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Abstract We study Gaussian quantum steering in the
Schwarzschild–de Sitter (SdS) spacetime that is endowed
with both a black hole event horizon (BEH) and a cosmo-
logical event horizon (CEH), giving rise to two different
Hawking temperatures. It is shown that the Hawking effect of
the black hole always reduces the quantum steering, but the
Hawking effect of the expanding universe does not always
play the same role. For the first time, we find that the Hawk-
ing effect can improve quantum steering. We also find that
the observer who locates in the BEH has stronger steerabil-
ity than the observer who locates in CEH. Further, we study
the steering asymmetry, and the conditions for two-way, one-
way and no-way steering in the SdS spacetime. Finally, we
study the Gaussian quantum steering in the scenario of effec-
tive equilibrium temperature. We show that quantum steer-
ing reduces monotonically with the effective temperature but
now increases monotonically with the Hawking temperature
of the black hole, which banishes the belief that the Hawking
effect can only destroy quantum steering.

1 Introduction

Schrödinger first introduced Einstein–Podolsky–Rosen
(EPR) steering to argue the action at a distance paradox in the
famous work by Einstein, Podolsky, and Rosen [1,2]. EPR
steering, a category of the nonlocal correlations, representing
the ability of one observer to affect another observer’s state
via local measurements, is different from both Bell nonlo-
cality and quantum entanglement by possessing an asym-
metric property. Like quantum entanglement, EPR steering
is also a very important quantum resource that can be used for
quantum information tasks, such as subchannel discrimina-
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tion and one-sided device-independent quantum key distribu-
tion [3–8]. Despite the fundamental importance of quantum
steering, it received increasing attention until Wiseman et
al. developed this concept in 2007 and introduced a rigor-
ous operational definition [9]. Subsequently, compared with
quantum entanglement, it was found that quantum steering
has richer properties. On account of its unique directional
property, quantum steering shows an asymmetric manifesta-
tion that further leads to one-way steering, that is Bob can
steer Alice but not vice versa [10–14].

In the last years, people have been very much interested
in relativistic quantum information [15–49]. Especially, the
influences of the Hawking and the Unruh effects on quantum
correlation and coherence have been widely studied [15–43].
It has been shown that the Hawking effect destroys quantum
steering between Alice at an asymptotically flat region and
Bob who hovers outside the event horizon, in which bosonic
steering and fermionic steering have different behaviors: The
former asymptotically vanishes [50], while the latter can sur-
vive forever in Schwarzschild spacetime [27]. It also has been
shown that the Unruh effect has a similar action on quantum
steering [51], and the quantum steering for two relatively
accelerated detectors in flat space has been studied [52]. Note
that all these researches are restricted to the spacetime of the
single-event horizon.

The de Sitter solution is a simplest solution of general
relativity field equations with a nonzero cosmological con-
stant [53–56]. Since our universe is undergoing an acceler-
ated expansion [57,58], the study of phenomena in space-
time asymptotically de Sitter is more realistic than that in
spacetime asymptotically flat. Therefore, the Schwarzschild–
de Sitter (SdS) spacetime, which is described by the cos-
mological constant and the geometric mass of the central
Schwarzschild black hole [59–62], is of great interest. In this
more realistic scenario, the solutions of the black hole are
asymptotically de Sitter, rather than asymptotically flat. The
SdS spacetime is the existence of the black hole event hori-
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zon (BEH) and the cosmological event horizon (CEH), which
admit two-temperature thermodynamics qualitatively much
different from the single horizon. Compared to the cases of
single-event horizon spacetime, quantum information pro-
cessing in multi-event horizon spacetime may have richer
properties.

In this work, we present a quantitative investigation for
Gaussian quantum steerability of free bosonic fields in the
Schwarzschild–de Sitter (SdS) spacetime endowed with both
a BEH and a CEH [63]. We initially consider a two-mode
squeezed Gaussian state with squeezing parameter s shared
by Alice and Bob [17]. Our model involves two modes: the
mode A observed by Alice located at the BEH; the mode
B observed by Bob located at the CEH. A Kruskal vacuum
state observed by a Kruskal observer would be detected as a
thermal state from Alice and Bob’s viewpoint. Such a pro-
cess in quantum information scenario can be described as the
Gaussian channels acting on quantum state shared by Alice
and Bob [64,65]. We will study Gaussian quantum steering
from two independent descriptions of thermodynamics and
particle creation in this background. The first involves ther-
mal equilibrium of an observer with either of the horizons,
and the second treats both the horizons combined so as to
define an effective equilibrium temperature. We find that the
two descriptions lead to very different results, which suggests
the fact that quantum information is observer dependent.

The paper is organized as follows. In Sect. 2, we
briefly introduce the measure of Gaussian quantum steer-
ing. In Sect. 3, we discuss how the gravitational effect of
the Schwarzschild–de Sitter black hole spacetime can be
described by the Gaussian channels. In Sect. 4, we study the
behaviors of Gaussian quantum steering and its asymmetry in
multi-event horizon spacetime. In Sect. 5, we study Gaussian
quantum steering in the scenario of the effective temperature.
The last section is devoted to a brief conclusion.

2 Measure of Gaussian quantum steering

We consider a two-mode Gaussian quantum system of con-
tinuous variables that supports on the Hilbert space H =
H1 ⊗ H2, where Hi is the infinite dimensional Hilbert
space of each bosonic subsystem [66]. Quadrature opera-
tors for each mode are described by q̂i = âi + â†

i and

p̂i = −i(âi − â†
i ), where âi and â†

i are respectively the anni-
hilation and creation operators of each modes, which meet the
commutation relations [âi , â†

j ] = δi j . These quadratures can

be grouped in the vector of operators R̂ = (q̂1, p̂1, q̂2, p̂2),

and the canonical commutation relation then becomes as

[R̂i , R̂ j ] = 2i�i j , with � = ( 0 1
−1 0

)⊕
2

being the symplec-
tic matrix. The characteristics of a two-mode Gaussian state
ρAB can be fully described by the expectation 〈R̂〉 and the
second statistical moments σi j = Tr

[{R̂i , R̂ j }+ ρAB
]
. We

can further build a covariance matrix σAB with elements σi j ,

which can be written in the standard block form

σAB =
( A X
X T B

)
, (1)

whereA andB are the covariance matrices that correspond to
each mode, andX is the correlation matrix between them. For
a physically legitimate Gaussian state, its covariance matrix
must fulfill the uncertainty relation σAB + i� ≥ 0.

Quantum steering denotes a form of nonlocal correlations,
which allows one party of a bipartite quantum system to
steer (influence) the quantum state of the other party using
local measurement. The post-measurement communication
between the parties occurs for detecting this effect in com-
pliance with the no-signaling theorem. According to them,
quantum steering of mode A by mode B of a two-mode Gaus-
sian state can be quantified by the following measure named
B → A quantum steerability [67]

GB→A(σAB) = max

{
0,

1

2
ln

det B
det σAB

}
. (2)

Similarly, we have the quantification of A → B Gaussian
steerability

GA→B(σAB) = max

{
0,

1

2
ln

det A
det σAB

}
. (3)

The matrix A and B in the above two equations are defined
in Eq. (1).

Unlike quantum entanglement, quantum steering has an
asymmetric property. We can distinguish it into three cases:
(i) no-way steering:GA→B(σAB) = 0 andGB→A(σAB) = 0;
(ii) one-way steering: GA→B(σAB) > 0 and GB→A(σAB) =
0 or GA→B(σAB) = 0 and GB→A(σAB) > 0; (iii) two-way
steering: GA→B(σAB) > 0 and GB→A(σAB) > 0. The sec-
ond case demonstrates clearly the asymmetric nature of quan-
tum correlations which is conjectured to play an important
role in various communication protocols [3–8]. To check the
degree of asymmetric steerability, one can define the steering
asymmetry as

G�
AB = |GA→B(σAB) − GB→A(σAB)|. (4)

The steering asymmetry G�
AB for two-mode Gaussian states

cannot exceed ln 2.

3 Gravitational effect as the Gaussian channels

The Schwarzschild–de Sitter (SdS) spacetime has line ele-
ment given by

ds2 = − f (r)dt2 + f (r)−1dr2 + r2(dθ2 + sin2 θdφ2),

(5)
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where f (r) = 1 − 2M
r − �r2

3 with the mass M of the black
hole and the cosmological constant � [68]. For 3M

√
� < 1,

this SdS spacetime admits three Killing horizons

rH = 2√
�

cos

[
π + cos−1(3M

√
�)

3

]
,

rC = 2√
�

cos

[
cos−1(3M

√
�) − π

3

]
,

rU = −(rH + rC ), (6)

where rH and rC are respectively the BEH and the CEH
of the SdS spacetime. Here, the solution rU is negative and
unphysical because we cannot extend the coordinate range
beyond the curvature singularity at r = 0. Generally, we have
rH < rC . For 3M

√
� → 1, we obtain rH → rC , which is

known as the Nariai limit. The surface gravities of the black
hole and an expanding universe are, respectively, expressed
as

κH = �(2rH + rC )(rC − rH )

6rH
,

−κC = �(2rC + rH )(rH − rC )

6rC
. (7)

Since the repulsive effects are generated by a positive cosmo-
logical constant, the surface gravity of an expanding universe
is negative. The two event horizons of the SdS spacetime gen-
erate two thermodynamic relationships with temperatures κH

2π

and κC
2π

. Because rH < rC , we have κH > κC . This means
that the Hawking temperature of the black hole κH

2π
is always

bigger than the Hawking temperature of an expanding uni-
verse κC

2π
.

Because r = rH , rC are two coordinate singularities [63],
we consider Kruskal-like coordinates in order to extend the
spacetime beyond them

ds2 = −2M

r

∣∣∣∣1 − r

rC

∣∣∣∣

1+ κH
κC

(
1 + r

rH + rC

)1− κH
κU

dμ̄Hd ν̄H

+r2(dθ2 + sin2 θdφ2), (8)

ds2 = −2M

r

∣∣∣∣
r

rH
− 1

∣∣∣∣

1+ κC
κH

(
1 + r

rH + rC

)1+ κC
κU

dμ̄Cd ν̄C

+r2(dθ2 + sin2 θdφ2), (9)

where

μ̄H = − 1

κH
e−κHμ, ν̄H = 1

κH
eκH ν,

μ̄C = 1

κC
eκCμ,

ν̄C = − 1

κC
e−κCν, (10)

are the Kruskal null coordinates. Note that μ = t−r� and ν =
t + r� are the usual retarded and advanced null coordinates
with the radial tortoise coordinate, which is written as

r� = 1

2κH
ln

∣
∣∣∣
r

rH
− 1

∣
∣∣∣ − 1

2κC
ln

∣
∣∣∣1 − r

rC

∣
∣∣∣

+ 1

2κU
ln

∣∣∣∣
r

rU
− 1

∣∣∣∣. (11)

One finds that Eqs. (8) and (9) are free of coordinate sin-
gularities, respectively, on BEH and CEH of the SdS space-
time. However, there is no single Kruskal coordinate for the
SdS spacetime, which simultaneously removes the coordi-
nate singularities for both horizons. The Kruskal timelike
and spacelike coordinates can be defined as

μ̄H = TH − RH , ν̄H = TH + RH ,

μ̄C = TC − RC , ν̄C = TC + RC . (12)

By using Eq. (10), we, respectively, obtain the relationships

−μ̄H ν̄H = R2
H − T 2

H = 1

κ2
H

∣∣
∣∣1 − r

rC

∣∣
∣∣

−κH /κC

×
∣
∣∣∣
r

rU
− 1

∣
∣∣∣

κH /κC
(

r

rH
− 1

)
,

−μ̄C ν̄C = R2
C − T 2

C = − 1

κ2
C

∣∣ r

rU
− 1

∣∣−κC/κU

×
∣∣
∣∣
r

rH
− 1

∣∣
∣∣

−κC/κH
(

1 − r

rC

)
. (13)

According to Eq. (7), any equilibrium of two types of
temperature is not possible. One way to solve this problem
is to place a thermally opaque membrane in the region C,

which separates the region C into two thermally isolated
subregions A and B (C = A ∪ B) in Fig. 1 [63,68]. There-
fore, an observer located at the BEH detects Hawking radi-
ation at temperature κH

2π
, and another observer located at the

CEH detects Hawking radiation at another temperature κC
2π

.

Note analogically that even in an asymptotically flat black
hole spacetime, a perfectly thermally reflecting membrane is
needed to encase the black hole in order to define the Hattel–
Hawking state, which describes the thermal equilibrium of
the black hole with blackbody radiation at the Hawking tem-
perature [69].

We consider a free, massless, and minimally coupled
scalar field that satisfies the Klein–Gordon equation [70]

1√−g

∂

∂xμ

(√−ggμν ∂�

∂xν

)
= 0. (14)

For any of the coordinate systems, the mode functions by
solving Eq. (14) are simply plane waves. Firstly, we consider
the side of the membrane that faces the black hole in subre-
gion A. Similar to the Unruh effect, the field quantization can
be done in a similar method. Therefore, we can use the black
hole mode and the Kruskal mode to quantize the scalar field,
respectively, and then obtain the Bogoliubov transformations
between the creation and annihilation operators in different
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Fig. 1 The Penrose–Carter diagram plots the causal structure of the
extended SdS spacetime. i± respectively denote the future and past time-
like infinities and the infinities I± are spacelike. A thermally opaque
membrane placed in region C (rH < r < rC ) cuts it into two subre-

gions: A and B. The regions R, L are time reversed with respect to the
region C. All the seven wedges are causally disconnected. Alice and
Bob are restricted to the subregions A and B, respectively

coordinates [70]. After properly normalizing the state vector,
the Kruskal vacuum becomes

|0〉κH =
∞∑

n=0

tanhn r

cosh r
|nA, nL 〉, (15)

where cosh r = (1−e
− 2πω

κH )− 1
2 , |n〉A and |n〉L are the orthog-

onal bases in the regions A and L , respectively. Here, the
region L is causally disconnected the region A. Similarly,
the Kruskal vacuum in an expanding universe can be given
by

|0〉κC =
∞∑

n=0

tanhn w

cosh w
|nB, nR〉, (16)

where cosh w = (1 − e
− 2πω

κC )− 1
2 , |n〉B and |n〉R are the

orthogonal bases in the regions B and R, respectively. Here,
the regions R and B are causally disconnected. Note that
although the construction of the Gibbons–Hawking state is
mathematically consistent, such a thermally opaque mem-
brane can actually be achieved between BEH and CEH. Per-
haps one possible way to achieve this is to consider the Klein–
Gordon equation with the radial function that satisfies
(

− ∂2

∂t2 + ∂2

∂r2
�

)
R(r) +

(
1 − 2M

r
− �r2

3

)

×
(
l(l + 1)

r2 + 2M

r3 − �

3

)
R(r) = 0. (17)

The effective potential term that appears in the above equa-
tion disappears at both BEH and CEH and is positive in
between them. Therefore, This bell shaped potential will
serve as a barrier between BEH and CEH. Modes that cannot
penetrate it will be limited to the regions near the horizons
and will be separated from each other. Hence, the effective

potential can be considered a natural realization of the ther-
mally opaque membrane described above.

From Eqs. (15) and (16), we can see that the effect of grav-
itational effect can be described by the two-mode squeezing
operatorsUAL andUBR [17]. The two-mode squeezing oper-
ators in phase space are the Gaussian operations that preserve
the Gaussianity of the input states, and correspond to the sym-
plectic transformations

SA,L(r) =
(

cosh r I2 sinh r Z2

sinh r Z2 cosh r I2

)
, (18)

SB,R(w) =
(

cosh w I2 sinh wZ2

sinh wZ2 cosh w I2

)
. (19)

Here, I2 is the 2 × 2 identity matrix and Z2 is the Pauli Z
operator.

4 Gaussian quantum steering in multi-event horizon
SdS spacetime

In this paper, we initially consider a two-mode squeezed
Gaussian Kruskal state with squeezing parameter s shared by
Alice and Bob [17]. Its covariance matrix can be expressed
as

σAB(s) =
(

cosh 2s I2 sinh 2sZ2

sinh 2sZ2 cosh 2s I2

)
. (20)

Here, the mode A observed by Alice is located at the BEH in
subregion A ofC, and the mode B observed by Bob is located
at the CEH in subregion B of C. Due to this placement, the
gravitational effect corresponds to the two-mode squeezing
operations related to the symplectic transformations SA,L(r)
and SB,R(w). Under such transformations, the initial modes
A and B are mapped into four sets of modes: the mode A in
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region A; the mode B in region B; the mode Ā in region L;
the mode B̄ in region R. Therefore, the covariance matrix
that describes the complete system is given by

σAB ĀB̄(s, r, w) = [
SA, Ā(r) ⊕ SB,B̄(w)

][
σAB(s) ⊕ I ĀB̄

]

[
SA, Ā(r) ⊕ SB,B̄(w)

] T, (21)

where SA, Ā(r) and SB,B̄(w) for Alice and Bob are the sym-
plectic phase space representations of two-mode squeezing
operation, which are given by Eqs. (18) and (19).

Because the regions A and B are causally disconnected
from the regions L and R, respectively, we should take the
trace over modes Ā and B̄. By performing this operation
on Eq. (21), we obtain the covariance matrix σAB(s, r, w)

between Alice and Bob

σAB(s, r, w) =
(AAB XAB

X T
AB BAB

)
, (22)

where AAB = [cosh(2s) cosh2(r) + sinh2(r)]I2, XAB =
[cosh(r)
cosh(w) sinh(2s)]Z2 and BAB = [cosh(2s) cosh2(w) +
sinh2(w)]I2. Employing Eqs. (2) and (3), we obtain the ana-
lytic expressions for the Gaussian quantum steering B → A
and A → B

GB→A(σAB)=max

{
0, ln

cosh(2s) cosh2 w + sinh2 w

Z

}
,

(23)

GA→B(σAB)=max

{
0, ln

cosh(2s) cosh2 r + sinh2 r

Z

}
,

(24)

where Z = cosh(2s)[cosh2 r sinh2 w + sinh2 r cosh2 w] +
cosh2 r cosh2 w+ sinh2 r sinh2 w. We can see that the Gaus-
sian quantum steering depends not only on the squeezing
parameter s, but also on the effects of the black hole and
an expanding universe. The Gaussian steering asymmetry is
thus calculated via Eq. (4).

The dependency of the Hawking temperatures κH
2π

of BEH
and κC

2π
of CEH on the mass M of the black hole is given in

Fig. 2a. It is shown that both κH
2π

and κC
2π

are the monotonically
decreasing functions of the mass M of the black hole. When
the mass M of the black hole decreases, the gravitational
effect becomes stronger and stronger, thus quantum steer-
ing decreases continuously, and eventually both GA→B and
GB→A happen sudden death (see Fig. 2b). Due to the different
M values of sudden death, quantum steering transforms from
two-way to one-way and no-way respectively. Interestingly,
quantum steeringGA→B is always bigger than quantum steer-
ing GB→A before sudden death. Note that the surface gravity
κH is always bigger than the surface gravity κC , thus the
result is nontrivial and nonintuitive, which means that the
observer who has larger temperature has stronger steerabil-
ity than the other one. This result also can be verified though

Eqs. (23) and (23) by observing that cosh(2s) cosh2(r) +
sinh2(r) > cosh(2s) cosh2(w) + sinh2(w).

If a two-mode Gaussian state is immersed in the two inde-
pendent thermal baths at an asymptotically flat region, then
a similar conclusion could also be correct [71]. For exam-
ple, for two fixed temperatures of the thermal bath (T1 and
T2), Charlie who stays in the thermal bath with a higher tem-
perature T1 (T1 > T2) has more stronger steerability from
Charlie to David than quantum steerability from David to
Charlie. Therefore, the phenomenon is not a genuine effect
of SdS spacetime. The clarification needed is that as long
as one or both of the fixed temperatures of the thermal bath
increase (T3 > T1 and T4 ≥ T2), quantum steerability from
Charlie to David and quantum steerability from David to
Charlie decrease. In addition, the difference is that the Hawk-
ing effect of the expanding universe in multi-event horizon
spacetime may increase quantum steering (see below), while
the thermal bath can only reduce quantum steering.

We also show the steering asymmetry G�
AB as a function

of M, which reveals a non-monotonic change in M. The
steering asymmetry for two-way steering is determined by

G�,2
AB = ln

cosh(2s) cosh2 r + sinh2 r

cosh(2s) cosh2 w + sinh2 w
,

which is a decreasing function of the M. The steering asym-
metry for one-way steering is given by

G�,1
AB = ln

cosh(2s) cosh2 r + sinh2 r

Z
,

which is an increasing function of the M. The maximal steer-
ing asymmetry takes place at the transition point from two-
way steering to one-way steering.

In Fig. 3a, we show the dependency of the Hawking tem-
peratures κH

2π
and κC

2π
on the cosmological constant �. It is

shown that with the increase of the cosmological constant �,

the Hawking temperature κH
2π

of BEH decreases monotoni-
cally, while the Hawking temperature κC

2π
of CEH changes

non-monotonically. In Fig. 3b, we plot the Gaussian quan-
tum steering GA→B, GB→A, and steering asymmetry G�

AB
as functions of the cosmological constant �. It is shown
that, with the increase of the cosmological constant �, the
steering GB→A experiences a sudden birth at some � and
then increases monotonically, eventually approaches to the
initial value ln[cosh(2s)] in the Nariai limit 3M

√
� → 1.

For 40 < � < 50, the Hawking temperature κC
2π

of CEH
increases with the growth of the �, and the steering GA→B

and the steering GB→A increase with the �. This means that
the Hawking effect the expanding universe can enhance and
protect quantum steering in the SdS spacetime. Combining
Figs. 2 and 3, we can conclude that the Hawking temper-
ature κH

2π
of BEH downgrades Gaussian quantum steering

monotonously, while the Hawking temperature κC
2π

of CEH
changes Gaussian quantum steering non-monotonically.
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=

=

(b)(a)

Fig. 2 The Hawking temperature κH
2π

of BEH, the Hawking temperature κC
2π

of CEH, the Gaussian quantum steering GA→B , GB→A and their
steering asymmetry G�

AB as functions of the mass M of the black hole for fixed ω = 0.2 and � = s = 1

Fig. 3 The Hawking temperature κH
2π

of BEH, the Hawking temperature κC
2π

of CEH, the Gaussian quantum steering GA→B , GB→A and steering
asymmetry G�

AB as functions of the cosmological constant � for fixed ω = s = 1 and M = 0.033

Fig. 4 Gaussian quantum steering GA→B , GB→A and steering asymmetry G�
AB as functions of the squeezing parameter s for different mass M of

the black hole and fixed � = 1 and ω = 0.2

In Fig. 4, we plot Gaussian quantum steering and the
steering asymmetry as functions of the squeezing parame-
ter s for different mass M of the black hole. We see that,
for M = 0.01 (Fig. 4a), quantum steering cannot be gener-
ated no matter how large the squeezing parameter s is; For
M = 0.1 (Fig. 4b), quantum steering GA→B appears sud-
den birth at some s and then increases monotonically with s,

while steering GB→A remains zero. The steering asymme-
try G�

AB is determined by GA→B in this case; For M = 0.2
(Fig. 4c), both GA→B and GB→A appear sudden birth and
then increase monotonically with s. In this case, GA→B is
always larger than GB→A, and the maximal steering asym-
metry G�

AB indicates the transition from one-way to two-way
steering. These results demonstrate the fact that entangle-
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Fig. 5 a Gaussian steering asymmetry G�
AB as functions of the squeezing parameter s and the mass M of the black hole for fixed � = 1 and

ω = 0.2. b Gaussian steering asymmetry G�
AB as functions of the squeezing parameter s and the cosmological constant � for fixed M = 0.033 and

ω = 1

ment is the necessary but not sufficient condition of quantum
steering and quantum steering becomes feasible only when
entanglement reaches some levels.

To better understand the interplay between squeezing and
the gravitational effect of SdS spacetime in the generation
of Gaussian steering, we plot Gaussian steering asymmetry
G�
AB as a function of s and M or of s and � in Fig. 5. We

see from Fig. 5a that, for smaller (M < 0.05) and larger
(M > 0.3) mass of the black hole, steering asymmetry G�

AB
remains zero no matter how large the squeezing parameter
s is, in which both GA→B and GB→A are zero indeed (see
Fig. 4a); for the middle M (say M = 0.15), steering asym-
metry G�

AB increases from zero and then remains almost an
asymptotic value with the increasing of s, which corresponds
indeed the case of Fig. 4c; the purple-yellow regions (say
M = 0.1 and 0.25) correspond to the case of Fig. 4b, in
which only one steering (i.e. GA→B) occurs sudden birth.
Figure 5b shows that the maximal steering asymmetry takes
place in the region where � has small values. From these
analysis, we conclude that proper values of M and small �

of SdS are beneficial to the asymmetry of Gaussian quantum
steering.

It is interesting to find the parameter regions in which
two-way, one-way and no-way quantum steering take place.
Because the Hawking temperature of BEH is always bigger
than the Hawking temperature of CEH, resulting in GA→B ≥
GB→A, the condition for two-way quantum steering (Please
refer to the red region in Fig. 6) is simply determined by
GB→A > 0, or equivalently written as

cosh(2s)[cosh2 r sinh2 w + cosh2 w(sinh2 r − 1)]
+ sinh2 w(sinh2 r − 1) + cosh2 r cosh2 w < 0. (25)

The condition for one-way quantum steering (Please refer to
the blue region in Fig. 6), GA→B > 0 and GB→A = 0, can
be written as

Fig. 6 Gaussian quantum steering as functions of the cosmological
constant � and the mass M of the black hole for fixed ω = s = 1

⎧
⎪⎪⎨

⎪⎪⎩

cosh(2s)[cosh2 w sinh2 r + cosh2 r(sinh2 w − 1)]
+ sinh2 r(sinh2 w − 1) + cosh2 w cosh2 r < 0,

cosh(2s)[cosh2 r sinh2 w + cosh2 w(sinh2 r − 1)]
+ sinh2 w(sinh2 r − 1) + cosh2 r cosh2 w ≥ 0.

(26)

Finally, the condition for no-way quantum steering (Please
refer to the yellow region in Fig. 6), GA→B = 0, is given by

cosh(2s)[cosh2 r sinh2 w + cosh2 w(sinh2 r − 1)]
+ sinh2 w(sinh2 r − 1) + cosh2 r cosh2 w ≥ 0. (27)

The maximal steering asymmetry takes place at the transition
from one-way to two-way steering, which fits

cosh(2s)[cosh2 r sinh2 w + cosh2 w(sinh2 r − 1)]
+ sinh2 w(sinh2 r − 1) + cosh2 r cosh2 w = 0. (28)
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We can clearly see the transition between one-way and two-
way steering in Fig. 6. Unfortunately, due to the complexity of
calculations, we cannot mathematically provide the scale for
the sudden death of quantum steering in SdS spacetime, but
we can intuitively draw the region where quantum steering
survives in Fig. 6.

5 Gaussian quantum steering under the effective
temperature

Since the surface gravity of the black hole κH is bigger than
the surface gravity of an expanding universe κC , the flux of
outgoing particles emitted from the BEH is greater than the
flux of particles propagating inward emitted from the CEH
at any point rH < r < rC , which results in an effective
outward flux and evaporation of the black hole [72–74]. The
effective temperature Teff is closely related to these particle
fluxes. As is well known, increasing the Hawking tempera-
ture of the black hole reduces quantum correlation in the sin-
gle horizon. However, the influence of effective temperature
on Gaussian quantum steering is unclear in multi-event hori-
zon spacetime. Therefore, in this section, we will explore how
the effective equilibrium temperature Teff associated with the
Hawking temperatures κH

2π
and κC

2π
affects Gaussian quantum

steering.
Since we treat both the horizons together, the analytic

Feynman propagator that connects both the horizons can-
not exist [68]. Unlike the single horizon cases, one cannot
construct any single global mode that is analytic on both
the horizons. This means that the Kruskal-like coordinates
cannot remove the coordinate singularities of both the hori-
zons. Therefore, one should introduce a new coordinate sys-
tem to solve the issue of the effective temperature Teff . The
BEH and CEH for the multi-event spacetime can provide
two thermodynamic relationships with the Hawking temper-
atures κH/2π and κC/2π,

δM = κH

2π

δAH

4
, δM = − κC

2π

δAC

4
, (29)

where AH and AC are the areas of the BEH and CEH of
the SdS spacetime, respectively. Employing Eqs. (6) and (7),
one can define a total entropy S = (AH + AC )/4 from an
observer in the entire regionC, resulting in a thermodynamic
relationship to the effective equilibrium temperature Teff in
order to treat both horizons in an equal footing [72–74]

δM = − κHκC

2π(κH − κC )
δS = −TeffδS. (30)

The effective equilibrium temperature Teff is associated with
an emission probability corresponding to the particle flux
on the BEH created by CEH. This means that particle cre-
ation arises in a single region, rather than in causally discon-

nected spacetime wedges. Simply, the surface gravity κU of
the unphysical horizon can be expressed as

1

κU
= 1

κC
− 1

κH
. (31)

We note that the appearance of κU can guarantee the existence
of the effective equilibrium temperature Teff . From Eqs. (7)
and (31), we can find that Teff → 0 as � → 0.

Accordingly, the t − r part of Eq. (5) can be rewritten as

ds2 = −2M

r

∣∣∣∣1 − r

rC

∣∣∣∣

1+ κU
κC

∣∣∣∣
r

rH
− 1

∣∣∣∣

1− κU
κH

dμ̄d ν̄, (32)

with ū = − 1
κU

e−κUμ and ν̄ = 1
κU

eκU ν [63]. In this way,
we analytically extend the spacetime metric at rU . Note that
the metric Eq. (32) cannot correspond to the beyond horizon
extensions and represents a coordinate system only in the
region of interest A ∪ B, rH < r < rC .

Now we can use coordinates (μ, ν) and (μ̄, ν̄) to define
a field quantization, respectively. After using the standard
procedure of field quantization, one obtains the vacuum state
|0̄〉 in (μ̄, ν̄) mode [63]

|0̄〉 =
∞∑

n=0

tanhn γ

cosh γ
|n, n〉, (33)

which is a squeezed state in SdS spacetime. Here cosh γ =
(1 − e

− 2πω
κU )− 1

2 , and the effective temperature is defined by
Teff = κU

2π
. It should be emphasized that the entangled pair

creation is occurring only in region A ∪ B (rH < r < rC ).
We initially assume that a two-mode squeezed Gaussian

state of Eq. (20) is in region C, which can be expanded
by Eq. (33). After tedious but straightforward calculations,
we obtain the expressions for Gaussian quantum steering
between Alice and Bob

GA→B
3 (σAB) = GB→A

3 (σAB)

= max
{
0, ln

cosh(2s) cosh2 γ + sinh2 γ

cosh2 γ [2 cosh(2s) sinh2 γ + cosh2 γ ] + sinh4 γ

}
.

(34)

It means that the steering asymmetry always vanishes under
the scenario of effective temperature. In Fig. 7, we plot the
effective equilibrium temperature Teff and Gaussian quantum
steering GA→B

3 as functions of the mass M of the black hole
or the cosmological constant �. It shows that the effective
equilibrium temperature Teff increases monotonically and
accordingly the steering GA→B

3 reduces monotonically with
the growth of M and �, meaning that GA→B

3 is a monotonic
decreasing function of Teff . It means that from the scenario of
effective temperature, the quantum steering never degrades
but increases with the increasing of the black hole tempera-
ture. We emphasize once again that the (entangled) pair cre-
ation with the effective temperature Teff only occurs in the
single region rH < r < rC and not in the causally discon-
nected wedges as of the preceding section. Therefore, |0̄〉 can-
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Fig. 7 The effective equilibrium temperature κU
2π

and Gaussian quantum steering GA→B
3 a as a function of the mass M of the black hole for fixed

� = s = ω = 1, and b as a function of the cosmological constant � for fixed M = 0.5 and s = ω = 1

not be considered any analogue of the global or Minkowski
vacuum. We also emphasize that the appearance of the sur-
face gravity κU (instead of κH or κC ) ensures the emergence
of the effective temperature Teff . Based on the above anal-
ysis, the effective temperature Teff has completely different
meanings with the Hawking temperatures κH

2π
and κC

2π
. From

Eqs. (7) and (31), we obtain

lim
3M

√
�→0

Teff ≈ 1

2π

√
�

3
, lim

3M
√

�→1
Teff ≈ 1

2π

3
√

�

4
.

It is to say that the effective temperature Teff is not diverg-
ing for the extremely hot black hole (3M

√
� → 0 with �

fixed) and nonvanishing in the Nariai limit (3M
√

� → 1).

With the increase of the Hawking temperature of the black
hole due to a decrease in 3M

√
�, the black hole emits more,

leading to a greater outward flux on the CEH. This corre-
sponds to a decrease in effective inward flux or a reduction in
effective temperature, showing that increasing the Hawking
temperature of the black hole reduces the effective tempera-
ture. Therefore, the effective temperature in the Nariai limit
is greater than that of the extremely hot black hole. This
indicates that the steering GA→B

3 recovers its initial value
ln[cosh(2s)] for the extremely hot black hole in SdS space-
time. This similar conclusion has been used [63].

6 Conclusions

The gravitational effect of the black hole and an expand-
ing universe on Gaussian quantum steering and its asym-
metry in the Schwarzschild–de Sitter black hole spacetime
has been investigated. This spacetime is endowed with black
hole event horizon (BEH) as well as cosmological event
horizon (CEH). By placing a thermally opaque membrane
in between the two horizons, two independent thermal-
equilibrium regions are constructed. Our model involves two
modes: the mode A observed by Alice located at BEH; the

mode B observed by Bob located at CEH. We have found that
quantum steering between Alice and Bob reduces monotoni-
cally with the Hawking temperature of the black hole and may
cause sudden death, but changes non-monotonically with
the Hawking temperature of the expanding universe. This
means that the Hawking effect of the expanding universe is
not always harmful to Gaussian quantum steering. We have
also studied the asymmetry of quantum steering and found
that Alice who locates in the higher temperature of BEH has
stronger steerability than Bob who locates in the lower tem-
perature of CEH. This result is interesting and nonintuitive,
because the thermal noise introduced by the Hawking tem-
perature destroys quantum steering. We have presented the
conditions for two-way, one-way, and no-way steering, and
found that the maximal steering asymmetry always occurs
at the transition from one-way to two-way steering. Finally,
we have demonstrated the relationship between steering and
entanglement. We have found that Gaussian quantum steer-
ing suffers from a sudden birth with the increase of the initial
squeezing, indicating that quantum steering becomes feasi-
ble only when entanglement reaches some levels.

On the other hand, we have studied Gaussian quantum
steering from the scenario of effective temperature which is
associated with both the Hawking temperature of the black
hole and the Hawking temperature of the expanding uni-
verse. In this scenario, particle creation with the effective
temperature occurs in a single region rH < r < rC and not
in causally disconnected spacetime wedges. In contrast to
the effective temperature, particle creation near the BEH and
CEH with the Hawking temperature occurs in causally dis-
connected spacetime wedges. We have found that the Gaus-
sian quantum steering reduces monotonically with the effec-
tive temperature. Actually, Gaussian quantum steering in this
scenario increases monotonically with the Hawking temper-
ature of the black hole no matter how hot the black hole
is. This is because the effective temperature increases with
the growth of the mass of the black hole. In other words,
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reducing the Hawking temperature of the black hole actually
increases the effective temperature. Therefore, the effective
temperature and Hawking temperature of the black hole have
different effects on Gaussian quantum steering due to their
differences.
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