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Abstract Dark matter is assumed to be composed of scalar
boson particles that form Bose–Einstein condensate during
the cosmic evolution of the Universe when the temperature
of the dark matter is below the critical temperature Tcr . At
around a redshift z ∼ 1200, the normal dark matter converted
to Bose–Einstein condensate dark matter through a first-order
phase transition and continued to complete the condensa-
tion process for nearly 106 years, until then, both phases
coexist. In this manuscript, considering Bose–Einstein con-
densate dark matter as a Gross–Pitaevskii–Poisson system,
we study the time evolution of density contrast of Bose–
Einstein condensate dark matter using cosmological linear
perturbation theory following previous works on the subject.
The evolution equation contains quantum pressure due to
Heisenberg’s uncertainty principle and self-interaction pres-
sure terms. We solve the temporal density contrast equa-
tion of Bose–Einstein condensate dark matter analytically
for both the Thomas-Fermi limit and the non-interacting
case where the expansion rule follows similarly to that of
the Einstein–de Sitter Universe. In addition, we also numer-
ically analyze the temporal nature of the evolution of den-
sity contrast of Bose–Einstein condensate dark matter for
the complete equation without applying any approximation.
We find that the Bose–Einstein condensate model of dark
matter could modify the temporal nature of density contrast
evolution due to the presence of self-interaction and quan-
tum pressure terms, which shows significant differences with
respect to the conventional standard cold dark matter, and
successfully solves the small-scale problems in the context
of cosmological structure formation.

a e-mail: cosmology313@gmail.com
b e-mail: amitava_ch26@yahoo.com (corresponding author)

1 Introduction

The large-scale structure formation of the Universe is a
major problem of cosmology. The journey of translation from
a homogeneous and isotropic early Universe to the vastly
clumped present Universe is fascinating. In the inflationary
phase of the early Universe, a small quantum fluctuation in
scalar curvature laid the seed of cosmological structure for-
mation. Afterward, the small fluctuation is stretched by the
rapid expansion of the Universe during inflation and sub-
sequently amplified through gravitational (Jeans) instability
and gives rise to structures we observe today [1,2]. Though
Sir Jeans [3,4] in 1902 introduced the first sincere theory of
galaxy formation for the non-relativistic fluid, it did not incor-
porate the effect of the expansion of the Universe. Later Lif-
shitz [5] in 1946 had given a satisfactory relativistic theory of
the formation of structures in an expanding Universe. He had
shown the power law of growth instead of exponential as sug-
gested in Jeans’s theory. Later in 1957, Bonnor [6] suggested
a non-relativistic approach to the same. Cosmological obser-
vations of distant type Ia supernovae provide data suggesting
that the Universe is made of about 70% dark energy (DE),
25% dark matter (DM), and 5% visible matter (baryons)
[7,8]. The dark sector, which consists of almost 95% of the
total, can hardly be detected through direct observations. The
DE (cosmological constant �), which is thought of as a form
of zero-point or vacuum energy, has negative pressure and is
responsible for the present acceleration of the Universe. An
extensive category of particle physics candidates of DM is
non-baryonic, non-relativistic, and weakly-interacting mas-
sive particles (WIMPs). There are several other speculative
candidates of DM such as standard model neutrinos, sterile
neutrinos, axions, and supersymmetric candidates (e.g. neu-
tralinos, gravitinos, axinos, etc), etc, albeit the actual nature
of DM is still mysterious [9–11]. The only shreds of evi-
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dence of DM are from galactic rotation curves [12,13] and
gravitational lensing [14].

The cosmological concordance �CDM model, known as
the standard model of contemporary cosmology is made of
DE, cold dark matter (CDM), and ordinary baryonic mat-
ter components. It has proven remarkably successful in elu-
cidating various aspects of cosmology, ranging from the
late-time acceleration of the expanding Universe [7,15] to
the statistical characteristics and power spectrum of cos-
mic microwave background (CMB) anisotropy [16]. The
model also effectively describes the characteristics of exten-
sive cosmic structures in the Universe [17,18] as well as
the observed prevalence of light nuclei such as hydrogen,
helium, and others [19–22]. Although the �CDM model
has achieved impressive triumphs and offers a straightfor-
ward framework, presently its validity is subject to rigor-
ous scrutiny as discussed in Refs. [23–27]. This arises from
various significant theoretical and observational challenges
confronting the model. Such shortcomings are the so-called
cosmological constant problem which is related to the appar-
ent mismatch between the observed value of the cosmolog-
ical constant and the theoretical expectations based on our
understanding of quantum field theory [28–30], and the late
time coincidence problem referring to the puzzling obser-
vation that the energy densities of DM and DE in the Uni-
verse are of the same order of magnitude almost recently at
a redshift z ≈ 0.55, even though they have evolved differ-
ently over cosmic time [31,32]. Furthermore, there are other
important anomalies such as the Hubble tension [27,33,34],
cosmic microwave background (CMB) anisotropy anomalies
[35,36], baryon acoustic oscillations (BAO) curiosities [37–
39], etc. (see Ref. [40] for details). At scales smaller than a
few hundred kpcs, certain aspects of the predictions made by
the �CDM model appear to deviate from what is observed
in several instances [41–43]. Especially when examining
galaxies, observations highlight several challenges that the
�CDM model encounters when trying to explain structures
on smaller scales, specifically those below approximately 1
Mpc [44–46]. The ‘core-cusp problem’ [47–50] highlights a
notable disparity. This discrepancy emerges within the den-
sity profile of the DM halo in low-mass galaxies, as depicted
by N -body simulations which is a crucial method in phys-
ical cosmology for assessing the predictions of the �CDM
model. This profile is conventionally characterized as hav-
ing cusp-like behavior [51–54]. Contrasting this, there is the
observed astronomical density profile of low surface bright-
ness galaxies, which typically showcases a core configuration
[55–58]. The ‘missing satellites problem’, also known as the
dwarf galaxy problem [59–62], underscores a notable excess.
It stems from a notable deviation between the projected count
of substructures within halos as predicted by comprehen-
sive collisionless N -body simulations and the actual count of
satellite galaxies observed within the Local Group. Notably,

the �CDM model forecasts a significantly greater number
of satellites often on the order of thousands compared to
the comparatively smaller count of observed dwarf galaxies,
which typically hovers around fifty [61,63].

The last two aforementioned small-scale problems are
important to us in the context of structure formation. The
challenges posed by the core-cusp and overabundance of
satellite galaxies issues can be figured out by considering
alternative scenarios. In 2000 Spergel and Steinhardt [64]
proposed a solution to the problems of the �CDM model
by considering DM as a non-dissipative, cold, but self-
interacting except small scattering cross-section. Hu et al.
[65] in 2000 suggested that DM is made up of extremely
lightweight free scalar particles. These particles would have
masses around 10−22 eV and would start off forming a
cold Bose–Einstein condensate (BEC). This concept is often
referred to as ‘fuzzy cold dark matter’ (FCDM). The inher-
ent wave properties of ultralight DM have the capacity to
obstruct the development of kpc-scale cusps within DM
halos, simultaneously diminishing the prevalence of halos
with lower masses. In 2015 Suárez and Chavanis [66] con-
sidered the self-interacting complex scalar field dark matter
(SFDM) model, represented by the Klein–Gordon–Einstein
(KGE) equations. Within the framework of the SFDM model,
there exists an inherent small-scale finite Jeans cut-off length
linked to the principles of quantum mechanics, which could
potentially solve the missing satellite problem. On the other
hand, the emergence of the quantum potential, originating
from the Heisenberg uncertainty principle in the case of a
noninteracting scalar field (SF), or from the pressure result-
ing from scattering in the case of a self-interacting SF, serves
as a barrier against gravitational collapse on small scales.
Consequently, this phenomenon gives rise to central density
cores as opposed to cusps.

In the context of the possibility of having bosonic struc-
tures, there exists a lot of studies. In 1990 Press et al.
[67] studied small-scale and large-scale structures with soft-
boson particles in which baryons are gravitationally cou-
pled considering a bosonic complex SF with quadratic and
quartic self-coupling. They showed that Heisenberg’s uncer-
tainty principle prevents soft-bosonic matter from falling into
galaxy clusters and thus solves the problem of dark miss-
ing matter. Frieman et al. [68] in 1992, based on particle
physics, describe an important physical phenomenon, the so-
called ‘Late time cosmological phase transition’ involving
ultralow-mass bosons (pseudo-Nambu–Goldstone bosons).
They identified the regions of parameter space by analyzing
the cosmic evolution of the aforesaid bosonic field and con-
cluded that it can make a significant contribution to the energy
density of the Universe. In 1994 Sin [69] studied the for-
mation of galactic halo quantum mechanically with pseudo-
Nambu–Goldstone bosonic DM appeared in late-time cos-
mological phase transition and followed by an investigation
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of galaxy rotation curves in another work [70] by employing
Landau–Ginzberg type theory.

It is assumed that the DM is composed of scalar boson
particles. Therefore, there is a possibility that the DM could
be in the form of BEC at some time in cosmic history, where
the mass and scattering length of particles are free parameters
to describe the system. In this regard, it is noteworthy that,
at very small temperatures, all particles of dilute quantum
Bose gas abruptly grow their population in the same ground
state and form condensate. For an ideal gas, the BEC process
was first predicted in 1924 [71,72]. Experimental realization
of BEC for trapped dilute Bose gases (such as atomic vapor
of rubidium and lithium) are reported in Refs. [73–75]. The
idea that DM could form BEC was first proposed in Ref. [76]
and later reinvestigated in different contexts in different arti-
cles [65,77–80]. Böhmer and Harko [81] in 2007 first went
through an in-depth study on the gravitationally trapped con-
densate DM halos, modeled by Gross–Pitaevskii–Poisson
(GPP) system. In the cosmological context, the idea of BEC
structure formation is not new (see Refs. [82–91] for details).
Crăciun and Harko showed that the data of Spitzer Photome-
try and Accurate Rotation Curves (SPARC), which includes
the database of 173 galaxies gives a good agreement with
the theoretical prediction for the slowly rotating BEC model
[13]. The nature of DM is hypothetical, i.e. till now we do not
know about its behavior properly. It is considered, at the early
stage the Universe comprises visible baryonic matter, radia-
tion, DE, and normal DM. The normal DM started converting
to the BEC phase through a first-order phase transition as the
Universe cooled down below the critical temperature Tcr at
a redshift z ∼ 1200 and it takes around 106 years to trans-
form into BEC [84]. The purpose of our article is to study
the cosmological dynamics of DM in the Universe, specif-
ically, investigating the evolution of density contrast of the
BEC DM in an expanding homogeneous and isotropic back-
ground from the post-BEC phase to today. To the best of
our knowledge, we summarize the research works which are
already been accomplished in the context of the evolution of
density perturbation of BEC DM as follows. In 2009, Sikivie
and Yang [92] showed that self-interacting axions could form
BEC after thermalization. They made a relative comparison
between the CDM and the axion BEC relating to the behav-
ior of their density perturbations. In 2011, Harko [91] stud-
ied the cosmological evolution of density contrast with scale
factor for non-relativistic DM by using the post-Newtonian
hydrodynamical approach, where background pressure of
BEC DM and modes of perturbation are considered to be
small. Chavanis [82] in 2012 studied a scale factor depen-
dent growth of perturbation of self-gravitating BEC DM in
an expanding Universe with and without special relativistic
effects. They provided analytical solutions of density con-
trast as a function of scale factor for the Thomas-Fermi (TF)
limit as well as the non-interacting cases when there are no

Special Relativistic effects and numerical solutions for large
wavelengths taking care of special relativistic effects. In the
same year, Kian and Ling [93] studied the growth of inho-
mogeneities of BEC scalar-field DM in both Newtonian rela-
tivity (NR) and general relativity (GR) by taking a small and
constant present-day pressure limit. In particular, they pre-
sented the temporal nature of density contrast for very small
modes only for the TF approximation due to facing problems
in tackling the quantum pressure term. They pointed out the
differences in the results between the BEC model and the
Standard Cosmology. In 2013 Freitas and Gonçalves [89]
studied the linear evolution of density perturbation during
the normal DM to BEC DM phase transition process using a
gauge-invariant General Relativistic formalism. Suárez and
Chavanis [66] worked on the hydrodynamic representation
of KGE equations in the weak gravitational field in 2015. In
the non-relativistic limit, GPP equations which are usually
used to model BEC DM can be recovered. They also dis-
cussed growing and oscillatory modes of density contrast as
a function of scale factor for the non-relativistic SF or BEC
in detail for the TF limit as well as the non-interacting cases
by presenting analytical solutions. Numerical solutions as a
function of the scale factor for the complete equation with
positive and negative scattering are also been analyzed. Nev-
ertheless, a lot of studies on the evolution of density perturba-
tion of BEC DM have been done, we have scopes to explore
further in this field.

Here in this work we review and investigate the cosmolog-
ical evolution of linear density perturbation in the context of
BEC DM structure formation, but especially we focus on the
temporal evolution of density contrast with respect to cos-
mic time rather than evolution in terms of scale factor (see
Refs. [66,82,91] etc.) as we find no appreciable work has
been done on temporal behavior related to this topic. Our
digression from the previous studies is twofold. First, we
exhibit the analytical solutions of the density contrast equa-
tion of BEC DM for the non-interacting (non-zero quantum
pressure) and the TF limit (both repulsive and attractive scat-
tering with small but variable BEC pressure) cases in terms
of cosmic time and interpret the temporal behavior of density
contrast of BEC DM in comparison to the standard pressure-
less CDM for different modes. Secondly, following Ref. [84]
we calculate critical redshift, critical time and condensation
time, etc. of the phase transition process from normal to BEC
DM, and analyze the temporal behavior of BEC DM after the
post-condensation phase using BEC parameters and give a
precise understanding of the temporal evolution of the den-
sity contrast in the context of the formation of BEC structures
in terms of growing and oscillatory solutions. In addition, we
also provide the numerical solutions of the density contrast
equations and investigate the nature of temporal evolution of
the density contrast of the self-interacting BEC DM beyond
the TF limit for both repulsive and attractive scattering cases.
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We organize the manuscript as follows. In Sect. 2 we
model BEC DM as a GPP system and extract quantum hydro-
dynamic equations following Refs. [81,94,95]. Newtonian
cosmology for the Einstein–de Sitter (E-dS) Universe is dis-
cussed in Sect. 3. Density perturbations in the homogeneous
and isotropic background in the expanding Universe scenario
are reviewed in Sect. 4 and the obtained perturbed equations
are linearized in Sect. 5. The last three sections are summa-
rized from Ref. [82]. In order to measure the evolution of
density contrast in terms of cosmic time instead of scale fac-
tor, Sect. 6 is devoted to the analytical solutions to the time-
evolved linearized evolution equation for the non-interacting
and the TF limit cases by following Ref. [82]. Next in Sect. 7,
we outline the phase transition process from normal DM to
condensate DM from Ref. [84]. In contrast to Ref. [66], ana-
lytical results for the two cases as mentioned earlier, and
numerical results for self-interacting BEC beyond the TF
limit with graphical plots are discussed in Sect. 8 in terms of
cosmic time. Finally, we conclude our work in Sect. 9.

2 BEC DM as a GPP system

BEC is based on the wave properties of particles. All the
particles are associated with de-Broglie wavelengths λdB =√

2π h̄2/mkBT , where h̄ and kB are the Planck’s constant and
Boltzmann’s constant respectively,m is the mass and T is the
temperature of the condensate particles. If particles of den-
sity ρ are cooled down to a certain temperature, called criti-
cal temperature Tcrit ≈ 2π h̄2ρ2/3/kBm5/3, their de-Broglie
wavelengths start increasing and eventually exceed the inter-
particle separation [84,89]. At this sufficiently low tempera-
ture, the wavelengths overlap with each other and the ground
state of the system becomes macroscopically populated. As
the system’s temperature approaches absolute zero (T = 0)

a coherent state develops and forms a pure BEC.
It is assumed BEC DM is composed of a weakly inter-

acting ultra-cold dilute gas, in which only low-energy two-
body collisions, characterized by s-wave scattering length
(ls) is relevant [96]. The dynamics of this system can be
well described by the time-dependent Gross–Pitaevskii (GP)
equation at T = 0, where interaction between particles
is treated in the mean-field approximation. The dynam-
ics of gravitationally trapped BEC DM consisting of N
numbers of bosonic particles of mass mχ with non-linear
short-range interaction is described by the GPP system
[82,84,89,94,95,97,98]

− h̄2

2mχ

�∇2
rψ(�r , t) + mχ

(
Vgrav(�r , t) + ζ(ρχ (�r , t))) ψ(�r , t)

= i h̄
∂ψ(�r , t)

∂t

∣∣∣∣
r
, (1)

�∇2
r Vgrav(�r , t) = 4πGρχ(�r , t), (2)

where ρχ(�r , t) = Nmχ |ψ(�r , t)|2 is the density of BEC DM,
Vgrav(�r , t) is the gravitational trapping potential and G is
the universal gravitational constant in the Poisson Eq. (2).
ψ(�r , t) in Eq. (1) denotes the macroscopic wavefunction of
the condensate. The non-linear effective potential term in GP
Eq. (1) reads [97]

ζ(ρχ (�r , t)) = λ2ρχ(�r , t) + λ3ρ
2
χ (�r , t), (3)

where the linear term manifests for two-body interparticle
interaction with coupling constantλ2 = 4π h̄2ls/m3

χ [82,98].
In this context, it is to be noted that, encounters among par-
ticles at low energies are characterized by the s-wave scat-
tering length ls . The scattering length of dilute BEC clouds
is small compared to the inter-particle separation. Therefore
only the two-body interactions are dominant. The value of
ls can be both positive and negative based on repulsive and
attractive boson-boson interparticle interaction respectively
[96]. On the other hand, the quadratic term in (3) accounts
for three-body interparticle interaction with coupling con-
stant λ3 which is important in higher densities, is neglected
(λ3 ≈ 0) in the standard approach of BEC [99,100]. Making
use of the Madelung transformation, we represent the wave
function ψ(�r , t) as [82,101]

ψ(�r , t) =
√

ρχ(�r , t)/Nmχ exp{iS (�r , t)/h̄}, (4)

where the function S (�r , t) in the phase has the dimension
of an action. Substituting the transformation (4) into Eq. (1)
and separating the imaginary and real parts, we obtain [82]

∂ρχ(�r , t)
∂t

∣∣∣∣
r
+ �∇r .{ρχ(�r , t)�u(�r , t)} = 0, (5)

∂ �u(�r , t)
∂t

∣∣∣∣
r
+ {�u(�r , t). �∇r }�u(�r , t) = − �∇r Pχ (�r , t)

ρχ (�r , t)

− �∇r Vgrav(�r , t) − �∇r VQ(�r , t)
mχ

(6)

respectively, with identifying the gradient of pressure, the
velocity field of quantum fluid

�∇r Pχ (�r , t) = ρχ(�r , t) �∇rζ , (7a)

�u(�r , t) = �∇rS (�r , t)
mχ

(7b)

respectively, and the quantum potential (due to Heisenberg’s
uncertainty principle)

VQ(�r , t) = − h̄2

2mχ

�∇2
r

√
ρχ(�r , t)

√
ρχ(�r , t) . (8)

In deriving Eq. (6), S (�r , t) is considered to be non-singular
for the sake of simplicity. Due to this, from the identification
(7b), we find the condition for irrotational flow �∇r × �u = 0
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holds good [96]. The Eqs. (5) and (6) are referred as con-
tinuity equation and quantum Euler equation respectively.
Hence, it indicates that BEC DM can be described as a
non-relativistic Newtonian fluid with quantum effects. In the
standard approach of BEC, the equation of state is given by
[81,82,97]

Pχ (�r , t) = ζρχ −
∫

ζ dρχ = 2πls h̄2

m3
χ

ρ2
χ (�r , t). (9)

3 Newtonian cosmology in expanding background

Now we recall the essentials of Newtonian cosmology where
the pressure is considered to be negligible in comparison
with energy density. We suppose the background1 is spatially
homogeneous of the form

ρχ(�r , t) = ρbχ (t), (10a)

Pχ (�r , t) = Pbχ (t), (10b)

Vgrav(�r , t) = Vb,grav(�r , t), (10c)

�u(�r , t) = �ub(�r , t) = H �r . (10d)

Here H = Ṡ/S is referred to as the time-dependent Hub-
ble parameter, expressing the rate at which the Universe is
expanding, and S(t) is the scale factor of the Universe. Sub-
bing Eqs. (10a–10d) in Eqs. (5), (6) and (2), we obtain equa-
tions for unperturbed background

dρbχ (t)

dt

∣∣∣∣
r
+ 3

Ṡ

S
ρbχ (t) = 0, (11)

�∇r Vb,grav(�r , t) = − S̈

S
�r , (12)

and

�∇2
r Vb,grav(�r , t) = 4πGρbχ (t) (13)

respectively. The solutions to Eqs. (11) and (12) are

ρbχ = ρb0χ S3
0

S3 , (14)

and

Vb,grav(�r , t) = −1

2

S̈

S
r2 (15)

respectively, where ρb0χ in (14) is the density of the con-
densate DM for S = S0 (present-day scale factor). Taking
divergence of Eq. (12) and using Eq. (13) we obtain

S̈

S
= −4

3
πGρbχ (t). (16)

1 The index b in the suffix denotes unperturbed background quantities.

Now multiplying 2Ṡ to both sides of Eq. (16), using Eq. (14)
and integrating we get
(
Ṡ

S

)2

= H2 = 8πG

3
ρbχ (t) − κ

S2 , (17)

where κ is an integration constant. The Eq. (17) derived in the
Newtonian cosmology in an isotropic and homogeneous Uni-
verse is the same as the Friedmann equation in GR, provided
the pressure is much less than energy density (Pχ � ρχc2).
Also, we can identify κ as the spatial curvature constant used
in GR. In such a case, κ = 0 is for flat space, and κ = ±1
are for elliptical and hyperbolic spaces respectively. From
now we shall focus only on the E-dS type Universe which
corresponds to2κ = 0,3� = 0 and 4Pχ � ρχc2. In that case
Eqs. (14) and (17) give

S(t) = S0

(
3H0t

2

) 2
3

,

Ht = 2

3
, and ρbχ (t) = 1

6πGt2 . (18)

Here H0 is the Hubble parameter at S = S0.

4 Density perturbations in the expanding Universe

To find the perturbed equations, now we add small pertur-
bations in density (δρχ(�r , t)), pressure (δPχ (�r , t)), gravita-
tional potential (φ(�r , t)), and velocity (�v(�r , t)) to the unper-
turbed homogeneous background quantities and write

ρχ(�r , t) = ρbχ (t) + δρχ(�r , t), (19a)

Pχ (�r , t) = Pbχ (t) + δPχ (�r , t), (19b)

Vgrav(�r , t) = Vb,grav(�r , t) + φ(�r , t), (19c)

�u(�r , t) = �ub(�r , t) + �v(�r , t). (19d)

Substituting (19a–19d) in Eqs. (5), (6) and (2), we obtain
a set of equations in perturbed quantities

∂ δρχ

∂t

∣∣∣∣
r
+ ρbχ ( �∇r .�v) + �∇r .(�ub δρχ ) + �∇r .(�v δρχ ) = 0,

(20)
∂ �v
∂t

∣∣∣∣
r
+ (�ub. �∇r )�v + (�v. �∇r )�ub + (�v. �∇r )�v

= − �∇r δPχ

ρbχ + δρχ

− �∇rφ + h̄2

2m2
χ

�∇r

�∇2
r

√
1 + δρχ/ρbχ

√
1 + δρχ/ρbχ

,

(21)

2 The inflation theory, introduced by Alan Guth [102] in 1981 as well
as the observations [103] both support a flat Universe.
3 From the beginning we have not included cosmological constant term
�.
4 It is under the assumption of Newtonian cosmology.

123



193 Page 6 of 18 Eur. Phys. J. C (2024) 84 :193

�∇2
rφ = 4πG δρχ (22)

respectively. In deriving the above equations we have also
used the unperturbed set of Eqs. (11–13). So far we have
analyzed the system in Eulerian coordinates �r . As we know
the background Hubble flow �ub has an explicit dependence on
coordinates �r , the Fourier transformation with respect to the
Eulerian coordinates cannot reduce Eqs. (20–22) to a decou-
pled system of ordinary differential equations. To solve this
problem, in the following we use Lagrangian coordinates �x
where the expansion of the Universe is divided out, though
the position of matter particles change with time only due
to irregular growth of non-uniform distribution of particles
caused by gravitational instability. Also, these displacements
in position coordinates are the direct consequence of inho-
mogeneity originated by gravity. Therefore it is essential to
recast the perturbed set of equations in the Lagrangian coor-
dinate system. The two coordinate systems and also their
gradients and partial time derivatives are related by [104–
106]

�r = S�x, (23a)

�∇r = 1

S
�∇x , (23b)

∂

∂t

∣∣∣∣
r

= ∂

∂t

∣∣∣∣
x

− H(�x · �∇x ) (23c)

respectively. Switching (23a–23c) into Eqs. (20–22), and
after simplification, we arrive

∂δ

∂t

∣∣∣∣
x

+ 1

S
�∇x · ((1 + δ)�v) = 0, (24)

(
∂

∂t

∣∣∣∣
x

+ �v · �∇x

S
+ H

)

�v = −v2
s ( �∇xδ)

(1 + δ)S

− �∇xφ

S
+ h̄2

2m2
χ S

3
�∇x

( �∇2
x

√
1 + δ√

1 + δ

)

, (25)

�∇2
xφ = 4πGρbχ S

2δ (26)

respectively, which have been established before in Ref.
[82]. In obtaining Eq. (24), we have exploited the conti-
nuity Eq. (11) of the background. Here, we identify δ =
δ(�r , t) = δρχ(�r , t)/ρbχ (t) as the density contrast. We write
v2
s = ∂Pbχ/∂ρbχ as the square of the speed of sound sup-

posing adiabatic fluctuations in the background BEC, can be
evaluated from the equation of state (9) as

v2
s = 4π h̄2lsρbχ

m3
χ

. (27)

5 Linearized perturbed equations

In the linear theory of density perturbation of structure for-
mation, we consider tiny perturbations in comparison to zero
order or unperturbed counterparts (i.e. δ � 1, |�v| � 1 and
φ � 1). Here, in this linear regime, higher-order terms
are being neglected, which means the evolution of differ-
ent perturbative modes is independent of each other. In other
words, the behavior of one perturbation does not significantly
alter the behavior of other perturbations. This independence
allows us to treat each perturbative mode separately which
makes it easier to study and understand the dynamics of each
mode individually [107]. Therefore linearizing the aforesaid
Eqs. (24–26) by keeping up to only the first-order terms in
perturbative quantities, we obtain [82]

∂δ

∂t

∣∣∣∣
x

+ 1

S
( �∇x · �v) = 0, (28)

(
∂

∂t

∣∣∣∣
x

+ H

)
�v = −v2

s ( �∇xδ)

S

− �∇xφ

S
+ h̄2

4m2
χ S

3
�∇x ( �∇2

xδ), (29)

�∇2
xφ = 4πGρbχ S

2δ (30)

respectively. Taking the time derivative of Eq. (28), the diver-
gence of Eq. (29) and using Eq. (30), after elimination of the
term ( �∇x .�v), it is now easy to combine into a single equation
describing the linearized evolution equation of the density
contrast of the form [82]

∂2δ

∂t2

∣∣∣∣
x

+ 2H
∂δ

∂t

∣∣∣∣
x

= v2
s

S2
�∇2
xδ + 4πGρbχδ − h̄2

4m2
χ S

4
�∇4
xδ. (31)

Decomposing the perturbation in Fourier modes of the form
δ(�x, t) = δk(t)ei

�k.�x , and inserting into Eq. (31), we obtain
for k-th perturbative mode [82]

δ̈k + 2H δ̇k +
(

h̄2k4

4m2
χ S

4 + v2
s k

2

S2 − 4πGρbχ

)

δk = 0. (32)

The second term on the left-hand side of Eq. (32) originates
due to the expansion of the Universe, and exhibits dissipa-
tion. The term containing h̄ is due to quantum pressure, while
the term containing vs arises because of the self-interaction
pressure of BEC. The last term consisting of G reflects the
effect of gravitational attraction. For h̄ = 0, we retrieve
the non-quantum evolution equation first derived by Bon-
nor [108] and also discussed in several other texts (see Refs.
[2,105,109] for details).
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6 Solution to the evolution equation

In this section we recall the results obtained in Ref. [82] by
solving Eq. (32) analytically for different regimes. Here Eq.
(32) is the linearized version of the density contrast equation
of BEC DM containing both quantum and self-interaction
pressure. As the analytic solution to Eq. (32) is hard to
achieve, we shall discuss two different cases. The first one is
the non-interacting BEC, which is valid when the de-Broglie
wavelengths of the condensate particles are very small com-
pared to the typical length scales over which the density of
condensate and the gravitational trapping potential fluctuate
significantly. The other one is the TF approximation, which is
applicable when the condensate particles are large in number
and the kinetic energy of the particles is negligible [96]. Apart
from these, the density contrast Eq. (32), which has been
solved numerically in the general case in Ref. [66], is also
reproduced as a function of the cosmic time t in Sect. 8.3. The
only difference with our study is that we express the results
in terms of the time t instead of the scale factor S ∝ t2/3 in
Refs. [66,82].

6.1 Case-I: Non-interacting case

In the non-interacting case ls = vs = 0, the evolution Eq.
(32) reduces to

δ̈k + 2H δ̇k +
(

h̄2k4

4m2
χ S

4 − 4πGρbχ

)

δk = 0. (33)

From Eq. (33) we can define quantum comoving Jeans
wavenumber as

kQ =
(

16πGm2
χρbχ S4

h̄2

)1/4

, (34)

which is time-dependent in nature. Recalling conservation
Eq. (14), we can express kQ = κQS1/4 where κQ =
(16πGm2

χρb0χ S3
0/h̄2)1/4 is constant in time. The corre-

sponding quantum comoving Jeans length is defined as
λQ = 2π/kQ decreases with scale factor (∝ S−1/4). Using
(18), the Eq. (33) for the non-interacting case can be recast
as

δ̈k + 4

3t
δ̇k + 2

3t2

(
k4

β4
Qt

2/3
− 1

)

δk = 0, (35)

where β4
Q = S0κ

4
Q/(2/3H0)

2/3 is a constant. The general
solution of Eq. (35) is given by

δk(t) = 2C1

3k4
( 1
t

)2/3

[
β4
Q cos

(√
6k2

( 1
t

)1/3

β2
Q

)

−2k4
(

1

t

)2/3

cos

(√
6k2

( 1
t

)1/3

β2
Q

)

+√
6k2β2

Q

(
1

t

)1/3

sin

(√
6k2

( 1
t

)1/3

β2
Q

)]

− 15C2

16k4
( 1
t

)2/3

[
− β4

Q sin

(√
6k2

( 1
t

)1/3

β2
Q

)

+2k4
(

1

t

)2/3

sin

(√
6k2

( 1
t

)1/3

β2
Q

)

+√
6k2β2

Q

(
1

t

)1/3

cos

(√
6k2

( 1
t

)1/3

β2
Q

)]
(36)

where C1 and C2 are integration constants.

6.2 Case-II: TF limit

In the TF limit, as the kinetic energy term is negligible, the
contribution of quantum potential can be forsaken, and the
evolution Eq. (32) reduces to

δ̈k + 2H δ̇k +
(

v2
s k

2

S2 − 4πGρbχ

)
δk = 0. (37)

Now we can define classical comoving Jeans wavenumber

kJ =
(

4πGρbχ S2

v2
s

)1/2

, (38)

which for the standard BEC with the speed of sound vs in
(27), takes the form

kJ =
(
Gm3

χ S
2

ls h̄2

)1/2

. (39)

We can see that kJ is a time-dependent quantity. We denote
kJ = κJ S with κJ = (Gm3

χ/ ls h̄2)1/2 is constant in time. The
classical comoving Jeans length is defined as λJ = 2π/kJ
decreases with scale factor (∝ S−1). Using of (18) in Eq.
(37) for TF limit, gives

δ̈k + 4

3t
δ̇k + 2

3t2

(

± k2

β2
J t

4/3
− 1

)

δk = 0 (40)

for repulsive (+ sign) and attractive (− sign) scatterings
respectively. Here β2

J = S2
0κ2

J/(2/3H0)
4/3 is a constant. The

general solution of Eq. (40) with ls > 0 (repulsive scattering)
is given by

δk(t) = −213/831/8�

(
3

4

)
D1

(
k

βJ

)1/4(1

t

)1/6

J− 5
4

[√
3

2

(
k

βJ

)(
1

t

)2/3]

+2−3/831/8�

(
9

4

)
D2

(
k

βJ

)1/4(1

t

)1/6
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J 5
4

[√
3

2

(
k

βJ

)(
1

t

)2/3]
, (41)

where Jn[z] gives the Bessel function of the first kind of order
n and argument z, and D1 and D2 are integration constants.
On the other hand the general solution of Eq. (40) with ls < 0
(attractive scattering) is given by

δk(t) = i213/831/8�

(
3

4

)
E1

(
k

βJ

)1/4(1

t

)1/6

I− 5
4

[√
3

2

(
k

βJ

)(
1

t

)2/3]

+2−3/831/8(−1)3/4�

(
9

4

)
E2

(
k

βJ

)1/4(1

t

)1/6

I 5
4

[√
3

2

(
k

βJ

)(
1

t

)2/3]
, (42)

where In[z] gives the modified Bessel function of the first
kind of order n and argument z, and E1 and E2 are integra-
tion constants. In order to investigate the evolution of density
perturbation of BEC DM, we have to analyze the solutions
to the density contrast equations given in Eqs. (36), (41), and
(42). We have seen the solutions contain integration constants
which are to be determined from initial conditions. We know
the BEC DM has been converted from normal DM through
a phase transition. Therefore, to get the values of integra-
tion constants in the following section, we briefly present the
conversion of the BEC DM from normal DM.

7 Normal DM to BEC DM phase transition

We consider that at the early stage, the DM was in normal
form with an equation of state [84,110,111]

pχ = c2σ 2
χρχ , (43)

where σχ =
√

〈�v2
χ 〉/3c2 is the 1-D velocity dispersion, and

〈�v2
χ 〉 is the mean squared velocity of the normal DM par-

ticles, where all the calculations are performed in the non-
relativistic regime. These normal DM boson particles with
mass mχ and temperature T initiated at equilibrium and
decoupled from remaining plasma at a temperature TD in
the early Universe [84,89]. As time progressed, the Universe
cooled down to Tcrit , and the normal DM started converting
to BEC through a phase transition process. Nevertheless, the
transition does not happen instantaneously, rather the mixed
phase coexists for a duration until all the normal DM has been
transformed to condensate form. The order of the phase tran-
sition has some amount of ambiguity. In articles, [112,113]
authors commented that the phase transition is described by a
spontaneous globalU (1) symmetry breaking with condensa-
tion factor as an order parameter. This implies a second-order

phase transition. However, It was shown in several mean-
field theoretical models such as Yukalov–Yukalova, Popov,
Hartree–Fock, and Many-body t-matrix have not predicted a
second-order phase transition regarding normal to BEC phase
transition in Ref. [114]. A rigorous study on the thermody-
namic instability of a confined ideal Bose gas with a finite
number of particles refers to a discontinuous phase transi-
tion as it manifests a pure mathematical singularity [115].
According to Harko [84], the first-order phase transition is
the best possible way to represent the BEC dynamics.

In the context of the cosmological Bose–Einstein DM con-
densation process, a first-order phase transition from normal
DM to BEC DM happened. By definition, during a first-order
phase transition, we know that the temperature and the pres-
sure are constants at their critical values i.e. at T = Tcrit
and P = Pcrit . Apart from these, enthalpy and entropy also
remain conserved during the first-order phase transition. In
this process, an important thermodynamic condition ‘the con-
tinuity of pressure’ must be satisfied at the transition point
(Tcrit , Pcrit ), and this fixes the critical transition density ρcri t

χ

from the normal state to condensate state as [84]

ρcri t
χ = σ 2

χm
3
χ

2π h̄2ls
c2. (44)

The DM density ρχ(t) started to decrease from ρcri t
χ (Tcrit ) ≡

ρnor
χ after the beginning of the phase changeover process

when all the DM was in normal form, to ρχ(Tcrit ) ≡ ρbec
χ ,

corresponding to a total BEC state. The critical scale factor
Scrit and critical redshift of transition zcri t can be expressed
as [84]

Scrit = S0

(
2π h̄2ls�

χ
0 ρcr

0

c2σ 2
χm

3
χ

) 1
3(1+σ2

χ )

, (45)

and

zcri t = −1 +
(

2π h̄2ls�
χ
0 ρcr

0

c2σ 2
χm

3
χ

) −1
3(1+σ2

χ )

(46)

respectively. Here �
χ
0 and ρcr

0 represent the DM density
parameter and critical density of the Universe at present. In
our present study, we have not considered the contribution
of cosmological constant � and radiation. In this conversion
process, the time taken to convert the whole normal DM to
BEC is given by [84]

�tcond = 2

3H0
√

�tr
[(1 + r)−1/2 − 1], (47)

where r = ρbec
χ −ρnor

χ

ρnor
χ +Pcrit/c2 is a number. In general r < 0, and

r ∈ (−1, 0). The term �tr in the last expression (47) can be
identified as

�tr = �b
0

(Scrit/S0)3 + �nor
χ , (48)
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where �b
0 is the baryonic density parameter at present time

and we have identified �nor
χ = ρnor

χ /ρcr
0 . In [90], it was

shown that cosmic BEC is formed when the boson satisfies
the mass constraint mχ < 1.87 eV. Taking mχ ≈ 0.553048
eV, r = −0.910646 within the limitations, assuming stan-
dard values ls = 10−10 cm and σ 2

χ = 3 × 10−6, we get
zcri t ≈ 1200 and �tcond ≈ 106 years from Eqs. (46) and
(47) respectively. Here we have also used the most accepted
values of the quantities H0 = 70 km.sec−1.Mpc−1 =
2.27 × 10−18 sec−1, ρcr

0 = 9.24 × 10−30 g cm−3, �
χ
0 ≈

0.228, and �b
0 = 0.045 [84,116]. From the time-redshift

relation [117]

t ≈ 28

1 + (1 + z)2 Gyrs, (49)

we get the time tcri t ≈ 6.12179 × 1011 s corresponding
to critical redshift zcri t ≈ 1200, indicating the beginning
of phase transition process. Therefore the post-condensation
phase started at approximately tpost = (tcri t + �tcond) ≈
3.21482 × 1013 s after the big bang (tbb = 0). The corre-
sponding redshift value is z post ≈ 164.728. In Sects. 3, 4,
and 5, regarding the derivation of the density contrast equa-
tion of BEC DM, we have followed an approach similar to
that in non-relativistic Newtonian consideration. In Sect. 6,
we have obtained the solutions for both the non-interacting
case and the TF limit. In this context, it is worth introducing
the fact that in the Newtonian approach, we can only consider
the wavelength λ of perturbations to be well inside the Hub-
ble radius dH in which the General Relativistic effect due to
space-time curvature is negligible. At z > 1000, the modes
of the perturbation enter the Hubble radius. So their wave-
lengths are smaller than the Hubble radius only at z � 1000
[118]. Just now we have found out that BE condensate phase
has been completed at around a redshift 164.728, and we
analyze the evolution feature of the density contrast of BEC
DM from z post ≈ 164.728 (tpost ≈ 3.21428 × 1013 s) upto
present epoch z0 = 0 (t0 ≈ 14 Gyrs ≈ 4.41504 × 1017

s). Thus, we can fully rely on the non-relativistic Newtonian
approach.

8 Results and discussions

Here, in this present section, in order to explain the evolu-
tionary behavior of density contrast of BEC DM in terms of
cosmic time, we rederive the results of Ref. [66] presented
in terms of the scale factor. In Sect. 6, we have presented the
general solutions of the density contrast equation of BEC
DM for Case I: Non-interacting BEC and Case II: TF limit.
In order to get an idea of the nature of the solutions, now
we discuss both cases, particularly analyzing the temporal
behavior of the solutions. In addition, we also discuss self-
interacting BEC for both repulsive and attractive scatterings

beyond the TF approximation where none of the pressures
are being ignored. In that case, we could hardly solve the
evolution equation analytically but a numerical analysis is
possible and presented considering proper initial conditions.

8.1 Evolution of density contrast of the non-interacting
BEC

In the non-interacting case, the force term that originates from
quantum pressure is important. Here we can point out two
regimes depending on two extreme conditions. At first, we
consider the regime where the quantum pressure dominates
highly over the gravity i.e. k/βQ >> t1/6, In this case, Eq.
(35) reduces to

δ̈k + 4

3t
δ̇k + 2

3t2

(
k4

β4
Qt

2/3

)

δk = 0, (50)

exhibits a fully oscillatory solution of the form

δk(t) = A1 cos

[√
6

(
k

βQ

)2 (
1

t

)1/3
]

−A2 sin

[√
6

(
k

βQ

)2 (
1

t

)1/3
]

. (51)

Here A1,A2 are integration constants. From the analysis
of Jeans instability, we can say that the perturbation wave-
length is smaller than the quantum Jeans length (λ << λQ)

in this regime. Therefore, the density contrast cannot grow.
This is obvious because of the dominating effect of quan-
tum pressure over gravity. Secondly, we consider the case
k/βQ << t1/6, the Eq. (35) modifies to

δ̈k + 4

3t
δ̇k − 2

3t2 δk = 0. (52)

In comparison to the previous case, here Eq. (52) gives a
general solution of the form

δk(t) = A3t
2/3 + A4t

−1, (53)

containing growing and decaying mode as the gravitational
collapse suppresses the quantum pressure. Here A3 and
A4 are integration constants. In this regime, the perturba-
tion wavelength is greater than the quantum Jeans length
(λ >> λQ), and the density contrast grows/decays accord-
ing to Jeans’s theory. This case is similar to the CDM case
or pressureless matter-dominated Universe. Thus it is clear
from the Eq. (35) that the quantum pressure dominates at
time t << (k/βQ)6 and the perturbation will oscillate, and
at time t >> (k/βQ)6 gravity takes over and the perturbation
grows/decays.

So far, in the above, from Jeans’s theoretic point of view
we have analytically analyzed the evolution of density con-
trast of BEC DM by solving Eq. (35) in two extreme condi-
tions. Particularly, from the above analysis, it is to be noted
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that the effect of quantum potential is negligible on a large
scale, but one can recover the CDM model within the frame-
work of classical hydrodynamics. On a small scale, we see
the quantum Jeans length λQ gives a sharp cut-off, below
which growth is impossible.

In order to visualize the temporal behavior of evolution
for the period from the beginning of the post-condensation
(tpost ) to present time (t0), we now concentrate on the gen-
eral solution (36) of Eq. (35) for plotting. If we take the ratio
k/βQ ≥ t1/6

0 ≈ 872.625 sec1/6, the perturbation would show
pure oscillatory behavior from the beginning of post-BEC
phase tpost up to the present time t0 (see Fig. 1a). Next, for

the ratio k/βQ ≤ t1/6
post ≈ 178.317 sec1/6, there would be no

oscillation, rather the solution grows/decays from the begin-
ning tpost up to the present time t0 (see Fig. 1b). In the inter-

mediate regime t1/6
post ≈ 178.317 sec1/6 < k/βQ < t1/6

0 ≈
872.625 sec1/6, the density contrast first shows pure oscilla-
tions until a critical time tcr1 ∼ (k/βQ)6, then grows/decays.
This is shown in Fig. 1c. Here we should note that the tem-
poral evolution of density contrast shown in the three cases
in Fig. 1 in our present study corresponds to the results pre-
sented in Figs. 2, 3, and 4 of Ref. [66] where evolutionary
behavior is shown in terms of the scale factor.

From the above analysis, we can see from Fig. 1a that
the amplitude of the oscillation is constant throughout the
evolution in the non-interacting regime, but is not manifested
from the solution (36). It would be transparent if we recast
the solution in terms of Bessel functions as

δk(t) ∝
(

1

t

)1/6

J± 5
2

[√
6

(
k

βQ

)2 (
1

t

)1/3
]

, (54)

which is also given in Refs. [66,82] but expressed in terms of
scale factor. Expanding the Bessel function in (54) asymptot-
ically for large arguments (t << (k/βQ)6) [119], we write

δk(t) = C ′
1 sin

[√
6

(
k

βQ

)2 (
1

t

)1/3
]

+C ′
2 cos

[√
6

(
k

βQ

)2 (
1

t

)1/3
]

, (55)

where C ′
1 and C ′

2 are constants. As expected the solution
(55) is exactly the same as that in (51) with C ′

1 = −A2

and C ′
2 = A1, is also presented in Ref. [66] keeping scale

factor as independent variable in place of time. From (55), we
notice the amplitudes are independent of time t . Therefore the
oscillation with constant amplitude is properly justified. In
this context, it is to be noted that the two regimes (oscillation
and growth) and the fact that the amplitude of the oscillation
is constant in the non-interacting regime have been discussed
in detail in Ref. [66]

Fig. 1 Log-linear plots of the evolution of density contrast δk of Eq.
(35) as a function of cosmic time t (secs) for the non-interacting
cases: (a) k/βQ = 900 sec1/6, (b) k/βQ = 150 sec1/6, (c) k/βQ =
600 sec1/6, where the perturbation oscillates until a critical time
tcr1 ∼ 6006 sec ≈ 4.67 × 1016 sec, and then grows. [Initial condi-
tions: δk(3.21482 × 1013 sec) = 10−5, δ̇k(3.21482 × 1013 sec) = 0]

8.2 Evolution of density contrast in the TF limit

In the above subsection, we have discussed the evolution
of density contrast of BEC DM for the non-interacting case.
Compared to the previous case, in the TF limit (neglecting the
quantum pressure term), we shall now discuss the same but
for two different cases. Case I: Repulsive scattering (ls > 0),
and Case II: Attractive scattering (ls < 0).

8.2.1 Case I: Repulsive scattering (ls > 0):

In the TF limit, the self-interaction term outplays the quan-
tum pressure term. Similar to the previous case study, here
also we can identify two regimes depending on two extreme
conditions for positive scattering length (ls > 0). At first, we

123



Eur. Phys. J. C (2024) 84 :193 Page 11 of 18 193

consider the regime where the self-interaction pressure dom-
inates highly over the gravity i.e. k/βJ >> t2/3, the density
contrast Eq. (40) reduces to

δ̈k + 4

3t
δ̇k + 2

3t2

(
k2

β2
J t

4/3

)

δk = 0. (56)

The solution of Eq. (56) is given by

δk(t) = 2−3/831/8�

(
3

4

)
B1

(
k

βJ

)1/4(1

t

)1/6

J− 1
4

[√
3

2

(
k

βJ

)(
1

t

)2/3]

+2−3/831/8�

(
5

4

)
B2

(
k

βJ

)1/4(1

t

)1/6

J 1
4

[√
3

2

(
k

βJ

)(
1

t

)2/3]
, (57)

where B1 and B2 are integration constants. It shows pure
oscillatory behavior because here self-interaction pressure
highly dominates over gravity. In other words, the perturba-
tion wavelength is much smaller than classical Jeans length
(λ << λJ ) in this regime, and obviously, the perturbation
cannot grow.

For the second case, when the ratio k/βJ << t2/3, the
density contrast equation in (40) reduces to (52) with solu-
tion (53). Here in this regime, the perturbation wavelength
is much greater than the classical Jeans length (λ >> λJ ),
and Jeans’s instability theory confirms the growth/decay of
the density contrast. The above analysis concludes that the
self-interaction pressure dominates at time t << (k/βJ )

3/2,
the perturbation will oscillate, and at time t >> (k/βJ )

3/2

gravity rules over, the perturbation grows/decays.
Until now, in the above, we have investigated analyti-

cally the evolution of density perturbation of condensated
DM by solving Eq. (40) in two extreme conditions for pos-
itive scattering. In order to understand the temporal evolu-
tionary picture of density contrast, we now pay attention to
the general solution (41) of Eq. (40) for the positive scat-
tering case and plot it from the post-condensation phase to
the present epoch. Now, if we take the ratio k/βJ ≥ t2/3

0 ≈
5.798 × 1011 sec2/3, the density perturbation would display
pure oscillatory behavior from tpost to t0 (see Fig. 2a). For

the ratio k/βJ ≤ t2/3
post ≈ 1.011 × 109 sec2/3, the density

contrast grows/decays for the entire regime (see Fig. 2b).
In the intermediate regime t2/3

post ≈ 1.011 × 109 sec2/3 <

k/βJ < t2/3
0 = 5.798 × 1011 sec2/3, the density contrast

first shows pure oscillatory solutions until a critical time
tcr2 ∼ (k/βJ )

3/2 and after that it grows/decays (see Fig. 2c).
Here it is also to be noted that the time evolution of density
contrast shown in the three cases in Fig. 2 in our results cor-
responds to the plots presented in Figs. 3, 5, and 6 of Ref.

Fig. 2 Log-linear plots of the evolution of density contrast δk of Eq.
(40) as a function of cosmic time t (sec) with positive scattering for
the TF limit cases: (a) k/βJ = 1012 sec2/3, (b) k/βJ = 108 sec2/3, (c)
k/βJ = 1010 sec2/3, where the perturbation oscillates until a critical
time tcr2 ∼ (1010)3/2 sec ≈ 1015 sec, and then grows. [Initial condi-
tions: δk(3.21482 × 1013 sec) = 10−5, δ̇k(3.21482 × 1013 sec) = 0]

[66] where evolutionary behavior in terms of the scale factor
is considered.

From the above analysis in the TF regime, we observe from
Fig. 2a that the oscillation amplitude is increasing as time
progresses. It is hard to understand this fact from the solution
(41). To visualize the growing amplitude of the oscillatory
solution, we expand the Bessel functions asymptotically for
large arguments (t << (k/(βJ )

3/2) [119], and write (41) as

δk(t) = D ′
1t

1/6 cos

[√
3

2

(
k

βJ

)(
1

t

)2/3

− 7

8
π

]

D ′
2t

1/6 cos

[√
3

2

(
k

βJ

)(
1

t

)2/3

+ 3

8
π

]

, (58)

where D ′
1 and D ′

2 are constants, which is expressed in Ref.
[66] as a function of scale factor. From (58), the growth of
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oscillation amplitude (∝ t1/6) is now well understood. As
before, here the two regimes (oscillation and growth) and the
fact that the amplitude of the oscillation increases in the TF
regime have been discussed in detail also in Ref. [66].

8.2.2 Case II: Attractive scattering (ls < 0):

In the TF approximation when the scattering length is neg-
ative (ls < 0), there will be no opposing pressure force to
counteract gravitational attraction, rather the pressure due
to negative scattering length would help gravitational col-
lapse. So (42) always shows a growing or decaying mode of
solution for the density contrast of BEC DM for any value
of wavenumber k. For very small k (large scale) the den-
sity contrast solution behaves as CDM solution (53). For
large k (small scale), the BEC DM density contrast drasti-
cally grows from the beginning because the additive BEC
interaction pressure force due to attractive scattering along
with gravity force helps gravitational instability, resulting
in furious exponential collapse to form the BEC structure.
The initial rapid exponential growth can be understood by
expanding the modified Bessel functions in (42) asymptoti-
cally for large arguments [120] i.e. for t << (k/(βJ )

3/2, and
write (42) as

δk ∝ t1/6 exp

√
3

2

(
k

βJ

) (
1

t

)2/3

. (59)

This fact is shown diagrammatically in Fig. 5, denoted by P1

for the TF limit. A similar equivalent solution of Eq. (59) is
studied in terms of scale factor and is given in Eq. (67) of
Ref. [82]. In this context we should also note a similar dis-
cussion on the rapid exponential growth of density contrast
with respect to scale factor is shown in Fig. 10 of Ref. [66].

8.3 Evolution of density contrast of self-interacting BEC
beyond the TF limit

In the previous two subsections, we have discussed the evo-
lution of density contrast of BEC DM by solving the density
contrast equation analytically for the non-interacting BEC
and the BEC in the TF limit respectively. Here we keep both
pressure terms simultaneously in the density contrast equa-
tion with a view to studying the evolutionary nature of the
density contrast of BEC DM. As the system is very compli-
cated, we have faced difficulties in finding analytical solu-
tions. So in the presence of both the pressure terms, we ana-
lyze the system by solving it numerically. More specifically,
the solutions are analyzed qualitatively in the time domain
by means of scaling arguments in order to understand the
evolution of the perturbation which was first discussed in the
same terms in Ref. [66] but in the domain of scale factor. In
the presence of quantum pressure term, we study the density
contrast equation of BEC DM for the following two cases.

Fig. 3 Log-linear numerical plot of the evolution of density contrast
δk of Eq. (60) as a function of cosmic time t (sec) with positive scat-
tering length beyond the TF limit: k/βQ = 1300 sec1/6, and βQ/βJ =
7.69231 × 107 sec1/2. [Initial conditions: δk(3.21482 × 1013 sec) =
10−5, δ̇k(3.21482 × 1013 sec) = 0]

Case I: Repulsive scattering (ls > 0), and Case II: Attractive
scattering (ls < 0).

8.3.1 Case I: Repulsive scattering (ls > 0):

For the repulsive or positive scattering (ls > 0) with the
quantum pressure term, the evolution equation for BEC DM
can be written from Eqs. (35), and (40) as

δ̈k + 4

3t
δ̇k + 2

3t2

(
k4

β4
Qt

2/3
+ k2

β2
J t

4/3
− 1

)

δk = 0. (60)

Equation (60) corresponds to Eq. (54) as well as Eq. (132)
of Refs. [82] and [66] respectively, except in our case it
is expressed in time instead of the scale factor. From Eq.
(60), we can see that both the quantum and self-interaction
pressure collectively confront the gravitational collapse. The
self-interaction term rules over the quantum term when time
t << (β4

Q/k2β2
J )

3/2 for a given wavenumber k and the sys-
tem enters the TF regime. For a given wavenumber k at time
t >> (β4

Q/k2β2
J )

3/2 the quantum term influences more than
the self-interaction term, and the system enters in the non-
interacting regime. This can be visualized by solving Eq. (60)
numerically. For that, we took typical values of the ratios
k/βQ = 1300 sec1/6 and βQ/βJ = 7.69231 × 107 sec1/2,
and plot the solution (see Fig. 3). We see for this value of k,
the system enters TF regime at time t << 2.07 × 1014 sec,
and non-interacting regime at time t >> 2.07 × 1014 sec.
These two regimes can be identified easily from the graphical
analysis presented separately in Sects. 8.1 and 8.2 by observ-
ing the nature of the perturbation. We note that, whenever the
perturbation oscillates with constant amplitude, the system is
in a non-interacting regime and whenever there is a growing
oscillation, the system is in the TF regime.

So far in the above, we have analyzed the evolution of
the density contrast for the BEC DM for the positive self-
interaction beyond the TF limit. Particularly, we have tried
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Fig. 4 Log-linear numerical plot of the evolution of density con-
trast δk of Eq. (60) as a function of cosmic time t (sec) with posi-
tive scattering length beyond the TF limit: k/βQ = 500 sec1/6, and
βQ/βJ = 7.93651 × 107 sec1/2. Here the perturbation oscillates until
a critical time tcr3 ≈ 2.33782 × 1016 sec, and then grows. [Initial con-
ditions: δk(3.21482 × 1013 sec) = 10−5, δ̇k(3.21482 × 1013 sec) = 0]

to understand the oscillatory behavior of evolution as a func-
tion of cosmic time and identified the regimes of domination
of self-interaction pressure (i.e. the TF regime) and quan-
tum pressure (i.e. the non-interacting regime). In the follow-
ing, to analyze the competition between pressure terms and
gravity, in the formation of BEC DM structures, we solved
Eq. (60) numerically with ratios k/βQ = 500 sec1/6, and
βQ/βJ = 7.93651 × 107 sec1/2. The temporal evolution of
the density contrast of BEC DM is depicted in Fig. 4. An inter-
esting outcome is visualized that before a critical time, the
total pressure overwhelmingly dominates gravity resulting in
oscillations, whereas just after that critical time the effect of
both pressures starts to weaken and gravity promotes growth.
Here we find the critical time tcr3 ≈ 2.33782 × 1016 sec by
equating the terms in the parentheses of Eq. (60) to zero
for the aforementioned values of the ratios. An analogous
numerical study for scalar-field DM has been presented in
Ref. [66] taking consideration of scale factor as an indepen-
dent variable in position of time. Figures 3 and 4 correspond
to Figs. 7 and 8 of Ref. [66].

8.3.2 Case II: Attractive scattering (ls < 0):

In the presence of quantum pressure, and attractive self-
interaction (ls < 0), the density contrast equation for BEC
DM can be written from Eqs. (35), and (40) as

δ̈k + 4

3t
δ̇k + 2

3t2

(
k4

β4
Qt

2/3
− k2

β2
J t

4/3
− 1

)

δk = 0. (61)

Equation (61), which corresponds to Eq. (143) in Ref. [66]
except for cosmic time t as an independent variable tells
that the self-interaction pressure term helps gravity but the
quantum pressure term opposes the collapse. So, there is no
doubt that when quantum pressure is very small (or negligi-

Fig. 5 Log-linear numerical plots of the evolution of density contrast
δk of Eq. (61) as a function of cosmic time t (sec) with negative scatter-
ing length for the TF limit (Plot-P1), and for the self-interacting BEC
beyond the TF limit (Plot-P2): k/βJ = 1011 sec2/3, and βQ/βJ =
5.98802 × 107 sec1/2. [Initial conditions: δk(3.21482 × 1013 sec) =
10−5, δ̇k(3.21482 × 1013 sec) = 0]

Fig. 6 Log-Linear numerical plot of density contrast δk of Eq.
(61) as a function of cosmic time t (sec) with negative scattering
length beyond the TF limit: k/βQ = 620 sec1/6, and βQ/βJ =
3.33333 × 107 sec1/2. Here the perturbation grows upto a critical time
tcr4 ≈ 1.00044 × 1014 sec, then oscillates until another critical time
tcr5 ≈ 5.55622 × 1016 sec, and then grows again. [Initial conditions:
δk(3.21482 × 1013 sec) = 10−5, δ̇k(3.21482 × 1013 sec) = 0]

ble), density contrast grows rapidly but when the quantum
term is much greater than the self-interacting term at time
t >> (β4

Q/k2β2
J )

3/2, prevailing non-interacting regime for
a particular wavenumber k, and the perturbation starts oscil-
lating with a constant amplitude similar to the case study pre-
sented in Sect. 8.1. We see from the numerical plot (see Fig. 5-
P2) for a typical value of wavenumber k/βJ = 1011 sec2/3

and βQ/βJ = 5.98802×107 sec1/2, the density perturbation
oscillates at time t >> 4.61 × 1013 sec. In the initial stage
(t << 4.61 × 1013 sec) when the attractive self-interacting
pressure dominates together with gravity, the density con-
trast grows, but as soon as the quantum pressure becomes
dominant at a small scale (large k), it rapidly brings stability
to the system through an oscillatory solution by stopping the
growth. For scalar-field DM, similar kinds of phenomena are
also discussed and plotted in Fig. 10 of Ref. [66].
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So far, we have attempted to get an idea of the nature
of the evolution of the density contrast by identifying the
regime of the supremacy of the repulsive quantum pressure
(i.e. the non-interacting regime). On the contrary, presented
in positive self-interaction beyond the TF limit case, negative
interaction pressure always assists existing gravity resulting
in a rapid exponential growth when both effects overcome
the quantum pressure. Thus, negative self-interaction con-
firms the non-existence of oscillations in the TF regime. In
the following, the contest between the quantum pressure’s
effect, and collective effects of gravity and attractive self-
interaction pressure is analyzed. For this, we solve Eq. (61)
numerically for the ratios k/βQ = 620 sec1/6, and βQ/βJ =
3.33333 × 107 sec1/2, which is portrayed in Fig. 6. Interest-
ingly, we see from the plot, that the perturbation grows up
to a critical time tcr4 ≈ 1.00044 × 1014 sec, then oscillates
until another critical time tcr5 ≈ 5.55622 × 1016 sec, and
then grows again. In between two critical times, the repul-
sive effect of the quantum term subjugates the other attractive
terms, generating oscillatory perturbations. Except this, at
other times the predominating attractive terms induce growth
in the density contrast leading to the formation of structures.

9 Conclusion

We have discussed early in this text that the normal DM
in equilibrium decoupled from the remaining plasma state
at a temperature TD . With the expansion of the Universe,
the DM underwent a first-order phase transition below the
critical temperature Tcr and converted into the BEC form,
so-called the BEC DM. Here, we have studied the evolution
of cosmological density perturbation of BEC DM consid-
ering linear perturbation theory, where small cosmological
perturbations are taken with respect to a homogeneous and
isotropic background Universe, and the dynamics of evolu-
tion of the background Universe follows the E-dS rule. In
deriving the model equation for the density contrast of BEC
DM, we have assumed a gravitationally trapped BEC, gov-
erned by the GPP system. In this consideration, the Euler
equation automatically produces a quantum potential term
VQ that arises due to Heisenberg’s uncertainty principle. In
our study, as we have assumed DM is non-relativistic and
perturbation wavelengths stay well inside the horizon, the
Newtonian approach is well suited. In particular, we have
investigated the temporal evolution of the density contrast
of the BEC DM by solving the evolution equation analyt-
ically for the non-interacting case and in the TF limit for
the period from the time of post-condensation phase tpost to
present time t0. During this phase, we have also studied the
equation numerically without applying any approximation
i.e. for the self-interacting BEC beyond the TF limit. In the
figures, we have shown log-linear plots of density contrast

versus cosmic time for different scales. Among them, only the
growing solutions lead to structure formation. In this article,
we worked with typical numerical values of BEC parameters
(mχ , ls, σ 2, r), which are very uncertain. A small change
in the values of the BEC parameters could lead to drastic
changes in the time scales (tcri t ,�tcond , tpost ). Therefore,
from these theoretical predictions of the BEC DM model,
one cannot match with cosmological observations until fix-
ing the BEC parameters accurately.

The outcomes of our study are summarized as follows:

1. In the Sect. 8.1, we consider the non-interacting BEC
where pressure due to self-interaction is neglected. We
see for relatively large scales (small k), perturbations
show oscillations with constant amplitude (see Fig. 1a),
whereas perturbations grow for relatively large scales
(small k) (see Fig. 1). In the intermediate scales, the den-
sity contrast oscillates up to a critical time and then grows
(see Fig. 1c). Hence, the repulsive effect due to quantum
potential assures that the system chooses to be stable on
the small scales (order ∼ λQ), which in turn restrain
the formation of structures at small scales. Here, we also
note that the growing solutions reduce to the CDM solu-
tions when the quantum pressure is almost negligible (see
(53)).

2. In the next Sect. 8.2, we studied BEC in TF limit with
both positive and negative scatterings. For positive scat-
tering, we observe perturbations display stable oscilla-
tory solutions with increasing amplitudes for large scales
(see Fig. 2a), growing solutions for small scales (see
Fig. 2b), and in the intermediate scales, perturbations first
show oscillations until a critical time and then grows
(see Fig. 2c). Thus, like quantum pressure, repulsive self-
interaction also provides a small-scale cut-off λJ , below
which the structure formation is impossible. In this con-
text, we also mention that just like the non-interacting
case the growing solutions follow CDM solutions when
the self-interacting BEC pressure is inconsiderable.

3. In the same subsection, we see for the negative scattering
in the TF limit, that perturbations show always growing
solutions for any scale, particularly exponential growth
at the initial stage (see Fig. 5-P1). This all-time growth of
density contrast is because there is no positive pressure
to counter the collapse. As the negative self-interacting
pressure helps gravity to collapse, the growth rate is quite
high in comparison to CDM.

4. Afterwards, we discussed self-interacting BEC with pos-
itive scattering beyond the TF approximation in Sect. 8.3.
From the oscillatory behavior shown in Fig. 3, we notice
that at the earlier stage, the system was in the TF
regime, and at the later stage the system entered the non-
interacting regime. The numerical plot of Fig. 4 informs
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the oscillatory nature of density contrast until a critical
time, followed by growth.

5. Finally, in the same subsection self-interacting BEC with
negative scattering beyond the TF approximation is ana-
lyzed. Figure 5-P2 indicates that there is an initial high
growth in perturbations due to poor quantum pressure
resistance, followed by oscillations due to the dominance
of quantum pressure after a critical time. In Fig. 6 similar
type of plot is shown but here we notice two critical times
where the nature of perturbations change.

Now we would like to recall two important problems
related to the cosmological structure formation study in
the �CDM model. The first one is the ‘cusp-core prob-
lem’ [45,48,49,121], which states that in cosmological N -
body CDM simulations, the isothermal density distribution
of DM halos diverges and leads to a cuspy profile near
the center of the structures. However, observations show a
nearly flat density core with finite value contradicting the
cuspy nature of the core predicted in the CDM simulations
[44,47,122,123]. The other problem is the ‘missing satellite
problem’ [45,62,121]. Here N -body CDM simulations pre-
dict an excessive amount of subhalos in the galactic halo,
though such a large number of satellite galaxies do not exist
in the Universe [44,60,61,123]. The aforesaid two problems,
that arise in the �CDM model are due to the non-existence
of the Jeans length concept, and consequently, all the scales
are unstable. Thus, the density contrast of pressureless CDM
will grow due to gravitational instability and eventually col-
lapse to form both small and large-scale structures. Though
the �CDM model is extraordinarily successful in explaining
large-scale structure formation [124], it fails to explain the
underabundance of small-scale structures like dwarf galax-
ies in the Universe as stated in the ‘missing satellite prob-
lem’. Nevertheless, we see from our study in this article the
BEC DM model provides a finite small-scale cut-off (order
∼ λQ) due to quantum effects below which structures cannot
form. Hence, the repulsive effect due to quantum potential
assures the system chooses to be stable on the small scales,
which in turn is able to solve the so-called ‘missing satellite
problem’. On the other hand, pressure due to quantum poten-
tial and self-interaction pressure (for repulsive scattering) of
BEC DM obstruct gravitational collapse at the small scales,
and give rise to flat-density cores in lieu of cusps, solving
the ‘cusp-core problem’. We also observe that only attractive
self-interaction approves the structure formation at the early
stage of the Universe. This overabundance of small-scale
structures at the early epoch contradicts the observations so
far. For the same reason, the �CDM model has also been
criticized due to the overabundance of substructures. Apart
from that, for ls < 0, equilibrium configurations of realis-
tic DM halos cannot be obtained above a maximum mass
Mmax = 1.012h̄/

√
Gmχ |ls |, which is ridiculously small

(order of the Planck mass Mp) unless the mass of each boson
mχ and scattering length ls are extremely small (e.g. QCD
axions and ultralight bosons [65,125,126]) [94,95]. There-
fore, the consideration of only negative scattering in the con-
text of structure formation looks infertile. Although the con-
cept of negative pressure due to attractive boson-boson inter-
action helps us to explain the present accelerated Universe
without assuming any other form of DE [87]. Furthermore,
for the very small negative scattering length, typically for
|ls | << 10−60 fm, if the effect of quantum pressure is not
avoided, it can stabilize the modes of perturbation at small
scales preventing overabundance of small scale structures
like satellite galaxies, but at large scales, growth in density
contrast enhances large scale structure formation just like
CDM [66].

In summary, in our study we have taken into consideration
the normal to BEC cosmological phase transition process in
order to study the cosmological density perturbation of BEC
DM. Rederiving the evolution equation of density contrast
of BEC DM we found analytical solutions in terms of cos-
mic time rather than scale factor for both non-interacting and
TF limit cases. In addition, solutions are investigated numer-
ically for the case of self-interacting BEC beyond the TF
limit. We have also analyzed the temporal evolution of den-
sity perturbation of BEC DM using derived solutions. Here,
we reviewed elaborately and confirmed the results of previ-
ous works (notably Refs. [66,82]), where the evolutionary
nature of density contrast is studied in terms of the scale
factor. Finally, we conclude that an enhanced comprehen-
sion of the numerical attributes linked with BEC parame-
ters could significantly contribute to achieving precise cos-
mological inferences within the context of the BEC model.
Such a progression might also furnish an eloquent approach
for empirically scrutinizing the theoretical conjecture of the
BEC model, along with exploring the potential presence of
condensate DM on a cosmological magnitude.
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