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Abstract We consider a k-essence scalar field model for
the late-time cosmic acceleration in which the sound speed,
parametrized as cs is constant. We compute the relevant
background and perturbation quantities corresponding to
the observables like cosmic microwave background, type
Ia supernova, cosmic chronometers, baryon acoustic oscil-
lations, and the f σ8. We put constraints on the c2

s parameter
from these observations along with other parameters. We find
lower values of c2

s which are close to zero are tightly con-
strained. Particularly, we find mean value of log10(c

2
s ) to be

−0.61 and c2
s ≤ 10−3 is more than 3σ away from this mean

value. This means these observations favor a homogeneous
dark energy component compared to the clustering one.

1 Introduction

The late time cosmic acceleration is confirmed by the several
cosmological observations like the type Ia supernova obser-
vations [1–8], cosmic microwave background (CMB) obser-
vations [9–11], and the baryon acoustic oscillation obser-
vations [12–14]. Ever since the discovery of the late time
cosmic acceleration, an enormous amount of effort has been
given to model this phenomenon. The two broad categories
of this effort are the notion of the existence of an exotic mat-
ter called the dark energy [15–20] and the modification of
gravity [21–33]. In the first case, the dark energy is assumed
to have large negative pressure which causes the late time
cosmic acceleration.

There are several dark energy models in the literature
[18]. The most simple dark energy model is the ΛCDM
model, in which the cosmological constant Λ is the candi-
date for the dark energy whose energy density is considered
to be a constant [34]. This is the most successful model till
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now which can explain late-time cosmic acceleration. How-
ever, this model has some shortcomings, both from theoreti-
cal background like the cosmic coincidence and fine-tuning
problems [35–38] and the observations point of view like cor-
responding to the Hubble tension [39–42] and the σ8 tension
[43–46]. It is thus important to study the cosmic acceleration
with the models beyond the ΛCDM.

Different dark energy models affect cosmological evolu-
tion differently. If we assume the dark energy is homoge-
neous, it only affects the cosmological evolution through the
background expansion and it does not participate in the clus-
tering. This is the case for the ΛCDM model. However, there
is no a priori reason to consider dark energy to be homoge-
neous. On the other hand, the inhomogeneous dark energy
participates in the clustering. Hence the evolution of pertur-
bations is different in inhomogeneous dark energy compared
to the homogeneous one [47,48]. Thus, it is required to check
whether a dark energy is homogeneous or not.

For this purpose, we consider one popular class of dark
energy models, named the k-essence [49–61]. In k-essence
model, the late time acceleration is caused by a generic scalar
field whose kinetic term can be both canonical and non-
canonical. The canonical kinetic term corresponding to a sub-
class called quintessence [62–67]. In the quintessence model
of dark energy, the speed of sound is unity. For this case, the
perturbation in the scalar field is negligible. Consequently,
this corresponds to the homogeneity of the dark energy. In the
non-canonical k-essence scenario, the sound speed of dark
energy is different from unity and it can have values lower
than 1. If the sound speed of dark energy decreases from 1,
the inhomogeneities in the dark energy may increase. For a
nice review, see [47] (also see [68–70]).

In general, any non-canonical k-essence model has an
evolving speed of sound. One has to choose a model in such
a way that the sound speed is always subluminal because
we do not expect any information to propagate faster than
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the speed of light in a vacuum. Also, the sound speed has
to be real. One of the easy ways to maintain such condi-
tions is to choose a non-canonical kinetic term such that the
sound speed is constant and can be parameterized. The non-
canonical k-essence model with constant sound speed has
been studied in the literature like in [71–73].

In [71], authors have used Planck-2013 results on CMB
anisotropy and other cosmological data to put constraints on
the speed of sound and found no preferences of a particu-
lar value of it in the range between 0 to 1. In [72], authors
did a similar kind of analysis but with more recent data sets
and found similar kinds of results. A few similar kinds of
analyses have been done in the literature but with different
dark energy models [74–76]. In this study, we consider such
a k-essence model in which the speed of sound is constant
during the entire cosmological evolution. With this model,
we study the effect of the sound speed of dark energy both in
the background and the perturbation evolutions and put con-
straints on the sound speed of dark energy from the recent
cosmological data.

Throughout our study, we consider the signature of the
metric to be (+,−,−,−) and we quote all the expressions
in the natural units. This paper is organized as follows. In
Sect. 2, we show the derivation of the form of the Lagrangian
for which the speed of sound is constant over cosmic time
in the k-essence scenario. In Sect. 3, we investigate the k-
essence field evolution and the relevant background quan-
tities. In Sect. 4, we find the evolution of the perturbations
with the full relativistic perturbation method. In Sect. 5, we
rewrite all the relevant background and perturbation equa-
tions in a single autonomous system of differential equations.
In Sect. 6, we consider the sub-Hubble limit for the evolution
equation for the matter overdensity contrast and compare the
result with the full relativistic result. In Sect. 7, we briefly
mention some observational data, we consider in our analy-
sis. In Sect. 8, we discuss the results of this study. Finally, in
Sect. 9, we present a conclusion.

2 K-essence Lagrangian with constant speed of sound

The Lagrangian for a general k-essence scalar field, φ is given
as [77–79]

LK = LK (φ, X), (1)

where X = 1
2 (∇μφ)(∇μφ) = 1

2 (∂μφ)(∂μφ). The pressure
(Pφ), the energy density (ρφ) and the sound speed (c2

s ) for
the k-essence scalar field are given as [51,77–79]

Pφ = LK , (2)

ρφ = 2X
∂LK

∂X
− LK , (3)

c2
s =

∂Pφ

∂X
∂ρφ

∂X

=
∂LK
∂X

2X ∂2LK
∂X2 + ∂LK

∂X

, (4)

respectively.
We consider a k-essence model in which the speed of

sound of the scalar field is constant i.e. c2
s = constant. For

this case, from Eq. (4), we get a differential equation for the
Lagrangian given as

2X
∂2LK

∂X2 −
(

1 − c2
s

c2
s

)
∂LK

∂X
= 0, (5)

for c2
s �= 0. The general solution for the above differential

equation is given as [71–73]

LK = U (φ)Xn − V (φ), (6)

where U and V are two arbitrary functions of φ; and n is
given as

n = 1 + c2
s

2c2
s

= constant. (7)

For the simplicity of the study, we consider a special
case where U (φ) = 1 and we denote the corresponding
Lagrangian as L given as

L = Xn − V (φ). (8)

We stick to this model throughout this study. Even though this
Lagrangian is not of the standard canonical form, V (φ) can
be considered as the potential for the scalar field. Equation (7)
is alternatively written as

c2
s = 1

2n − 1
= constant. (9)

As we discussed in the introduction, the speed of sound
should satisfy the condition 0 < c2

s ≤ 1. This corresponds to
n ≥ 1. Note that, the special case of this model, described by
the lagrangian in Eq. (8), is the quintessence, where n = 1
and consequently c2

s = 1. For other cases, c2
s decreases from

the value, 1 with increasing values of n.
In this model, the pressure Pφ of the scalar field is the

same as the Lagrangian in Eq. (8) i.e.

Pφ = Xn − V (φ). (10)

The energy density of the scalar field is given as

ρφ = (2n − 1)Xn + V (φ). (11)
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For this model, the energy-momentum tensor, Tμ
ν is given as

Tμ
ν = ∂L

∂(∂μφ)
(∂νφ) − δμ

ν L

= nXn−1gμσ (∂σ φ)(∂νφ) − δμ
ν L , (12)

where the metric of the space-time is denoted as gμν and δ
μ
ν

is the usual Kronecker-delta symbol.
The Euler–Lagrange equation is given as

1√−g
∂μ

[√−g
∂L

∂(∂μφ)

]
− ∂L

∂φ
= 0, (13)

where g is the determinant of the given metric, gμν . In this
model, the above equation consequently becomes

1√−g
∂μ

[√−gnXn−1gμν(∂νφ)
]

+ V ′(φ) = 0. (14)

where V ′(φ) = dV (φ)
dφ

and |g| is the modulus of the determi-
nant, g. Note that, in the above equation, we have assumed
that there is no interaction between the scalar field and any
other fields.

3 Background cosmology

For the background cosmology, we consider the spatially
flat Friedmann–Lemaître–Robertson–Walker (FLRW) met-
ric given as dS2 = dt2−a2(t)dr.dr, where dS is the line ele-
ment of the space-time, dr is the comoving line element vec-
tor corresponding to the 3-dimensional Euclidean space, t is
the cosmic time, and a is the cosmic scale factor. In this case,
the expression of X is given as X = 1

2
˙̄φ2, where overhead dot

represents the differention w.r.t t . Here, we denote the back-
ground scalar field as φ̄. Throughout this paper, a quantity
with an overhead bar indicates its unperturbed (background)
value. So, the background pressure (P̄φ), energy density (ρ̄φ),
and equation of state of dark energy (wφ) are given as

P̄φ =
(

1

2
˙̄φ2

)n

− V (φ̄), (15)

ρ̄φ = (2n − 1)

(
1

2
˙̄φ2

)n

+ V (φ̄), (16)

wφ = P̄φ

ρ̄φ

=
(

1
2

˙̄φ2
)n − V (φ̄)

(2n − 1)
(

1
2

˙̄φ2
)n + V (φ̄)

, (17)

respectively.
The background Euler–Lagrange equation corresponding

to Eq. (14) is given as

n

(
1

2
˙̄φ2

)n−1 [
(2n − 1) ¨̄φ + 3H ˙̄φ

]
+ V ′(φ̄) = 0. (18)

The two Friedmann equations are given as

3M2
plH

2 = ρ̄φ + ρ̄m, (19)

6M2
pl(Ḣ + H2) = −(1 + 3wφ)ρ̄φ − ρ̄m, (20)

where, ρ̄m is the background energy density for the total
matter components (including both dark matter and baryons),
H is the Hubble parameter, and M2

pl = 1
8πG with G is the

Newtonian gravitational constant. Here, we have neglected
the radiation, because we are studying the expansion history
of the Universe from the matter-dominated era to the present
epoch.

3.1 Relevant background quantities

The energy density parameter Ωφ of the scalar field is given
as

Ωφ = ρ̄φ

3M2
plH

2
= 1 − Ωm, (21)

where Ωm is the matter-energy density parameter given as

Ωm = ρ̄m

3M2
plH

2
= ρ̄m0(1 + z)3

3M2
plH

2
= Ωm0(1 + z)3

E2 , (22)

where ρ̄m0 is the present value of the matter energy density;
Ωm0 is the present value of the matter-energy density param-
eter defined as ρ̄m0

3M2
plH

2
0

with H0 being the present value of the

Hubble parameter; E is the normalized Hubble parameter
defined as E = H

H0
. Here, we have neglected the contri-

bution of radiation. Also, we have assumed that there is no
interaction between the scalar field and the matter. The above
equation can be rewritten as

E2 = Ωm0(1 + z)3

Ωm
. (23)

It is also important to calculate the cosmological distances
like the luminosity distance. To do this, we define a quantity,
dN given as

dN =
∫ z

0

dz̃

E(z̃)
, (24)

where z (also z̃) is the cosmological redshift. The luminosity
distance, dL and the angular diameter distance, dA is related
to dN given as

dL =
(

1

H0

)
(1 + z)dN , (25)

dA =
(

1

H0

)
dN

1 + z
. (26)
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Note that, the above expressions are valid for the spatially
flat Universe assumption which we consider throughout our
analysis.

4 Evolution of perturbations

In this analysis, we are interested in the linear perturbations
for the evolutions of scalar fluctuations only for which we
can compute the evolution of the scalar fluctuations indepen-
dently with the two scalar degrees of freedom. Further, we
assume there is no source of anisotropic stress. So, we can
compute the evolution of the scalar fluctuations with only
one scalar degree of freedom. Here, we are considering the
conformal Newtonian gauge for which the perturbed metric
is given as [25,67]

dS2 = (1 + 2Φ)dt2 − a2(1 − 2Φ)dr.dr, (27)

where Φ is the gravitational potential or sometimes it is called
the Bardeen potential. With the above metric, the first-order
Euler–Lagrange equation corresponding to Eq. (14) becomes

21−nn
( ˙̄φ2

)n [
(2n − 1) ¨(δφ) + 3H ˙(δφ) − 2(n + 1) ˙̄φΦ̇

− 1

a2 ∇2(δφ)

]
+ 2 ˙̄φV ′(φ̄)

[
(1 − n) ˙(δφ) + n ˙̄φΦ

]

+ ˙̄φ2V ′′(φ̄)(δφ) = 0, (28)

where we have perturbed the scalar field as φ = φ̄ + δφ and
k is the magnitude of wave vector. The above equation is
obtained from the Fourier transform of the first-order pertur-
bations. Throughout this study, we mention all the first-order
perturbation equations in the Fourier space. The first-order
field equations are given as

∇2Φ − 3a2H(Φ̇ + HΦ) = 4πGa2(δρφ + ρ̄mδm), (29)

Φ̇ + HΦ = 4πG
[
a(ρ̄φ + P̄φ)vφ + aρ̄mvm

]
, (30)

Φ̈ + 4HΦ̇ + (2Ḣ + 3H2)Φ = 4πG(δPφ), (31)

where ρ̄mδm is the perturbation in the energy density of the
matter components, ρ̄m is the background matter energy den-
sity and δm is the matter overdensity contrast, defined as
δm = ρm−ρ̄m

ρ̄m
, where ρm is the total matter-energy density.

vm is the velocity perturbations in the matter fields. δρφ , vφ

and δPφ are the first-order perturbations in the energy den-
sity, velocity field, and pressure respectively for the scalar
field. These are given as

δρφ = 21−nn(2n − 1)
( ˙̄φ

)2n−1 [ ˙(δφ) − ˙̄φΦ
]

+ V ′(φ̄)δφ, (32)

a(ρ̄φ + P̄φ)vφ = 21−nn
( ˙̄φ

)2n−1
δφ, (33)

δPφ = 21−nn
( ˙̄φ

)2n−1 [ ˙(δφ) − ˙̄φΦ
]

− V ′(φ̄)δφ. (34)

In general, we need to solve Eqs. (28), (29), (30), and (31)
simultaneously to find the solutions for δφ, Φ, δm and vm .
However, the expressions for these differential equations are
such that we do not need to solve all the differential equations
simultaneously. Instead, we can only simultaneously solve
Eqs. (28) and (31) to find solutions for δφ and Φ first, because
these two differential equations are in the closed form w.r.t
the quantities δφ and Φ and other two quantities δm and vm
are not explicitely present. Using the solutions of δφ and Φ

in Eqs. (29) and (30), δm and vm can be solved separately.
Putting Eq. (34) in Eq. (31), we get a differential equation
for Φ given as

Φ̈ + 4HΦ̇ + (2Ḣ + 3H2)Φ = 4πG

×
(

21−nn
( ˙̄φ

)2n−1 [ ˙(δφ) − ˙̄φΦ
]

− V ′(φ̄)δφ

)
. (35)

As mentioned before, since, Eqs. (28) and (35) are in closed
form, we numerically solve these two equations simultane-
ously to find solutions of δφ and Φ.

4.1 Relevant perturbation quantities

We put Eq. (32) in Eq. (29) and algebraically solve it to find
expression for δm given as

δm = − 1

ρ̄m

(−∇2Φ + 3a2H(Φ̇ + HΦ)

4πGa2

+ 21−nn(2n − 1)
( ˙̄φ

)2n−1 [ ˙(δφ) − ˙̄φΦ
]

+ V ′(φ̄)δφ

)
.

(36)

Similarly, we put Eq. (33) in Eq. (30) and algebraically solve
it to find expression for vm given as

vm = 1

aρ̄m

[
Φ̇ + HΦ

4πG
− 21−nn

( ˙̄φ
)2n−1

δφ

]
. (37)

5 Autonomous system of differential equations and
initial conditions: background and perturbation
togther

From now onward we mention all the equation in the Fourier
space. The equations can just simply be rewritten by replac-
ing ∇2 f with −k2 f for any perturbed quantity f which is the
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function of the spatial coordinates, where k is the wavenum-
ber. And for simplicity i.e. to avoid any complicated nota-
tions, we use same notations for perturbed quantities in the
Fourier space too.

5.1 Autonomous system

We define some dimensionless variables for the background
quantities given as

x = 2− n
2
√

2n − 1( ˙̄φ)n√
3HMpl

,

A =
√
V (φ̄)

2− n
2
√

2n − 1( ˙̄φ)n
,

λ = −2
n−1

2 Mpl(
˙̄φ)1−nV ′(φ̄)√

2n − 1V (φ̄)
,

B = ln

[
(1 + z)− 3

2 E

(1 + zi )−
3
2 Ei

]
,

F = (1 + zi )
− 3

2 Ei (dN − diN ), (38)

where, Ei and diN are the initial values of the quantities E
and dN respectively, at an initial redshift, zi . Similarly, we
define dimensionless variables for the first-order perturbation
quantities given as

Q =
(
dφ̄

dN

)−1

δφ,

R = dQ

dN
,

S = dΦ

dN
. (39)

With these variables, the background and perturbation equa-
tions all together are written in an autonomous system of
differential equations given as

dx

dN
= x

2

[
A2x

(√
6λ − 3x

)
+ 3

(
x2 − 1

)
2n − 1

]
,

d A

dN
= 3An

2n − 1
−

√
3

2
A

(
A2 + 1

)
λx,

dλ

dN
=

√
3
2λ2x

[
A2 − n

(
A2 + 2Γ − 2

)]
n

+ 3λ(n − 1)

2n − 1
,

dB

dN
= 3x2

[
A2(2n − 1) − 1

]
2(2n − 1)

,

dF

dN
= −e

N
2 −B,

dΦ

dN
= S,

dQ

dN
= R,

dR

dN
= f1,

dS

dN
= f2, (40)

with

f1 = 1

2(2n − 1)2

[
x

(
3Qx

[

A(1 − 2n)2
(
λ2

(
A2(n − 1) − 2An + A − n

) + 3An2
)

n2

+ 3

]
− 9Qx3

(
A2(1 − 2n) + 1

)2

+ 3
√

6Aλ(2n − 1)Qx2
(
−A2 + 2(A − 1)An − 1

)

− 2
√

6Aλ(2n − 1)(3(n − 1)Q − 2nΦ + Φ)

)

+ (2n − 1)R
[
3x2

(
A2(2n − 1) − 1

)

+ 2
√

6Aλ(1 − 2n)x − 6n + 9
]

+ 2(1 − 2n)Qk2
n + 4

(
2n2 + n − 1

)
S

]
, (41)

and

f2 = 1

2(2n − 1)2

[
− 3x2(n2

(
4
(
A2(S + 2Φ)

− R + Φ
)

− 6Q
)

+ n(9Q − 2
(

2A2S + 4A2Φ − R + S + 3Φ
)
)

+
(
A2 + 1

)
(S + 2Φ)) + 9nQx4

(
A2(1 − 2n) + 1

)

+ 6
√

6Aλn(2n − 1)Qx3 − 5(1 − 2n)2S

]
, (42)

where N = ln a and Γ is defined as

Γ = V (φ̄)V ′′(φ̄)[
V ′(φ̄)

]2 , (43)

where V ′′(φ̄) = d2V (φ̄)

dφ̄2 . In the above equation, Γ is defined
in a way such that for the polynomial and the exponential
potentials, Γ becomes constant. We restrict our study to these
kinds of potentials only and these would be enough to convey
the results. Here, kn is defined as

kn = k

aH
= k̃e

N
2 −B, (44)

with k̃ = keB0

H0
. (45)

To solve the system of differential equations in Eq. (40), we
keep k̃ as a free parameter, and after obtaining the solutions
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we convert it to get the usual magnitude, k of the wavevector
using Eq. (45). Note that, in Eq. (40), there is no variable
involved in the denominators except constant factors n and
2n − 1. Both these constant factors are not zero for n ≥ 1.
So, there are no singularity issues in the above system of
differential equations.

5.2 Initial conditions

To solve the set of differential equations in Eq. (40), we need
to fix the initial conditions. We denote initial values by sub-
script ‘i’ or in some cases by superscript ‘i’. We fix the initial
conditions at a redshift,

zi = 1100. (46)

The quantities B and F are defined in such a way that their
initial values are

Bi = 0, (47)

Fi = 0, (48)

respectively. These initial values are consistent with the fact
that the normalized Hubble parameter is unity and the dis-
tances are zero at the present epoch i.e. z = 0.

The initial values, xi and Ai are related to the initial values,
γ i
φ and Ω i

φ given as

xi =
√√√√γ i

φ

(
Ω i

φ − Ω i
φ

2n

)
,

Ai =
√

γ i
φ − 2nγ i

φ + 2n√
(2n − 1)γ i

φ

, (49)

where γ i
φ = 1 + wi

φ . These two parameters can be related to
Ωm0 and w0 (equation of state of the scalar field at present).
These relations are not analytic but can be computed numer-
ically.

We keep λi as a free parameter which corresponds to the
initial slope of the given potential of the scalar field.

We also keep Γ as a free parameter. That means we do not
choose any specific potential. The only assumption here is
that we stick to such potentials for which Γ is a constant. This
is the case for the polynomial and exponential potentials, as
mentioned previously.

The initial conditions corresponding to the perturbation
equations are given as [25,67]

Φi = −3

2

a3
i H

2
i

k2 = − 3

2k̃2
,

Qi = 0,

Ri = 0,

Si = 0. (50)

Qi and Ri are taken to be zero because in a matter-dominated
era, at zi = 1100, there are hardly any dark energy contri-
butions both in the background and the perturbation. In the
early matter-dominated era, Φ is approximately constant. So,
we choose Si = 0. The initial value, Φi is computed from
the assumption that at matter dominated era, δm ∝ a at sub-
Hubble scale. So, all the parameters related to the initial con-
ditions for the perturbed quantities are fixed.

So, in this analysis, the model parameters are γ i
φ , Ω i

φ , λi ,
and Γ .

5.3 Background quantities w.r.t dimensionless variables

With the dimensionless variables, x , A, and λ, defined in
Eq. (38), the equation of state and the energy density param-
eter (Ωφ) of the scalar field are expressed as

wφ = 2n(
A2 + 1

)
(2n − 1)

− 1, (51)

Ωφ =
(

1 + A2
)
x2, (52)

respectively. The normalized Hubble parameter E is com-
puted from the quantity B given as

E = (1 + z)
3
2 eB−B0 , (53)

where B0 = B(z = 0). Similarly, dN is computed from the
quantity F as

dN = (F − F0)e
B0 , (54)

where F0 = F(z = 0).

5.4 Perturbation quantities w.r.t dimensionless variables

We use Eq. (36) to compute the perturbation in the matter-
energy density given as

δm =
[(

A2 + 1
)
x2 − 1

]−1
(
nx2

[

3Q
(
n

(
2 − 2A2x2

) + (
A2 + 1

)
x2 − 3

)
2n − 1

+ 2(R − Φ)

]
+ 2

3
Φ

(
k2
n + 3

)
+ 2S

)
. (55)

Similarly, we use Eq. (37) to compute the perturbation in the
velocity field of matter as

3aHvm = 2
(
3nQx2 − 2nS − 2nΦ + S + Φ

)
(2n − 1)

[(
A2 + 1

)
x2 − 1

] . (56)

123
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Using Eqs. (55) and (56), we get the gauge invariant matter
energy density contrast, Δm given as

Δm = δm + 3aHvm . (57)

6 Sub-Hubble limit of perturbations, logarithmic
growth factor, and σ8

Using the non-relativistic approximations, such as k 	 aH
(sub-Hubble) and spatial variations like ∂iΦ and ∇2Φ are
much greater than the temporal variations Φ̇ or Φ̈ (qua-
sistatic) in Eqs. (28), (29), and (30), one can arrive at the
corresponding equation for the Newtonian perturbation the-
ory. For a detailed discussion, see [68]. The relevant equation
for δm looks like,

δ̈Nm + 2H δ̇Nm − 4πGρ̄mδNm = 0. (58)

So, in the sub-Hubble scale, we can solve this simple differ-
ential equation instead of solving the complicated differen-
tial equations in the relativistic perturbations. The superscript
‘N’ corresponds to the case of Newtonian perturbation the-
ory. Note that, even though sound speed is not unity in this
model, the nature of the scalar field is such that the parameter
cs does not appear explicitly in the above differential equa-
tion. This equation is also written in a system of differential
equations given as

dδNm

dN
= T,

dT

dN
= 1

2

[
− 3

(
A2 + 1

)
x2δNm

+ 3T x2
(

1

2n − 1
− A2

)
+ 3δNm − T

]
. (59)

To solve system of differential equations in Eq. (59), we use
the usual initial conditions given as δNm (z = zi ) = ai and
T (z = zi ) = ai . This comes from the fact that in the early
matter-dominated era, δm ∝ a [19].

In Fig. 1, we have compared the results from relativis-
tic and Newtonian perturbation theory for the matter-energy
overdensity contrast. The vertical purple line is for the hori-
zon scale corresponding to kH (z = 0) = a(z = 0)H(z =
0) ≈ 0.00023 Mpc−1 for h = 0.7, where h is related to H0

given as

H0 = 100 h km s−1 Mpc−1. (60)

We find that for almost all the cases the relativistic pertur-
bation results match well within 10% with the Newtonian
perturbation results for the sub-Hubble scales. We are inter-
ested in the sub-Hubble scales, so from now on we shall use

Fig. 1 Percentage deviation of the relativistic perturbation results for
Δm compared to the Newtonian perturbation result for δNm

the Newtonian perturbation results. The growth factor cor-
responding to the matter inhomogeneities is given as [80]

f = d ln D+
d ln a

= T

δNm
, (61)

where D+ is the growing mode solution of δNm . In the second
equality in the above equation and from now onwards we
denote the growing mode solution with the same notation
δNm .

In the Newtonian perturbation theory, the normalization
factor of the matter power spectrum, σ8 is independent of the
scale k and it is written as [81]

σ8 = σ 0
8

D+(z)

D+(z = 0)
= σ 0

8
δNm (z)

δNm (z = 0)
, (62)

where σ 0
8 is the present value of σ8.
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7 Observational data

We consider Planck 2018 results of the cosmic microwave
background (CMB) observations for the ‘TT,TE,EE +lowl
+lowE +lensing’ with the base flat ΛCDM model, where
‘T’ stands for temperature in the CMB map and ‘E’ stands
for E-mode of the CMB polarisation map [11]. For this pur-
pose, in this analysis, we use the CMB distance prior data
corresponding to these observations [82,83]. For the CMB
distance prior, we use the corresponding constraints on the
CMB shift parameter, acoustic length scale, and the present
value of baryon energy density parameter (Ωb0) according
to the [83]. We denote this observation as ‘CMB’ throughout
this analysis.

We consider Pantheon compilation of the type Ia super-
nova observations which possesses apparent peak absolute
magnitudes of the standard candles at different redshift val-
ues [7]. This apparent magnitude depends on the value of the
luminosity of a source at a particular redshift and the nui-
sance parameter MB . MB is the peak absolute magnitude of
a type Ia supernova. We constrain MB alongside the model
parameters. We denote this observation as ‘SN’.

We consider the cosmic chronometer data for the Hub-
ble parameter at different redshift values [84,85]. In these
observations, the Hubble parameter is determined by the rel-
ative galaxy ages. For the Hubble parameter data, we closely
follow [85]. We denote this observation as ‘CC’.

We consider baryon acoustic oscillations (BAO) data
which are related to the cosmological distances like the
angular diameter distance. The BAO observations possess
data both in the line of sight direction and transverse direc-
tion [13]. The line of sight data is related to the Hubble
parameter and the transverse data is related to the angular
diameter distance [12–14]. For the BAO data, we follow
[13]. However, we exclude the measurement of eBOSS (the
extended baryon oscillation spectroscopic survey) emission-
line galaxies (ELGs) data from the list in [13] because this
data (at redshift, z = 0.8) have an asymmetric standard devi-
ation in the statistical measurement. Note that BAO obser-
vation is dependent on the parameter, rd , the distance to the
baryon drag epoch. This parameter is closely related to the
parameter, Ωb0. So, in our analysis, we constrain this param-
eter as a nuisance parameter like in the case of CMB data.
We denote the BAO observations as ‘BAO’.

We also consider the f σ8 data in our analysis. This data
constrains the model parameters both through background
and perturbation evolutions. We consider 63 f σ8 data at dif-
ferent redshift ranging from z = 10−3 to z = 2. For these
data, we follow [86]. We denote these observations as ‘ f σ8’.
With all these data, we constrain the model parameters along-
side the cosmological nuisance parameters.

8 Results

In Fig. 2, we have shown constraints on all the parame-
ters obtained from the combined CMB+SN+CC+BAO+ f σ8

data. The inner-darker-black and outer-lighter-black con-
tours correspond to the 1σ and 2σ contour ellipses respec-
tively. The 1σ values of parameters are mentioned in Table 1.

As we can see, from the combinations of all the data,
mentioned earlier, the higher values of c2

s (close to 1) are
not tightly constrained. But, interestingly, constraints on the
lower values of c2

s (close to 0) are tighter. This can also be seen
from Fig. 3, where we have shown the marginalized proba-
bility of log10 c

2
s . This means the homogeneous dark energy

is more favorable than the clustering dark energy from the
recent observational data, we have considered. This analysis
shows tighter constraints on c2

s (on the lower side i.e. close
to 0) compared to the results obtained in the earlier studies
like in [71–76]. This is our main highlighted result. However,
from the constraints on the different model parameters, we
see some other interesting results, mentioned below.

From the constraints on γ i
φ , we see that its mean value

is of the order of 10−2 which corresponds to the fact that
the equation of the state parameter of the dark energy is very
close to −1 at the initial time. This means the initial condition
for the scalar field evolution favors the thawing behavior for
a larger set of forms of potential including polynomials and
the exponential. Even the negative values of the powers in
the polynomial potentials also favor the thawing behaviors
which can be seen from the constraints on the Γ parameters,
in which we see the large range of the parameter space is
allowed for Γ including 0 (corresponding to the exponential
potential) and positive values (corresponding to the negative
power of the polynomial potentials). Note that, these results
are only for the polynomial and exponential potentials not
for any arbitrary general form of potential.

The results for the constraints on the H0 parameter
(through the parameter, h) are similar to the ones, we expect
from the CMB, CC, and BAO observations. Since MB is
degenerate to H0, constraints on MB are also consistent. The
constraints on the Ωb0 are also consistent, as we expect from
the CMB and the BAO observations. Similar is the case for
the constraints on the σ 0

8 parameter.
We should note that two related studies explore similar

models, incorporating constraints from similar cosmologi-
cal observations. In [71,72], authors considered similar k-
essence models with different potentials for the scalar field.
The main improvement in the present work is that we have
considered an updated dataset from Planck 2018 [11] com-
pared to that used in the previous investigations [71,72],
along with updated BAO [13] and CC [85] dataset as well.
This leads to a slightly tighter constraint on the results. As
we are working at the values of c2

s ranging from unity to very

123
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Fig. 2 Constraints on all the model parameters obtained from the CMB+SN+CC+BAO+ f σ8 combinations of data. The inner and outer regions
correspond to 1σ and 2σ bounds respectively

close to zero, the use of a logarithmic scale (log10
(
c2
s

)
) leads

to a better distinguishability close to c2
s = 0 in the present

work. A similar ploy was used in [72] as well, but not in [71].

9 Conclusion

We consider a k-essence model of dark energy in which the
sound speed of dark energy is constant. We write down the
corresponding Lagrangian for this kind of model. With this

Lagrangian, we calculate the Euler–Lagrange equation and
the field equations in general. We then set up a dynamical sys-
tem of differential equations for the background evolutions
with the help of dimensionless variables. After numerically
solving this autonomous system, we compute the relevant
background quantities like the Hubble parameter, the equa-
tion of state parameter of the dark energy, and the energy
density parameter of the k-essence scalar field.

We also compute the first-order linear perturbations to
compute the relevant perturbation quantities like the growth

123
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Table 1 1σ bounds on all the model parameters obtained from
CMB+SN+CC+BAO+ f σ8 combinations of data

Parameters 1σ bounds

log10(γ
i
φ) −2.52+0.88

−0.63

log10(Ω
i
φ) −8.764+0.020

−0.029

λi 0.94+0.45
−0.53

h 0.6624+0.0081
−0.0069

MB −19.450 ± 0.016

Ωb0 0.05102+0.00095
−0.0013

log10(c
2
s ) −0.61+0.62

−0.13

Γ −0.1 ± 1.6

σ 0
8 0.754 ± 0.015

Fig. 3 Marginalized probability of log10 c
2
s obtained from

CMB+SN+CC+BAO+ f σ8 combinations of data

factor and the σ8. We consider both the relativistic and the
Newtonian perturbations and compare them. We find the
results match excellent within the sub-Hubble limit. For the
evolution of the perturbations, we use dimensionless vari-
ables to get an autonomous system of differential equations.
We combine this autonomous system with the one for back-
ground evolution and make a completely autonomous system
of differential equations. From this, we compute all the rel-
evant quantities.

Next, we do the parameter estimation to put constraints on
the model parameters as well as on the cosmological nuisance
parameters from the combinations of Planck 2018 mission
of CMB observations, the Pantheon compilation of type Ia
supernova observations, the cosmic chronometers observa-

tions for the Hubble parameter, the BAO observations, and
the f σ8 observations.

The mean value of c2
s is close to 1, because the mean value

of log10(c
2
s ) is close to zero which can be seen in Figs. 2 and 3.

The higher values of c2
s (close to 1) are loosely constrained

i.e. it is allowed for large error bars. On the other hand, the
lower values of c2

s are comparatively tightly constrained to
lie far away from the mean value (in the aspect of the con-
fidence interval). This can be seen in Fig. 3. This means the
homogeneous dark energy models are more favored than the
clustering dark energy models with the recent cosmological
observations.

The present work puts tighter constraints on parameters
compared to similar earlier investigations [71,72] by the use
of more recent datasets.

Another interesting result, we find, is that the thawing
behavior for the initial condition of the scalar field evolu-
tion is favorable at least for the polynomial and exponential
potentials of the scalar field.
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