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Abstract We extend the anholonomic frame and connec-
tion deformation method, AFCDM, for constructing exact
and parametric solutions in general relativity, GR, to geomet-
ric flow models and modified gravity theories, MGTs, with
nontrivial torsion and nonmetricity fields. Following abstract
geometric or variational methods, we can derive correspond-
ing systems of nonmetric gravitational and matter field equa-
tions which consist of very sophisticate systems of coupled
nonlinear PDEs. Using nonholonomic frames with dyadic
spacetime splitting and applying the AFCDM, we prove that
such systems of PDEs can be decoupled and integrated in
general forms for generic off-diagonal metric structures and
generalized affine connections. We generate new classes of
quasi-stationary solutions (which do not depend on time like
coordinates) and study the physical properties of some physi-
cally important examples. Such exact or parametric solutions
are determined by nonmetric solitonic distributions and/or
ellipsoidal deformations of wormhole hole configurations.
It is not possible to describe the thermodynamic proper-
ties of such solutions in the framework of the Bekenstein–
Hawking paradigm because such metrics do not involve, in
general, certain horizons, duality, or holographic configu-
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rations. Nevertheless, we can always elaborate on associ-
ated Grigori Perelman thermodynamic models elaborated for
nonmetric geometric flows. In explicit form, applying the
AFCDM, we construct and study the physical implications
of new classes of traversable wormhole solutions describ-
ing solitonic deformation and dissipation of non-Riemannian
geometric objects. Such models with nontrivial gravitational
off-diagonal vacuum are important for elaborating models of
dark energy and dark matter involving wormhole configura-
tions and solitonic-type structure formation.
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1 Introduction, motivations and objectives

The standard approach to the gravity theory and general
relativity, GR (i.e. Einstein’s gravity theory) is formulated
in the framework of pseudo-Riemannian geometry, see [1–
4] as typical monographs and reviews of physically impor-
tant exact solutions. In GR, a four dimensional, 4-d, curved
spacetime V is modelled as a Lorentz manifold endowed
with metric structure, g = {gαβ}, when the Levi-Civita, LC-
connection ∇ = { ∇�αβγ } is uniquely determined by coeffi-
cients gαβ following two conditions: (1) zero nonmetricity (i.
e. metric compatibility), Q := ∇g = 0 and (2) zero torsion,
∇T = 0.1 The Einstein relativity theory has a remarkable

success and deep influence both in physics and mathematics.
Nevertheless, various alternatives and modifications of GR
were elaborated when instead of standard Lorentz manifolds
there are considered metric-affine spaces determined by some
general metric and (independent) affine/linear connection
structures, (g, D = {�αβγ }). Such non-Riemannian spaces
can be characterized by nonzero torsion, T = {T αβγ }, and/or
nontrivial nonmetricity, Q := Dg = {Qαβγ := Dαgβγ },
fields. We cite [5] as an early review of metric-affine grav-
ity theories. For applications in modern cosmology, various
generalizations of such geometric and gravity models are for-
mulated as modified gravity theories, MGTs, when the gravi-
tational and matter field Lagrangians in GR are changed into
some functionals F(R, T, Q, tr T ), where R is the Ricci

1 In our approach, we use the signature (+ + +−), when coordinate
indices α, β, .... run values 1,2,3,4; in general, indices may be abstract
ones; we use also certain left/up labels for geometric/physical objects;
local coordinates are labelled u = {uα} and the Einstein summation
rule on up-low indices is used. All necessary notation conventions and
definitions of geometric/physical objects are defined in the next sec-
tions and appendices. We assume that readers are familiar with stan-
dard results and methods outlined in the mentioned monographs and
understand basic ideas and motivations for how to extend the geometric
constructions to modern modified gravity theories, MGTs, and acceler-
ating cosmology.
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scalar for D, and tr T is the trace of the energy-momentum
tensor for matter [6,7].2

Generalizations of the Einstein equations with geometric
distortions of linear connections, ∇ → D, can be written in
some effective forms:

Eμν = �[T [br ]
μν + T [DM]

μν (φ,ψ, ...)+ T [DE]
μν (φ,ψ, ...)

+T [geom]
μν (g, R, T, Q,L[m], T [m],�R,�T, ...)

+...]. (1)

In such formulas, � is defined by the gravitational constant
and the energy-momentum tensors contain respective labels
[br ], for barionic matter (which can be written also T [m]

μν );
[DM] is for dark matter models with some scalar, φ, spinor,
ψ, and other type fields. The label [DE] is used for respective
dark energy terms. The tensor T [geom]

μν is a functional of dif-
ferent geometric and physical values including classical and
quasi-classical and/or extra dimension contributions, string
terms contributions, distortions of mater fields Lagrange den-
sities, L[m], and corresponding traces of energy-momentum
tensors, T [m]. In some MGTs, there are considered nonlocal
terms of type �R and/or �T, where � is a corresponding
variant of d’Alambert (wave operator) for respective curved
spacetime etc. The modified Einstein tensor Eμν and respec-
tive (effective) barionic matter terms Tμν ≈ T [br ]

μν + ... can
be derived from a corresponding action

S =
∫

[�−1F(R, ...)+ L[m] + ...]√|g|d4u.

Typically, such formulas define a four-dimensional, 4-d,
spacetime model which is distorted in the symbolic form
D = ∇ + Z [g, T, Q, ...], where Z is the distortion tensor.
Physical motivations and details on such MGTs and dark
gravity/matter/energy formalism are presented in [6–8] and
references therein ( there are studied also certain applications
in modern acceleration cosmology and DM and DE physics).

Modified Einstein equations of type (1) consist of very
sophisticate systems of coupled nonlinear partial differential
equations, PDEs. It is very difficult to find exact/parametric
solutions for such dynamical equations using standard meth-
ods elaborated in GR [4], when for some higher symmetry
and diagonal ansatz form metrics, nonlinear PDEs transform
into certain nonlinear systems of ordinary differential equa-
tions, ODEs. For instance, it is not clear how to construct
black hole, BH, like solutions for nontrivial Q-terms, for
generic off-diagonal gαβ; and how to define extensions of

2 Readers may find in the cited works many references with chronolog-
ical historical remarks, criticism, and applications in modern cosmol-
ogy and astrophysics. In this paper, we do not provide a comprehensive
review on nonmetricity and MGTs but concentrate on elaborating new
geometric methods for constructing exact and parametric solutions in
nonmetric geometric flow and gravity models. In our works, we write
F(R, T, ...) instead of f (, R, T, ...) used in papers by other authors.

the Einstein-Dirac equations. Such problems were discussed
in detail in [9,10], (in a general form for Finsler modifications
of gravity theories). Similar problems exist for metric-affine
distortions of physical models elaborated on Lorentz mani-
folds. The DM and DE coupling theories and various MGTs
involve constructions with nonminimal coupling between
geometry and matter. The equations (1) lead to the “noncon-
servation” of matter energy-momentum tensor which makes
more sophisticate the physical interpretation of such models
and solutions of dynamical or evolution equations. Neverthe-
less, we can elaborate on a nonholonomic deformation for-
malism with adapted distortions ∇ → D,when “nonconser-
vation” is related to certain (equivalently, anholonomic, i.e.
nonintegrable) constraints like in nonholonomic mechanics.
By introducing integration constants, then solving the con-
straint equations and redefining the effective Lagrangians,
we can formulate some types of modified conservation laws.

The main goal of this work is to prove that modified
Einstein equations of type (1) can be decoupled and inte-
grated in some general forms for Q �= 0. We shall provide
explicit examples for generic off-diagonal solutions defin-
ing Q-deformations of gravitational solitonic hierarchies
and wormhole configurations. Such methods for generating
exact/parametric solutions of physically important systems
of nonlinear PDEs are not contained in standard monographs
on GR and various MGTs reviews [1–8]. During the last 30
years, it was elaborated the anholonomic frame and connec-
tion deformation method, AFCDM, for constructing exact
and parametric off-diagonal solutions of physically impor-
tant systems of nonlinear PDEs. We cite [9–12] for a review
of main results and methods, examples and applications. Here
we note that the AFCDM involves nonholonomic distribu-
tions of geometric objects and nonholonomic frames, with
respective types 2 + 2 + 2 +· · · , 3+1 and (3 + 1) + (2 + 2), 3
+ 2 + 2 +· · · (correspondingly, for 4-d, and extra dimension
spacetimes). Then, it is important to construct an auxiliary
connection D̂ = ∇ + Ẑ when equations of type (1) with
redefined linear connections, ∇ → D̂ can be decoupled and
integrated in certain general forms. In the next section, we
shall provide the necessary definitions and explicit formulas.

Our nonholonomic geometric approach to generating
solutions in gravity theories should not be confused with the
well-known Cartan moving frame method, Neuman-Penrose
formalism or other nontrivial string torsion generalizations
and/or equivalent constructions involving various types of
tetradic, dyadic, and Arnowit–Deser–Wheeler, ADM, for-
malisms. Main geometric and analytic constructions related
to GR are summarized in [4]). The main difference of the
AFCDM from other ones is that it involves deformations
both of the frame and linear connection structures which
are adapted to certain canonical nonholonomic distributions.
In such nonholonomic adapted variables, physically impor-
tant systems of nonlinear PDEs can be decoupled and inte-
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grated in certain general forms, when the technique of con-
structing solutions is not restricted only to special diago-
nal ansatz transforming systems of nonlinear PDEs into sys-
tems of nonlinear ODEs. For generic off-diagonal ansatz, we
can prescribe some special symmetries with Killing vectors
and/or Lie algebra structure, for spherical, cylindrical, toroid
or other type configurations. Such solutions also posses cer-
tain nonlinear symmetries. We can prescribe necessary sym-
metries of solutions, and compute certain deformations (for
instance, by nonmetricity fields) for some physically impor-
tant classes of solutions. Usually, it is possible to extract LC
configurations if there are imposed additional nonholonomic
constraints on the nonlinear and linear connection structures,
and respective generating and integration functions. For some
models, the off-diagonal terms of metrics and the nontrivial
nonholonomic structure may encode nonmetricity contribu-
tions even for constraints to LC models.

This paper is a generalization to nonmetric geometric
flows providing a metric-affine development of the meth-
ods reviewed in [10–12]. Such geometric constructions can
be performed for nonassociative and noncommutative geo-
metric flow and gravity theories [13], when the constructions
are performed for star product R-flux deformations in met-
ric compatible forms but including nonsymmetric metrics. In
this work, we consider associative and commutative metric-
affine structures with symmetric metrics when the non-
holonomic deformations and nonmetricity fields are related
both to nonmetricity-induced torsion fields and canonically
induced torsions. For this work, we state three general objec-
tives:

The first objective (Obj1, in Sect. 2) is to provide an
introduction to theories of geometric flow and gravity includ-
ing nonmetricity. The 4-d metric–affine geometry is formu-
lated in an N-connection adapted form with (dyadic) non-
holonomic (2+2)-splitting. We define Q-modified (for Rie-
mannian metrics introduced by G. Perelman [15]) F- and
W-functionals and sketch how they can be derived from
respective Hamilton-Friedan geometric flow equations with
nonmetricity. Nonmetric Ricci solitons and related modified
Einstein equations are derived as self-similar nonholonomic
geometric flow configurations for a fixed flow parameter.

The second objective, Obj2, stated for Sect. 3, is to con-
struct and analyse solitonic deformations of exact/parametric
quasi-stationary geometric flow solutions encoding non-
metricity fields, which for fixed flow parameters and LC-
configurations define solutions of modified Einstein equa-
tions (1) and their nonholonomic deformations. Such sys-
tems of nonlinear PDEs are extended in certain forms
encoding nonmetric geometric flow data. We provide nec-
essary examples of solitonic distributions defined in quasi-
stationary geometric form and study models with locally
anisotropic wormhole solutions encoding nonmetricity. Non-
metric quasi-stationary deformations of 4-d wormhole met-

rics in GR are constructed for general and small parametric
off-diagonal and nonmetric gravitational polarizations.

The third objective, Obj3, is stated for Sect. 4. It consists
of a study of Q-modified Grigori Perelman thermodynamics
and its applications for quasi-stationary configurations. We
show how to define and compute (using integration functions
and nonlinear symmetries to some flow-running cosmolog-
ical constants) respective volume elements. This allows us
to compute thermodynamic variables with running cosmo-
logical constants and nonmetricity. For nonmetric modified
wormhole configurations and their solitonic deformations,
we show that, in principle, we can construct two thermo-
dynamic models: a ‘l’a Perelman’ and/or do not follow the
Bekenstein–Hawking approach because the last one is appli-
cable only for solutions with conventional horizons, holo-
graphic models and similar. Modified Perelman thermody-
namic models can be formulated for all classes of nonholo-
nomic geometric flow theories, including theories with Q-
deformations.

In this article and a series of further partner works on
nonmetric geometric flow and gravity theories we follow
the Hypothesis:Metric-affine geometric flow models can be
exploited as alternatives for describing DE and DM effects
and elaborating new physical theories. Such approaches can
be elaborated in self-consistent and solvable forms using
nonholonomic variables with conventional 2(3) + 2 + · · ·
splitting which allows to decouple and integrate of phys-
ically important systems of nonlinear PDEs for such theo-
ries. The solutionswith conventional τ -running effective cos-
mological constants physics can be used for modelling DE
physics when nonlinear symmetries relate such configura-
tions to models of DM physics. Generic off-diagonal metrics
are determined by respective generating functions and effec-
tive matter sources which encode nonmetric Q-deformations
and describe DE and DM off-diagonal interactions or geo-
metric evolution scenarios. Corresponding systems of Q–
deformed geometric flow/gravitational and (effective) matter
field equations admit exact and parametric solutions describ-
ing certain quasi-stationary (BH, wormhole etc.) configura-
tions and (locally anisotropic and inhomogeneous) cosmo-
logical scenarios. For well-defined nonholonomic geometric
constraints, such models can be defined almost equivalently
in canonical metric compatible backgrounds with effective
N-connection structure, when generalized conservation laws
and nonlinear symmetries are well-defined. In such cases,
we can formulate self-consistent nonmetric modifications
of classical gravity and quantum gravity theories, quantum
mechanical models and quantum field theories, which can be
unified as thermodynamic information theories in the frame-
work of respective geometric and quantum information mod-
els.

In Appendix A, we revise in a nonmetric quasi-stationary
form all formulas which are necessary for general decou-
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pling and integration of Q-modified nonholonomic Ricci
flow/ soliton equations. Details and proofs for general met-
ric compatible canonical d-connections are provided in [10–
13]. In this work, abstract and N-adapted coefficient formulas
are re-defined by Q-deformations and Q-generating sources.
A summary of basic concepts and formulas for generating
solitonic hierarchies via d-metrics and nonmetricity effec-
tive sources is presented in Appendix B.

2 Metric noncompatible geometric flows and MGTs

This section contains an introduction to the geometry of four
dimensional, 4-d, metric-affine spaces with nontrivial torsion
and nonmetricity fields. The approach is formulated in canon-
ical nonholonomic variables with (2+2)-splitting defined by a
nonlinear connection, N-connection, structure stating dyadic
frame decompositions. We consider N-adapted distortions of
linear connections and fundamental geometric objects. The
constructions are performed in such forms that physically
important systems of nonlinear PDEs (such as nonmetric geo-
metric flow evolution and modified Einstein equations) can
be decoupled and integrated in certain general off-diagonal
forms. Necessary concepts and additional technical formu-
las for the nonmetric anholonomic frame and connection
deformation method, AFCDM, are outlined in Appendix A.
Such a nonholonomic geometric formalism was elaborated
for (co) tangent bundles, see reviews of results and meth-
ods in [10,12]. In this section, we develop the approach in
a form which allows to construct exact and parametric solu-
tions with nonmetricity for gravity theories of type in [5–8].
The Grigori Perelman functionals [15] (see [16] for recent
developments related to GR, MGTs and quantum informa-
tion flow theories) are modified in nonmetric forms. For self-
similar configurations (i.e. for nonholonomic Ricci solitons)
such models encode the action functionals for gravity theo-
ries with nontrivial Q-fields [6].

2.1 Geometric preliminaries on metric-affine spaces and
nonholonomic deformations

In this work, the background geometric arena consists from
a Lorentz spacetime manifold V enabled with standard
geometric data (V, g,∇). Such a (primary) spacetime is
defined as a 4-d pseudo-Riemannian manifold of necessary
smooth/differentiability class, when the symmetric metric
tensor g is of signature (+ + +−) and can be written in
the form

g = gα′β ′(u)eα
′ ⊗ eβ

′
, (2)

using the tensor product ⊗ of general co-frames eα
′
, which

are dual to frame bases eα′ . In general form, the geometric and

physical constructions are performed for metric-affine spaces
(target ones) determined by geometric data (V, g,D), when
∇ → D and, in general, the nonmetricity field is nontrivial,
Q := Dg �= 0. To elaborate theories of geometric flows [15,
16] one considers families of metrics g(τ ) = {gαβ(τ, u)},
where τ is a temperature like parameter considered for an
interval 0 ≤ τ ≤ τ1, or τ = τ0 for a fixed value. Frame
vectors can be prescribed to depend, or not, on τ -parameter,
i.e. eα′(τ ), or eα′ . For simplicity, we shall write only gαβ(τ )
instead of gαβ(τ, u) if that will not result in ambiguities.

2.1.1 N-adapted metric-affine structures with
nonholonomic (2+2) splitting

We introduce a nonlinear connection, N-connection, struc-
ture as a Whitney sum:

N : T V = hV ⊕ vV, (3)

which is globally defined on V and its tangent bundle T V .
A N defines a conventional horizontal and vertical split-
ting ( h- and v–decomposition) into respective 2-d and 2-
d subspaces, hV and vV . In local coordinate form, a N-
connection is defined by a set of coefficients Na

i (u) when
N = Na

i (x, y)dx
i ⊗ ∂/∂ya .3

N–elongated/adapted local bases, eν, and co-bases (N–
differentials), eμ, are defined

eν = (ei , ea) = (ei = ∂/∂xi
− Na

i (u)∂/∂y
a, ea = ∂a = ∂/∂ya), and (4)

eμ = (ei , ea) = (ei = dxi , ea = dya + Na
i (u)dx

i ), (5)

to be linear on Na
i . The term nonholonomic (equivalently,

anholonomic) is used because, for instance, a N-elongated
basis (4) satisfies certain nonholonomy relations

[eα, eβ ] = eαeβ − eβeα = W γ
αβeγ , (6)

with nontrivial anholonomy coefficients

Wb
ia = ∂aNb

i ,W
a
ji = �a

i j = e j
(
Na
i

)− ei (Na
j ). (7)

3 We can always define local coordinates u = {uα = (xi , ya)} involv-
ing a conventional 2 + 2 splitting into h-coordinates, x = (xi ), and v-
coordinates, y = (ya), for indices j, k, ... = 1, 2 and a, b, c, ... = 3, 4,
when α, β, ... = 1, 2, 3, 4. Using partial derivatives, local coordinate
basis and a co-base are computed respectively as eα = ∂α = ∂/∂uβ

and eβ = duβ . Transforms to arbitrary frames (tetrads/vierbeinds) are
defined as eα′ = eα

α′ (u)eα and eα
′ = e α

′
α (u)e

α. Usually, such (co)

bases are orthonormalized by the conditions e α
′

α eβ
α′ = δβα , where δβα is

the Kronecker symbol. On Lorentz manifolds, a N-connection (3) states
a nonholonomic distribution defining a fibred 2+2 structure. We use the
term nonholonomic Lorentz/pseudo-Riemannian manifold when a con-
ventional h-v-splitting is considered. Typically, “boldface” symbols are
used to emphasize that certain spaces or geometric objects are enabled
(adapted) with (to) a N-connection structure.
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In these formulas,�a
i j define the coefficients of N-connection

curvature. If all Wb
ia (7) are zero for a eα, such a N-adapted

base is holonomic and we can write it as a partial derivative
∂α with Na

i = 0. In curved local coordinates, the coefficients
Na

j may be nontrivial even all W γ
αβ = 0 and we may chose a

holonomic base.4

The geometric objects on a nonholonomic manifold V
enabled with a N-connection structure N (and on exten-
sions to tangent, TV, and cotangent, T ∗V, bundles; and their
tensor products, for instance, TV⊗T ∗V) are called distin-
guished (in brief, d-objects, d-vectors, d-tensors etc) if they
are adapted to the N–connection structure via corresponding
decompositions with respect to frames of type (4) and (5).
For instance, we write a d–vector as X = (hX, vX).

Any spacetime metric g = (hg, vg) (2) can be represented
equivalently as a d–metric,5 when

g = gi j (x, y) e
i ⊗ e j + gab(x, y) ea ⊗ eb,

in N-adapted form withhg = {gi j }, vg = {gab}; (8)

= g
αβ
(u)duα ⊗ duβ. (9)

Ad–connection D = (hD, vD) is defined as a linear con-
nection preserving under parallelism the N–connection split-
ting (3). In N-adapted coefficient form with respect to frames
(4) and (5), we can write decompositions of D in terms of h-
and v-indices,

D = {�γαβ = (Li
jk, Ĺ

a
bk; Ći

jc,C
a
bc)}, where

hD = (Li
jk, Ĺ

a
bk) and vD = (Ći

jc,C
a
bc). (10)

We define a nonholonomic metric-affine space by geomet-
ric data (V,N, g,D).

2.1.2 Geometric objects adapted to a N-connection
structure and nonmetricity

The fundamental geometric d-objects of nonholonomic
metric-affine space are defined:

T (X,Y) := DXY − DYX − [X,Y],
4 For instance, we define and write a d–vector in N-adapted form as
X = (hX, vX). The geometric objects on a nonholonomic manifold V
enabled with a N-connection structure N are called distinguished (i.e d-
objects, d-vectors, d-tensors etc) if they are adapted to the N–connection
structure via corresponding decompositions with respect to frames of
type (4) and (5).
5 Introducing coefficients of (5) into (8) and regrouping with respect to
the coordinate dual basis, we obtain the formulas for the coefficients in
(9),

g
αβ

=
[
gi j + Na

i N
b
j gab Ne

j gae
Ne
i gbe gab

]
.

A metric g = {g
αβ

} is generic off–diagonal if the anholonomy coeffi-

cients W γ
αβ are not identical to zero. For 4-d spacetimes, such a matrix

can’t be diagonalized via coordinate transforms.

torsion d-tensor, d-torsion;
R(X,Y) := DXDY − DYDX − D[X,Y],

curvature d-tensor, d-curvature;
Q(X) := DXg,

nonmetricity d-fiels, d-nonmetricity. (11)

The N-adapted coefficient formulas involving (8), (9) and
(10) are provided and computed in [10–12]. Here we only
present, respectively, their 4-d N-adapted coefficient repre-
sentations,

R = {Rαβγ δ}, T = {Tγαβ},Q = {Qγαβ}.
In geometric flow and gravity theories, there are also

another important geometric d-objects:

Ric := {R βγ := Rαβγα}, the Ricci d-tensor ;
Rsc := gαβR αβ, the scalar curvature ,

where we uses the inverse d-tensor {gαβ} of a d-metric (8).
Using a d-metric g (8), we can define two important linear

connection structures:

(g,N)→

⎧⎪⎪⎨
⎪⎪⎩

∇ : ∇g = 0; ∇T = 0,
LC–connection ;
D̂ : Q̂ = 0; hT̂ = 0, vT̂
= 0, hvT̂ �= 0, the canonical d-connection.

(12)

In this paper, “hat” labels are used for geometric d-objects
defined by a D̂. Such an auxiliary d-connection defines a
canonical distortion relation

D̂[g] = ∇[g] + Ẑ[g], (13)

when the canonical distortion d-tensor, Ẑ, and ∇[g] are deter-
mined by the same metric structure g.6

The coefficients of the canonical fundamental geometric
d-objects (11) are labeled by “hat” symbols, for instance,
R̂ = {R̂αβγ δ}. Similar fundamental geometric objects can be
defined and computed for ∇, for instance, ∇R = {∇ Rαβγ δ}
(in such cases, boldface indices are not used). Considering the
canonical distortion relation for linear connections (13), we
can compute respective canonical distortions of fundamental
geometric d-objects (11). Such formulas relate, for instance,
two different curvature tensors, ∇R = {∇ Rαβγ δ} and R̂ =
{R̂αβγ δ} etc.

6 A canonical d-connection (12) is defined by N-adapted coefficients
D̂ = {�̂γαβ = (L̂i

jk , L̂
a
bk , Ĉ

i
jc, Ĉ

a
bc)}, for

L̂i
jk = 1

2
gir (ek g jr + e j gkr − er g jk), L̂

a
bk = eb(N

a
k )

+1

2
gac(ek gbc − gdc ebN

d
k − gdb ecN

d
k ),

Ĉi
jc = 1

2
gikecg jk , Ĉ

a
bc = 1

2
gad (ecgbd + ebgcd − ed gbc).
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An arbitrary d-connection D = {�γαβ} with nontrivial
nonmetric d-tensor Qγαβ can be expressed via distortion d-
tensors with respect to ∇ = {�̆γαβ} or D̂ = {�̂γαβ},
�
γ
αβ = �̆γαβ + K γαβ + q Zγαβ and/or

�
γ
αβ = �̂

γ
αβ + K̂γαβ + q Ẑγαβ. (14)

In these formulas, for instance, for (T, Q)-deformations of
LC-configurations, we use and construct such distortion ten-
sors:

Kαβγ = 1

2
(Tαβγ + Tβγα − Tγαβ),

S αβγ = 1

2
(K αβγ + δαγ T τβτ − δβγ T τατ ),

q Z αβγ = 1

2
(Qαβγ − Qβγα − Qγβα),

where Qαβγ := Dαgβγ and T αβγ is computed for any

D = {�γαβ} which can an arbitrary affine connection (with
coefficients in coordinate or arbitrary frames). The torsion
d-tensor Tαβγ can be computed for an arbitrary d-connection

D = {�γαβ}, using N-adapted bases. Such objects are defined
with respect to coordinate or N-adapted frames and used
for introducing three scalar values considered in the Weyl–
Cartan geometry:

Rsc[D] = R = gβγ Rβγ ,
sT = S αβγ T γαβ,

Q = q Zαβα
q Zβμμ − q Zαβμ

q Zβμα.

For the nonholonomic Weyl-Cartan geometry, corresponding
scalar values are defined forD = {�γαβ} andQαβγ := Dαgβγ
as distortions (13) of D̂ = {�̂γαβ} and can be written

Rsc[D] = s R = gβγ Rβγ , sT = S αβγ Tγαβ,
qQ = qZαβα

qZβμμ − qZαβμ
qZβμα.

MGTs with torsion and nonmetricity are modelled for
actions of type

S(g, D, φ) =
∫ √|g|d4u[ gL + mL], (15)

where the gravitational Lagrange density is a functional
gL = F(R, sT, Q, T [m]) and mL[φ] is the Lagrange den-

sity for conventional matter fields φ. Such a model is studied
in [6] but, in this work, we follow a different system of nota-
tions considered, for instance, in [11] (for instance, we write
F(...) instead of f (...)). The gravitational and matter field
equations of type (1) derived variationally from an action
(15) consist sophisticate coupled systems of nonlinear PDEs.
It is very difficult to find exact/parametric solutions in such
MGTs even, for instance, certain cosmological and DE and
DM models were studied in [6–8].

In this work, we shall consider MGTs of type (15) written
in canonical d-variables (g,D = D̂ + K̂ + q Ẑ), see distor-

tions (14), and following a N-adapted variational calculus for
actions of type

S(g,D, φ) =
∫ √|g|δ4u[ gL̂+ eL̂ + mL̂], (16)

where δ4u is the volume element defined with N-elongated
differentials (5), gL̂ = F(R̂sc, s T̂ , T [m]) is computed
as gL from ( 15) when ∇ → D̂, for Q̂αβγ = 0;
eL̂(Qαβγ , D̂, φ) includes distortions of geometric d-objects
and Lagrangians deformations for D̂ → D is nontrivial
Qαβγ ; and mL̂(gαβ, φ, D̂) if mL(gαβ, φ,∇), or (we can
consider some simplified models) when mL̂(gαβ, φ) =
mL(gαβ, φ).

In a series of works [11–13,16], we proved that geometric
flow and gravitational field equations in MGTs with D = D̂
or D →D̂ → ∇ can be decoupled and integrated in certain
general off-diagonal forms using the AFCDM. The general
goal of this article is to show how those methods can be gener-
alized for nontrivial Qαβγ (τ ) and applied for research of the
relativistic Ricci flows of nonholonomic metric-affine struc-
tures, or corresponding nonholonomic Ricci soliton equa-
tions for any τ0.

2.2 Relativistic geometric flows encoding nonmetricity
fields

The theory of Ricci flows has a high scientific impact in mod-
ern mathematics and physics after Grigori Perelman proved
[15] the famous Poincaré–Thurston conjecture, see origi-
nal works [19] and [17,18] and monographs [20–22] for
reviews of mathematical results and methods. A crucial step
in elaborating such theories consisted in definition of the so-
called F- and W-functionals from which the geometric flow
equations (called also as R. Hamilton or Hamilton-Friedan
equations) can be proved in variational form. It is not clear
how mathematically can be formulated and proved relativis-
tic variants of such conjectures and generalizations for non-
metric/supersymmetric/nonassociative/noncommutative/
Finsler like geometries. Nevertheless, generalizations of F-
and W-functionals allow to prove modified versions of geo-
metric flow equations and solve such systems of nonlinear
PDEs using the AFCDM. The results of a series of recent
papers [16,23] demonstrate that Perelman like information
thermodynamics may play an important role in the theory
of quantum geometric and information, QGIF, flows. In this
work, we show how such constructions can be performed for
nonmetric geometric flows for families τ -evolving metric-
affine data (g(τ ),D(τ )) and Lagrange densities gL̂(τ ) +
eL(τ )+ mL̂(τ ).
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2.2.1 Q-modified Perelman’s F- and W-functionals in
canonical nonholonomic variables

The modified Perelman’s functionals for nonmetric geomet-
ric flows are postulated in the form

F(τ ) =
∫ t2

t1

∫
�t

e− f (τ )
√|g(τ )|δ4u[F(R̂sc(τ ), s T̂ (τ ), T [m](τ ))

+ eL(τ )+ mL̂(τ )+ |D(τ ) f (τ )|2], (17)

W(τ ) =
∫ t2

t1

∫
�t

(4πτ)−2 e− f (τ )

×√|g(τ )|δ4u[τ(F(R̂sc(τ ), s T̂ (τ ), T [m](τ ))
+ eL(τ )+ mL̂(τ )+ |D(τ ) f (τ )|2 + f (τ )− 4], (18)

where the condition
∫ t2
t1

∫
�t
(4πτ)−2 e− f (τ )√|g|d4u = 1 is

imposed on the normalizing function f (τ ) = f (τ, u). The
difference from the original F- and W-functionals [15] intro-
duced for 3-d Riemannian τ -flows (g(τ ),∇(τ )) is that in
this work we study geometric flows of canonical geomet-
ric data (g(τ ), N(τ ),D(τ )) for Q-deformations of nonholo-
nomic Lorentz manifolds.

We can compute relativistic effective functionals (17)
and (18) for any 3+1 splitting with 3-d closed hypersur-
face fibrations �̂t and considering nonholonomic canonical
d-connections and respective geometric variables. In general,
it is possible to work with any class of normalizing functions
f (τ ). Such a function can be fixed by some constant values
or some parametrization conditions simplifying correspond-
ing systems of nonlinear PDEs. Such f (τ ) define respec-
tive integration measures which may be important, or not,
for elaborating topological and/or geometric models. The W
-functional possess the properties of “minus” entropy. This
can be stated by choosing corresponding nonholonomic con-
figurations along some causal curves taking values W(τ ) on
�̂t . Using N-adapted variations, we can derive nonmetric
geometric flow evolution equations which can be solved
using the AFCDM for metrics with pseudo-Euclidean sig-
nature even analogs of Poincaré–Thurston conjecture have
not been formulated and proven in modern mathematics.

2.2.2 Hamilton-Friedan geometric flow equations with
nonmetricity

There are two possibilities to derive geometric flow equations
from functionals F(τ ) (17) and W(τ ) (18). In the first case,
we can useD(τ ) instead of ∇(τ ) and reproduce in N-adapted
form all covariant differential and integral calculus from [15,
20–22]. This would consist proofs on some hundred of pages.

We can follow geometric abstract principles [1] when all
geometric and physically important objects and fundamen-
tal physical equations are derived by corresponding gen-
eralizations of Riemannian geometry to certain nonholo-
nomic metric-affine geometries with ∇(τ ) → D(τ ) =
D̂(τ ) + K̂(τ ) + q Ẑ(τ ) respective generalizations of Ricci,

torsion, and energy-momentum d-tensors. Such an abstract
geometric calculus allows to prove for some primary data
(g = {gμν = [gi j , gab]},N = {Na

i },D, tot L̂ = eL+ mL̂),
see definitions related to formulas (16) the nonholonomic
geometric flow evolution equations:

∂τ gi j (τ ) = −2[R̂i j (τ )− tot ϒ̂i j (τ )];
∂τ gab(τ ) = −2[R̂ab(τ )− tot ϒ̂ab(τ )];
R̂ia(τ ) = R̂ai (τ ) = 0; R̂i j (τ ) = R̂ j i (τ );
R̂ab(τ ) = R̂ba(τ );
∂τ f̂ (τ ) = −�̂(τ )[ f̂ (τ )] + ∣∣D̂(τ )[ f̂ (τ )]∣∣2

− s R̂(τ )+ tot ϒ̂αα(τ ). (19)

In these formulas, there are used such geometric d-objects
and N-adapted operators: �̂(τ ) = D̂α(τ )D̂α(τ ) when the
conditions R̂ia = R̂ai = 0 for the Ricci tensor R̂ic[D̂] =
{R̂αβ = [R̂i j , R̂ia, R̂ai , R̂ab,]} are necessary if we want to
keep the metric g(τ ) to be symmetric under nonholonomic
Ricci flow evolution. Such constraints are not obligatory, for
instance, in nonassociative geometric flow theory with non-
symmetric metrics [13].

The definition of tot ϒ̂ab(τ ) from (19) will be discussed
in Sect. 2.3 for τ = τ0. Here we note that such equa-
tions describe nonmetric geometric flow evolution of d-
metrics gμν(τ ) described in nonholonomic canonical vari-
ables. Alternatively, such equations can be introduced as rel-
ativistic generalizations and nonholonomic canonical defor-
mations of the R. Hamilton [19] and D. Friedan [17,18] Ricci
flow equations for ∇(τ ).

The normalizing function f (τ ) can be re-defined in such
a way that it compensates certain Q-deforms, or other type
nonholonomic distortions, when f̂ (τ )→ f (τ ) for

∂τ f = −� f + |D f |2 − s R + totϒαα.

Such an equation involves nonlinear partial differential oper-
ators and usually it is not possible to solve it in an explicit
form and define the evolution of topological configurations
determined, for instance, by nontrivial nonmetric structures.
Nevertheless, we can fix a variant of f̂ (τ ) which together
with some off-diagonal ansatz for metrics we can solve the
nonholonomic system of nonlinear PDEs (19) in certain gen-
eral/parametric forms and then to re-define the constructions
in for arbitrary systems of reference, other types of distor-
tions of connections and normalizing functions. The formulas
for nonholonomic frame/coordinate/normalizing transforms
could be found in certain series/recurrent form when the solu-
tions of geometric flow equations are generated in explicit
form.

123



Eur. Phys. J. C (2024) 84 :211 Page 9 of 28 211

2.3 Nonmetric Ricci solitons and modified Einstein
equations

A nonholonomic and nonmetric Ricci soliton configuration
is a self-similar one for the geometric flow equations (19).
For Riemannian metrics, such configurations homothetically
strink, remain steady or expand under geometric flow evolu-
tion, see details in [15,19–22], and can be respectively stud-
ied for a fixed point τ = τ0. Considering relativistic and
torsion and nonmetricity modified nonlinear systems with
∂τgμν = 0 and for a specific choice of the normalizing
geometric flow function f, the Eq. (19) transform into non-
holonomic Ricci soliton equations encoding Q-distortions
into effective sources. Such systems of nonlinear PDEs are
equivalent to modified Einstein equations in nonholonomic
metric-affine gravity for corresponding definitions of effec-
tive sources tot ϒ̂αβ(τ0) = [ tot ϒ̂i j ,

tot ϒ̂ab],
R̂i j = tot ϒ̂i j , R̂ab = tot ϒ̂ab,

R̂ia = R̂ai = 0; R̂i j = R̂ j i ; R̂ab = R̂ba . (20)

The effective sources in (20) are can be parameterized as
for the effective Lagrangians (16)

tot ϒ̂μν := �
(

tot T̂μν − 1

2
gμν tot T̂

)

=
(
∂F

∂ s R

)−1
mϒ̂μν + F ϒ̂μν + eϒ̂μν, (21)

where � is determined in standard form by the Newton grav-
itational constant G,

mT̂μν := − 2√|g|
δ(

√|g| mL̂)
δgμν

= 2
δ mL̂
δgμν

+ gμν mL̂.

For the full system relating nonholonomic Ricci solitons to
modified gravity, the effective energy-momentum d-tensor is
computed for

F T̂βγ =
[

1

2

(
F − ∂F

∂ s R
)gβγ − (gβγ D̂αD̂α − D̂βD̂γ

)

∂F

∂ s R

](
∂F

∂ s R

)−1

,

when

tot T̂μν =
(
∂F

∂ s R

)−1
mT̂μν + F T̂μν + eT̂μν. (22)

Choosing F( s R) = s R and the Levi-Civita connection
D → ∇, we can relate above formulas to GR.

2.3.1 Connecting nonholonomic solitons to nonmetric
modified gravitational equations

The gravitational field equations in Weyl-Cartan MGT can
be constructed by considering variations of the action on

a metric-affine manifold determined by geometric objects
using such values constructed for the affine connection D
expressed as a canonical distortion (14) from D̂ involving
eT̂μν as an effective source containing nontrivial contribu-

tions from Qαβγ :

Ĥ μν
λ = − 2√|g|

δ(
√|g| δ mL̂)
δ�̂
α
μν

the canonical hyper-momentum d-tensor, and

Aμαν = ∂F

∂Q
(gμν qZααν+gαν qZ β

μβ −q Z μαν−qZ ναμ).

Such values can be constructed in terms of �̂
α
μν and/or �αμν.

In coordinate bases and in non N-adapted form, such results
are presented, for instance by formulas (23)–(26) in [6].

In this work, we consider a model of nonholonomic non-
metric Ricci solitons with a Weyl d-vector qα,whenQαβγ =
qαgβγ and nontrivial d-torsion Tμνα = Aνgμα−Aαgμν, for
Aμ = qqμ, q = const. For such approximations consider-
ing ∂F

∂T = 1/2q ∂F
∂Q , the variational N-adapted gravitational

field equations with D̂ can be written in the form:

D̂β
∂F

∂ s R
+
[
∂F

∂Q
+ (1 − q)

∂F

∂ s R

]
qβ = 0; (23)

R̂ βγ = qϒ̂αβ(τ0) (24)

for effective Q-source

qϒ̂αβ =
(
∂F

∂ s R

)−1 [ F
2
gαβ + ∂F

∂ mT
(T̂αβ

−gαβ mL̂)− gαβ�̂
∂F

∂ s R
− D̂αD̂β

∂F

∂ s R

−
(
q−1

2
+ 3

q

)
(D̂αqβ−D̂βqα)

(
∂F

∂ s R

)
−1

2
T̂αβ

]

+
(

2 + 1

2
− 3

q

)
qαqβ − 3

(
1

2
− 1

q

)

×(D̂αqβ − D̂βqα)

+1

2
(1 + q)(qτqτ ) gαβ. (25)

We defined the system of constraints and nonlinear PDEs
(23)–(25) in a form that for D̂ → ∇ it transforms into respec-
tive Eqs. (37) and (38) in [6]. For such nonholonomic Ricci
soliton equations, we can decouple and integrate in certain
general forms the modified Einstein equations (24) if the Q-
source (25) is generated by two effective sources (see below).
It is not possible to decouple such equations for generic off-
diagonal gβγ if it is considered only the LC-connection ∇
and/or general nonmetricity fields.
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2.3.2 Generating sources for τ -running quasi-stationary
effective matter fields and nonmetricity deformations

In this work, we shall construct and study physical impli-
cations of quasi-stationary solutions of nonmetric geomet-
ric flow equations (19) when the metric (2) (in equivalent
form, the d-metric (8)) is determined by N-adapted coeffi-
cients g(τ ) = [gi (τ ), ga(τ ), Na

i (τ )],when such coefficients
do not depend on variable y4 = t and can be parameterized
in the form

gi (τ ) = eψ(τ,x
j ), ga(τ ) = ha(τ, x

k, y3),

N 3
i = wi (τ, x

k, y3),

N 4
i = ni (τ, x

k, y3). (26)

Let us consider effective sources tot ϒ̂ab(τ ) from (19)
which via N–adapted frames can be parameterized in the
form

ϒμν(τ ) = eμ
′
μ(τ)e

ν′
ν (τ )

[
totϒμ′ν′(τ )− 1

2
∂τgμ′ν′(τ )

]

= [ tot
h ϒ(τ, x

k)δij ,
totϒ(τ, xk, y3)δab ]. (27)

In these formulas, there are considered τ -families of vierbein
transforms eμ

μ′(τ ) = eμ
μ′(τ, uγ ) and their dual e ν

′
ν (τ, u

γ ),

when eμ=eμ
μ′duμ

′
.The values [toth ϒ(τ, x

k), totϒ(τ, xk, y3)]
can be fixed as generating functions for (effective) matter
sources imposing nonholonomic frame constraints on quasi-
stationary distributions of (effective) matter fields. In partic-
ular, we can change totϒμ′ν′(τ ) → qϒ̂αβ(τ ) for modeling
nonholonomic flow evolution of a Q -source (25), when the
generating sources are written in the form

qϒμν(τ ) = [ q
hϒ(τ, x

k)δij ,
qϒ(τ, xk, y3)δab ]. (28)

In Appendix A, we show how nonlinear systems of PDEs
(19) can be decoupled in general forms for any quasi-
stationary ansatz (26) and any variant of generating sources
(27) or (28). For certain classes of nonholonomic con-
straints and small parametric deformations, we are able to
change symbolic data [qhϒ, qϒ] into some approximations
of (25) and study in explicit form for contributions from any
∂F
∂ s R ,

∂F
∂ mT and/or q-term. In general, we can consider that

[toth ϒ,
totϒ] or [qhϒ, qϒ] impose certain nonholonomic con-

straints on respective geometric evolution/dynamical field
generating sources which allow to generate solutions with
nontrivial canonical d-torsion T̂γαβ(τ, x

k, y3). Such non-
holnomic values can be eliminated by additional nonholo-
nomic constraints D̂[g] → ∇[g] even the d-torsion Tμνα =
Aνgμα−Aαgμν, for Aμ = qqμ, q = const, can be nonzero
because of nonmetricity.

3 Off-diagonal quasi-stationary solutions encoding
nonmetricity

In this section, we construct and analyze physical properties
of two classes of respective nonholonomic geometric flow
and Ricci soliton equations encoding quasi-stationary non-
metricity effects. First, we consider examples of nonmetric
solitionic hierarchies. Then, we generate wormhole solu-
tions determined by nonmetric fields and study generic off-
diagonal deformations, ellipsoidal deformations and embed-
ding into nonmetric backgrounds determined by solitonic
hierarchies with general or small parametric polarizations. In
Appendix B, we provide necessary formulas for bi-Hamilton
structures and solitonic hierarchies.

3.1 Effective nonmetric and τ -running Einstein equations

Let us consider a system of nonlinear PDEs (19), for non-
metric Ricci flows, or (20), for nonmetric Ricci solitons,
with generating sources of nonmetric type [qhϒ(τ), qϒ(τ)]
(28). Such effective sources can be substituted by formulas
of type [toth ϒ(τ),

totϒ(τ)] (27) involving additional effec-
tive sources 1

2∂τgμν(τ ). Such conditions involve a more spe-
cial class of nonholonomic constraints on the geometric evo-
lution and dynamics of effective sources which allows to
decouple the nonlinear systems of PDEs in general form.
For elaborating evolution scenarios in explicit forms, we can
consider product parameterizations of type gμν(τ, xk, y3) =
1gμν(τ )× 2gμν(xk, y3). In this work, we shall write the gen-
eral form only parametric solutions in terms of generating
functions and generating sources without discussing partic-
ular details on how we may apply methods with separation
of variables. In abstract geometric form, any quasi-stationary
d-metric generated by a qϒ

μ
ν(τ ) and respective generating

functions and nonlinear symmetries to effective cosmolog-
ical constants, see details in Appendix A.2.2, can be trans-
formed by frame and connection deformations into a more
general ϒ

μ
ν(τ ). Different types of nonholonomic deforma-

tions determined by a qϒ
μ
ν or a general type ϒμν , and their

physical properties and implications in physical theories can
be studied using Perelman thermodynamic variables as we
shall consider in Sect. 4.

With respect to N-adapted frames (4) and (5), we can write
the modified Einstein equations (20) in τ -parametric form for
nonmetric sources (28) and using the canonical d-connection
D̂,

R̂αβ(τ ) = qϒαβ(τ ), (29)

T̂γαβ(τ ) = 0, for ∇. (30)

Equation (30) do not involve zero conditions for another
types of torsion which may be present in theory, for instance,
of type Tμνα = Aνgμα − Aαgμν. Such a torsion is induced
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by a nontrivial nonmetricity d-vector Aν for a d-metric gμα
defined as a solution of (29).

We note that, in general, for above considered systems of
nonmetric gravitational and matter fields,

D̂β Êαβ = D̂
(
R̂αβ − 1

2
s R̂δαβ

)
�= 0 and D̂βϒ̂

α

β �= 0,

which is typical for nonholonomic systems. In some sim-
ilar forms, such nonholonomic configurations are modeled
in nonholonomic mechanics when the conservation laws are
not formulated in a standard form. For mechanical systems,
there are introduced the so-called Lagrange multiples associ-
ated to certain classes of nonholonomic constraints. Solving
the constraint equations, it is possible to re-define the vari-
ables. Such nonholonomic variables allow us to introduce
new effective Lagrangians and, finally, to define conserva-
tion laws in certain standard form if Qαβγ = 0. In explicit
general forms, such constructions can be performed only for
some “toy” models. Using distortions of connections, we can
rewrite (29) in terms of ∇, when ∇βEαβ = ∇βT αβ = 0 for
Qαβγ → 0.

In Appendix B, we show how using the AFCDM the
Eqs. (29) and (30) can be decoupled and integrated in gen-
eral quasi-stationary forms for certain prescribed nonmetric
effective sources (28).

3.2 Nonmetric solitonic hierarchies

Nonholonomic geometric flow models with solitonic hierar-
chies, in metric compatible form, are studied in Sects. 4 and
5 of [16] for constructing theories of geometric information
flows of nonholonomic Einstein systems. Similar geometric
models can be elaborated for solutions of τ -modified Ein-
stein equations (29), when the effective source qϒαβ(τ )

is determined by nonmetricity fields as we considered in
previoussubsection. The physical interpretation of such off-
diagonal solutions involving solitonic wave/distributions and
describing geometric evolution flow processes is different. In

this work, the nonmetricity is encoded into effective gener-
ating sources. We present a brief summary on the theory of
quasi-stationary solitonic hierarchies and their nonmetric τ -
evolution in Appendix B. The goal of this subsection is to
provide explicit formulas for general off-diagonal solutions
defining nonmetric geometric flow equations determined
by solitonic distributions for generating functions and/or
generating sources written in solitonic functional form, for
instance, as [q1ϒ[℘], q2ϒ[℘]], see formulas (B.5).

3.2.1 τ -running quasi-stationary generating functions with
solitonic hierarchies

We show how τ -evolution of quasi-stationary solitonic con-
figurations can be defined by respective classes of generating
functions when the nonmetricity generating source qϒαβ(τ )

is an arbitrary one (i.e. it is not obligatory of solitonic nature).
For instance, we consider that �[℘] is any functional on a
solitonic hierarchy ℘(τ, xi , y3) as we stated for d-metrics
g(τ ) = (gi [℘], ga[℘]) (B.4). Using nonlinear symmetries
(A.14), we can consider as a generating function any coeffi-
cient

h4[τ, xi ,℘]=h[0]
4 (τ, x

i )−�2[℘]/4q2�(τ), for h∗
4(τ ) �=0.

We can also express

(�2)∗ = ∣∣q
2ϒ(τ)

∣∣ (h4)
∗ and �2[τ, xi ,℘]

= ∣∣q
2ϒ(τ)

∣∣ h4 −
∫

dy3
∣∣q
2ϒ(τ)

∣∣∗ h4

and use such a Q-deformed (by a generating source q
2ϒ(τ))

solitonic configuration �(τ) as a new generating func-
tion. For simplicity, the integration function h[0]

4 (τ, x
i ) can

be approximated to some τ -running values or constants
when the generating functions are some functionals of type
h4[℘], �[℘] and �[℘].

We can express above quadratic element in three equiva-
lent forms:
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ds2(τ ) = e ψ[℘][(dx1)2 + (dx2)2] +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− [h∗
4]2

| ∫ dy3[q2ϒ(τ )h4]∗| h4
[dy3 + ∂i [

∫
dy3(

q
2ϒ(τ )) h∗

4]
q
2ϒ(τ ) h∗

4
dxi ]

−h4

[
dt + (1nk(τ )+ 2nk(τ )

∫
dy3 [h∗

4]2

| ∫ dy3[ q
2ϒ(τ )h4]∗| [h4]5/2 )dx

k
]

;
or

− [�∗]2

4(q2ϒ)2{h[0]
4 −∫ dy3[�2]∗/4( q2ϒ)}

[
dy3 + ∂i �

∂3�
dxi

]
− (h[0]

4 (τ )−
∫
dy3 [�2]∗

4(q2ϒ)
)

[dt + (1nk(τ )+ 2nk(τ )
∫
dy3 [(�)2]∗

4(q2ϒ(τ ))2|h[0]
4 −∫ dy3[�2]∗/4(q2ϒ(τ ))|5/2 )dx

k ];
or

− �2[�∗]2

|q2�(τ)
∫
dy3q

2ϒ(τ )[�2]∗|[g[0]
4 (τ )−�2/4q2�(τ)]

[
dy3 + ∂i

∫
dy3 q

2ϒ(τ ) [�2]∗
q
2ϒ(τ ) [�2]∗ dxi

]
−
(
h[0]

4 − �2

4q2�(τ)

)
[
dt + (1nk(τ )+ 2nk(τ )

∫
dy3 �2[�∗]2

|q2�(τ)
∫
dy3 q

2ϒ(τ )[�2]∗|[g[0]
4 (τ )−�2/4q2�(τ)]5/2

)dxk
]
.

(31)

In these formulas, there are used respective generating
data: {h4[℘], q2ϒ(τ), q2�(τ)} from (A.11); {�[℘], q2ϒ(τ)}
from (A.7); and {�[℘], q2�(τ), q2ϒ(τ)} from (A.10).

The solutions (31) can be re-defined forη(τ) -polarizations
in a form (A.16) (for instance, with functionalsη4[℘]) or con-
sidering κ-parametric deformations to τ–families of quasi-
stationary d-metrics with χ -generating functions for solu-
tions of type (A.18) (with functionals χ4[℘]). The prime
metrics can be taken of any nature (being or not solutions
of some modified gravitational equations, or some quasi-
periodic/solitonic configurations) and than subjected to non-

metric quasi-stationary solitonic deformations via generat-
ing/ gravitational polarization functions. In such cases, the
target solutions will define a mixture of solitonic distribu-
tions under τ -evolution and respective prescribed geometric
data for primary d-metrics and effective nonmetric generat-
ing sources.

3.2.2 Nonmetric quasi-stationary generating sources with
solitonic hierarchies

We can generate a different class of generic off-diagonal
solitonic solutions of nonmetric geometric flow equations
(29) when the generating source is of type qϒ

μ
ν(τ ) =

[qhϒ[℘], qϒ[℘]] (B.5) but the d-metric coefficients of
g(τ ) = (gi (τ ), ga(τ )) are computed via corresponding non-
holonomic deformations of nonmetric sources. The respec-
tive quadratic elements are written in the form,

ds2(τ ) = e ψ[ q
hϒ[℘]][(dx1)2 + (dx2)2] +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− [h∗
4(τ )]2

| ∫ dy3[ qϒ[℘] h4(τ )]∗| h4(τ )
[dy3 + ∂i [

∫
dy3( qϒ[℘]) h∗

4(τ )]
qϒ[℘] h∗

4(τ )
dxi ]

−h4(τ )[dt + (1nk(τ )+ 2nk(τ )
∫
dy3 [h∗

4(τ )]2

| ∫ dy3[ qϒ[℘] h4(τ )]∗| [h4(τ )]5/2 )dx
k];

or

− [�∗(τ )]2

4(q2ϒ)2{h[0]
4 (τ )−

∫
dy3[�2(τ )]∗/4 qϒ[℘] }

[dy3 + ∂i �
∂3�

dxi ] − (h[0]
4 (τ )−

∫
dy3 [�2(τ )]∗

4 qϒ[℘] )
[dt + (1nk(τ )+ 2nk(τ )∫

dy3 [(�(τ))2]∗
4( qϒ[℘] )2|h[0]

4 (τ )−
∫
dy3[�2(τ )]∗/4( qϒ[℘] )|5/2 )dx

k];
or

− �2(τ )[�∗(τ )]2

|q2�(τ)
∫
dy3 qϒ[℘] [�2(τ )]∗|[g[0]

4 (τ )−�2(τ )/4q2�(τ)]
[dy3 + ∂i

∫
dy3 qϒ[℘] [�2]∗

qϒ[℘] [(2�)2]∗ dxi ] − (h[0]
4 (τ )

− �2(τ )

4q2�(τ)
)[dt + (1nk(τ )+ 2nk(τ )∫

dy3 �2[�∗]2

|q2�(τ)
∫
dy3 qϒ[℘] [�2]∗|[g[0]

4 (τ )−�2/4q2�(τ)]5/2
)dxk].

(32)

In d-metrics (32), the corresponding generating data for
(A.11), (A.7), and (A.10) are stated in such forms: {h4(τ ) =
h4(τ, xi , y3), qϒ[℘] q

2�(τ)}; {�(τ), qϒ[℘] } from (A.7);
and {�(τ), q2�(τ), qϒ[℘] }.
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3.2.3 Interacting τ -running solitonic hierarchies for
generating functions with respective solitonic
hierarchies for nonmetric sources

The generic off-diagonal solutions (31) or (32) can be gen-
eralized for τ -running configurations when a set of soli-
tionic hierarchies 1℘ is prescribed for generating functions
and another set 2℘ is generated for generating functions of
nonmetric origin. For a prime d-metric g̊ (A.12) of arbitrary
nature, we generate a target quasi-stationary d-metric double
generating function/source solitonic hierarchies,

dŝ2(τ ) = ĝαβ(τ, x
k, y3; g̊α;ψ(τ),

η4[1℘]; qϒ[2℘])duαduβ = eψ(τ)[(dx1)2 + (dx2)2]
− [∂3(η4[1℘] g̊4)]2

| ∫ dy3q
2ϒ[2℘]∂3(η4[1℘] g̊4)| η4[1℘]g̊4

×
{
dy3 + ∂i [

∫
dy3q

2ϒ[2℘] ∂3(η4[1℘]g̊4)]
q
2ϒ[2℘]∂3(η4[1℘]g̊4)

dxi
}2

+η4[1℘]g̊4

{
dt +

[
1nk(τ )+ 2nk(τ )

∫
dy3

× [∂3(η4[1℘]g̊4)]2

| ∫ dy3q
2ϒ[2℘]∂3(η4[1℘]g̊4)| (η4[1℘]g̊4)5/2

]
dxk

}2

.

(33)

In such nonlinear quadratic elements, we can prescribe g̊ to
define, for instance, a black hole, BH, solution in GR or a
MGT like in [11,16]. Nonmetric soltionic deformations of
type (33) do not preserve, in general, the primary BH char-
acter. Nevertheless, for small parametric deformations like
in (A.18), we can generate τ -families of quasi-stationary d-
metrics with χ -generating functions for solutions with gen-
erating functionals χ4[1℘] and/or q

2ϒ[2℘]. Various variants
with ellipsoid and solitonic deformations, for instance, for
black ellipsoids, BE, with additional solitonic modifications
(of physical constants, or embedding into certain solitonic
gravitational vacuum) can be modelled. We do not study in
this work solutions for BHs, or BEs, solitonic τ -running but
concentrate only on nonmetric wormhole-soliton configura-
tions.

3.3 Nonmetric wormhole solutions and their solitonic
deformations

The goal of this subsection is to construct analyze phys-
ical properties of wormhole solutions and their solitonic
deformations in nonmetric geometric flow and gravity the-
ories with τ -modified Einstein equations (29). As prime d-
metric configurations, we shell consider certain curve coordi-
nate transforms of the Morris–Thorne and generalized Ellis–
Bronnikov wormholes to certain trivial off-diagonal config-
urations which allow to apply the AFCDM. We cite [25–

28,31,33] for details and a recent review of results on worm-
hole solutions. Then, we shall construct new classes of quasi-
stationary solutions as target metrics, for certain gravitational
polarizations determined by additional nonmetricity source,
and study their possible traversable nonmetric properties.
Necessary technical results are summarized in Appendix A,
containing a brief summary of the AFCDM adapted to non-
metric gravity, and Appendix B, for necessary formulas on
solitoinic hierarchies.

3.3.1 Prime metrics for 4-d metric compatible wormhole
configurations

Let us consider a prime d-metric

ds̊2 = ǧα(l, θ, ϕ)[ěα(l, θ, ϕ)]2, (34)

where the (tortoise) coordinates uα = (r, θ, ϕ, t) are defined
for r(l) = (l2k + 0b2k)1/2k and the cylindrical angular coor-
dinate φ ∈ [0, 2π) is called parallel. In such coordinates,
−∞ < l < ∞ which is different from the standard cylin-
drical radial coordinate ρ, when 0 ≤ ρ < ∞. We can
fix ǧ1 = 1, ǧ2 = r2(l), ǧ3 = r2(l) sin2 θ and ǧ4 = −1
and can consider frame transforms to a parametrization with
trivial N-connection coefficients Ň a

i = Ň a
i (u

α(l, θ, ϕ, t))
and ǧβ(u j (l, θ, ϕ), u3(l, θ, ϕ)), when new coordinates are
u1 = x1 = l, u2 = θ, and u3 = y3 = ϕ + 3B(l, θ), u4 =
y4 = t + 4B(l, θ), for

ě3 = dϕ = du3 + Ň 3
i (l, θ)dx

i

= du3 + Ň 3
1 (l, θ)dl + Ň 3

2 (l, θ)dθ,

ě4 = dt = du4 + Ň 4
i (l, θ)dx

i

= du4 + Ň 4
1 (l, θ)dl + Ň 4

2 (l, θ)dθ,

for N̊ 3
i = −∂ 3B/∂xi and N̊ 4

i = −∂ 4B/∂xi .
We consider a prime d-metric (34) which is related via

coordinate transforms to the generic Morris-Thorne worm-
hole solution [25],

ds̊2 =
(

1 − b(r)

r

)−1

dr2

+r2dθ2 + r2 sin2 θdϕ2 − e2�(r)dt2,

where e2�(r) is a red-shift function and b(r) as a shape
function defined in spherically polar coordinates uα =
(r, θ, ϕ, t). We can also parameterize this metric to get
usual Ellis–Bronnikov, EB, wormholes which are defined
for �(r) = 0 and b(r) = 0b2/r characterizing a zero tidal
wormhole with 0b the throat radius. A generalized EB is char-
acterized additionally by even integers 2k (with k = 1, 2, ...)
This allows us to define a prime metric

ds̊2 = dl2 + r2(l)dθ2 + r2(l) sin2 θdϕ2 − dt2,
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when

dl2 =
(

1 − b(r)

r

)−1

dr2 and

b(r) = r − r3(1−k)(r2k − 0b
2k)(2−1/k)).

Generic off-diagonal nonholonomic deformations of prime
metrics (34) can be analyzed for effective sources of type
(25) when the Q-deformations are stated to be zero. For
such quasi-stationary diagonalizable solutions, the effective
sources are of type tot ϒ̂μν (21) when mT̂μν in (22) is taken
for a energy-momentum tensor for matter fields. For gener-
ating off-diagonal deformations of wormhole solutions, we
shall consider generating sources of type (27) or (28). Corre-
sponding classes of generating and integration functions are
related via nonlinear symmetries (A.8) or (A.9), when a class
of solutions for (tot2 ϒ(τ ) ↔ tot

2 �(τ)) can be distinguished
from another class of solutions for (q2ϒ(τ ) ↔ q

2�(τ)). In
general, such τ -running or nonholonomic Ricci flow config-
urations are characterized by different types of thermody-
namic variables as we shall prove in Sect. 4.

3.3.2 Nonholonomic quasi-stationary gravitational
polarizations of wormholes

Nonmetric off-diagonal quasi-stationary deformations of
wormhole d-metrics (34) can be generated by introducing(
ǧβ, Ň a

i

)
instead of primary geometric data g̊ = [g̊α, N̊ a

i ]
(A.12) in (A.16) using some generating sources q2ϒ(τ ) and/or
q
2�(τ). We generate new classes of a target τ -family of d-
metrics g(τ ) determined by nonmetric geometric flows and
respective η -polarization functions, when ǧ → g(τ ) =
[gα(τ ) = ηα(τ)ǧα, Na

i (τ ) = ηai (τ )ǧ
a
i ]. Corresponding

quadratic linear elements

dŝ2(τ ) = ĝαβ(l, θ, ϕ;ψ, η4; q2�(τ)
= q

2�(τ),
q
2ϒ(τ ), ǧα)du

αduβ

= eψ(τ l,θ)[(dx1(l, θ))2 + (dx2(l, θ))2]
− [∂ϕ(η4(τ ) ǧ4)]2

| ∫ dϕq2ϒ(τ )∂ϕ(η4(τ ) ğ4)| η4(τ ) ǧ4

{
dy3

+∂i [
∫
dϕq2ϒ(τ ) ∂ϕ(η4(τ ) ǧ4)]
q
2ϒ(τ )∂ϕ(η4(τ ) ǧ4)

dxi
}2

+η4(τ )ğ4

{
dt +

[
1nk + 2nk

∫
dϕ

[∂ϕ(η4(τ ) ğ4)]2

| ∫ dϕq2ϒ(τ )∂ϕ(η4(τ ) ğ4)| (η4(τ ) ğ4)5/2

]
dxk

}
.

(35)

This class of solutions are determined by respective gener-
ating function η4(τ ) = η4(τ, l, θ, ϕ) and integration func-
tions 1nk(τ, l, θ) and 2nk(τ, l, θ). The τ -family of functions
ψ(τ, l, θ) are defined as a solution of a respective family of
2-d Poisson equations, ∂2

11ψ(τ)+ ∂2
22ψ(τ) = 2q1ϒ(τ, l, θ),

when the horizontal generating effective sources, q1ϒ(τ, l,
θ), can be different from the vertical ones which may depend
on a vertical coordinate, q2ϒ(τ, l, θ, z).

For families of off-diagonal solutions (35), we can fix
q
1�(τ) = q

2�(τ) and analyze quasi-stationary configura-
tions with running cosmological constants. We suppose that
such effective τ -families of cosmological constants can be
expressed in additive form
q
2�(τ) = tot

2 �(τ)+ 1
2�(τ) = m

2 �(τ)+ F
2 �(τ)+ e

2�(τ),

(36)

where tot
2 �(τ) model metric compatible configurations and

1
2�(τ) describe possible additional nonmetric contributions.
The three terms with left labelsm, F, e in these formulas cor-
respond to (effective) energy-momentum tensors (22). We
can consider nonlinear symmetries of type (A.14) relating
ϒ
μ
ν(τ) � [ tot

h ϒ,
totϒ] (27) to a τ -family tot

s �(τ), for
s = 1, 2, and qϒ

μ
ν(τ ) � [qhϒ, qϒ] (28) to another family

q
2�(τ) = q

2�[τ, tot2 �(τ)] which may be a nonlinear func-
tional on tot

2 �(τ). In this work, we elaborate on models with
nontrivial nonmetricity effective sources and additional type
functionals (36) for cosmological constants.

The class of quasi-stationary nonmetric deformed worm-
holes (35) can be written in terms of generating data[
�(τ), tot2 �(τ)+ 1

2�(τ)
]

as in (32),
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dŝ2(τ ) = e ψ[ q
hϒ(τ)][(dx1)2 + (dx2)2] − �2(τ )[�∗(τ )]2

| [tot2 �(τ)+ 1
2�(τ)]

∫
dϕ qϒ(τ ) [�2(τ )]∗|[g[0]

4 (τ )− �2(τ )

4 [tot2 �(τ)+1
2�(τ)]

]

×
[
dy3 + ∂i

∫
dϕ qϒ(τ ) [�2]∗

qϒ(τ ) [(2�)2]∗ dxi
]

−
[
h[0]

4 (τ )−
�2(τ )

4 [tot2 �(τ)+ 1
2�(τ)]

]⎡
⎣dt + (1nk(τ )

+2nk(τ )
∫

dϕ
�2(τ )[�∗(τ )]2

| [tot2 �(τ)+ 1
2�(τ)]

∫
dϕ qϒ(τ ) [�2(τ )]∗|[g[0]

4 (τ )− �2(τ )

4 [tot2 �(τ)+1
2�(τ)]

]5/2
)dxk

⎤
⎦ . (37)

In such a form, the data for a prime wormhole metric
are “hidden” into generating functions and the equations for
nonlinear symmetries.

The target d-metrics (35) or (37) do not describe worm-
hole configurations for general classes of generating and inte-
grating data. There are necessary additional assumptions on
polarization functions and integration functions which allows
us to provide certain physical interpretation of such generic
off-diagonal solutions. Typically, we can prescribe some
generating data for solitonic waves, or some small defor-
mations of wormhole configurations. For instance, to elab-
orate cosmological scenarios with acceleration and quasi-
periodic structure, or to transform quasi-stationary d-metrics
into locally anisotropic cosmological ones, we have to con-
sider other types of gravitational polarization and generating
data.

3.3.3 Off-diagonal quasi-stationary solitonic deformations
of wormhole d-metrics

We can generate a class of d-metrics (33) when the prime
d-metric g̊ (A.12) changed into a wormhole one (34) with
space coordinates (l, θ, ϕ). Such a target d-metric is of type
(35) when off-diagonal deformations are determined by a
generating function η4(τ ) = η4[℘], where ℘ = ℘(τ, xi ),
= ℘(τ, x1, y3), or = ℘(τ, x2, y3) is any solution for τ -
running solitonic configurations ( B.3).7 The quadratic linear
element for ℘(τ, x1, y3)–solitonic deformations of worm-
hole metrics is constructed

dŝ2(τ ) = ĝαβ(l, θ, y
3;ψ, η4; m2 �(τ)

+F
2 �(τ)+ e

2�(τ),
q
2ϒ(τ ), ǧα)du

αduβ

7 We can consider ℘ as any solitonic hierarchy considered in
Appendix B.1 and re-defined in coordinates (τ, l, θ, ϕ).

= eψ(τ,l,θ)[(dx1(l, θ))2 + (dx2(l, θ))2]
− [∂3(η4[℘] ǧ4)]2

| ∫ dy3q
2ϒ(τ )∂3(η4[℘] ğ4)| η4[℘] ǧ4

×
{
dy3 + ∂i [

∫
dy3 q

2ϒ(τ ) ∂3(η4[℘] ǧ4)]
q
2ϒ(τ )∂3(η4[℘] ǧ4)

dxi
}2

+η4[℘]ğ4

{
dt +

[
1nk + 2nk

∫
dy3

× [∂3(η4[℘] ğ4)]2

| ∫ dy3q
2ϒ(τ )∂3(η4[℘] ğ4)| (η4[℘] ğ4)5/2

]
dxk

}
.

Such solutions describe nonmetric nonholonomic dissipa-
tions of a prime wormhole metric into certain τ -running
generic off-diagonal solitonic distributions. Nonlinear sym-
metries of type (A.8) or (A.9) involve additive decomposi-
tions of running cosmological constants, m2 �(τ)+ F

2 �(τ)+
e
2�(τ), and a nonmetric source q

2ϒ(τ ) which can be of non-
solitonic character.

3.3.4 Small parametric off-diagonal quasi-stationary
deformations of wormhole d-metrics

We can generate new classes of solutions which preserve
wormhole character under nonmetric geometric flow evo-
lution scenarios of a prime d-metric ǧ (34) if we consider
small ε -parametric deformations of type (A.18). The gener-
ating functions can be linearized on ε as in (A.17) when in
terms of χ -polarization functions, the quadratic linear ele-
ments (35) can be expressed
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d ŝ2(τ ) = ĝαβ(l, θ, ϕ;ψ, χ4; q2�(τ) = q
2�(τ),

q
2ϒ(τ ), ǧα, Ň

3
i )du

αduβ

= eψ0(l,θ)[1 + ε ψ(l,θ)χ(l, θ)][(dx1(l, θ))2 + (dx2(l, θ))2]

−
{

4
[
∂ϕ(|ζ4 ğ4|1/2)

]2
ğ3|
∫
dϕ{ q

2ϒ(τ )∂ϕ(ζ4 ğ4)}|
− ε

[
∂ϕ(χ4|ζ4ğ4|1/2)
4∂ϕ(|ζ4 ğ4|1/2) −

∫
dϕ{q2ϒ(τ )∂ϕ[(ζ4 ğ4)χ4]}∫
dϕ{q2ϒ(τ )∂ϕ(ζ4 ğ4)}

]}
ğ3

{
dϕ +

[
∂i
∫
dϕ q

2ϒ(τ) ∂ϕζ4

(Ň 3
i )

q
2ϒ(τ )∂ϕζ4

+ ε
(
∂i [
∫
dϕq2ϒ(τ ) ∂ϕ(ζ4χ4)]

∂i [∫ dϕq2ϒ(τ )∂ϕζ4]
− ∂ϕ(ζ4χ4)

∂ϕζ4

)]
Ň 3
i dx

i
}2

+ζ4(1 + ε χ4) ğ4

⎧⎪⎪⎨
⎪⎪⎩
dt +

[
(Ň 4

k )
−1[1nk + 162nk

[ ∫
dϕ

(
∂ϕ[(ζ4 ğ4)

−1/4])2
| ∫ dϕ∂ϕ[q2ϒ(τ )(ζ4 ğ4)]|

]

+ε
162nk

∫
dϕ

(
∂ϕ [(ζ4 ğ4)

−1/4])2
| ∫ dϕ∂ϕ [q2ϒ(τ )(ζ4 ğ4)]| (

∂ϕ [(ζ4 ğ4)
−1/4χ4)]

2∂ϕ [(ζ4 ğ4)−1/4] +
∫
dϕ∂ϕ [ğ4(ζ4χ4 ğ4)]∫
dϕ∂ϕ [ğ4(ζ4 ğ4)] )

1nk + 162nk[
∫
dϕ (

∂ϕ [(ζ4 ğ4)−1/4])2
| ∫ dϕ∂ϕ [ğ4(ζ4 ğ4)]| ]

⎤
⎥⎥⎦ Ň 4

k dx
k

⎫⎪⎪⎬
⎪⎪⎭

2

. (38)

We can model elliptic deformations of the wormhole
throat as a particular case of d-metrics of type (38) if we
chose a generating function of type

χ4(τ, l, θ, ϕ) = χ(τ, l, θ) sin(ω0ϕ + ϕ0) (39)

as for cylindric configurations with ϕ-anisotropic deforma-
tions and τ -running small deformations. Such classes of
solutions describe nonmetric τ -evolution of some ellipsoidal
wormholes.

If in (38) we take a vacuum profile with ζ4 = [1℘] i.e.
as a functional of a solitonic distribution 1℘ = 1℘(l, θ, ϕ)
as in (B.2) but with correspondingly re-defined coordinates,
the wormhole ellipsoidal configuration is modelled as a τ -
evolution in such nonmetric gravitational vacuum. Instead
of ellipsoidal configurations (39), we can consider small
solitonic χ -deformations. For such classes of generic off-
diagonal solutions, we can consider anyχ4(τ, l, θ, ϕ) defined
as functional χ4[℘] of a ℘ = ℘(τ, xi ), = ℘(τ, x1, y3), or
= ℘(τ, x2, y3), of some solitonic τ -waves (B.3).

The class of nonmetric locally anisotropic wormhole solu-
tions (38) may possess a multiple solitonic wave or solitionic
distribution character even the generating source q

2ϒ(τ ) can
be non-solitonic. Nonlinear symmetries allow to associate to
such configurations certain effective τ -running cosmological
constants of type (36). Considering, for instance, zero val-
ues of e

2�(τ), we can model some metric compatible locally
anisotropic wormholes and then to extend the constructions
for nonmetric configurations with nontrivial e2�(τ).

3.3.5 On traversable nonmetric wormholes

Wormhole solutions in GR and MGTs are considered as
hypothetical geometric structures that link two distinct
regions of the same spacetime. References [25–29] con-

tain reviews of results and methods of constructing worm-
hole solutions. Standard wormhole solutions in GR are not
traversable because for various classes of such solutions it
is not possible to send causal light signals through it throat
faster than we can send it through outside. The first worm-
hole model of the so-called Einstein-Rosen bridge was elabo-
rated using as a vacuum solution of gravitational field equa-
tions [30]. That solution was derived as a modification of
the Schwarzschild BH when the corresponding wormhole
model is not traversable because of singularity of such solu-
tions. Latter, a static and spherically symmetric wormhole
configuration with a traversable throat at the center was con-
structed in [25]. Various classes of wormhole metrics were
found in the framework of GR and MGTs [27,28,31]. The
existence of such solutions demands the presence of some
exotic matter and additional geometric distortions for which
the null energy condition, NEC, is violated in order to achieve
a stable and traversable structure.

Let us remember in brief how traversable wormholes
require a violation of the so-called average null energy con-
dition, ANEC, and how such conditions are modified in the
framework of MGTs with nonmetricity. The ANEC states
that the energy-momentum tensor for matter fields, Tμν,
for a local quantum field theory, QFT, along a complete
achronal null geodesic, there are satisfied the conditions∫
Tμνkμkνdλ ≥ 0,where kμ is a tangent d-vector and λ is an

affine parameter. For elaborating quantum gravity, QG, mod-
els, such conditions have to be considered for certain effective
matter field and distortion of geometric objects. Here we note
that in classical theories the violation of the ANEC is pre-
vented by the null energy conditions, NEC, Tμνkμkνdλ ≥ 0.
It is considered that such conditions must be valid for any
physically reasonable theory at least for classical and semi-
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classical configurations. Additionally, there are considered
other important criteria on causality, topological censorship,
absence of singularities etc.

Due to problems with transversability, many authors
excluded wormholes to be considered as reliable astrophys-
ical objects. In another turn, a number of authors concluded
that there are possibilities to realize wormholes without con-
sidering exotic matter but modifying GR. In various cos-
mological models, there are used solutions with NECs. One
supposes that such theories are not experimentally prohibited
in the condition when MGTs are involved and due to ideas
on existence of particles beyond the standard model.

However, for elaborating explicit physical models and
applications in modern cosmology and astrophysics, it is
admitted that QM and distortions of geometric effects may
induce negative null energy, leading to violations of some
NECs and/or ANECs. For nonholonomic systems, the vari-
ational and conservation laws are different from those stated
for unconstrained ones. For diagonal traversable systems, to
sustain a traversable wormhole there are introduced certain
negative null energy and various nonlocal/nonachronal con-
structions. The matter fields are considered as quantum ones,
but the gravitational field is treated classically. In such mod-
els, there are solved some semi-classical Einstein’s equations
with an effective source < Tμν > computed as the expecta-
tion value of the stress-energy tensor in a given quantum state.
For certain classes of wormhole solutions, the 1-loop expec-
tation value of the stress-energy tensor satisfy in some space-
time regions the conditions

∫
< Tμν > kμkνdλ < 0. Such

configurations allows us to construct traversable Einstein-
Rosen bridges with certain interesting physical properties.

Quantum effects and wormhole solutions are studied in
various MGTs and quantum information theories. For elab-
orating quantum computing models, this provides the pos-
sibility to transfer information between the two asymptotic
spacetime boundaries. Such a process can be viewed as a tele-
portation protocol, see details and references in [32]. Here
we note that wormholes seem to be traversable for qubits
[33–35].

In this work, we follow an approach to constructing worm-
hole solutions with off-diagonal deformations of some prime
wormhole metrics in 4-d theories (see also generalizations
for higher dimensions and MGTs [36–41]). Such solutions
can be constructed using the AFCDM and extended to non-
metric geometric flow and gravity theories as we have shown
in previous subsections. The generating sources qϒαβ(τ ) �
[qhϒ(τ), qϒ(τ)] (28) for Q-modified Einstein equations (29)
can be prescribed in such a form that

∫
qϒμνkμkνdλ < 0

even using the matter energy-momentum d-tensor from (22),
we have mT̂μνkμkνdλ ≥ 0. This means that certain types
of nonmetric geometric flow and off-diagonal deformations
resulting in certain locally anisotropic wormhole solutions

result in traversable conditions even at the classical level.
Such conditions can be valid even for locally anisotropic
wormhole solutions in GR because of additional generic off-
diagonal terms. This is also a result of nonholonomic modi-
fications of the spacetime structure.

4 Perelman thermodynamics for nonmetric
quasi-stationary configurations

The parametric solutions constructed in previous section
describe nonmetric geometric flow and solitonic deforma-
tions of wormhole metrics. They are characterized by respec-
tive Perelman statistical/ geometric thermodynamic variables
[15]. The Bekenstein–Hawking thermodynamic paradigm is
not applicable to such solutions because, in general, they
do not involve certain hypersurface configurations. We cite
[16,23] for details on relativistic generalizations and MGTs.
For geometric flows and metric and nonmetric gravity the-
ories, the W-functional (18) can be treated as a “minus”
entropy. The goal of this section is to show how nonmetric
geometric flow thermodynamic variables can be defined and
computed for quasi-stationary off-diagonal solutions of type
(37).

4.1 Statistical thermodynamic variables for Q-deformed
relativistic geometric flows

Let us consider nonmetric geometric flow equations (29).
They can be derived in geometric or variational form, fol-
lowing the methods outlined in Sects. 3.1 and 5 of [15],8

from the W-functional,

Ŵ(τ ) =
∫ t2

t1

∫
�t

(4πτ)−2 e− f̂ (τ )
√|g(τ )|δ4u[τ(R̂sc(τ )

+|D̂(τ ) f̂ (τ )|2 + f̂ (τ )− 4]. (40)

In this formula, the normalizing function f̂ (τ, u) and the
parameter τ are such way re-defined that corresponding geo-
metric flow equations and normalizing conditions formu-
las contributions from possible matter fields, F- and Q-
distortions of the geometric data (g(τ ),∇(τ )) to canoni-
cal ones, (g(τ ),N(τ ), D̂(τ )). We use different integration
measures and nonlinear symmetries for (40) comparing to
W(τ ) ( 18). The effects of nonmetricity will be emphasized
below when there will be used solutions of (29) determined

8 In this work, we consider 4-d Lorentz manifols which correspond
to dimension n = 4, which a conventional changing to Riemannian
signature; Perelman’s formulas for deriving geometric flows and ther-
modynamic variables can be used for arbitrary dimension n ≥ 3 and
signature but such formulas can’t be used for formulations/ proofs of
analogs of Poincare–Thorston conjectures in non-Riemannian cases.
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by respective τ–running generating sources (28) or effective
cosmological constants (36).

On a metric-affine space M endowed with canonical geo-
metric data and an additional nonholonomic (3+1) splitting,9

we introduce the statistical partition function

q Ẑ(τ ) = exp[
∫
�̂

[− f̂ + 2] (4πτ)−2 e− f̂ δ qV(τ )], (41)

where the volume element is defined and computed as

δ qV (τ ) = √|g(τ )|dx1dx2δy3δy4. (42)

We use a left label q because nonmetric Q-contributions can
be encoded in g(τ ). Such a label will be omitted in formu-
las below if that will not result in ambiguities. Here we note
that a a statistical thermodynamic model can be constructed
using a partition function Z = ∫

exp(−βE)dω(E) for a
canonical ensemble at temperature β−1 = τ and when the
measure is stated as the density of states ω(E). The ther-
modynamical variables are computed as the average energy,
〈E〉 := −∂ log Z/∂β, the entropy S := β 〈E〉+log Z and the
fluctuation parameter σ := 〈

(E − 〈E〉)2〉 = ∂2 log Z/∂β2.

Using Ẑ (41) and Ŵ(τ ) (40) and following for canonical
variables a variational procedure on a closed region of M
as in Sect. 5 of [15], we can define and compute respective
thermodynamic variables:

q Ê (τ ) = −τ 2
∫
�̂

(4πτ)−2
(
R̂sc + | D̂ f̂ |2 − 2

τ

)

×e− f̂ δ qV(τ ),
q Ŝ(τ ) = −

∫
�̂

(4πτ)−2
(
τ(R̂sc + |D̂ f̂ |2)+ f̂ − 4

)

×e− f̂ δ qV(τ ),
q σ̂ (τ ) = 2 τ 4

∫
�̂

(4πτ)−2 | R̂αβ + D̂α D̂β f̂

− 1

2τ
gαβ |2e− f̂ δ qV(τ ). (43)

We note that such a thermodynamic systems can be associ-
ated to solution of the nonholonomic nonmetric geometric
flow equations (19). In particular, we can fix conventionally
the temperature and consider such data for nonmetric Ricci
solitons characterized by

[
q Ê(τ0), q Ŝ(τ0), q σ̂ (τ0)

]
. Cer-

tain classes of solutions can be not well-defined in the frame-
work of such a statistical and geometric thermodynamic
approach, for instance, if q Ŝ(τ0) < 0.We have to restrict cer-
tain classes of nonholonomic frames/distributions/distortions
in order to generate physically viable solutions. The non-
metric Q-deformations may have different sign contributions
comparing to certain metric compatible classes of solutions
determined by corresponding

[
Ê(τ ), Ŝ(τ ), σ̂ (τ )

]
.

9 Such a conventional splitting is necessary for introducing thermody-
namic variables, when the nonholonomic 2+2 decompositions is impor-
tant for generating off-diagonal solutions.

4.2 Thermodynamic variables for nonmetric deformations
of wormhole solutions

We compute in explicit form the variables Ẑ (41), and
q Ê (τ ), q Ŝ(τ ) from (43) for quasi-stationary off-diagonal

solutions (37).10 The simplest way is to consider that

R̂sc = 2[tot1 �(τ)+ 1
1�(τ)+ tot

2 �(τ)+ 1
2�(τ)]

choosing such a normalizing function when D̂α f̂ = 0 and
approximating f̂ ≈ 0. Such conditions can be considered for
a frame/coordinate system and then the results can be rede-
fined for arbitrary bases and normalizing functions. Corre-
spondingly, we obtain

q Ẑ(τ ) = exp

[ ∫
�̂

1

8 (πτ)2
δ qV(τ )

]
,

q Ê (τ ) = −τ 2
∫
�̂

1

8 (πτ)2

[
tot
1 �(τ)+ 1

1�(τ)+ tot
2 �(τ)

+1
2�(τ)−

1

τ

]
δ qV(τ ),

q Ŝ(τ ) = − q Ŵ (τ ) = −
∫
�̂

1

8 (πτ)2

[
τ(tot1 �(τ)+ 1

1�(τ)

+tot
2 �(τ)+ 1

2�(τ)− 2
]
δ qV(τ ). (44)

To compute the volume form δ qV(τ ) (42) is better to
consider the equivalent d-metric (35) with η –polarization
functions, or (38) for η–polarization functions, and including
data for nonmetric generating sources. Respectively, we can
write

2�(τ) = 2
√

|[tot2 �(τ)+ 1
2�(τ)] g4(τ )|

= 2
√

| [tot2 �(τ)+ 1
2�(τ)] η4(τ ) ğ4(τ )|

� 2
√

| [tot2 �(τ)+ 1
2�(τ)] ζ4(τ ) ğ4|[1 − ε

2
χ4(τ )].

(45)

For simplicity, we shall elaborate on nonholonomic evolution
models with trivial integration functions 1nk = 0 and 2nk =
0. Introducing formulas (45) in (42), then separating terms
with shell τ -running cosmological constants, we express:

δ qV = δV[τ, tot
1 �(τ)+ 1

1�(τ),
tot
2 �(τ)

+1
2�(τ); qhϒ(τ), qϒ(τ);ψ(τ), g4(τ )]

= δV(qhϒ(τ), qϒ(τ), tot1 �(τ)

+1
1�(τ),

tot
2 �(τ)+ 1

2�(τ), η4(τ )ğ4)

= 1√
|[tot1 �(τ)+ 1

1�(τ)][tot2 �(τ)+ 1
2�(τ)]|

δηV,

where δηV = δ1
ηV × δ2

ηV .

10 We omit more cumbersome calculations for q σ̂ (τ ).
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In these formulas, we use the functionals:

δ1
ηV = δ1

ηV[tot1 �(τ)+ 1
1�(τ), η1(τ ) ğ1] = eψ̃(τ )dx1dx2

=
√

| tot
1 �(τ)+ 1

1�(τ)|eψ(τ)dx1dx2,

for ψ(τ) being a solution of (A.3),

δ2
ηV = δ2

ηV[ qϒ(τ), η4(τ ) ğ4]

= ∂3| η4(τ ) ğ4|3/2√
| ∫ dy3 qϒ(τ){∂3| η4(τ ) ğ4|}2|

×
[
dy3 + ∂i

(∫
dy3 qϒ(τ)∂3| η4(τ ) ğ4|

)
dxi

qϒ(τ)∂3| η4(τ ) ğ4|

]
dt,

(46)

where numeric coefficients were used for re-defining the gen-
erating functions. We note that we can define ψ̃(τ ) as a τ
–family of solutions of 2-d Poisson equations with effective
source tot

1 �(τ)+ 1
1�(τ), or use ψ(τ) for a respective source

q
hϒ(τ). Integrating on a closed hypersurface �̂ such products
of h- and v-forms, we obtain a running phase space volume
functional

�

ηV̊(τ ) =
∫
�̂

δηV(qhϒ(τ),
qϒ(τ), ğα)

determined by prescribed classes of generating η-functions,
effective generating sources

[q
hϒ(τ),

qϒ(τ)
]
, coefficients

of a prime s-metric g̊α and nonholonomic distributions
defining the hyper-surface �̂. The explicit value of �

ηV̊(τ )
depends on the data we prescribe for �̂ the type of Q -
deformations (via η- or ζ -polarizations) we use for deform-
ing a prime wormhole d-metric into quasi-stationary ones
as we considered in Sect. 3. We emphasize that it is always
possible to compute �

ηV̊(τ ) for certain nonlinear solitonic
waves/distributions and some general Q-deformations. The
thermodynamic variables depend on the τ -running effective
cosmological constants.

5 Conclusions and open questions

In this work we elaborated on the nonmetric geometric flow
theory of metric-affine spaces and applied it to modified
gravity theories, MGT, as in [5–8,10]. The approach was
generalized in nonholonomic form [11,13,16] with the aim
to apply the anholonomic frame and connection deforma-
tion method, AFCDM, for constructing physically important
exact and parametric solutions in geometric flow and grav-
ity theories with nonmetricity. Such solutions are defined
by generic off-diagonal metrics and generalized (non) lin-
ear connections and, in general, do not possess hypersur-
face/duality/holographic configurations which would allow
to treat them in the framework of Bekenstein–Hawking
paradigm [42–45]. In another turn, as we have shown in this
paper, the G. Perelman statistical and geometric thermody-

namic paradigm [15] can be applied for all types of solutions
in MGTs including nonmetric geometric flow evolution mod-
els as we considered in the previous section. In addition to
gaining a more complete understanding of gravity theories
with nonmetricity, we also studied in this article certain new
classes of wormhole and solitonic solutions encoding non-
metric data. This included such new and original results:

1. In Sect. 2.1, the metric-affine geometry was formu-
lated in nonholonomic dyadic variables for nonmetric
Q-deformed 4-d Lorentz manifolds. Such a formulation
allows us to prove general decoupling and integration
properties of nonmetric geometric flow equations and
modified Einstein equations in MGTs as we outlined in
Appendix A.

2. The Obj1 of this work was completed in Sect. 2.2 where
Lyapunov type F- and W-functionals are defined for
nonholonomic variables encoding Q-deformations. This
allowed us to formulate nonmetric geometric flow mod-
els, which for self-similar configurations define non-
metric Ricci solitons containing as particular cases, for
instance, nonmetric gravitational equations studied in
[6,7,10].

3. In Sect. 3, we solved the goals of Obj2 by constructing in
explicit form two classes of physically important quasi-
stationary solutions of nonmetric geometric flow equa-
tions which for fixed flow parameters define Q-deformed
Einstein spaces. We proved that such generic off-diagonal
solutions can be described in general form by respec-
tive solitonic hierarchies and solitonic distributions (see
Sect. 3.2, when the necessary concepts and formulas are
outlined in Appendix B).

4. Wormhole solutions present an important tool for testing
MGTs and applications in modern quantum computer
science as we show by constructing and analyzing pos-
sible nonmetric effects in Sect. 3.3. Such configurations
can be with nonholonomic solitonic Q-deformations and
gravitational polarizations, locally anisotropic, in partic-
ular, ellipsoid deformations of throats, when nonmetric-
ity makes such configurations to be transversable.

5. In general, the quasi-stationary solutions encoding non-
metricity do not involve hypersurface/holographic con-
figurations or certain duality conditions when the con-
cept of Bekenstein–Hawking entropy could be appli-
cable. As in GR and other MGTs, general classes of
exact/parametric solutions can be characterized thermo-
dynamically in the framework of corresponding general-
ization of G. Perelman paradigm with W-entropy. In Sect.
4, we show how such constructions can be performed for
Q-deformations, which presents a solution of Obj3.

The quasi-stationary solutions constructed in this work are
characterized by a τ -family of Weyl d-vectors qα(τ ) sub-
jected to conditions of type (23). For such nonholonomic
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configurations, we can computed respectively induced τ -
families of nonmetricity d-tensors,Qαβγ (τ ) = qα(τ )gβγ (τ ),
and d-torsion, Tμνα(τ ) = Aν(τ )gμα(τ)−Aα(τ )gμν(τ ), for
Aμ(τ) = qqμ(τ), when q = const or depend on τ. Such a
q can be chosen as a small parameter (like ε in (A.17)) for
Q-deformations which allow to construct parametric defor-
mations of physically important solutions in GR.

Let us discuss the legacy of using Q-deformed Perel-
man’s F- and W-functionals to formulate and prove analogues
of Poincaré–Thorston conjecture [15,20–22] for nonmetric
geometric flows. For general Q-deformations this is an un-
defined mathematical problem similar to those for an infi-
nite number of noncommutative/nonassociative differential
and integral calculuses and geometric theories, see discus-
sions and respective variants of solutions in [13,16,23]. For
metric-affine spaces, an infinite number of topological and
nonmetric geometric models can be formulated because of
an infinite number of nonlinear and linear connection struc-
tures that can be used. So, it is not possible to formulate a
general mathematical framework involving only some funda-
mental topological theories and nonmetric geometric analy-
sis. Nevertheless, self-consistent generalizations of the statis-
tic and nonmetric geometric thermodynamics are possible
if there are used Q-deformations as in Sects. 2.2.1 and 4.
They encode nonmetric geometric data and result in nonholo-
nomic Ricci soliton configurations and Q-modified Einstein
equations. Such systems of nonlinear PDEs can be solved
in some general forms as we show in Appendix A and
provide explicit examples in Sect. 3. For instance, we can
associate and compute for such generic off-diagonal solu-
tions respective Perelman-like nonmetric geometric thermo-
dynamic variables, see respective formulas (43), (44) and
(??). Thus, such nonmetric geometric flow and MGTs and
their associated thermodynamic theories can be formulated
in a self-consistent form as τ -parametric Q-deformations of
Lorentz manifolds geometries, and this is possible even if we
are not able to formulate in general form a rigorous version of
metric-affine Poincarè hypothesis. Here we also note that the
concept of Bekenstein–Hawking entropy is not applicable
for the classes of nonmetric solitonic and wormholes solu-
tions considered in Sect. 3. However, the concepts of Perel-
man’s W-entropy and related statistical thermodynamics can
be generalized for various classes of nonmetric theories and
their solutions.

The results of this work support the Hypothesis from the
Introduction section in such senses:

1. We constructed in explicit form certain models of
metric-affine geometric flow and MGTs which are
exactly/parametric solvable in certain general off-diagonal
forms in nonholonomic dyadic variables.

2. The solutions with τ -running effective cosmological con-
stants can be used for modelling DE physical effects

and other type configurations with generating sources for
effective matter (all such solutions encoding nonmetric-
ity data) for modelling DM physics.

3. In this paper, we elaborated only on nonmetric quasi-
stationary configurations which can be described as soli-
tonic hierarchies or nonmetric wormhole solutions and
certain nonlinear Q-deformations of such generic off-
diagonal solutions subjected to respective nonlinear sym-
metries.

4. Perelman type nonmetric geometric thermodynamic vari-
ables were defined and computed in explicit form for the
mentioned classes of quasi-stationary solutions.

Nevertheless, there is a series of important fundamental prob-
lems that should be investigated and solved in future works.
Here we outline four of the most important open questions
on nonmetric geometric and information flow theories and
gravity (QNGIFG) and cite some relevant previous works:

• QNGIFG1: To elaborate full and viable classical and
quantum theories on metric-affine spacetimes we have
to formulate a theory of spinors and Q-deformed Dirac
operators, which is not possible in general form for arbi-
trary nonmetric structures. This problem is discussed
in more general forms in [9,12] for phase or Finsler-
Lagrange-Hamilton theories on (co) tangent Lorentz bun-
dles. Corresponding conceptual and technical difficulties
exist for metric-affine generalizations of Lorentz man-
ifolds. Certain solutions can be found as Q-deformed
off-diagonal Einstein-Dirac systems, see previous results
[14].

• QNGIFG2: One of the next steps is to study models
of Q-deformed Einstein-Yang-Mills-Higgs systems. If
such systems are derived as star-product R-flux deforma-
tions in string theory, the obtain nonholonomic geometric
structures with nonsymmetric metrics and Q-deformed
Einstein-Eisenhart-Moffat theories, see details and refer-
ences to [10,13].

• QNGIFG3: Q-deformed off-diagonal cosmological sys-
tems can be considered as certain dual ones to quasi-
stationary configurations as stated in [11]. Such solutions
involve, for instance, various quasi-periodic (cosmolog-
ical time quasi-crystals etc.) and time-solitonic hierar-
chies which can be exploited for modelling DE and DM
effects.

• QNGIFG4: Finally, we point to the possibility to extend
the geometric and quantum information flow theory
[16,23] to certain Q-deformed versions with nonmetric
qubits, nonmetric entanglement and respective general-
izations of conditional entropies with Q-modified Perel-
man’s functionals.

We shall report on progress to answers for above questions
in future works.
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A Decoupling and integrability of nonmetric
quasi-stationary geometric flow equations

In this appendix, we summarize necessary formulas which
allow us to prove some general decoupling and integra-
tion properties of nonmetric geometric flow equations (19)
with generating sources (28). There are studied generic off-
diagonal solutions parameterized by a quasi-stationary ansatz
(26). Details on nonholonomic geometric methods can be
found in generalized Finsler-Lagrange-Hamilton and metric–
affine forms in [10–12].

A.1 Decoupling of nonlinear PDEs with nonmetricity fields

We provide formulas for τ -depending coefficients of fun-
damental geometric objects describing nonmetric geometric
flows in such a form that for any fixed τ0 we shall generate
solutions for nonmetric Ricci solitons.

A.1.1 The coefficients of quasi-stationary ansatz and
canonical Ricci d-tensor

To generate quasi-stationary τ -evolving solutions of the sys-
tem of nonlinear PDEs (29) we consider a generic off-
diagonal ansatz with N-adapted coefficients of type (26),
when the nonlinear quadratic element is

ĝ(τ ) = gi (τ, x
k)dxi ⊗ dxi + h3(τ, x

k, y3)e3(τ )⊗ e3(τ )

+h4(τ, x
k, y3)e4(τ )⊗ e4(τ ),

e3(τ ) = dy3 + wi (τ, x
k, y3)dxi , e4(τ )

= dy4 + ni (τ, x
k, y3)dxi . (A.1)

This d-metric possess a Killing symmetry on the time like
coordinate ∂4 = ∂t . Such d-metric and N-connection coeffi-
cients are functions of necessary smooth class on respec-
tive coordinates. We put a “hat” label for a family of d-
metrics ĝ(τ ) in order to emphasize that such d-metrics are
with Killing symmetry on ∂t . It is supposed that such a
parametrization can be obtained for corresponding classes
of frame/coordinate transforms for a general family ĝ(τ, u)
depending on all spacetime coordinates for other systems of
references.

Tedious computations of N-adapted coefficients of the
canonical d-connection and respective Ricci d-tensors for
(A.1) result in such formulas for the system of nonlinear
PDEs (29):

R̂1
1(τ ) = R̂2

2(τ ) = 1

2g1g2

[
g•

1g
•
2

2g1
+ (g

•
2)

2

2g2

−g••
2 + g′

1g
′
2

2g2
+
(
g′

1

)2
2g1

− g′′
1

]
= −q

1ϒ(τ ),

R̂3
3(τ ) = R̂4

4(τ ) = 1

2h3h4

[(
h∗

4

)2
2h4

+ h∗
3h

∗
4

2h3
− h∗∗

4

]

= −q
2ϒ(τ ),

R̂3k(τ ) = wk

2h4

[
h∗∗

4 −
(
h∗

4

)2
2h4

− (h
∗
3)(h

∗
4)

2h3

]

+ h∗
4

4h4

(
∂kh3

h3
+ ∂kh4

h4

)
− ∂k(h

∗
3)

2h3
= 0;

R̂4k(τ ) = h4

2h3
n∗∗
k +

(
3

2
h∗

4 − h4

h3
h∗

3

)
n∗
k

2h3
= 0. (A.2)

For simplicity, we use brief notations of partial deriva-
tives when, for instance, ∂1q(uα) := q•, ∂2q(uα) :=
q ′, ∂3q(uα) := q∗ for an arbitrary function q(uα). In abstract
geometric form, such formulas are written in similar forms
as in various MGTs but in this work the generating sources
encode nonmetricity terms as we explained for (28).
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A.1.2 Decoupling of nonmetric geometric flow equations

Let us express gi (τ )= eψ(τ,x
k ) and introduce the coefficients

αi (τ )= h∗
4∂i [ (τ)], β(τ )= h∗

4(τ )[ (τ)]∗, γ (τ)= (ln
|h4(τ )|3/2/|h3(τ )|)∗, for (τ)= ln |h∗

4(τ )/
√|h3(τ )h4(τ )|;

and considering �(τ) = exp[ (τ)] as a family of gener-
ating functions. Equation (A.2) transform into:

ψ•• + ψ ′′ = 2 q
1ϒ(τ), (A.3)

( )∗h∗
4 = 2h3h4

q
2ϒ(τ ), (A.4)

βw j − α j = 0, (A.5)

n∗∗
k + γ n∗

k = 0, (A.6)

where the explicit dependence of coefficients on respective
(τ, xk) or (τ, xk, y3) is omitted. This system of equations
together with the previous one possess an explicit decou-
pling property. In brief, this means that gi (τ ) are related to
a τ -family of 2-d Poisson equations (A.3); then h3(τ ) and
h4(τ ) are related via nontrivial (τ) and q

2ϒ(τ ) as in (A.4).
Finding any solution for ha(τ ), we can compute the fami-
lies of coefficients β(τ) and αi (τ ) and solve respective linear
equations for w j (τ ) from (A.5). To find solutions for nk(τ )
we have to integrate two times on y3 in (A.6) when γ (τ) is
determined by h3(τ ) and h4(τ ).

A.2 Off-diagonal solutions for nonmetric quasi-stationary
configurations

We can generate τ -families of solutions of nonmetric geo-
metric flow equations by integrating recurrently the decou-
pled system of nonlinear PDEs (A.3)–(A.6). Any generic
off-diagonal metric (A.1) (if the N-coefficients vanish for
certain coordinate transforms, we generate diagonal met-
rics) is determined by respective families of generating func-
tion  (τ) (equivalently, �(τ)) and two generating sources
q
1ϒ(τ ) and q

2ϒ(τ). The explicit form of such solutions
depends on the type of parameterizations of generating func-
tions and generating sources and how such values are related
to some integration functions.

A.2.1 Generating functions and sources for nonmetric
quasi-stationary off-diagonal solutions

By straightforward computations, we can check that exact
solutions are defined by such generic off-diagonal quasi-
stationary τ -families of d-metrics,

ds2(τ ) = eψ(τ,x
k )[(dx1)2 + (dx2)2]

+ [�∗]2

4(q2ϒ)2{g[0]
4 − ∫

dy3[�2]∗/4(q2ϒ)}

×
(
dy3 + ∂i�

�∗ dxi
)2

+
{
g[0]

4 −
∫

dy3 [�2]∗
4(q2ϒ)

}

×
{
dt +

[
1nk + 2nk

∫
dy3

× [(�)2]∗
4(q2ϒ)2|g[0]

4 − ∫
dy3[�2]∗/4(q2ϒ)|5/2

]
dxk

}
.

(A.7)

If for such d-metrics there are considered parametric decom-
positions as in (25), we generate recurrently certain classes
of parametric solutions.

With respect to coordinate dual frames, the d-metrics (A.7)
can be represented in the form

ĝ = ĝ
αβ
(τ, u)duα ⊗ duβ,

when the off-diagonal metrics are parameterized in the form

ĝ
αβ
(τ, u) =

⎡
⎢⎢⎣
eψ + (w1)

2h3 + (n1)
2h4 w1w2h3 + n1n2h4 w1h3 n1h4

w1w2h3 + n1n2h4 eψ + (w2)
2h3 + (n2)

2h4 w2h3 n2h4

w1h3 w2h3 h3 0
n1h4 n2h4 0 h4

⎤
⎥⎥⎦ ,

where we omit respective dependencies of coefficients on
(τ, xk, y3) are omitted.

Finally, we note that τ -families of quasi-stationary solu-
tions (A.7) are general in the sense that they are determined
by some general generating function �(τ, xk, y3), two gen-
erating effective sources q

1ϒ(τ, xk) (encoded as a solution
ψ(τ, xk) of 2-d Poisson equation (A.3)) and q

2ϒ(τ, xk, y3),

and integration functions 1ni (τ, xk), 2ni (τ, xk) andh[0]
4 (τ, x

k).

A.2.2 Nonlinear symmetries of nonmetric quasi-stationary
off-diagonal solutions

The τ -family of solutions (A.7) posses important nonlinear
shell symmetries which allow us to define in explicit form cer-
tain transforms of generating functions and effective sources
into other types of generating functions and effective cosmo-
logical constants. Such formulas allow to change the gener-
ating data, (�(τ), q2ϒ(τ )) ↔ (�(τ),

q
2�(τ) = const �= 0,

for τ0), using the formulas

[�2]∗
q
2ϒ(τ )

= [�2(τ )]∗
q
2�(τ)

, which can be integrated as (A.8)

�2(τ ) = q
2�(τ)

∫
dy3(

q
2ϒ)

−1[�2(τ )]∗ and/or

�2(τ ) = (q2�(τ))−1
∫

dy3(
q
2ϒ)[�2(τ )]∗. (A.9)

Such nonlinear symmetries can be defined for other types
of effective sources. For instance, we can consider effec-
tive matter sources tot T̂μν (22), for (27) as in (20), when
τ -running effective cosmological constants are parameter-
ized in the form m

2 �(τ) + F
2 �(τ) + e

2�(τ). Corresponding
nonlinear symmetries can be considered for generating new
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classes of off-diagonal solutions and in order to compare
their physical implications defined by different types of effec-
tive cosmological constants. For nonmetric effective sources
and running cosmological constants, we use the left label q
when q

2�(τ) = 0 is taken for metric compatible configura-
tions.

We conclude that any quasi-stationary solution (A.7)
possess important nonlinear symmetries of type (A.8) and
(A.9). As a result, the nonlinear quadratic element for quasi-
stationary solutions (A.7) can be written in the form

ds2(τ ) = gαsβs (τ, x
k , y3,�(τ),

q
2 �(τ))du

αduβ = eψ(τ,x
k )[(dx1)2 + (dx2)2]

− �2(τ )[�∗(τ )]2

|q2�(τ)
∫
dy3q

2ϒ(τ )[�2(τ )]∗|[g[0]
4 (τ )−�2(τ )/4q2�(τ)]

{
dy3 + ∂i

∫
dy3 q

2ϒ(τ ) [�2(τ )]∗
q
2ϒ(τ ) [(2�(τ))2]∗

dxi
}2

−
{
g[0]

4 (τ )−
�2(τ )

4q2�(τ)

}

×
{
dt +

[
1nk(τ ) + 2nk(τ )

∫
dy3 �2(τ )[�∗(τ )]2

|q2�(τ)
∫
dy3 q

2ϒ(τ )[�2(τ )]∗|[g[0]
4 (τ )−�2(τ )/4q2�(τ)]5/2

]}
, (A.10)

for indices: i, j, k, . . . = 1, 2; a, b, c, . . . = 3, 4; gen-
erating functions ψ(τ, xk) and �(τ, xk1 y3); generating
sources q

2ϒ(τ, xk) and q
2ϒ(τ, xk1 , y3); effective cosmolog-

ical constants q
1�(τ) and q

2�(τ); and integration functions

1nk(τ, x j ), 2nk(τ, x j ) and g[0]
4 (τ, x

k).

A.2.3 Using some d-metric coefficients as generating
functions and nonmetricity

Formulas (A.10) allow us to write h∗
4(τ ) = −[�2(τ )]∗/4q2

ϒ(τ ) and to compute up to certain integration functions
a value of �(τ). We have to integrate [�2(τ )]∗ =∫
dy3q

2ϒ(τ)h
∗
4(τ ) for any prescribed h4(τ ) and q

2ϒ(τ ). So,
considering generating data (h4(τ ),

q
2ϒ(τ )), we can write the

τ -families of quasi-stationary d-metric (A.7) in such equiv-
alent forms,

dŝ2(τ ) = ĝαβ(τ, x
k, y3; h4(τ ),

q
2ϒ(τ ))duαduβ

= eψ(τ,x
k )[(dx1)2 + (dx2)2]

− [h∗
4(τ )]2

| ∫ dy3[q2ϒ(τ )h4(τ )]∗| h4(τ )

×
{
dy3 +

∂i

[ ∫
dy3(

q
2ϒ(τ )) h∗

4(τ )
]

q
2ϒ(τ ) h∗

4(τ )
dxi

}2

+h4(τ )

{
dt +

[
1nk(τ )+ 2nk(τ )

×
∫

dy3 [h∗
4(τ )]2

| ∫ dy3[ q
2ϒ(τ )h4(τ )]∗| [h4(τ )]5/2

]
dxk

}
.

(A.11)

In a similar form using the nonlinear symmetries (A.8) and
(A.9) and expressing�2(τ ) = −4q2�(τ)h4(τ ),we can elim-
inate �(τ) from the nonlinear quadratic element in (A.10).

We construct a τ -family of solutions of type (A.11) deter-
mined by some generating data (h4(τ ); q2�(τ), q2ϒ(τ )).

A.2.4 Gravitational nonmetric polarizations

We can consider deformations of a prime d-metric on a met-
ric affine manifold

˚g =[g̊α, N̊ a
i ]. (A.12)

Such a g̊ can be an arbitrary one, a solution of some equations
in GR or a MGTs, or defined as a τ -family. In this subsection,
we study transforms of a (family) primary d-metric into a a
family of target d-metrics g(τ ) defined a quasi-stationary
solutions of type (A.1), when

g̊ → g(τ ) = [gα(τ ) = ηα(τ)g̊α, Na
i (τ ) = ηai (τ )N̊ a

i ].
(A.13)

Such transforms are defined by some values ηα(τ, xk, y3)

and ηai (τ, x
k, y3) called τ -running gravitational polarization

(η-polarization) functions.
Target d-metrics g(τ ) can be constructed as quasi-

stationary solutions of type (A.7), or (A.10), when the non-
holonomic deformations are determined by respective gener-
ating functions, generating sources and effective cosmolog-
ical constants,

(�(τ),
q
2ϒ(τ ))↔ (g(τ ), q2ϒ(τ ))

↔ (ηα(τ ) g̊α ∼ (ζα(τ )(1 + εχα(τ))g̊α, q2ϒ(τ ))

↔ (�(τ),
q
2�(τ))↔ (g(τ ), q2�(τ))

↔ (ηα(τ ) g̊α ∼ (ζα(τ )(1 + εχα(τ))g̊α, q2�(τ)),
where q

2�(τ) is an effective cosmological constant in the v-
subspace, ε is a small parameter 0 ≤ ε < 1, with some
ζα(τ, xk, y3) and χα(τ, xk, y3).

For families of η- and/or χ -polarizations, the nonlinear
symmetries (A.9) are defined in the form:

∂3[�2(τ )] = −
∫

dy3q
2ϒ(τ )∂3h4(τ )

� −
∫

dy3q
2ϒ(τ )∂3(η4(τ ) g̊4)

� −
∫

dy3q
2ϒ(τ )∂3[ζ4(τ )(1 + ε χ4(τ )) g̊4],
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�2(τ ) = −4q2�(τ)h4(τ ) � −4q2�(τ)η4(τ )g̊4

� −4q2�(τ) ζ4(τ )(1 + εχ4(τ )) g̊4. (A.14)

Generating functions for families of off-diagonal η-
transforms of type (A.13) can be parameterized for η-
polarizations,

ψ(τ) � ψ(κ; τ, xk), η4 (τ ) � η4(τ, x
k, y3). (A.15)

Such generating functions can be used for defining τ -families
of quasi-stationary nonlinear quadratic elements of type
(A.11),

dŝ2(τ ) = ĝαβ(τ, x
k , y3; g̊α;ψ(τ), η4(τ ); q2ϒ(τ))duαduβ

= eψ(τ)[(dx1)2 + (dx2)2]
− [∂3(η4(τ ) g̊4)]2

| ∫ dy3q
2ϒ(τ )∂3(η4(τ ) g̊4)| η4(τ )g̊4

×
{
dy3 + ∂i [

∫
dy3q

2ϒ(τ ) ∂3(η4(τ )g̊4)]
q
2ϒ(τ )∂3(η4(τ )g̊4)

dxi
}2

+η4(τ )g̊4

{
dt +

[
1nk(τ )+ 2nk(τ )

×
∫

dy3 [∂3(η4(τ )g̊4)]2
| ∫ dy3q

2ϒ(τ )∂3(η4(τ )g̊4)| (η4(τ )g̊4)
5/2

]

dxk
}2

. (A.16)

For �2(τ ) = −4q2�h4(τ ), we can transform (A.10) in a
variant of (A.16) with η -polarizations determined by the
generating data (h4(τ ); 2�, (τ)). For general η- and Q-
deformations, it is difficult to understand if such off-diagonal
metrics have certain physically important interpretation even
the primary data possess certain important physical mean-

ing. Nevertheless, even in such cases certain quasi-periodic,
solitonic, or another type structures can be generated. It is
possible always to compute respective Perelman thermody-
namic variables and solve the issue if certain configurations
with a prescribed q

2ϒ(τ), or q
2�(τ), can be thermodynam-

ically more optimal than other ones with some prescribed
effective m

2 �(τ)+ F
2 �(τ)+ e

2�(τ), see formulas (36).

A.2.5 Generating solutions with small parametric
decompositions encoding nonmetricity

For a small parameter ε, we can construct ε-linear func-
tions for η-polarizations in (A.16) and study small nonholo-
nomic deformations of a prime d-metric g̊ into so-called ε-
parametric τ -families of solutions with ζ - andχ -coefficients.
Corresponding parametric decompositions are of type

ψ(τ) � ψ(τ, xk) � ψ0(τ, x
k)(1 + εψχ(τ, xk)), for

η2(τ ) � η2(τ, x
k1) � ζ2(τ, xk)(1 + εχ2(τ, x

k)),

we can consider η2(τ ) = η1(τ );
η4(τ ) � η4(τ, x

k, y3) � ζ4(τ, xk, y3)(1 + εχ4(τ, x
k, y3)),

(A.17)

where ψ(τ) and η2(τ ) = η1(τ ) are such way chosen
to be determined by solutions of the 2-d Poisson equation
∂2

11ψ(τ)+ ∂2
22ψ(τ) = 2q1ϒ(τ, x

k), see (A.3). For other type
signatures of d-metrics, it can be a 2-d wave equation with
respective source and certain τ -evolving scenarios.

Parameterizations of type (A.17) allow to compute ε-
parametric deformations to τ -families of quasi-stationary d-
metrics with χ -generating functions,

d ŝ2(τ ) = ĝαβ(τ, x
k, y3;ψ(τ), g4(τ ); q2ϒ(τ ))duαduβ = eψ0(1 + ε ψχ(τ))[(dx1)2 + (dx2)2]

−
{

4[∂3(|ζ4(τ )g̊4|1/2)]2

g̊3|
∫
dy3{q2ϒ(τ )∂3(ζ4(τ )g̊4)}|

− ε
[
∂3(χ4(τ )|ζ4(τ )g̊4|1/2)

4∂3(|ζ4(τ )g̊4|1/2) −
∫
dy3{q2ϒ∂3[(ζ4(τ )g̊4)χ4(τ )]}∫
dy3{q2ϒ(τ)∂3(ζ4(τ )g̊4)}

]}
g̊3

×
{
dy3 +

[
∂i
∫
dy3q

2ϒ(τ ) ∂3ζ4(τ )

(N̊ 3
i )

q
2ϒ(τ )∂3ζ4(τ )

+ ε
(
∂i [
∫
dy3q

2ϒ(τ ) ∂3(ζ4(τ )χ4(τ ))]
∂i [∫ dy3q

2ϒ(τ )∂3ζ4(τ )]
− ∂3(ζ4(τ )χ4(τ ))

∂3ζ4(τ )

)]
N̊ 3
i dx

i

}2

+ ζ4(τ )(1 + ε χ4(τ )) g̊4

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
dt +

[
(N̊ 4

k )
−1[1nk(τ )+ 162nk(τ )

[∫
dy3

(
∂3[(ζ4(τ )g̊4)

−1/4])2
| ∫ dy3∂3[q2ϒ(τ)(ζ4(τ )g̊4)]|

]

+ε
162nk(τ )

∫
dy3

(
∂3[(ζ4(τ )g̊4)

−1/4])2
| ∫ dy3∂3[q2ϒ(τ )(ζ4(τ )g̊4)]| (

∂3[(ζ4(τ )g̊4)
−1/4χ4)]

2∂3[(ζ4(τ )g̊4)−1/4] +
∫
dy3∂3[q2ϒ(τ )(ζ4(τ )χ4(τ )g̊4)]∫

dy3∂3[q2ϒ(τ )(ζ4(τ )g̊4)] )

1nk(τ )+ 162nk(τ )

[ ∫
dy3 (∂3[(ζ4(τ )g̊4)−1/4])2

| ∫ dy3∂3[ q
2ϒ(τ )(ζ4(τ )g̊4)]|

]
]
N̊ 4
k dx

k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

2

. (A.18)
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Such off-diagonal parametric solutions allow us to define,
for instance, ellipsoidal deformations of BH metrics into
BE ones and to provide realistic interpretation of nonmetric
deformations under geometric flows or for off-diagonal mod-
ifications. Quasi-stationary d-metrics of type (A.18) can be
generated for by certain small parametric deformations with
generating data (�(τ), q2�(τ)).

A.2.6 Extracting Levi–Civita configurations

The generic off–diagonal quasi-stationary solutions consid-
ered in previous subsections were constructed for canon-
ical d–connections D̂(τ ). In general, such solutions are
characterized by nonholonomically induced d–torsion coef-
ficients T̂γαβ(τ ) (such values are completely defined by
the N–connection and d–metric structures) and contain Q-
deformations related to nontrivial d-torsions Tμνα(τ ) =
Aν(τ )gμα(τ) − Aα(τ )gμν(τ ), see formulas (25). We can
extract zero torsion LC-configurations for q-distortions of
∇(τ ) if we impose additionally the conditions (30). By
straightforward computations for quasi-stationary configura-
tions, we can verify that all canonical d-torsion coefficients
T̂γαβ(τ ) vanish if the coefficients of N–adapted frames and
v –components of τ -families of d–metrics are subjected to
respective conditions,

w∗
i (τ ) = ei (τ ) ln

√| h3(τ )|, ei (τ ) ln
√| h4(τ )| = 0,

∂iw j (τ ) = ∂ jwi (τ ) and n∗
i (τ ) = 0;

nk(τ, x
i ) = 0 and ∂i n j (τ, x

k) = ∂ j ni (τ, xk). (A.19)

The solutions for necessary type of w- and n-functions
depend on the class of vacuum, non–vacuum, Q-deformed
and other type metrics which we attempt to generate. We
may follow such steps for finding solutions subjected to con-
ditions (A.19):

Prescribing a generating function �(τ) = �̌(τ, xi1 , y3),

for which [∂i (2�̌)]∗ = ∂i (2�̌)
∗, we solve the equations

for w j from (A.19) in explicit form if q
2ϒ = const, or if

such an effective source can be expressed as a functional
q
2ϒ(τ, xi , y3) = q

2ϒ[2�̌(τ )]. The conditions ∂iw j (τ ) =
∂ jwi (τ ), are solved by any generating function Ǎ =
Ǎ(τ, xk, y3) for which

wi (τ ) = w̌i (τ ) = ∂i �̌(τ )/(�̌(τ ))∗ = ∂i Ǎ(τ ).

The equations for n-functions in (A.19) are solved for any
ni (τ ) = ∂i [ 2n(τ, xk)].

Putting together above formulas for respective classes of
generating functions, we construct a nonlinear quadratic ele-
ment for quasi-stationary solutions with zero canonical d-
torsions, (A.7),

dš2(τ ) = ǧαβ(τ, x
k, y3)duαduβ = eψ(τ,x

k )[(dx1)2 + (dx2)2]

+ [�̌∗(τ )]2

4( q
2ϒ(τ )[�̌(τ )])2{h[0]

4 (τ )−
∫
dy3[�̌(τ )]∗/4q2ϒ(τ )[�̌(τ )]} {dy

3 + [∂i ( Ǎ(τ ))]dxi }2

+
{
h[0]

4 (τ )−
∫

dy3 [�̌2(τ )]∗
4(q2ϒ(τ )[�̌(τ )])

}
{dt + ∂i [ 2n(τ, xk)]dxi }2. (A.20)

Finally, we note that d-metrics (A.20) define LC-configurations
for∇(τ ) that involve also nonmetricity contributions encoded
into q

2ϒ(τ ). This is an example when using nonlinear sym-
metries we encode nonmetricity data into, in general, generic
off-diagonal pseudo-Riemannian metric for an effective
Einstein gravity with “exotic” effective energy-momentum
sources.

B Generating nonmetric solitonic hierarchies via
solitonic metrics and effective sources

Let us consider the formulas for nonmetric geometric evo-
lution of a d-metric g(τ ) constructed as a solution of (29):
We associate a non–stretching curve γ (τ, l) on a nonholo-
nomic Lorentz manifold V and use τ both as a curve running
real parameter and a geometric flow parameter. The value l
is the arclength of a curve on V which is defined by an evo-
lution d–vector Y = ςτ and tangent d–vector X = ςl that
g(X,X) =1. Any curve ς(τ, l) defines a two–dimensional
surface in Tς(τ,l)V ⊂ TV. In [24], there are given details on
metric compatible curve flows. In this work, the approach is
generalized for nonmetric deformations. To any dual basis
(5) a coframe e ∈ T ∗

ς VN ⊗ (hp⊕vp) can be associated. It is
a N–adapted (SO(n)⊕SO(m))–parallel basis along ς.

B.1 Preliminaries on geometric models and solitons

We can associate a canonical d-connection D̂ (13) with a
linear connection 1–form parameterized as �̂ ∈ T ∗

ς VN ⊗
(so(n)⊕so(m)). The frame bases are 1-forms eX = ehX +
evX defined by N-adapted frames (4), which (for (1,

−→
0 ) ∈

R
n,

−→
0 ∈ R

n−1 and (1,
←−
0 ) ∈ R

m,
←−
0 ∈ R

m−1), can be
parameterized by respective matrices,

ehX = ςhX�he =
[

0 (1,
−→
0 )

−(1,−→0 )T h0

]
,
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evX = ςvX�ve =
[

0 (1,
←−
0 )

−(1,←−0 )T v0

]
.

Such d-operators act on the spaces of curves on V.
For a N-connection (3), we can construct a corresponding

h- and v-splitting of canonical d-connections 1-forms, �̂ =[
�̂hX, �̂vX

]
, parameterizing

�̂hX = ςhX�L̂ =
[

0 (0,
−→
0 )

−(0,−→0 )T L̂

]
∈ so(n + 1), where

L̂ =
[

0 −→v
−−→v T h0

]
∈ so(n), −→v ∈ R

n−1, h0 ∈so(n − 1), and

�̂vX = ςvX�Ĉ =
[

0 (0,
←−
0 )

−(0,←−0 )T Ĉ

]
∈ so(m + 1), where

Ĉ =
[

0 ←−v
−←−v T v0

]
∈ so(m), ←−v ∈ R

m−1, v0 ∈so(m − 1).

Using the canonical d–connection D̂, we can define some
d-matrices being decomposed with respect to the flow direc-
tion: in the h–direction,

ehY = ςτ �he =
[

0
(
he‖, h−→e ⊥

)
− (he‖, h−→e ⊥

)T
h0

]
, when

ehY ∈ hp,
(
he‖, h−→e ⊥

) ∈ R
n and h−→e ⊥ ∈ R

n−1,

and

�̂hY = ςhY�L̂ =
[

0 (0,
−→
0 )

−(0,−→0 )T h� τ

]
∈ so(n + 1), where

h� τ =
[

0 −→ 
−−→ T h�̂

]
∈ so(n), −→ ∈ R

n−1, h�̂ ∈ so(n − 1).

Then, we introduce similar parameterizations for the v–
direction,

evY = ςτ �ve =
[

0
(
ve‖, v←−e ⊥

)
− (ve‖, v←−e ⊥

)T
v0

]
, when

evY ∈ vp, (ve‖, v←−e ⊥
) ∈ R

m and v←−e ⊥ ∈ R
m−1;

and

�̂vY = ςvY�Ĉ=
[

0 (0,
←−
0 )

−(0,←−0 )T v�̂ τ

]
∈ so(m + 1),

v� τ =
[

0 ←− 
−←− T v�̂

]
∈ so(m), ←− ∈ R

m−1, v�̂ ∈ so(m − 1).

We summarize and adapt for nonmetric geometric flows
and gravity three important results proven in [24] for param-
eterizations related to nonholonomic canonical geometric
flows of 4-d Lorentzian metrics:

For any solution of N-adapted Hamilton-Friedan equa-
tions in canonical variables (19), or for relativistic nonholo-
nomic Ricci soliton equations (29), there is a canonical hier-
archy of N–adapted flows of curves ς(τ, l) = hς(τ, l) +
vς(τ, l) described by nonholonomic geometric map equa-
tions encoding nonmetric sources:

• The 0 flows are convective (travelling wave) maps ςτ =
ςl distinguished as (hς)τ = (hς)hX and (vς)τ =
(vς)vX. The classification of such maps depend on the
type of d-connection structure.

• There are +1 flows defined as non–stretching mKdV
maps

− (hς)τ = D̂2
hX (hς)hX + 3

2
|D̂hX (hς)hX |2hg (hς)hX ,

− (vς)τ = D̂2
vX (vς)vX + 3

2
|D̂vX (vς)vX |2vg (vς)vX ,

(B.1)

and the +2,... flows as higher order analogs.
• Finally, the -1 flows are defined by the kernels of the

canonical recursion h–operator,

hR̂= D̂hX

(
D̂hX+D̂−1

hX

(−→v ·)−→v )+−→v �D̂−1
hX

(−→v ∧ D̂hX
)
,

and of the canonical recursion v–operator,

vR̂ = D̂vX
(
D̂vX + D̂−1

vX

(←−v ·)←−v )+ ←−v �D̂−1
vX

(←−v ∧ D̂vX
)
,

inducing non–stretching maps D̂hY (hς)hX = 0 and
D̂vY (vς)vX = 0.

The canonical recursion d-operator R̂ = (hR̂, vR̂) is
related to respective bi-Hamiltonian structures for curve
flows (in our case, determined by geometric flows and respec-
tive solitonic models).

B.2 Examples of solitonic space like stationary
distributions and nonlinear waves

To generate quasi-stationary solutions of nonmetric geomet-
ric flow and gravity equations we can consider τ -running of
fixed τ0 space distributions which can anisotropic on certain
angular type coordinates (ϑ, ϕ).

B.2.1 Quasi-stationary solitonic distributions

We shall use distributions ℘ = ℘(r, ϑ, ϕ) as solutions of a
respective six classes of solitonic 3-d equations

∂2
rr℘ + ε∂ϕ(∂ϑ℘ + 6℘∂ϕ℘ + ∂3

ϕϕϕ℘) = 0,

∂2
rr℘ + ε∂ϑ(∂ϕ℘ + ℘∂ϑ℘ + ∂3

ϑϑϑ℘) = 0,

∂2
ϑϑ℘ + ε∂ϕ(∂r℘ + 6℘∂ϕ℘ + ∂3

ϕϕϕ℘) = 0,

∂2
ϑϑ℘ + ε∂r (∂ϕ℘ + 6℘∂r℘ + ∂3

rrr℘) = 0,

∂2
ϕϕ℘ + ε∂r (∂ϑ℘ + 6℘∂r℘ + ∂3

rrr℘) = 0,

∂2
ϕϕ℘ + ε∂ϑ(∂r℘ + 6℘∂ϑ℘ + ∂3

ϑϑϑ℘) = 0, (B.2)

123



Eur. Phys. J. C (2024) 84 :211 Page 27 of 28 211

for ε = ±1. To construct in explicit form solutions of such
nonlinear PDEs is a very difficult task. Nevertheless, their
physical properties are well known from the theory of soli-
tonic hierarchies. We can take any ℘(u) as a parametric, or
exact solution of an equation (B.2) and consider as a generat-
ing function and/or generating source which does not depend
on the time coordinate. These equations and their solutions
can be redefined via frame/coordinate transforms for sta-
tionary generating functions parameterized in non-spherical
coordinates and labeled in the form ℘ = ℘(xi , y3). We can
use such functions as generating functions and/or generating
sources for nonmetric Ricci solitons (20) when the construc-
tions can be extended for quasi-stationary geometric flows.

B.2.2 Generating nonlinear solitonic waves on temperature
like parameter

Stationary geometric flow evolution on a Lorentz manifold
can be characterized by 3-d solitonic waves with explicit
dependence flow parameter τ defined by functions ℘(τ, u)
as solutions of such nonlinear PDEs:

℘ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

℘(τ, ϑ, ϕ) as a solution of ∂2
ττ℘ + ε ∂

∂ϕ
[∂ϑ℘ + 6℘ ∂

∂ϕ
℘ + ∂3

(∂ϕ)3
℘] = 0;

℘(ϑ, τ, ϕ) as a solution of ∂2
ϑϑ℘ + ε ∂

∂ϕ
[∂t℘ + 6℘ ∂

∂ϕ
℘ + ∂3

(∂ϕ)3
℘] = 0;

℘(τ, r, ϕ) as a solution of ∂2
ττ℘ + ε ∂

∂ϕ
[∂r℘ + 6℘ ∂

∂ϕ
℘ + ∂3

(∂ϕ)3
℘] = 0;

℘(r, τ, ϕ) as a solution of ∂2
rr℘ + ε ∂

∂ϕ
[∂τ℘ + 6℘ ∂

∂ϕ
℘ + ∂3

(∂ϕ)3
℘] = 0;

℘(τ, ϕ, ϑ) as a solution of ∂2
ττ℘ + ε ∂

∂ϑ
[∂ϕ℘ + 6℘ ∂

∂ϑ
℘ + ∂3

(∂ϑ)3
℘] = 0;

℘(ϕ, τ, ϑ) as a solution of ∂2
ϕϕ℘ + ε ∂

∂ϑ
[∂τ℘ + 6ι ∂

∂ϑ
℘ + ∂3

(∂ϑ)3
℘] = 0.

(B.3)

Applying general frame/coordinate transforms on respec-
tive solutions (B.3), we construct solitonic waves parame-
terized by functions labeled in the form ℘ = ℘(τ, xi ),
= ℘(τ, x1, y3), or = ℘(τ, x2, y3).

B.2.3 Ansatz for quasi-stationary geometric flows and
solitonic hierarchies

We can consider different types of solitonic stationary con-
figurations determined, for instance, by sine-Gordon (using
τ -derivatives) and various types of nonlinear temperature like
wave configurations characterized by nonholonomic geomet-
ric curve flows. Any such solitonic hierarchy configuration,
nonlinear wave and solitonic distribution of type ℘(τ, u)
(B.3) or (B.2) can be can be used as generating functions for
quasi-stationary d-metrics of type (A.1),

g(τ ) = g[℘(τ, u)] = g[℘] =(gi [℘], ga[℘]). (B.4)

In terms of polarization functions (A.16) determined by
solitonic hierarchies, we write ηi (τ ) = ηi (τ, xk) =
ηi [℘], ηa(τ ) = ηa(τ, xk, yb) = ηa[℘] and ηai (τ ) =

ηai (τ, x
k, yb) = ηai [℘]. In general, a functional dependence

[℘] can be defined by a superpositions of some solitonic
hierarchies of type (B.1) (we can mix also configurations of
type (B.3) and/or (B.2)). This can be written, for instance,
in the form [℘] = [1℘, 2℘, ...] where the left label is for
numbering the solitonic hierarchies.

Solitonic hierarchies can be used for modeling nonholo-
nomic flow evolution of a Q-source (25), when the generating
sources (28) are determined by some functionals

qϒμν(℘ (τ, u)) = [ q
hϒ[℘]δij , qϒ[℘]δab ]. (B.5)

The τ -modified Einstein equations (29) with such nonmetric-
ity sources and written in canonical nonholonomic variables
transform into functional equations R̂αβ(τ ) = qϒαβ(℘).

We can extract LC-configurations by imposing conditions
(30), when T̂γαβ = 0,for ∇. For such nonmetric geometric
flow configurations, the nonmetricity field Qαβγ (℘) and d-
torsion Tμνα(℘) = Aνgμα(℘)− Aαgμν(℘) are determined
by solitonic hierarchies.
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