
Eur. Phys. J. C (2024) 84:198
https://doi.org/10.1140/epjc/s10052-024-12544-9

Regular Article - Theoretical Physics

Search for the f (R, T) gravity functional form via gaussian
processes

J. A. S. Fortunato1,a, P. H. R. S. Moraes2,b, J. G. de Lima Júnior3,c, E. Brito4,d

1 Centro de Ciências Exatas, Departamento de Física, PPGCosmo, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari 514,
Vitória, ES 29075-910, Brazil

2 Laboratório de Física Teórica e Computacional (LFTC), Universidade Cidade de São Paulo (UNICID), Rua Galvão Bueno 868,
São Paulo 01506-000, Brazil

3 Instituto de Física, Universidade Federal do Alagoas (UFAL), Avenida Lourival Melo Mota S/N, Maceió, AL 57072-970, Brazil
4 Centro de Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Bertioga 892, Barreiras, BA 47810-059, Brazil

Received: 13 October 2023 / Accepted: 11 February 2024 / Published online: 26 February 2024
© The Author(s) 2024

Abstract The f (R, T ) gravity models, for which R is the
Ricci scalar and T is the trace of the energy–momentum ten-
sor, elevate the degrees of freedom of the renowned f (R)

theories, by making the Einstein field equations of the the-
ory to also depend on T . While such a dependence can be
motivated by quantum effects, the existence of imperfect or
extra fluids, or even a cosmological “constant” which effec-
tively depends on T , the formalism can truly surpass some
deficiencies of f (R) gravity. As the f (R, T ) function is arbi-
trary, several parametric models have been proposed ad hoc
in the literature and posteriorly confronted with observational
data. In the present article, we use gaussian process to con-
struct an f (R, T ) = R + f (T ) model. To apply the gaus-
sian process we use a series of measurements of the Hub-
ble parameter. We then analytically obtain the functional
form of the function. By construction, this form, which is
novel in the literature, is well-adjusted to cosmological data.
In addition, by extrapolating our reconstruction to redshift
z = 0, we were able to constrain the Hubble constant value
to H0 = 69.97 ± 4.13 km s−1 Mpc−1 with 5% precision.
Lastly, we encourage the application of the functional form
herewith obtained to other current problems of observational
cosmology and astrophysics, such as the rotation curves of
galaxies.
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1 Introduction

Theoretical physicists have been attempting to discover the
cause of the acceleration in the expansion of the universe
for some decades. Although the observational evidence for a
cosmic acceleration first came around two and a half decades
ago, from the detected diminishing in the brightness of distant
supernovae Ia [1,2], we still do not have the ultimate answer
for what essentially makes the expansion of the universe to
accelerate.

The first attempt to explain the cosmic acceleration was
indirectly proposed by Einstein himself and is called cos-
mological constant �. In the presence of the cosmological
constant, the Einstein’s field equations of General Relativ-
ity, Gμν = 8πTμν − �gμν are capable of describing the
acceleration of the expansion of the universe in accordance
with observations. Here, Gμν is the Einstein tensor, Tμν is
the energy–momentum tensor and gμν is the metric tensor;
moreover we will work with natural units. The cosmological
constant is the same that does not allow the space-time to
be flat in the absence of sources, as the above equation in
this regime reads Rμν = �gμν , with Rμν being the Ricci
tensor. � is then associated with the vacuum, which intrigu-
ingly curves space. In order to adjust to the cosmological
observations, � must be ∼ 10−52m [1–3].

The problem rises when we calculate the theoretical value
of the energy density of vacuum, which is higher than the
density of � by up to 120 orders of magnitude [4]. This
spectacularly high disagreement is referred to as the cosmo-
logical constant problem.

An alternative is to attempt to treat the cosmic acceleration
with no cosmological constant, for instance, explaining such
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an acceleration as due to a scalar field. These are the so-
called quintessence models (check, for instance, References
[5–7]), in which a scalar field governs the dynamics of the
universe, and depending on the form of the potential of such
a scalar field, it is possible to explain the cosmic acceleration
in accordance with observational data.

Another possibility to evade the cosmological constant
problem is to consider modifications or extensions of Gen-
eral Theory of Relativity. In such an approach, the cosmic
acceleration rises as a geometrical effect of this “broader”
theory of gravity. The extra terms of extended gravity could
also naturally induce the existence of a fluid which is capable
of generating the repulsive feature necessary to accelerate the
universe expansion.

An example of extended gravity theory is the well-known
f (R) gravity [8], in which “ f (R)” stands for a generic func-
tion of the Ricci scalar R to substitute R in the Einstein–
Hilbert action. Naturally, this substitution leads to the appear-
ance of extra terms in the resulting field equations, and those
could be responsible for driving the universe expansion to
accelerate, as aforementioned. In fact, it has been shown to be
possible to accelerate the expansion of the universe through
f (R) modifications of gravity in [9,10].

Naturally, an extended gravity theory should be well-
performed in different regimes of applications; that is to say
that besides explaining the cosmic acceleration with no need
for the cosmological constant, it should also behave prop-
erly in the stellar and galactic regimes, in the Solar System
regime etc. Some f (R) gravity shortcomings are discussed in
[11,12], among other references. Some other shortcomings
are mentioned in [13].

Still in [13], the f (R, T ) gravity theory was proposed,
for which the generic function f that substitutes R in the
Einstein–Hilbert action also depends on the trace of the
energy–momentum tensor T . While in the f (R) gravity, the
dependence on higher order terms of R is motivated by the
possibility that gravity indeed may behave differently in cos-
mological scales, the T -dependence is motivated by the pos-
sible existence of imperfect and/or extra fluids permeating
the universe. It could also be related to quantum effects [13]
or an effective cosmological constant “�(T )”. Some tech-
nical discussion on the T -dependence terms of the f (R, T )

gravity can be seen in [14].
The list of applications of f (R, T ) gravity is quite exten-

sive and we mention a few of them in the following.
Traversable wormhole solutions can be seen in [15–18].
The Tolman–Oppenheimer–Volkoff-like equation was first
derived and solved in [19]. In [20], the extra polarization
states of gravitational waves were calculated for the f (R, T )

gravity. The effects of f (R, T ) gravity on gravitational lens-
ing were calculated in [21]. The Solar System consequences
of the theory can be seen in [22].

The f (R, T ) function is generic, although some con-
straints are commonly put to it, for instance, from the energy
conditions [23]. In the f (R, T ) gravity, in a first analysis, the
energy–momentum tensor does not conserve, although some
“conservative models” were presented in the literature. For
instance, in a cosmological perspective, it was shown in [24]
that a conservative model like f (R, T ) = R +α

√
T , with α

being a free parameter, is capable of describing the cosmo-
logical observational data in great accordance. Moreover, the
hydrostatic equilibrium configurations of neutron stars were
presented for a conservative f (R, T ) model in [25], and the
results are capable of predicting the existence of massive pul-
sars, such as those reported in [26–28]. In any case, as the
functional form of the f (R, T ) function is an “open ques-
tion”, such an investigation is valid and welcome, and can
strongly contribute to the modified gravity literature. Even
the “non-conservative” models consideration is highly moti-
vated as they are related to possible quantum effects which
are not considered in the ”conservative models” [13,29].

There are several other alternative gravity theories that
underline cosmological models that accelerate the uni-
verse expansion, such as Gauss–Bonnet gravity [30], extra-
dimensional models [31] and f (T ) gravity [32], for which
T stands for the torsion scalar.

It is worth remarking that alternative gravity theories are
also motivated by the lack of dark matter particle detection
[33–37]. There are several astrophysical evidences pointing
to dark matter existence, such as those reported in Refer-
ences [38–41], among others. On the other hand, there are
several dark matter particles modelling in the present liter-
ature [42–47], but with no experimental counterpart, as just
mentioned. This leads to the possibility that dark matter is
simply a gravitational effect of an extended theory of gravity
[48–50].

Despite the problems regarding the “dark sector” of the
universe in standard cosmology, namely dark energy and
dark matter, there is also another observational issue nowa-
days, which is referred to as the Hubble tension. The Hubble
tension is a discrepancy between measures of the universe
expansion rate obtained by different observational methods
[51–55]. Modified gravity has also been invoked to treat the
Hubble tension [56–59].

In the aforementioned f (T ) gravity, f is also a generic
function of the argument. In [60], the gaussian processes
(GPs) and Hubble function data were applied to f (T ) cos-
mology to construct the f (T ) functional form for the first
time. The GP will be explained below. For now, it is worth
mentioning that it is a powerful tool one can use to construct
the behavior of a function directly from a data set [61].

In the present article we will apply the GP using Hubble
parameter H(z) data in order to construct the f (R, T ) func-
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tional form. The article is organized as follows. In Sect. 2
we present the f (R, T ) gravity, its field equations and we
obtain its Friedmann-like equations. In Sect. 3 we present the
GP, and numerically and analytically reconstruct the f (R, T )

function. We discuss our results and present our concluding
remarks in Sect. 4.

2 The f (R, T ) gravity

Proposed by Harko and collaborators in Reference [13], the
f (R, T ) theory of gravity starts from the action

S =
∫

d4x
√−g

[
f (R, T )

16π
+ L

]
. (1)

In the above equation, g is the metric determinant and L is the
matter lagrangian density. Moreover we will assume natural
units, such that G = c = 1.

The f (R, T ) gravity field equations are obtained from the
variation of the above action with respect to the metric gμν

and yield

(Rμν + gμν� − ∇μ∇ν) fR − f gμν

2
= 8πTμν + fT (Tμν − Lgμν),

(2)

with Rμν being the Ricci tensor, fR ≡ ∂ f/∂R,

Tμν = −2√−g

∂(
√−gL)

∂gμν
(3)

the energy–momentum tensor and fT ≡ ∂ f/∂T .
In order to proceed and with the purpose of particu-

larly investigating the T -dependence of the theory and its
consequences, we will from now on assume f (R, T ) =
R+2 f (T ). This assumption has been made in several works,
such as [16–18,23,24,62–65]. We consider that the Universe
can be modeled as a perfect fluid consisting entirely of mat-
ter, with no other forms of energy or pressure present. The
above assumptions allow us to express

Rμν − 1

2
Rgμν = 8πTμν + 2 fT Tμν + f (T )gμν. (4)

In order to establish the background cosmological frame-
work, we assume the principle of homogeneity and isotropy
of the Universe by adopting the Friedmann–Lemaître–
Robertson–Walker metric

ds2 = dt2 − a2(t)δi j dx
i dx j (5)

where a(t) is the scale factor. Applying the metric into
Eq. (4), we write the Friedmann equations of f (R, T ) gravity

as follows:

H2 = 8πρm

3
+ 2 fT

3
ρm − f (T )

3
; (6)

Ḣ + H2 = ä

a
= −4π

3
ρm − 1

3
[ fT ρm + f (T )] , (7)

in which H ≡ ȧ/a is the Hubble parameter, ρm is the energy
density of matter and dots represent derivative with respect
to time t . The application of the GPs method, which will be
presented in the next section, will rely on these equations
as a fundamental component. In particular, if we consider a
universe comprised entirely of matter and set the function
f (T ) as f (T ) = 2T , with p = 0, then T = −ρ, and the
resulting theory can be regarded as a cosmological model
with an effective cosmological constant that is proportional
to the Hubble parameter.

3 Reconstruction of f (R, T ) through Gaussian process

3.1 Gaussian process

The GP can be employed as a non-linear regression approach
for reconstructing a function using observational data, with-
out assuming a parametric model. These processes can be
seen as a collection of random variables, where each finite
set is associated with a Gaussian distribution [61,66,67].

A GP can be considered as a generalization of a Gaus-
sian distribution. While a Gaussian distribution is related to
the distribution of a random variable, a GP describes a dis-
tribution over functions in such a way that it is completely
specified through its mean and covariance functions. When
a function f is reconstructed via GPs, the value of f com-
puted at a point x is a random variable with mean μ(x) and
variance Var(x). This value is dependent on the value of the
same function evaluated at x̃ , particularly when these points
are in close proximity to each other. These values are related
through a covariance function cov ( f (x), f (x̃)) = k(x, x̃),
also known as a kernel in the computational context. There-
fore, the distribution of functions can be expressed by the
following equations [61,66]:

μ(x) = E[ f (x)] , (8)

k(x, x̃) = E[( f (x) − μ(x))( f (x̃) − μ(x̃))] , (9)

Var(x) = k(x, x) , (10)

where the GP is expressed as:

f (x) ∼ GP (μ(x), k(x, x̃)) . (11)

When dealing with regression problems [67], it is com-
mon to approximate the nonlinear function that represents the
observed data and the measured points (e.g., Hubble parame-
ter H(z) at a specific redshift z) using a set of basis functions.
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These functions have parameters that are optimized during
the regression process, and the kernel function is derived
from them. Although there are several types of kernel func-
tions used in different computational approaches, this work
focuses on the squared exponential covariance function:

k(x, x̃) = σ 2
f exp

(
− (x − x̃)2

2
2

)
. (12)

The squared exponential kernel function is a covariance
between the output data, expressed in terms of the input
data, used to approximate a non-linear function that repre-
sents observational data and the points at which they were
measured, such as the Hubble parameter H(z) at a specific
redshift z, during regression problems [67]. The covariance
approaches 1 when the input variables are close and decreases
as the distance between them increases. Additionally, this
kernel function is infinitely differentiable, making it useful
for reconstructing derivatives of a function. The hyperpa-
rameters σ f and 
 characterize the Gaussianity of the kernel
function. σ f represents the distance one must travel on the x
axis to compute a significant change in f (x), while 
 repre-
sents a change in the y axis. This information can be found
in [61,66].

3.2 Data and numerical reconstruction

To reconstruct the f (R, T ) function, the first step is to utilize
a series of measurements of the Hubble parameter, H(z), to
apply GPs and deduce its evolution. This process will enable
the reconstruction of a range of f (R, T ) functions using the
Friedmann equation, which can then be compared with the
current concordance cosmological model (� Cold Dark Mat-
ter model).

We reconstruct the H(z) function using a dataset compiled
in [68], which included 41 measurements of H(z) obtained
from two distinct methods – displayed in Table 1 below. The
Cosmic Chronometers method measures the age difference
between pairs of ancient spiral galaxies that formed at similar
epochs and redshifts, while the method based on the position
of the peak of the Baryonic Acoustic Oscillations provides
a standard ruler in the radial direction by measuring clusters
of galaxies [69–71]. We processed these observational data
using a publicly available Python algorithmGAPP developed
by Seikel et al. [61]. This enabled us to reconstruct H(z) with
statistical confidence regions at 1σ and 2σ levels in Fig. 1.
The reconstructed function H(z) will be used to reconstruct
the f (R, T ) function, as described above.

In our reconstruction of the f (R, T ) = R + 2 f (T ) func-
tion, we adopted a methodology similar to that proposed in
[86] for the case of teleparallel gravity. Given that the dynam-
ics of f (T ) are governed by the Friedmann equation via Eq.
(6), we express all relevant quantities in terms of redshift and

Table 1 41 measures of H(z) used for the reconstruction of f (R, T )

z H(z) σH Reference

0.070 69 19.6 [72]

0.090 69 12 [73]

0.120 68.6 26.2 [72]

0.170 83 8 [73]

0.179 75 4 [74]

0.199 75 5 [74]

0.200 72.9 29.6 [72]

0.240 79.69 6.65 [75]

0.270 77 14 [73]

0.280 88.8 36.6 [72]

0.300 81.7 6.22 [76]

0.350 82.7 8.4 [77]

0.352 83 14 [74]

0.3802 83 13.5 [78]

0.400 95 17 [73]

0.4004 77 10.2 [78]

0.4247 87.1 11.2 [78]

0.430 86.45 3.68 [75]

0.440 82.6 7.8 [79]

0.4497 92.8 12.9 [78]

0.480 97 62 [80]

0.570 92.900 7.855 [81]

0.593 104 13 [74]

0.6 87.9 6.1 [79]

0.680 92 8 [74]

0.73 97.3 7.0 [79]

0.781 105 12 [74]

0.875 125 17 [74]

0.880 90 40 [80]

0.900 117 23 [73]

1.037 154 20 [74]

1.300 168 17 [73]

1.363 160 22.6 [82]

1.430 177 18 [73]

1.530 140 14 [73]

1.750 202 40 [73]

1.965 186.5 50.4 [82]

2.300 224 8 [83]

2.34 222 7 [84]

2.36 226 8 [85]

leveraged our reconstruction of H(z) to obtain the desired
curve. To approximate the function for small redshift differ-
ences �z, we employ the following expression:

fT ≡ d f (T )

dT
= d f/dz

dT/dz
= f ′

T ′ , (13)
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Fig. 1 The reconstructed evolution of H(z) from the data using Gaus-
sian Process. The 1 and 2 sigma regions of statistical confidence are
plotted as the orange-shaded area

where T ′ = −(9H2
0 �m0/8π)(1 + z)2. Then, it is assumed

that f ′ is given by:

f ′(z) ≈ f (z + �z) − f (z)

�z
. (14)

In this way, it is possible to relate the values of f at zi+1 and
zi . By applying this relation to the Friedmann equation, we
obtain:

f (zi+1) = f (zi ) − 9

2

(zi+1 − zi )

(1 + zi )

−
[
H2H2

0 �m0 (1 + zi )
3 + f (zi )

3

]
. (15)

To apply GPs, an initial condition needs to be imposed to
solve the above recurrence relation. Therefore, we compute
the Friedmann equation for z = 0 by assuming fT ≈ 0,
which results in:

f (z = 0) = 3H2
0 (�m0 − 1) , (16)

with �m0 = 0.315 ± 0.007 from the last Planck data release
[87]. Thus, given the relationship between T and H(z), it is
possible to reconstruct the f (T ) function and consequently
the f (R, T ) function. The results are shown in Fig. 2, where
the statistical confidence regions are plotted.

3.3 Analytical fit of the reconstructed function

To gain deeper insight into the behavior of the reconstructed
function f (T ), it is helpful to express it analytically through
polynomial fitting. This approach serves as a cross-check to
validate our findings and has been employed in other studies
focused on model-independent reconstructions [60,86,88].

Fig. 2 The reconstructed f (T ) curve plotted alongside its regions of
statistical confidence

Through the use of 200 reconstructed f (T ) points
obtained via GP, we introduce an analytical relation writ-
ten in terms of the hyperbolic tangent function (which we
will, from now on, refer to as HTP model):

f (T ) = αT 2 + A tanh [λ (T + T0)] + βT + γ, (17)

in which α, β, γ, A, λ and T0 are constants.
To compare the above model with the current concordance

cosmological model �CDM, first, we plug the considered
analytic f (T ) curve into the Friedmann equation to find the
evolution of the Hubble parameter H(z), then we calculate
the χ2 statistics as follows:

χ2
H(z) =

41∑
i=1

(
Hobs,i − H f it,i

)2

σ 2
Hobs,i

, (18)

with Hobs being the Hubble parameter measurements, σHobs

the related errors and H f it the values provided by the analytic
fitting. Following [88], we evaluate our models by comput-
ing the quantity �χ2, defined as �χ2 = χ2

model − χ2
�CDM.

This approach serves as our preferred method for compari-
son. In contrast, alternative techniques such as the Bayesian
Information Criterion (BIC) or Akaike Information Criterion
(AIC) may impose penalties based on the complexity of our
models and the number of parameters they encompass. A
lower χ2 value indicates a superior fit, while a smaller �χ2

indicates a preference for the current model over the �CDM
model.

In Table 2, we present the χ2 and �χ2 values for the
models investigated in our study. The results underscore that
the HTP model stands out with the lowestχ2 value, indicating
its superior fit among the models under examination.

Our analysis shows that the HTP model is the best fit
for the data, as it has the lowest χ2 value and a significant
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Table 2 The χ2 and �χ2 values for the f (T ) models considered in
the present work

Model χ2 �χ2

�CDM 26.75 0

hyperbolic tangent polynomial f (T ) 20.21 −6.54

Fig. 3 The analytic fit of the reconstructed f (T ) function (black-
dashed line) from the hyperbolic tangent polynomial model (orange-
solid line)

difference in �χ2 compared to the �CDM, that is, the HTP
model is the preferred model for describing the behavior of
the reconstructed f (T ) curve, with the following values for
its parameters: α = −1.83 × 10−5, A = −1.05 × 104,
λ = −2.39 × 103, T0 = 2.58 × 103, β = −2.99 and γ =
−1.61×104. We emphasize that with these parameter values,
we were able to validate the assumption that fT ≈ 0 holds
true within this model. In Fig. 3 we plot the preferred model
in comparison to the GP reconstructed one.

Now, to further validate the HTP model here obtained, we
compare the evolution of H(z) using the Friedmann equation
with that of the �CDM model in Fig. 4 below.

Figure 4 shows the H(z) function for the preferred ana-
lytic model, as well as the �CDM model using the latest
Planck data release [87], and the GPs reconstructed relations
for the same parameter. The comparison reveals that the H(z)
curves are in strong agreement for redshifts approximately
less than 1.7. However, for larger redshift values, the �CDM
curve shows a discrepant behavior, which may be attributed
to the lack of H(z) measurements in this range. This pro-
vides further support for the HTP model as a better fit for the
data. The Friedmann equation comparison serves as another
useful cross-check to validate our findings and reinforces the
effectiveness of the HTP model for describing the behavior
of the reconstructed f (T ) curve.

We also stress that by using the HTP model into the Fried-
mann equation and extrapolating to z = 0 we can constrain

Fig. 4 Comparison between the hyperbolic tangent f (T ) model (red-
solid line) and the �CDM cosmological concordance model (blue-solid
line). The reconstructed evolution of H(z) is plotted as a black-dashed
line alongside its 2σ uncertainties as a shaded area

Fig. 5 The reconstructed Hubble constant found in this study com-
pared to the values of the last Planck data release and the value provided
by the SH0ES collaboration

the Hubble parameter to H0 = 69.97 ± 4.13 km s−1 Mpc−1,
which is consistent with previous measurements [87,89].
Figure 5 displays our result alongside the last Planck data
release and the SH0ES team.

4 Discussions

Many alternatives to General Relativity have been proposed
with the main purpose of evading the cosmological constant
problem. Other problems, such as the dark matter problem
and the Hubble tension also motivate the search for broader
theories of gravity.

Among the alternatives that we see in the present liter-
ature, the f (R, T ) gravity has emerged as one of the most
optimistic possibilities. Besides the f (R, T ) gravity appli-
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cations that we mentioned in the Introduction, we should
add the following. The Palatini formulation of f (R, T ) grav-
ity and its cosmological consequences can be seen in [90].
The study of scalar cosmological perturbations was made in
[91]. Different cosmological models, such as Chaplygin gas
and quintessence models, were reconstructed in the frame-
work of f (R, T ) gravity in [92]. f (R, T ) cosmological solu-
tions were investigated through the phase-space analysis in
[93]. A particular model to describe inflation in the f (R, T )

gravity was presented in [94]. Further wormhole solutions in
f (R, T ) gravity can be seen in [95]. The idea of “unimodular
gravity” was extended to f (R, T ) theory in [96]. Finally, in
[97], T was taken as the energy–momentum tensor of a scalar
field, and for a given scalar field potential, the obtained cos-
mological model was able to describe the complete history
of the universe evolution, including a graceful exit from the
inflationary to the radiation-dominated era.

In the present article, we have, for the first time in the lit-
erature, implemented the Gaussian Process to the f (R, T )

gravity framework. Through analysis of 41 measurements
of the Hubble parameter H(z), we were able to reconstruct
both numerically and analytically the f (T ) function within
f (R, T ) = R+ f (T ), by arriving in a novel f (R, T ) model:
the HTP model. Using the Bayesian Information Criterion,
our analysis provides strong evidence in support of the HTP
model when compared to the current cosmological concor-
dance model. In the current scenario of extended gravity the-
ories, this raises as a good alternative to evade the cosmolog-
ical constant problem.

The introduction of this new model opens up unexplored
avenues for testing against further cosmological and astro-
physical data. For instance, in the Introduction we have men-
tioned that not only the cosmological constant problem needs
deep attention in standard cosmology framework, but also the
absence of dark matter detection. It has, indeed, been shown
that the dark matter gravitational effects in the rotation curves
of galaxies can be simply predicted in the weak-field regime
of broader gravity formalisms [98,99]. The next step would
be to apply the HTP model here obtained to the galactic
dynamics regime to check if it is also capable of describing
dark matter effects.

A third observational issue that needs attention in stan-
dard cosmology is the Hubble tension (also mentioned in the
Introduction). Could it also be analysed under extended grav-
ity? Extrapolation of our analysis to redshift z = 0 yields a
value of H0 = 69.96 ± 4.13 km s−1 Mpc−1 for the Hubble
constant, consistent with other works [100,101] at the 1σ sta-
tistical confidence level. It is remarkable that our value for H0

fits both Planck data and SH0ES collaboration value, which
could be understood as an alleviation of the Hubble tension
under the HTP model. Of course, it is important to consider
the uncertainties that arise from our results, which may be
attributed to the need for additional H(z) measurements at

high redshifts. A more precise determination of H0 has the
potential to provide valuable insights into the tension and
maybe offer a better understanding of the underlying gravity
theory being considered.
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