harder to form. On the
other hand, increasing f (R) gravity modifications make the
formation of the condensate easier. These results were shown
in d = 5, 6 and 7 dimensions. In addition, the limiting values
of the Born–Infeld parameter, above which one cannot get
meaningful results, were found. This gives the range of appli-
cability of Born–Infeld electrodynamics in the configuration
that is considered. It is important to note that the analytical
methods in this paper have been thoroughly investigated in
other cases, and were shown to give a very good accuracy.
In particular, the Sturm–Liouville method has been known
to agree very well with numerical results, while also being
more accurate than the matching method.

It would be extremely interesting if the results in this paper
can be extended away from the probe limit in future work, or
if other models of f (R) gravity can be similarly analyzed.
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