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Abstract We study pulsating strings both on a single stack
of NS5-branes and two orthogonal stacks of NS5-branes (the
so called I-brane) by using the Polyakov form of the funda-
mental string action. For the I-brane background, by using a
symmetry that decouples the two spheres from the flat geom-
etry, we study pulsating solutions of the string when it pul-
sates on both the spheres independently and simultaneously.
We finally derive the energy of pulsating strings as a function
of adiabatic invariant oscillation number in these cases and
studied some limiting cases in detail.
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1 Introduction

After its appearance AdS/CFT correspondence [1,2] has
turned out to be one of the most powerful tools of modern
theoretical physics. The most successful version of the corre-
spondence relies on the duality between type IIB string states
in AdS5×S5 and certain operators in a four dimensional Con-
formal Field Theory (CFT) living on the boundary of AdS5.

But even for the very well studied N = 4 Supersymmetric
Yang–Mills (SYM) theory in four dimensions and dual type
IIB superstring in the compactified AdS5 space, finding an
exact matching between string states and dual operators from
both sides is very difficult. One can check the correspondence
beyond the supergravity approximation by studying various
classical string solutions in different backgrounds and using
the dispersion relation of such strings in the large charge
limit, one can look for boundary operators dual to them.

Over the years, a large variety of rotating and spinning
strings has been studied in backgrounds arising from the
AdS5 × S5 string sigma model. This include well known
solutions like folded spinning strings [3], spiky strings [4]
and giant magnons [5] and their dual gauge theories have
been analysed in great details. Pulsating strings were first
introduced in [6] and are expected to be dual to highly excited
sigma model operators. For example the most general pulsat-
ing string in S5 charged under the isometry group SO(6) will
have a dual operator of the form Tr(X J1Y J2 Z J3), where X, Y
and Z are the chiral scalars and Ji ’s are the R-charges from
the SYM theory. Pulsating string solutions have better stabil-
ity than non-pulsating ones [7] and they are time-dependent
as opposed to the usual rigidly rotating string solution. Pul-
sating strings have been thoroughly generalized in [8–13],
and have been studied in a number of backgrounds having
varying degrees of supersymmetry [14–17]. A string rotating
and at the same time oscillating have been derived in [18],
and the generalization of this was done with extra angular
momenta in [19]. Various other developments and explo-
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rations in different backgrounds have been done by different
authors [20–28].

In the present paper we will study pulsating string solu-
tions in NS5-brane and I-brane background. In string theory
NS5-branes are interesting on their own right as in the near
horizon limit the theory on the worldvolume correspond to
the little string theory (LST) [29,30]. LST is a nonlocal field
theory which has not been understood properly until now,
hence it would be a good exercise to analyze the solution
in various limits and if possible find out some operators in
dual field theory. It has been found that in the near horizon
limit the world sheet theory of NS5-brane is exactly solv-
able, so from the bulk theory point of view the theory is inte-
grable. But, only a very little is known about the boundary
theory, hence from that perspective it is rather hard to make
definite statements about the exact nature of the theory. We
will also study the pulsating string solutions in the I-brane
background which arises from the 1 + 1 dimensional inter-
section of two orthogonal stacks of NS5-branes, with one set
of branes lying along (x0, x1, . . . , x5), and other set lying
along (x0, x1, x6, . . . , x9) directions [31]. In the near hori-
zon geometry when all five branes are coincident the S-dual
picture is given by

R2,1 × Rφ × SU (2)k1 × SU (2)k2

where Rφ is one combination of the radial directions away
from the two sets of NS5-branes, and R2,1 (whose coordi-
nates are x0, x1) are another combination of two radial direc-
tions. The two SU (2)s with levels k1,2 describe the angular
three-spheres corresponding to (R4)2345 and (R4)6789. As
mentioned in [31] this background exhibits a higher Poincaré
symmetry, ISO(2,1), than the expected ISO(1,1) and twice as
many supercharges one might expect.

Various aspects and semiclassical strings on NS5-brane
and I-brane have been studied by probing the geometry with
both fundamental strings and D1-strings in [32–49]. Very
recently we have studied rigidly rotating string in I-brane
using Polyakov action of string [49] and we find Polyakov
action of string completely decouple the two spheres. This
allows us to study the rotating string on both the spheres
simultaneously and we find two sets of giant magnon rela-
tions for a particular set of values of the parameters while
two sets of single spike relations for all other set of values
of the parameters. To see whether this type of behaviour also
exists for pulsating string solutions, we probe fundamental
string in I-brane background with Polyakov action of string.
As I-brane arises from two orthogonal stacks of NS5-branes
we are expecting that we will obtain two independent class of
pulsating string solutions simultaneously on both the spheres.
To compare with various relations we also studied pulsating
string solutions in NS5-brane background using the same
action of strings. The rest of the paper is organized as follows.
In Sect. 2, we will briefly review the near-horizon geometry

of NS5-brane and solve the equations of motion for the pul-
sating strings which are consistent with Virasoro constraints.
We also solve for the string profile and find the oscillation
numbers along with the energy-oscillation number relation.
In Sect. 3, after reviewing the I-brane background briefly
we solve the string equations of motion and show that in
this case the string can pulsate independently and simulta-
neously on both the spheres. We also find the string profiles,
oscillation numbers and energy-oscillation number relation
when energy is equally and unequally distributed among the
spheres of I-brane. In Sect. 4 we will summarize our results
and comment on further investigations.

2 Pulsating strings in NS5-brane

The classical solution of N NS5-brane is given by the fol-
lowing form of metric, NS-NS two form field and dilaton,

ds2 = −dt2 +
9∑

i=5

dx2
i + H(r)(dr2 + r2(dθ2

+ sin2 θdφ2 + cos2 θdψ2)),

Bφψ = 2N sin2 θdφ ∧ dψ, e2(�−�0) = H(r),

H(r) = 1 + Nl2s
r2 , (2.1)

where xi , i = 5, . . . , 9 labels the world-volume directions of
NS5-brane, H(r) is the Harmonic function in the transverse
space of the NS5-branes and ls is the string length. In the
near horizon limit, r → 0, one can ignore 1 in the H(r), and
the solution would look like,

ds2 = −dt2 +
9∑

i=5

dx2
i + Nl2s

(dr2

r2 + dθ2

+ sin2 θdφ2 + cos2 θdψ2
)
,

bφψ = 2N sin2 θ, e2(�−�0) = Nl2s
r2 , (2.2)

where Bφψ = bφψdφ ∧ dψ. To proceed further we will
rescale t → √

Nlst, xi → √
Nlsxi and introduce the vari-

able ρ that is related to r as,

ρ = ln

(
r√
Nls

)
, (2.3)

and setting ls = 1. Under all this operation the final form of
the metric and NS-NS two form field becomes,

ds2 = N

(
− dt2 +

9∑

i=5

dx2
i + dρ2 + dθ2 + sin2 θdφ2

+ cos2 θdψ2
)

, bφψ = 2N sin2 θ. (2.4)
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In this section we will restrict to the background metric and
NS-NS two form field given by (2.4).

2.1 String equations of motion

To study a fundamental string coupled to NS-NS B-field, we
use the Polyakov action with a WZ term,

S = −
√

λ

4π

∫
dσdτ

[√−γ γ αβgMN ∂αX
M∂βX

N

−εαβ∂αX
M∂βX

NbMN

]
, (2.5)

where λ is the ’t Hooft coupling, γ αβ is the worldsheet met-
ric and εαβ is the antisymmetric tensor defined as ετσ =
−εστ = 1.

Variation of the action with respect to XM gives us the
following equations of motion

2∂α(ηαβ∂βX
N gK N ) − ηαβ∂αX

M∂βX
N ∂K gMN

−2∂α(εαβ∂βX
NbK N )

+εαβ∂αX
M∂βX

N ∂K bMN = 0, (2.6)

and variation with respect to the metric gives the two Virasoro
constraints,

gMN (∂τ X
M∂τ X

N + ∂σ X
M∂σ X

N ) = 0, (2.7)

gMN (∂τ X
M∂σ X

N ) = 0. (2.8)

We use the conformal gauge (i.e.
√−γ γ αβ = ηαβ) with

ηττ = −1, ησσ = 1 and ητσ = ηστ = 0) to solve the
equations of motion.

For studying a generic class of pulsating strings we use
the ansatz,

t = t (τ ) = κτ, xi = viσ, ρ = μσ, θ = θ(τ ),

φ = mσ, ψ = ψ(τ). (2.9)

Solving t and ψ equations we obtain,

ṫ = κ,

ψ̇ = c1 + 2m sin2 θ

cos2 θ
. (2.10)

The equations for xi , ρ, and φ satisfies trivially. The other
non-trivial contribution comes from θ equation, which gives,

θ̈ =
[
3m2 − (c1 + 2m)2

cos4 θ

]
sin θ cos θ. (2.11)

Integrating the above equation we get,

θ̇2 = c2 + 3m2 sin2 θ − (c1 + 2m)2

cos2 θ
, (2.12)

where c1,2 are the integrating constants.

Now, the Virasoro constraint gMN (∂τ XM∂τ XN + ∂σ XM

∂σ XN ) = 0, gives

θ̇2 = α2 + 4m2 + 4c1m + 3m2 sin2 θ − (c1 + 2m)2

cos2 θ
,

(2.13)

where α2 = κ2 − μ2 − ∑
v2
i . The other Virasoro gMN

∂τ XM∂σ XN = 0 is trivially satisfied. Comparing the Vira-
soro constraint (2.13) with the equation of motion (2.12), we
get the following relation between various constants,

c2 = α2 + 4m2 + 4c1m. (2.14)

To determine the conserved charges associated to the
string motion, we start from the full form of the sigma model
action in background (2.4),

S = −
√

λ

4π

∫
dτdσ

[
ṫ2 +

9∑

i=5

v2
i

+μ2 − θ̇2 + m2 sin2 θ − ψ̇2 cos2 θ + 4mψ̇ sin2 θ
]
.

(2.15)

From this action we can easily determine the conserved
charges using the Noether procedure, and they can be written
as,

E = −
∫

∂L
∂ ṫ

dσ = √
λκ,

J =
∫

∂L
∂ψ̇

dσ = √
λc1. (2.16)

Here E is the energy and J is the angular momenta on the
sphere. Rescaling them as,

E = E√
λ

= κ, J = J√
λ

= c1. (2.17)

Now expressing κ and c1 in terms of these conserved charges
and for simplicity using

∑
v2
i = 1, we can express the con-

straint equation (2.14) as,

c2 = E2 − 1 − μ2 + 4m2 + 4mJ . (2.18)

2.2 String profile

From (2.12) we find as θ varies from 0 to π/2, θ̇2 varies from
E2 − 1 − μ2 −J 2 to infinity. This looks like the equation of
motion of a particle moving in an effective potential V (θ),

where θ varies from a minimal to a maximal value. Note that
the θ equation can be written in the form,

ẍ + 3m2[−(R− + R+)x + 2x3] = 0, (2.19)

where x = sin θ.Equation (2.19) can be compared with Duff-
ing oscillator equation (ẍ + γ ẋ + ω2

0x + εx3 = f0 cos(ωt))

123



208 Page 4 of 14 Eur. Phys. J. C (2024) 84 :208

without damping and driving force if (R− + R+) is negative.
Integrating (2.19), we get,

ẋ2 = 3m2x2(1 − x2) + c2(1 − x2) − (J + 2m)2

= 3m2(x2 − R−)(R+ − x2), (2.20)

where

R± = −(c2 − 3m2) ± √
(c2 + 3m2)2 − 12m2(J + 2m)2

6m2 .

(2.21)

With proper scaling of the variables, we can write the solu-
tion of (2.20) in terms of standard Jacobi elliptic function,1

provided the initial condition x(0) = 0:

sin θ(τ ) =
√

−R+R−
R+ − R−

sd
(√

3(R+ − R−)mτ,

√
R+

R+ − R−

)

(2.22)

Using the property of Jacobi functions that sd(z|m) = sd(z+
4K(m)|m) and as usual taking only the real period, we can
find the condition for time-periodic solution for θ is,

0 <
R+

R+ − R−
< 1. (2.23)

This translate to the following inequality

c2 > (J + 2m)2 (2.24)

which gives a constraint on the conserved charges so that the
string has a pulsating motion. Using this inequality in (2.18)
we get,

E2 − 1 − μ2 − J 2 > 0. (2.25)

This condition (2.25) is in tune with our earlier observation
about the limits of the oscillation in the θ̇2 equations.

Now we will present some of the string profiles under
variation of one particular parameter while keeping the other
fixed. In these plots worldsheet time τ is along vertical direc-
tion and worldsheet coordinate σ with closed boundary con-
dition is along the horizontal direction. A slice along verti-
cal direction represent a closed circular string at a particular
worldsheet time. These plots showing with worldsheet time
the circular string grows from zero size to a maximum extent
and then again contracts to zero size in a periodic fashion.
Figure 1 shows the string profile in NS5-brane for different
values of winding number (m) while energy (E), angular
momenta (J ) and other parameter (μ) remaining constant.
These figures clearly indicate that with the increase of m,

number of lobes increases within a certain value of world-
sheet time τ. From these plots we can guess the number of
lobes = (m + 1)/2. We can also see with the increase in the

1 In the notation we follow sd(z|m) is the solution of w′′(z)2 +
w(z)(2m(1 − m)w2(z) − 2m + 1) = 0.

number of lobes the amplitude decreases for a given value
of energy. To show another effect of m we presented the
topview of Fig. 1 in Fig. 2. These plots clearly showing the
string folds m times under closed boundary condition, that
is why m is called the winding number. Figure 3 shows the
plot of string profile with different values of energies while
keeping angular momenta, winding number and the param-
eter (μ) fixed. These plots clearly indicate the amplitude of
the string profile increases with the increase of energy. We
can also note that although we keep m = 3 fixed but the
number of lobes increases with energy within a certain value
of the worldsheet time. Hence, number of lobes depends on
both the energy and the winding number m. String profiles
are not sensitive to angular momenta and other parameter μ

unless they take such values that the inequality (2.25) breaks
down, this leads to unphysical structure as the string profile
breaks down as shown in Fig. 4.

We can also find the dynamics of the string along the ψ

direction by integrating dψ
dθ

which have the form,

dψ

dθ
= J + 2m sin2 θ√

3m cos θ
√

(sin2 θ − R−)(R+ − sin2 θ)
. (2.26)

These can be integrated to find ψ in terms of standard elliptic
integrals,

ψ(τ) = −1√−3R−

[J + 2m

m
�

(
R+, arcsin

(
sin θ(τ )√

R+

)
,
R+
R−

)

+2F

(
arcsin

(
sin θ(τ )√

R+

)
,
R+
R−

)]
, (2.27)

where F(ϕ, k) and�(n, ϕ, k) are the incomplete elliptic inte-
grals of first kind and third kind respectively.

2.3 Oscillation number

Now we will use Bohr–Sommerfeld like quantization proce-
dure for the pulsating strings in this background. The oscil-
lation numbers can be written using the canonical momenta
conjugate to θ as follows,

N = √
λN =

√
λ

2π

∮
dθ �θ

=
√

λ

2π

∮
dθ

√

c2 + 3m2 sin2 θ − (J + 2m)2

cos2 θ
. (2.28)

Taking sin θ = x we can choose the proper limits and trans-
form the above integral to,

N = 2
√

3m

π

∫ √
R+

0

√
(x2 − R−)(R+ − x2)

1 − x2 dx . (2.29)

We can directly compute the integral to find,

N = 2
√

3m

π
√−R−

[(
1 − R+

)
K

(
R+
R−

)
− R−E

(
R+
R−

)
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Fig. 1 Pulsating string profiles
with E = 1.7 and a m = 1, b
m = 3, c m = 5

Fig. 2 Pulsating string profiles
topview E = 1.7, a m = 1, b
m = 3, c m = 5

+(R− − 1)(R+ − 1) �

(
R+| R+

R−

)]
, (2.30)

where K (k), E(k) and �(n, k) are standard complete elliptic
integrals of first, second and third kind respectively. Instead
of working with this, we can made the expression a little
simpler by taking the partial derivative of N with respect to
m,

∂N
∂m

= 2
√

3

π

∫ √
R+

0

x2dx√
(x2 − R−)(R+ − x2)

−4(J + 2m)√
3πm

∫ √
R+

0

dx

(1 − x2)
√

(x2 − R−)(R+ − x2)

= 2
√−3R−

π

[
K

(
R+
R−

)
− E

(
R+
R−

)]

− 4(J + 2m)√−3R−πm

[
�

(
R+| R+

R−

) ]
. (2.31)

In the short string limit, i.e. when both the energy and
angular momentum of the string are small, we can expand
the above expression in E andJ to get the oscillation number

N = A(J ) + E2B(J ) + O(E4). (2.32)

Inverting (2.32) we can write the energy-oscillation number
relation as,

E = [B(J )]−1/2
√
N − A(J ) + O(N − A(J ))3/2 (2.33)

where,

A(J ) =
(

4m − 15(μ2 + 1)

2m
− 159μ2

4m3

)

−
(

6 logm − 153(μ2 + 1)

4m2 − 33435μ2

64m4

)
J

−
(

51

2m
+ 213(μ2 + 1)

m3 + 81465μ2

16m5

)
J 2
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Fig. 3 Pulsating string profiles
with m = 3 and a E = 1.6, b
E = 1.9, c E = 2.5

+
( 267

4m2 + 81015(μ2 + 1)

64m4 + 1422975μ2

32m6

)
J 3

+O(J 4), (2.34)

and

B(J ) =
(

15

2m
+ 159

(
μ2 + 1

)

4m3 + 10995μ2

16m5

)

−
(

153

4m2 + 33435
(
μ2 + 1

)

64m4 + 911955μ2

64m6

)
J

+
(

213

m3 + 81465
(
μ2 + 1

)

16m5
+ 10899675μ2

56m7

)
J 2

−
(

81015

64m4 + 1422975
(
μ2 + 1

)

32m6

+283301175μ2

128m8

)
J 3 + O(J 4). (2.35)

We will compare these relations (2.34), (2.35) along with the
relation (2.33) with the corresponding relations of I-brane in
the next Sect. 3.

3 Pulsating strings in I-brane

The geometry of I-brane arises when k1 number of NS5-
branes lying along (0, 1, . . . , 5) intersect k2 number of NS5-
branes lying along (0, 1, 6, . . . , 9) directions in (0,1)-plane.
If the branes are coincident, then the type IIB supergravity
solution is given by the following metric, three form NS-NS

fields and dilaton [31], as,

ds2 = −(dx0)2 + (dx1)2 + H1(y)
5∑

α=2

(dyα)2

+H2(z)
9∑

p=6

(dz p)2,

Hαβγ = −εαβγ δ∂
δH1(y),

Hmnp = −εmnpq∂
q H2(z), e2� = H1(y)H2(z), (3.1)

where the harmonic functions are H1(y) = 1 + k1l2s
y2 and

H2(z) = 1 + k2l2s
z2 with y =

√∑5
α=2(y

α)2 and z =√∑9
p=6(z

p)2. In the near horizon limit (
k1l2s
y2 � 1 and

k2l2s
z2 � 1), the metric and the NS-NS two form fields can

be written as,

ds2 = −(dx0)2 + (dx1)2 + k1l
2
s
dr2

1

r2
1

+ k1l
2
s d�2

1

+k2l
2
s
dr2

2

r2
2

+ k2l
2
s d�2

2,

Bφ1ψ1 = 2k1l
2
s sin2 θ1dφ1 ∧ dψ1,

Bφ2ψ2 = 2k2l
2
s sin2 θ2dφ2 ∧ dψ2, (3.2)

where the three spheres d�1, d�2 are the volume elements
on the sphere along (y2, . . . , y5) and (z6, . . . , z9) directions
respectively, and are given by,

d�2
1 = dθ2

1 + sin2 θ1dφ2
1 + cos2 θ1dψ2

1 ,

d�2
2 = dθ2

2 + sin2 θ2dφ2
2 + cos2 θ2dψ2

2 .
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To proceed further we choose ls = 1, k1 = k2 = N , rescale
x0 → √

Nt, x1 → √
Nx and make the following change of

variables

ρ1 = ln
r1√
N

, ρ2 = ln
r2√
N

. (3.3)

The final form of the metric and the background NS-NS field
are given by,

ds2 = N (−dt2 + dx2 + dρ2
1 + dθ2

1 + sin2 θ1dφ2
1

+ cos2 θ1dψ2
1 + dρ2

2 + dθ2
2

+ sin2 θ2dφ2
2 + cos2 θ2dψ2

2 ),

bφ1ψ1 = 2N sin2 θ1, bφ2ψ2 = 2N sin2 θ2. (3.4)

3.1 String equations of motion

For studying a generic class of pulsating strings in I-brane
background (3.4) using the Polyakov action of string as
before, we use the following ansatz,

t = t (τ ) = κτ, x = σ, ρ1 = μ1σ, ρ2 = μ2σ,

θ1 = θ1(τ ),

θ2 = θ2(τ ), φ1 = m1σ, φ2 = m2σ, ψ1 = ψ1(τ ),

ψ2 = ψ2(τ ). (3.5)

Solving t, ψ1 and ψ2 equations we obtain,

ṫ = κ,

ψ̇1 = c1 + 2m1 sin2 θ1

cos2 θ1
,

ψ̇2 = c2 + 2m2 sin2 θ2

cos2 θ2
. (3.6)

The equations for x, ρ1,2 and φ1,2 are satisfied trivially.
The other non-trivial contributions come from θ1,2 equations,
solving them we get,

θ̈1 =
[
3m2

1 − (c1 + 2m1)
2

cos4 θ1

]
sin θ1 cos θ1, (3.7)

θ̈2 =
[
3m2

2 − (c2 + 2m2)
2

cos4 θ2

]
sin θ2 cos θ2. (3.8)

Integrating the above equations, we get,

θ̇2
1 = c3 + 3m2

1 sin2 θ1 − (c1 + 2m1)
2

cos2 θ1
, (3.9)

θ̇2
2 = c4 + 3m2

2 sin2 θ2 − (c2 + 2m2)
2

cos2 θ2
, (3.10)

where c1,2,3,4 are constants.
Now, the Virasoro constraint gMN (∂τ XM∂τ XN + ∂σ XM

∂σ XN ) = 0, gives

θ̇2
1 + θ̇2

2 = α2 + 4m2
1 + 4m2

2 + 4c1m1 + 4c2m2

+3m2
1 sin2 θ1 + 3m2

2 sin2 θ2

Fig. 4 Plot shows unphysical structure when the inequality condition
is not obeyed by the solution

− (c1 + 2m1)
2

cos2 θ1
− (c2 + 2m2)

2

cos2 θ2
, (3.11)

where α2 = κ2 − 1 − μ2
1 − μ2

2. The other Virasoro
gMN∂τ XM∂σ XN = 0 is trivially satisfied. Adding (3.9) and
(3.10) we get,

θ̇2
1 + θ̇2

2 = c3 + c4 + 3m2
1 sin2 θ1 + 3m2

2 sin2 θ2

− (c1 + 2m1)
2

cos2 θ1
− (c2 + 2m2)

2

cos2 θ2
, (3.12)

Comparing the Virasoro constraint (3.11) with the equation
of motion (3.12), we get the following relation between var-
ious constants,

c3 + c4 = α2 + 4m2
1 + 4m2

2 + 4c1m1 + 4c2m2. (3.13)

To determine the conserved charges associated to the
string motion, we write down the full form of the sigma model
action in background (3.4),

S = −
√

λ

4π

∫
dτdσ

[
ṫ2 + 1 + μ2

1 + μ2
2 − θ̇2

1

−θ̇2
2 + m2

1 sin2 θ1 + m2
2 sin2 θ2

−ψ̇2
1 cos2 θ1 − ψ̇2

2 cos2 θ2

+4m1ψ̇1 sin2 θ1 + 4m2ψ̇2 sin2 θ2

]
. (3.14)

From this action we can easily determine the conserved
energy (E) and angular momenta (J1) and (J2) of the two
orthogonal spheres, as following,

E = −
∫

∂L
∂ ṫ

dσ = √
λκ,

J1 =
∫

∂L
∂ψ̇1

dσ = √
λc1,
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J2 =
∫

∂L
∂ψ̇2

dσ = √
λc2. (3.15)

As before, rescaling them as,

E = E√
λ

= κ, J1 = J1√
λ

= c1, J2 = J2√
λ

= c2. (3.16)

Now expressing κ, c1 and c2 in terms of these conserved
charges we can express the constraint equation (3.13) as,

c3 + c4 = E2 − 1 − μ2
1 − μ2

2 + 4m2
1 + 4m2

2 + 4m1J1

+4m2J2. (3.17)

As we have only the condition (3.17), this is not sufficient to
separate c3 and c4 in terms of the conserved charges. But, to
plot the string profile and to expand the oscillation numbers
in terms of E we need to separate c3 and c4. In the following,
we will separate them by hand using some arguments on the
energy distributions among the spheres of I-brane.

From the form of the constraint (2.18) of NS5-brane
and from the ansatz (3.5) of I-brane, we can easily guess
μ1,m1,J1 belongs to the sphere d�1 while μ2,m2,J2

belongs to the other sphere d�2 of I-brane. First we will
distribute the remaining quantity (E2 −1) equally to both the
spheres and we will call this situation as the energy is equally
distributed among the spheres of I-brane. So, for equal energy
distribution case we separate c3 and c4 as,

c3 = E2 − 1

2
− μ2

1 + 4m2
1 + 4m1J1,

c4 = E2 − 1

2
− μ2

2 + 4m2
2 + 4m2J2, (3.18)

such that the constraint (3.17) is satisfied.
Next we will distribute energy unequally among the

spheres of I-brane by considering a factor f (0 < f < 1). In
this case we will distribute f of the total energy to the sphere
d�1 and rest of it to the sphere d�2, hence, we can separate
c3 and c4 respecting the constraint (3.17) as,

c3 = f (E2 − 1) − μ2
1 + 4m2

1 + 4m1J1,

c4 = (1 − f )(E2 − 1) − μ2
2 + 4m2

2 + 4m2J2. (3.19)

3.2 String profile

From (3.9) we find as θ1 varies from 0 to π/2, θ̇2
1 varies from

c3 −(J1 +2m1)
2 to infinity which looks like the equations of

motion of a particle moving in an effective potential V (θ1),

where θ1 rotates between a minimal and a maximal value.
Note that the θ1 equation can be written as,

ẍ1 + 3m2
1[−(R1− + R1+)x1 + 2x3

1 ] = 0, (3.20)

where x1 = sin θ1.

Again from (3.10) we find that θ̇2
2 varies from c4 − (J2 +

2m2)
2 to infinity as θ2 varies from 0 to π/2. This again looks

like the particle moving in another effective potential V (θ2),

and θ2 rotates between a minimal and a maximal value. Using
x2 = sin θ2, θ2 equation can be written as,

ẍ2 + 3m2
2[−(R2− + R2+)x2 + 2x3

2 ] = 0. (3.21)

Thus, if both (R1− + R1+) and (R2− + R2+) are negative
quantities, then we get two independent Duffing oscillator
equations without damping and deriving terms. Integrating
(3.20) and (3.21) we get,

ẋ2
1 = 3m2

1(x
2
1 − R1−)(R1+ − x2

1 ), (3.22)

ẋ2
2 = 3m2

2(x
2
2 − R2−)(R2+ − x2

2 ), (3.23)

where

R1± =
−(c3 − 3m2

1) ±
√

(c3 + 3m2
1)

2 − 12m2
1(J1 + 2m1)2

6m2
1

,

R2± =
−(c4 − 3m2

2) ±
√

(c4 + 3m2
2)

2 − 12m2
2(J2 + 2m2)2

6m2
2

.

(3.24)

On further integrating (3.22) and (3.23), we can express the
solutions in terms of Jacobi functions provided the initial
conditions x1(0) = x2(0) = 0:

sin θ1(τ ) =
√

−R1+R1−
R1+ − R1−

sd

(√
3(R1+ − R1−)m1τ,

√
R1+

R1+ − R1−

)
(3.25)

sin θ2(τ ) =
√

−R2+R2−
R2+ − R2−

sd

(√
3(R2+ − R2−)m2τ,

√
R2+

R2+ − R2−

)
. (3.26)

Thus in this case we obtain two copies of string profiles
arising from the two spheres of I-brane. These profiles are
independent of each other and can exist simultaneously. We
also note that each profile is exactly equivalent to the profile
(2.22) obtained for the NS5-brane.

Again, using the property of Jacobi functions and taking
only the real period, we find the condition for time-periodic
solution for θ1 and θ2 is,

0 <
R1+

R1+ − R1−
< 1, 0 <

R2+
R2+ − R2−

< 1. (3.27)

This translates to the following inequality,

E2 − 1 − μ2
1 − μ2

2 − J 2
1 − J 2

2 > 0, (3.28)

which is the constraint on the conserved charges so that the
string has pulsating motion. Hence, we obtained the pulsating
string profile which can pulsate on both the spheres indepen-
dently and simultaneously. The condition (3.28) is also in
tune with limits of θ̇2

1 and θ̇2
2 of (3.9) and (3.10).
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Fig. 5 Pulsating string profile on I-brane for f = 1 with E = 2,

m1 = m2 = 3, J1 = J2 = 0.05, μ1 = μ2 = 1

Fig. 6 Pulsating string profile for f = 0.5 with E = 2,m1 = m2 = 3,

J1 = J2 = 0.5, μ1 = μ2 = 1

Figure 5 shows the string profile of I-brane background for
f = 1, in this case the energy is fully distributed to the sphere
d�1 and there is no energy available to the other sphere d�2.

In this case, the string have the pulsating motion only on the
sphere d�1 and as there is no energy available to the other
sphere d�2, string don’t have any pulsating motion there
although we have used non-zero values of angular momenta
and winding numbers. Instead, if we had used f = 0 then we
would see the string to pulsate only on the sphere d�2. Thus,
if we switch off the energy in one of the sphere of I-brane,
then the string profile behave similar to that of NS5-brane
on the other sphere. In Fig. 6 we presented the string profile
for f = 0.5, in this case energy is equally distributed among

Fig. 7 Pulsating string profile for f = 0.7 with E = 2.5, m1 = m2 =
3, J1 = J2 = 0.5, μ1 = μ2 = 1

the spheres and we see the string have pulsating motion on
both the spheres simultaneously. We can also note for equal
energy distribution case as the winding numbers m1 and m2

are equal, the string is pulsating simultaneously on both the
sphere with same amplitude. Instead, if we had used m1 �=
m2, then we would expect string to pulsate with different
amplitude by forming unequal number of lobes as we saw in
case of NS5-branes. Figure 7 shows string profile for f =
0.7, here 70 percent of energy is distributed to the sphere d�1

and 30 percent to the sphere d�2. We see with more energy
the string on the sphere d�1 pulsate with larger amplitude,
simultaneously the string is pulsating with smaller amplitude
on the other sphere d�2 as less energy is available there.
We can also see that first sphere have larger number of lobes
compared to the second sphere for same extent of worldsheet
time instead of same value of winding numbers m1 = m2.

We can also find the dynamics of the string along the ψ1

and ψ2 direction by integrating dψ1
dθ1

and dψ2
dθ2

which have the
form,

dψ1

dθ1
= J1 + 2m1 sin2 θ1√

3m1 cos θ1

√
(sin2 θ1 − R1−)(R1+ − sin2 θ1)

,

dψ2

dθ2
= J2 + 2m2 sin2 θ2√

3m2 cos θ2

√
(sin2 θ2 − R2−)(R2+ − sin2 θ2)

. (3.29)

These can be integrated to find ψ1 and ψ2 in terms of standard
elliptic integrals,

ψ1(τ ) = −1√−3R1−

[J1 + 2m1

m1
�

(
R1+, arcsin

(
sin θ1(τ )√

R1+

)
,
R1+
R1−

)

+2F

(
arcsin

(
sin θ1(τ )√

R1+

)
,
R1+
R1−

)]
, (3.30)
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ψ2(τ ) = −1√−3R2−

[J2 + 2m2

m2
�

(
R2+, arcsin

(
sin θ2(τ )√

R2+

)
,
R2+
R2−

)

+2F

(
arcsin

(
sin θ2(τ )√

R2+

)
,
R2+
R2−

)]
. (3.31)

3.3 Oscillation number

As we did in the previous section here also we will use Bohr–
Sommerfeld like quantization procedure and write down the
oscillation numbers using the canonical momenta conjugate
to θ1 and θ2 as follows,

N1 = √
λN1 =

√
λ

2π

∮
dθ1�θ1

=
√

λ

2π

∮
dθ1

√

c3 + 3m2
1 sin2 θ1 − (J1 + 2m1)2

cos2 θ1
,

(3.32)

N2 = √
λN2 =

√
λ

2π

∮
dθ2�θ2

=
√

λ

2π

∮
dθ2

√

c4 + 3m2
2 sin2 θ2 − (J2 + 2m2)2

cos2 θ2
.

(3.33)

Again, taking sin θ1 = x1 and sin θ2 = x2 and choosing the
proper limits and the above integrals transform to,

N1 = 2
√

3m1

π

∫ √
R1+

0

√
(x2

1 − R1−)(R1+ − x2
1 )

1 − x2
1

dx1,

(3.34)

N2 = 2
√

3m2

π

∫ √
R2+

0

√
(x2

2 − R2−)(R2+ − x2
2 )

1 − x2
2

dx2.

(3.35)

Directly computing the integrals, we find,

N1 = 2
√

3m1

π
√−R1−

[(
1 − R1+

)
K

(
R1+
R1−

)
− R1−E

(
R1+
R1−

)

+(R1− − 1)(R1+ − 1) �

(
R1+| R1+

R1−

)]
,

N2 = 2
√

3m2

π
√−R2−

[(
1 − R2+

)
K

(
R2+
R2−

)
− R2−E

(
R2+
R2−

)

+(R2− − 1)(R2+ − 1) �

(
R2+| R2+

R2−

)]
.

As before, in order to make the expressions little simpler we
take the partial derivative of N1 with respect to m1,

∂N1

∂m1
= 2

√
3

π

∫ √
R1+

0

x2
1dx1√

(x2
1 − R1−)(R1+ − x2

1 )

−4(J1 + 2m1)√
3πm1

∫ √
R1+

0

dx1

(1 − x2
1 )

√
(x2

1 − R1−)(R1+ − x2
1 )

= 2
√−3R1−

π

[
K

(
R1+
R1−

)
− E

(
R1+
R1−

)]

− 4(J1 + 2m1)√−3R1−πm1

[
�

(
R1+| R1+

R1−

)]
. (3.36)

Again, taking the partial derivative of N2 with respect to m2

we get,

∂N2

∂m2
= 2

√
3

π

∫ √
R2+

0

x2
2dx2√

(x2
2 − R2−)(R2+ − x2

2 )

−4(J2 + 2m2)√
3πm2

∫ √
R2+

0

dx2

(1 − x2
2 )

√
(x2

2 − R2−)(R2+ − x2
2 )

= 2
√−3R2−

π

[
K

(
R2+
R2−

)
− E

(
R2+
R2−

)]

− 4(J2 + 2m2)
√−3R2−πm2

[
�

(
R2+| R2+

R2−

) ]
. (3.37)

In the following we will discuss the expansion of the above
expressions under short string limit for different kinds of
energy distribution situations.

3.3.1 Equal energy distribution case

Assuming the energy is equally distributed on both the
spheres. In the short string limit, i.e. when both the energy
and angular momentum of the string are small, we can expand
the above expressions as,

N1 = A1(J1) + E2B1(J1) + O(E4), (3.38)

N2 = A2(J2) + E2B2(J2) + O(E4). (3.39)

Adding (3.38) and (3.39) and inverting the added series to get
the expression for energy in terms of the conserved quantities
as,

E = [B1(J1) + B2(J2)]−1/2
√
N1 + N2 − A1(J1) − A2(J2)

+O(N1 + N2 − A1(J1) − A2(J2))3/2 (3.40)

where

A1(J1) =
(

4m1 − 15

4m1
− 15μ2

1

2m1
− 159μ2

1

8m3
1

)

−
(

6 logm1 − 153

8m2
1

− 153μ2
1

4m2
1

− 33435μ2
1

128m4
1

)
J1

−
(

51

2m1
+ 213

2m3
1

+ 213μ2
1

m3
1

+ 81465μ2
1

32m5
1

)
J 2

1

+
(

267

4m2
1

+ 81015

128m4
1

+ 81015μ2
1

64m4
1
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+1422975μ2
1

64m6
1

)
J 3

1 + O(J 4
1 ), (3.41)

A2(J2) =
(

4m2 − 15

4m2
− 15μ2

2

2m2
− 159μ2

2

8m3
2

)

−
(

6 logm2 − 153

8m2
2

− 153μ2
2

4m2
2

− 33435μ2
2

128m4
2

)
J2

−
(

51

2m2
+ 213

2m3
2

+ 213μ2
2

m3
2

+ 81465μ2
2

32m5
2

)
J 2

2

+
(

267

4m2
2

+ 81015

128m4
2

+ 81015μ2
2

64m4
2

+1422975μ2
2

64m6
2

)
J 3

2 + O(J 4
2 ), (3.42)

B1(J1) =
(

15

4m1
+ 159

16m3
1

+ 159μ2
1

8m3
1

+ 10995μ2
1

64m5
1

)

−
(

153

8m2
1

+ 33435

256m4
1

+ 33435μ2
1

128m4
1

+911955μ2
1

256m6
1

)
J1 +

(
213

2m3
1

+ 81465

64m5
1

+ 81465μ2
1

32m5
1

+10899675μ2
1

224m7
1

)
J 2

1 −
(

81015

128m4
1

+1422975

128m6
1

+ 1422975μ2
1

64m6
1

+ 283301175μ2
1

512m8
1

)

×J 3
1 + O(J 4

1 ), (3.43)

B2(J2) =
(

15

4m2
+ 159

16m3
2

+ 159μ2
2

8m3
2

+ 10995μ2
2

64m5
2

)

−
(

153

8m2
2

+ 33435

256m4
2

+ 33435μ2
2

128m4
2

+911955μ2
2

256m6
2

)
J2 +

(
213

2m3
2

+ 81465

64m5
2

+ 81465μ2
2

32m5
2

+10899675μ2
2

224m7
2

)
J 2

2 −
(

81015

128m4
2

+1422975

128m6
2

+ 1422975μ2
2

64m6
2

+ 283301175μ2
2

512m8
2

)

×J 3
2 + O(J 4

2 ). (3.44)

3.3.2 Unequal energy distribution case

In this case expanding oscillation numbers N1 and N2 when
the corresponding energy and angular momentum are small

and inverting the added series, we obtain the similar kind of
relation as,

E = [B1(J1) + B2(J2)]−1/2
√
N1 + N2 − A1(J1) − A2(J2)

+O(N1 + N2 − A1(J1) − A2(J2))3/2 (3.45)

but now,

A1(J1) =
(

4m1 − 15 f

2m1
− 15μ2

1

2m1
− 159 f μ2

1

4m3
1

)

−
(

6 logm1 − 153 f

4m2
1

− 153μ2
1

4m2
1

− 33435 f μ2
1

64m4
1

)
J1

−
(

51

2m1
+ 213 f

m3
1

+ 213μ2
1

m3
1

+ 81465 f μ2
1

16m5
1

)
J 2

1

+
( 267

4m2
1

+ 81015 f

64m4
1

+ 81015μ2
1

64m4
1

+1422975 f μ2
1

32m6
1

)
J 3

1 + O(J1)
4, (3.46)

A2(J2) =
(

4m2 − 15(1 − f )

2m2
− 15μ2

2

2m2
− 159(1 − f )μ2

2

4m3
2

)

−
(

6 logm2 − 153(1 − f )

4m2
2

− 153μ2
2

4m2
2

− 33435(1 − f )μ2
2

64m4
2

)
J2

−
(

51

2m2
+ 213μ2

2

m3
2

+ 213(1 − f )

m3
2

+ 81465(1 − f )μ2
2

16m5
2

)
J 2

2

+
(

267

4m2
2

+ 81015(1 − f )

64m4
2

+ 81015μ2
2

64m4
2

+ 1422975(1 − f )μ2
2

32m6
2

)
J 3

2 + O(J2)
4, (3.47)

B1(J1) =
(

15 f

2m1
+ 159 f 2

4m3
1

+ 159 f μ2
1

4m3
1

+ 10995 f 2μ2
1

16m5
1

)

−
(

153 f

4m2
1

+ 33435 f 2

64m4
1

+ 33435 f μ2
1

64m4
1

+911955 f 2μ2
1

64m6
1

)
J1 +

(
213 f

m3
1

+81465 f 2

16m5
1

+ 81465 f μ2
1

16m5
1

+ 10899675 f 2μ2
1

56m7
1

)
J 2

1

−
(

81015 f

64m4
1

+ 1422975 f 2

32m6
1

+1422975 f μ2
1

32m6
1

+ 283301175 f 2μ2
1

128m8
1

)
J 3

1 + O(J1)
4,(3.48)

B2(J2) =
(

15(1 − f )

2m2
+ 159(1 − f )2

4m3
2

+ 159(1 − f )μ2
2

4m3
2

+10995(1 − f )2μ2
2

16m5
2

)

−
(

153(1 − f )

4m2
2

+ 33435(1 − f )2

64m4
2
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+33435(1 − f )μ2
2

64m4
2

+ 911955(1 − f )2μ2
2

64m6
2

)
J2

+
(

213(1 − f )

m3
2

+ 81465(1 − f )2

16m5
2

+81465(1 − f )μ2
2

16m5
2

+ 10899675(1 − f )2μ2
2

56m7
2

)
J 2

2

−
(

81015(1 − f )

64m4
2

+ 1422975(1 − f )2

32m6
2

+1422975(1 − f )μ2
2

32m6
2

+283301175(1 − f )2μ2
2

128m8
2

)
J 3

2 + O(J2)4. (3.49)

Now we will discuss how the most general relations
(3.46)–(3.49) along with (3.45) reduces to different cases for
different values of f. First we consider f = 1 that is when
energy is fully distributed to the sphere d�1 and no energy is
there to excite the string in the other sphere d�2 as demon-
strated in Fig. 5. In this case as the string don’t have any kind
of motion in the sphere d�2, it won’t be unlogical if we con-

siderJ2 = 0, in addition if we choose μ2 =
√

8
15m2 then we

can easily check from (3.47) and (3.49) we obtainA2(0) = 0
and B2(0) = 0. These will in turn imply N2 = 0. Also, the
relations (3.46) and (3.48) will reduces to (2.34) and (2.35)
respectively. Hence, in this case the energy-oscillation num-
ber relation (3.45) exactly reduces to the energy-oscillation
number relation of NS5-brane (2.33).

One can obtain, similar kind of reduction for f = 0 when
the energy is fully distributed to the second sphere and no
energy is available to the first sphere. In this case string will
not have any kind of motion in the first sphere and we can
obtain A1(0) = B1(0) = N1 = 0 and (3.47) and (3.49)
reduces to (2.34) and (2.35) respectively. Thus for f = 1
or f = 0, i.e., when we switch off the energy in one of the
sphere of I-brane then not only the string profile but also the
energy-oscillation number relation of I-brane reduces to that
of NS5-brane.

When the energy is equally distributed among the spheres
that is for f = 0.5 as demonstrated in Fig. 6, one can
easily verify that the expressions (3.46), (3.47), (3.48) and
(3.49) reduces to (3.41), (3.42), (3.43) and (3.44) respec-
tively. Hence, we can conclude the relations of the most
general case of unequally energy distribution given by the
relations (3.46)–(3.49) are consistent with the corresponding
relations of equally energy distribution.

4 Summary and conclusion

In this paper, first we have obtained the pulsating string solu-
tion i.e., oscillating behaviour under some constraint among

various conserved charges and parameters in the NS5-brane
background. We have shown the string profile is only sen-
sitive to the energy and the winding number m. We have
found that for a given energy, number of lobes increase with
increasing winding numberm, but the amplitude of pulsating
string decreases. Also these lobes are of m fold. Initially, we
assumed the string worldsheet has a fixed surface area for a
given value of energy. To verify this assumption we estimate
the surface area of different plots of Fig. 1 in Appendix A
using the formula of area of revolution of a curve. We find
the surface area of Fig. 1a is approximately twice the surface
area of Fig. 1b and 4.2 times the surface area of Fig. 1c. But
Fig. 1b is 3 fold, and Fig. 1c is 5 fold, so here definitely the
surface area of the worldsheet is not fixed for a particular
value of energy but increases with the increase of winding
number m. Then, why do we get different lobes for the same
energy as shown in Fig. 1?

It is easy to understand having larger number of lobes
represent higher frequency, but here as the energy is con-
stant all three plots of Fig. 1 having different frequencies are
degenerate. At first it might seem to violate Einstein’s rela-
tion E = hν, but note that here the plots are actually periodic
surfaces. For these surfaces we have amplitude in both the
horizontal directions, and so far what we are calling ampli-
tude is actually amplitude squared which can be considered
as intensity and intensity (I ) is given by I = nhν, where
n is number of particles (circular strings here). To keep the
total energy constant here the diagram with larger number of
lobes have lower intensity that is, although frequency is high
but less number of circular strings involved there which keep
the total energy constant. Thus, with a given energy these
circular strings can oscillate with different frequencies but
these different frequency states will involve different num-
ber of them. Again, from Fig. 3 we found with increasing
energy intensity increases. This is because higher intensity
involves more number of circular strings giving rise to higher
energy. From the same figure, we have also seen for the same
value of winding number m, number of lobes increases with
the energy. This is because with higher energy the frequency
of these circular strings also increases giving rise to larger
number of lobes. Thus, energy can be increased by involving
more number of circular strings as well as by increasing the
frequency of these circular strings. For comparing with the
results of I-brane background we also determine the oscilla-
tion number and expand it under short string limit and obtain
the energy oscillation number relation for pulsating string in
NS5-brane background.

Next, we have obtained pulsating string solution in I-
brane background. Here we have found two copies of sim-
ilar kind string profiles arising from the two spheres and
not surprisingly each profile is equivalent to that of string
profile in NS5-brane background. We have argued that in
the near horizon geometry of I-brane background, string
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can have pulsating motion simultaneously and independently
on both the spheres. In order to plot string profile and
expand oscillation number we distribute energy equally and
unequally among the spheres. When energy is equally dis-
tributed among the spheres the string was shown to be pul-
sating on both the spheres simultaneously with same ampli-
tude for m1 = m2 or in other words in this case the circular
strings have same intensity on both the spheres. When energy
is unequally distributed, the string was shown to pulsate with
larger amplitude or circular strings have higher intensity on
the sphere bearing higher energy and simultaneously with
smaller amplitude or circular string have lower intensity on
the sphere bearing lower energy. We have also shown when
we cut off the energy from one of the spheres of I-brane then
the string pulsates only on the other sphere. Finally , we have
also expanded the oscillation number under short string limit
and obtain the energy-oscillation number relation. This gen-
eral energy-oscillation number relation get reduced to the
energy-oscillation number relation of NS5-brane when we
switch off energy in one of the sphere of I-brane and also
reduce to equally energy distributed energy-oscillation num-
ber relation when we distribute energy equally to the spheres.

It would be interesting to look for possible dual gauge
theory operators of these pulsating string solutions. Recently,
in [50] the dynamics of a strongly coupled field theory on
I-brane was investigated holographically. In our case, even
though it is not very clear what kind of dual gauge theory it
would correspond to, it is worth exploring following [50] and
look for operators which may correspond to these solutions
in the string theory side. As an extension of this work, one
can further study the perturbation of these pulsating string
solutions. We hope to come up with some of these in near
future.
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AppendixA:Calculationof surfaceareaof theworldsheet
of Fig. 1

The surface area of Fig. 1 can be estimated by considering
the area of revolution of sinusoidal curves. We know the area
of revolution of the curve f (x) is given by

A3 ≈ 3 ∗ 2π

∫ π/6

0
0.1 sin 6x

√
1 + (0.6 cos 6x)2dx = 0.664206

where a is the other end point of the curve f (x). For Fig. 1a,
the function is f1(x) = 0.4 sin 2x, f ′

1(x) = 0.8 cos 2x and
we integrate from 0 to π/2 (approximately). Using above
equation we estimate the surface area of Fig. 1a as A1,

A1 ≈ 2π

∫ π/2

0
0.4 sin 2x

√
1 + (0.8 cos 2x)2 dx = 2.76015.

(4.1)

For Fig. 1b, the function is f2(x) = 0.2 sin 4x, f ′
2(x) =

0.8 cos 4x and here we integrate from 0 to π/4 (approxi-
mately). Here, the surface area A2 is,

A2 ≈ 2 ∗ 2π

∫ π/4

0
0.2 sin 4x

√
1 + (0.8 cos 4x)2dx = 1.38008

(4.2)

As there are two lobes we multiplied a factor of 2 in front.
For Fig. 1c, the function is f3(x) = 0.1 sin 6x and f ′

3(x) =
0.6 cos 6x and in this case we integrate from 0 toπ/6 (approx-
imately). The surface area A3 in this case is given by,

A3 ≈ 3 ∗ 2π

∫ π/6

0
0.1 sin 6x

√
1 + (0.6 cos 6x)2dx = 0.664206

(4.3)

Hence, A1 = 2A2 and A1 ≈ 4.2A3.
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