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Abstract With the help of AdS/CFT correspondence, we
derive the desired response function of QFT on the boundary
of the non-commutative black hole. Using the virtual optical
system with a convex lens, we obtain the Einstein rings of the
black hole from the response function. All the results show
that the holographic ring always appears with the concentric
stripe when the observer located at the north pole. With the
change of the observation position, the ring changes into a
luminosity-deformed ring, or bright spot. We also investigate
the effect of the non-commutative parameter on the ring and
find the ring radius becomes larger as the parameter increases.
The effect of the temperature on the ring radius is also inves-
tigated, it is found that the higher the temperature, the smaller
the ring radius. In addition, we also obtain the ingoing angle
of the photon via geometric optics, as expected, this angle is
consistent well with the angle of the Einstein ring obtained
via holography.

1 Introduction

In recent years, non-commutative spacetime in gravity theo-
ries has become an important research subject [1] in that it is
considered as an alternative way to the quantum gravity [2].
Many investigations in non-commutative gravity have been
done, please see the comprehensive reviews [3]. In particu-
lar, the effects of non-commutativity on black hole physics
have attracted much attention, mainly because that the final
stage of the noncommutative black hole is more abundant.
As is well known, the non-commutativity eliminates point-
like structures in favor of smeared objects in flat spacetime
[4,5] and can be implemented in General Relativity by modi-
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fying the matter source [6]. Therefore, non-commutativity is
introduced by modifying mass density so that the Dirac delta
function is replaced by a Gaussian distribution [6] or alter-
natively by a Lorentzian distribution [7,8]. In this way the

mass density takes the form ρn(r) = M
√
n

π3/2(r2+πn)2 , where n is
the noncommutative parameter and M is the total mass dif-
fused throughout the region of linear size n. With this model
in hand, we aim to analyze the lensed effect of a noncom-
mutative black hole in the holographic framework closely
followed [9,10].

In the paper [9,10], they proposed a direct procedure to
construct holographic images of the black hole in the bulk
from a given response function of the QFT on the boundary
with the AdS/CFT correspondence. In the holographic pic-
ture, the response function with respect to an external source
corresponds to the asymptotic data of the bulk field generated
by the source on the AdS boundary. For a thermal state on
two-dimensional sphere dual to Schwarzschild AdS4 black
hole, they demonstrated that the holographic images gravi-
tationally lensed by the black hole can be constructed from
the response function. And all these results are consistent
with the size of the photon sphere of the black hole calcu-
lated by geometrical optics. Closely followed by these break-
throughs, the authors in [11–16] showed that this holographic
images do exist in different gravitational backgrounds. How-
ever, the photon sphere varies according to the specific bulk
dual geometry and the detailed behavior of Einstein ring also
varies. Therefore, in this paper, we are tempted to investigate
the behavior of the lensed response for the noncommuta-
tive black hole and study the effect of the noncommutative
parameters on the lensed response.

This paper is arranged as follows. In Sect. 2, we briefly
review the noncommutative solution in spherically symmet-
ric AdS black hole and introduce the optical system used to
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observe the Einstein rings. In Sect. 3, we first give an explicit
constrain on the non-commutative parameter n. And then we
set up a holographic Einstein ring model and analyze the
lensed response function. With the above optical device, we
observe the Einstein ring in our model. Section 5 is the com-
parison between the holographic method and the geometrical
optics method. Our result shows that the position of photon
ring obtained from the geometrical optics is full consistence
with that of the holographic method. Section 6 is devoted to
our conclusions.

2 Review of the holographic construction of Einstein
ring in AdS black holes

Gravitational lensing is one of the fundamental phenomena
caused by strong gravity. Supposing there is a light source
behind a gravitational body, the observers will see a ring-
like image of the light source, i.e., the so-called Einstein ring
when the light source, the gravitational body, and observers
are in alignment. If the gravitational body is a black hole,
some light rays are so strongly bended that they can go around
the black hole many times, and especially infinite times on
the photon sphere. As a result, multiple Einstein rings which
correspond to winding numbers of the light ray orbits emerge
and infinitely concentrate on the photon sphere. Recently, an
observational project for imaging black holes which is called
the Event Horizon Telescope (EHT), has captured the first
image of the supermassive black hole in M87� and Sagittar-
ius A� [17,18]. And the dark area inside the photon sphere
is named black hole shadow [19] and the shadow of a black
hole contains a lot of information. The study of shadow not
only enables us to comprehend the geometric structure of
spacetime, but also helps us to explore various gravity mod-
els more deeply. Following [9,10], the holographic image of
an AdS black hole in the bulk was constructed when the wave
emitted by the source at the boundary of AdS enters the bulk
and then propagates in the bulk by considering the AdS/CFT
correspondence [9–11]. Here we first review explicitly the
construction of holographic “images” of the dual black hole
from the response function of the boundary QFT with exter-
nal sources.

Considering a (2 + 1)-dimensional boundary conformal
field theory on a 2-sphere S2 at a finite temperature T , we
study a one-point function of a scalar operatorO with its con-
formal dimension �O = 3, under a time-dependent local-
ized source JO. The schematic picture of our setup is shown
in Fig. 2. For the source JO, we employ a time-periodic
localized Gaussian source with the frequency ω, amounts to
an AdS boundary condition for the scalar field (see Fig. 1).
The simplest form of the source JO is chosen a monochro-
matic and axisymmetric Gaussian wave packet centered on
the south pole θS = π . Therefore, the expression of JO in

Fig. 1 A monochromatic Gaussian source JO is located at a point on
the AdS boundary. Its response is observed at another point on the same
boundary

the ingoing Eddington coordinate is as follows

JO(ve, θ) = 1

2πδ2 e
−iωve exp

[
− (π − θ)2

2δ2

]

= e−iωve

∞∑
l=0

cl0Yl0(θ), (1)

where ve is the ingoing Eddington coordinate, δ represents
the width of the wave produced by the Gaussian source JO
and Yl0 is the spherical harmonics function. We set the wave
packet size δ to be δ � π , and the coefficients of the spherical
harmonics Yl0(θ) is

cl0 = (−1)l
(
l + 1/2

2π

)1/2

exp

[
− (l + 1/2)2δ2

2

]
. (2)

The time-dependent scalar wave propagates inside the
black hole spacetime and reaches other points on the S2

of the AdS boundary (please see Fig. 1). Using the opti-
cal system shown in Fig. 2, we are able to measure the local
response function e−iωt 〈O(�x)〉 which contains the informa-
tion about the bulk geometry of the black hole spacetime [20].
Explicitly, such optical system consists of a convex lens and
a spherical screen. In Fig. 2, the middle position is the lens
with focal length f regarded as a “converter” between plane
and spherical waves and located at z = 0. Consider that a
plane wave is irradiated to the lens from the left hand side
shown in Fig. 2. Such plane wave is converted into spherical
wave and converges at the focus z = f . We denote 	I and
	T as the incident wave and the transmitted wave. The con-
version between 	I and 	T with frequency ω on the lens
can be mathematically expressed as

	T (�x) = e−i ω|�x |2
2 f 	I (�x). (3)
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Fig. 2 The observer and its
telescope

We consider a spherical screen located at (x, y, z) =
(xs, ys, zs) with x2

s + y2
s + z2

s = f 2. The transmitted wave
	T converted by the lens is focusing and imaging on this
screen. The wave function 	s( �xs) on the screen is given by

	s(�xs) =
∫

|�x |≤d
	T (�x)eiωLd2x, (4)

where L is the distance between (x, y, 0) on the lens and
(xs, ys, zs) on the screen. Substituting Eq. (3) into Eq. (4),
we have

	s(�xs) =
∫

|�x |≤d
	I (�x)e−i ω

f �x ·�xs d2x . (5)

Using a wave-optical method, we have a formula which
helps us convert the response function 〈O(�x)〉 to the image
of the dual black hole |	s(�xs)|2 on a virtual screen shown as
follows

	s(�xs) =
∫

|�x |<d
〈O(�x)〉e−i ω

f �x ·�xsd2x (6)

here �x = (x, y) is Cartesian-like coordinates on boundary
and �xs = (xs, ys) is Cartesian-like coordinates on the virtual
screen. Next, we will employ Eq. 6 to obtain the Einstein
ring.

3 The holographic setup of non-commutative black
holes

In this section, we construct the holographic model for the
non-commutative Schwarzschild black hole and study the
properties of the response function carefully which further
helps us to study the Einstein ring. The mass density of
a static, spherically symmetric, particle-like gravitational
source is no longer a function distribution, but given by a
Lorentzian distribution shown as [6–8]

ρn =
√
nM

π3/2
(
πn + r2

)2 , (7)

here n is the strength of non-commutativity of spacetime and
M is the total mass diffused throughout a region with lin-
ear size

√
n. For the smeared matter distribution, we further

obtain [8]

Mn =
∫ r

0
ρn(r)4πr2dr = 2M

π

(
tan−1(

r√
πn

) −
√

πnr

πn + r2

)

= −4
√
nM√
πr

+ M + O(n3/2). (8)

In this case, the non-commutative Schwarzschild black hole
metric is given by

ds2 = −F(r)dt2 + 1

F(r)
dr2 + r2

(
dθ2 + sin2 θdξ2

)
,

(9)

with

F(r) = 1 − 2Mn

r
+ r2

l2
= 1 − 2M

r
+ 8

√
nM√
πr2

+r2

l2
+ O(n3/2). (10)

here l is the AdS radius, and we set l = 1 in the following.
According to Eq. (10), we can express the temperature as the
inverse of the event horizon

M =
√

π

(
1
z2
h

+ 1

)

2z2
h

(√
π

zh
− 4

√
n
) , (11)

in which zh = 1/rh . The mass should be non-vanishing,
which leads to the following constraint relations

n <
π

16z2
h

or zh <

√
π

4
√
n
. (12)

At the event horizon, the corresponding Hawking tempera-
ture is

T =
√

π
(
z2
h + 3

) − 8
√
nzh

(
z2
h + 2

)
4π zh

(√
π − 4

√
nzh

) , (13)
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Fig. 3 The relation between the temperature T and the noncommuta-
tive parameter n for the case zh = 1

The denominator in Eq. (13) is the same as that in Eq. (11).
To assure the temperature is positive, we also should impose
the numerator in Eq. (13) is positive, which means

n <
π

(
zh4 + 6zh2 + 9

)
64zh2

(
zh2 + 2

)2 or zh < −
3
√
K

24
√
n

+ 384n − π

24 3
√
K

√
n

+
√

π

24
√
n

,

(14)

in which

K =
√

56623104n3 + 3621888πn2 + 5184π2n

−2016
√

πn − π3/2. (15)

In fact, the constraint in Eq. (14) is much stricter than that in
Eq. (12). For a fixed the parameter zh = 1, from Eq. (14), we
know n should be smaller than 0.19635, but from Eq. (12), we
know n should be smaller than 0.0872665, please see Fig. 3,
which describes the temperature T decreases monotonically
as the non-commutative parameter n increases. For a fixed
n, we also can find the relation between T and zh , which is
shown in Fig. 4. We find Eq. (14) will produce a constraint
zh < 4.4311 while Eq. (12) produces zh < 2.4864. In Fig. 4,
we also see the temperature T decreases monotonically as
the event horizon zh increases. These constraints are very
important for our later numerical simulation because only
parameters that are physically meaningful are important.

We take the complex scalar field as a probe field in
the above non-commutative Schwarzschild background. The
corresponding dynamics is determined by the Klein-Gordon
equation

DbD
b� − M2� = 0, (16)

here Da = ∇a is the covariant operator and � is a complex
scalar field with M its mass. And we take M2 = −2 in the
following.

As before, we prefer the ingoing Eddington coordinate in
order to solve the above Eq. (16) in a more convenient way,

Fig. 4 The relation between the temperature T and zh for a fixed non-
commutative parameter n = 0.01

that is,

ve = t + z∗ = t −
∫

1

F(z)
dz, (17)

here z = 1/r and

F(z) = 8M
√
nz4

√
π

− 2Mz3 + z2 + 1. (18)

Therefore the non-vanishing bulk background fields are
transformed into the following smooth form

ds2 = 1

z2

[
−F(z)dv2

e − 2dzdve + d�2
]
. (19)

With � = zφ, the asymptotic behaviour of φ near the AdS
boundary is expressed as

φ(ve, z, θ, ξ) = JO(ve, θ, ξ) + z〈O〉 + O(z2). (20)

In the holographic dictionary, JO is regarded as the source for
the boundary field theory. And the response function, which
is the corresponding expectation value of the dual operator,
is given by

〈O〉JO = 〈O〉 − ∂ve JO, (21)

where 〈O〉 obviously corresponds to the expectation value of
the dual operator with the source turned off.

The bulk solution is easily derived with the source given
by Eq. (1)

φ(ve, z, θ) = e−iωve

∞∑
l=0

cl0Zl(z)Yl0(θ), (22)

where Zl satisfies the following equation of motion

z2FZ ′′
l + z2[F ′ + 2iω]Z ′

l + [(2 − 2F) + zF ′ − z2l(l + 1)]Zl = 0,

(23)
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Fig. 5 The amplitude of 〈O〉 for different ω with zh = 1 and n = 0.04

and its asymptotic behaviour near the AdS boundary goes

Zl = 1 + z〈O〉l + O(z2). (24)

And the resulting response 〈O〉JO is then written as

〈O〉JO = e−iωve

∞∑
l=0

cl0〈O〉JOlYl0(θ), (25)

with

〈O〉JOl = 〈O〉l + ω. (26)

Our main goal is to solve the radial Eq. (23) with the boundary
condition Zl(0) = 1 at the AdS boundary and F(r) vanishes
in Eq. (23) at the horizon. With the help of the pseudo-spectral
method [11], we obtain the corresponding numerical solution
for Zl and Ol . With the extracted Ol , the total response can
be obtained by Eq. (25). Here we plot a typical profile of the
total response 〈O〉 in Figs. 5, 6, and 7. All the results show
that the interference pattern indeed arises from the diffraction
of our scalar field by the black hole. Explicitly, Fig. 5 shows
the amplitude of 〈O〉 for different ω with zh = 1 and n =
0.04, we can see that the frequency ω of the Gaussian source
increases the width and therefore reduces the wave periods,
which means the total response function depends closely on
the Gaussian source.

Next we investigate the dependence of the response func-
tion 〈O〉 on the non-commutative strength parameter n. Here
we fix the parameters zh = 1, ω = 80. From Fig. 6, we
see that the amplitude of 〈O〉 increases with the decrease of
the non-commutativity strength parameter n. Similarly, we
study the dependence of the total response function 〈O〉 on
the horizon temperature T , which is shown in Fig. 7 with
fixed n = 0.04 and ω = 80. The corresponding tempera-
tures are T = 0.31816, T = 0.26988 and T = 0.22739.
Figure 7 shows that the amplitude of 〈O〉 increases when the
temperature T decreases.

Fig. 6 The amplitude of 〈O〉 for different n with zh = 1 and ω = 80

Fig. 7 The amplitude of |〈O〉| for different T with n = 0.04 and
ω = 80. The temperatures T = 0.31816, 0.26988, 0.22739 correspond
to zh = 0.7, 0.8, 0.9 respectively

In all, the total response function depends closely on
the Gaussian source and the spacetime geometry. Next, we
devoted to convert this response function into an observed
images with the optical system described in the Sect. 2.

4 Holographic Einstein ring in ADS black hole

According to Eq. (6), we are able to see the observed wave on
the screen which is connected with the incident wave by the
Fourier transformation. We will set δ = 0.02 for the source
and d = 0.6 for the convex lens radius.

Firstly, we consider the effect of wave source on the char-
acteristics of the holographic Einstein image with different
ω observed from the north pole with the non-commutativity
strength parameter n = 0.0001 and zh = 1, which is shown
in Fig. 8. Here from the left to the right, the values of ω are
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Fig. 8 The images of the lensed response observed at the observation angle θobs = 0 for different ω with n = 0.0001 and zh = 1

Fig. 9 The brightness of the lensed response on the screen for different T with ω = 80 and n = 0.0001

ω = 11, ω = 21, ω = 41 and ω = 61, respectively. We can
see that the ring is more clear for the high frequency. The cor-
responding curves which show the brightness of the lensed
response on the screen for the same parameters are shown
in Fig. 9. The peaks of the curves correspond to the radius
of the Einstein ring. From this figure, we find the higher the
frequency becomes, the sharper the Einstein ring becomes.
This makes sense because the image can be well captured
by the geometric optics approximation in the high frequency
limit.

Next, we discuss the influence of different non-
commutativity strength parameter n on the Einstein ring
shown in Fig. 10. Supposing the observer is located at dif-
ferent positions of AdS boundary with the change of the
non-commutativity strength parameter n for zh = 5 and fre-
quency ω = 80. When the observer is located at the posi-
tion θobs = 0, which means the observation is located at
the north pole of the AdS boundary. A series of axisymmet-
ric concentric rings appear in the image, and one of them
is particularly bright which is shown in the left-most col-
umn of Fig. 10. Explicitly from top to bottom, the noncom-
mutativity strength parameter n increases from n = 0.0001
to n = 0.002. And more, as the parameter n increases, the
brightest ring is away from the center. All these can be clearly
seen in Fig. 11 which also shows that the brightness peak of
lensed response is far away from the center as the parameter

n increases for the same parameter. Next we fix the observed
position to θobs = π/6 (the second column from the left
shown in Fig. 10). We see the light arcs instead of a strict
axisymmetric ring, which are consistent with [12,13]. And
the positions of the light arcs are away from the center as the
parameter n increases. That is to say, a series of axisymmetric
concentric rings still exist in the image. And from the top to
the bottom, we see that the brightness of the ring decreases
when the parameter n increases. However, when we move
to θobs = π/3, we see the light arcs become much smaller.
When the observer is at θobs = π/2, all left are bright spots
shown on the right-most column of Fig. 10. And as the param-
eter n increases, the bright spot becomes far away from the
center.

For better understanding the above holographic Einstein
image, we also study the impact of the horizon temperature
on the lensed response observed with the fixed observation
angle θobs = 0. We fix noncommutativity strength parameter
n = 0.0001 and frequency ω = 80 shown in Fig. 12 and the
corresponding brightness of the lensed response is in Fig. 13.
The four subfigures corresponds to T = 0.299, T = 0.393,
T = 0.485 and T = 0.558. We find that the brightest ring
moves to the center as the temperature increases. This conclu-
sion also can be obtained from Fig. 4, in which the brightness
for different temperatures are shown.
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Fig. 10 The images of the lensed response observed at various observation angles for different n with zh = 5 and ω = 80

5 The comparison between the holographic results and
optical results

In this section, we compare the results from the holographic
dual with the results from the geometrical optics. At the posi-
tion of the photon sphere, there exists a brightest ring in the
image. In this section, we calculate this brightest ring from
the viewpoint of optical geometry. In a spacetime with met-
ric in Eq. (9), the ingoing angle of photons from boundary

is expressed with the conserved energy ω and the angular
momentum L. For generality, we choose the coordinate sys-
tem in order to let the photon orbit lying on the equatorial
plane θ = π/2. The 4-vector ua = (d/dν)a satisfies [9,21]

− F(r)

(
dt

dν

)2

+ 1

F(r)

(
dr

dν

)2

+ r2 sin2 θ

(
dφ

dν

)2

= 0,

(27)
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Fig. 11 The brightness of the lensed response on the screen for different n with ω = 80 and zh = 1

Fig. 12 The images of the lensed response observed at the observation angle θobs = 0 for different T with n = 0.0001 and ω = 80. From (a–d),
the horizons correspond to zh = 3, 5, 7, 9 respectively

Fig. 13 The brightness of the lensed response on the screen for different T with ω = 80 and n = 0.0001. From (a–d), the horizons correspond to
zh = 3, 5, 7, 9 respectively

or equivalently,

ṙ2 = ω2 − L2R, (28)

where R = F(r)/r2, ω = F(r)ṫ , L = r2φ̇, and ṙ ≡ ∂r
∂ν

,

ṫ ≡ ∂t
∂ν

, φ̇ ≡ ∂φ
∂ν

.
The ingoing angle θin with normal vector of boundary

nb = ∂/∂rb should be [9,10]

cos θin = g jku j nk

|u||n|
∣∣∣∣
r=∞

=
√

ṙ2/F

ṙ2/F + L2/r2

∣∣∣∣
r=∞

, (29)

and this implies

sin2 θin = 1 − cos2 θin

= L2R
ṙ2 + L2R

∣∣∣∣
r=∞

= L2

ω2 . (30)

The corresponding ingoing angle θin of photon orbit from
boundary satisfies that

sin θin = L
ω

, (31)
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Fig. 14 The ingoing angle θin and outgoing θout angle of the photon
at the photon sphere

which is shown in Fig. 14. The above relation is still valid
when the light is located at the photon sphere. Label the angu-
lar momentum as Ls , which is determined by the following
conditions

ṙ = 0,
dR
dr

= 0. (32)

In the geometrical optics, the angle θin gives the angular
distance of the image of the incident ray from the zenith if
an observer is located on the AdS boundary looks up into
the AdS bulk. When two end points of the geodesic and the
center of the black hole are in alignment, the observer sees

a ring with a radius corresponding to the incident angle θin
because of axisymmetry [9].

In addition, with Fig. 15, we can obtain the angle of the
Einstein ring, which is

sin θR = rR
f

. (33)

According to [9], for a sufficiently large l, we have sin θR =
sin θin . Then the desired relation is

rR
f

= Ls

ω
, (34)

here Ls is the angular momentum at the photon sphere. This
relation also can be proved numerically. For different n, we
find rR

f fits well with Ls
ω

, which is shown in Fig. 16. Note that
for the large n, the fitting is more difficult. Even for small n,
rR
f and Ls

ω
are not fully the same. In Fig. 17, we discuss the

effect of the frequency on the fitting. It is obvious that the
larger the frequency, the preciser the fitting.

6 Conclusions

In the framework of AdS/CFT correspondence, we stud-
ied the holographic Einstein images of a non-commutative
Schwarzschild black hole. We considered a (2 + 1) dimen-
sional boundary conformal field theory on a 2-sphere S2 at a
finite temperature. Under a time-dependent localized Gaus-
sian source JO with the frequency ω, we derived the local
response function. Explicitly, the absolute amplitude |〈O〉|
increases with the decrease of the non-commutative param-
eter n and increases with the decrease of the temperature
T . We also investigated the effect of the frequency of the
wave source on the response function, and found the period
decreases as the frequency increases.

With a virtual optical system with a convex lens, we further
obtained the Einstein rings. We found the holographic ring
always appears with the concentric stripe when the observer

Fig. 15 The relation between
the θR and rR
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Fig. 16 Comparison between
the results obtained by wave
optics and geometric optics for
different n with ω = 80

Fig. 17 Comparison between the results obtained by wave optics and geometric optics for different ω with n = 0.0001

located at the north pole while it changes into a luminosity-
deformed ring, or bright spot as the observer away from
the north pole. The effects of the noncommutative param-
eter n and temperature on the ring were investigated too. It
was found that the ring radius becomes larger as the param-
eter increases, and it becomes smaller as the temperature
increases.

To confirm our results, we also investigated the Einstein
ring via geometric optics. Especially, we obtained the ingo-
ing angle of the photon. We found that at the Einstein ring, the
ingoing angle is the same nearly as that obtained via holog-
raphy. In addition, we found that frequency affects the fitting
accuracy. The higher the frequency, the preciser the result.
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