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Abstract We present a comprehensive study exploring
the relationship between transport properties and measures
of quantum entanglement in the Einstein–Maxwell–Axion–
Horndeski theory. By using holographic duality, we study the
entanglement measures, holographic entanglement entropy
(HEE) and entanglement wedge cross-section (EWCS), and
transport coefficients, for this model and analyze their depen-
dence on free parameters which we classify into action
parameters, observable parameters and axion factor. We find
contrasting behaviors between HEE and EWCS with respect
to observable parameters (charge and temperature), and the
axion factor, indicating that they capture different types of
quantum correlations. We also find that HEE exhibits pos-
itive correlation with both charge and thermal excitations,
whereas EWCS exhibits a negative correlation with charge-
related conductivities and thermal fluctuations. Furthermore,
we find that the Horndeski coupling term, as the modifica-
tion to standard gravity theory, does not change the quali-
tative behaviors of the conductivities and the entanglement
measures.
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1 Introduction

Quantum entanglement, a distinguishing property of quan-
tum systems, plays a crucial role in characterizing quan-
tum phase transitions and the emergence of spacetime [1–8].
However, calculating quantities related to quantum entan-
glement poses challenges due to the exponential increase in
degrees of freedom and the large Hilbert space dimension in
quantum systems [1,9–11].

The AdS/CFT duality offers a powerful tool for studying
strongly coupled systems [8,12–14]. One notable applica-
tion of holographic duality is the holographic entanglement
entropy (HEE) introduced by Ryu and Takayanagi [7]. HEE
relates the minimum surface area of a subregion in the dual
spacetime to the subregion’s entanglement entropy [7,15–
18]. This approach simplifies the calculation of quantum
information quantities and has found applications in con-
densed matter theory and QCD [19–24].

One limitation of HEE is its applicability only to pure
states, making it unsuitable for measuring the entanglement
of mixed states, which are more common in systems at finite
temperature [25–30]. To address this, new measures such as
the entanglement of purification and logarithmic negativity
have been proposed [25–30]. The minimum cross-section of
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two minimum surfaces of subregions, known as the entan-
glement wedge cross section (EWCS), provides a geometric
correspondence for these mixed state entanglement measures
[31–42].

Recently, it is found in condensed matter theory that entan-
glement can serve as a distinct and novel tool to detect both
thermal and quantum phase transitions [1–8]. Thermal phase
transitions result from thermal fluctuations, whereas quan-
tum phase transitions occur at absolute zero temperature due
to quantum fluctuations. During quantum phase transitions,
the topological properties of the systems can change, result-
ing in a well-known transition called topological phase tran-
sition. This type of transition was first oberved in quantum
Hall systems [43,44]. The transport properties of a system,
such as electrical and thermal conductivity, often provide
insight into its underlying physics. Notably, many quantum
and thermal phase transitions demonstrate unique signatures
during these transport measurement processes, enabling us
to identify the nature of the transitions. In the holographic
duality theory, entanglement has also been generally recog-
nized as a novel diagnostic tool for identifying thermal and
quantum phase transitions including topological phase tran-
sition. Specifically, it has been established that during holo-
graphic quantum and thermal phase transitions, the entangle-
ment measures of the system proves crucial in determining
the nature of the transition [45–51].

While the gravity models without modification terms have
been extensively studied, the exploration of modified gravity
models, which could exhibit more interesting phenomena in
entanglement, is still lacking. Modified gravity theories aim
to solve issues from cosmological observations or gravity
renormalization by incorporating correction factors to gen-
eral relativity [52–59]. One such theory is higher derivative
gravity, which includes high-order derivatives of the Rie-
mann curvature tensor [60–63]. However, the complexity of
solving higher-order partial differential equations involved
in determining the entanglement measures hinders the explo-
ration of modified models [64].

To address this challenge and investigate the relationship
between transport properties and entanglement properties in
modified gravity models, we adopt the Einstein–Maxwell–
Axion–Horndeski model. The Horndeski model, which is the
most general scalar–tensor theory involving a non-minimal
coupling between a scalar field and the Einstein tensor, has
gained attention as a cosmological model for dark energy
and inflation [45,65–76]. This model is particularly interest-
ing for several reasons. First, the Horndeski model is char-
acterized by a non-minimal coupling between a scalar field
and the Einstein tensor, which can significantly affect both
the transport properties and the entanglement entropy pre-
scription. This makes it a good candidate for exploring how
modifications to gravity can impact these properties. Sec-
ond, the inclusion of axions breaks the translation symmetry

of the system, leading to finite DC conductivities. This fea-
ture makes the system more realistic and allows us to examine
the transport properties in greater detail. Third, the analytical
solution of this system enables us to calculate the DC con-
ductivities analytically, and to work out entanglement-related
quantities more easily. Last but not least, a user-friendly algo-
rithm has been proposed in [77] for obtaining planar black
hole solutions in this theory. This algorithm greatly simplifies
the process of studying this model. By starting with the Horn-
deski model with axion fields as our first step towards a more
general study of transport properties and entanglement in the
presence of modifications, we can gain valuable insights into
how these phenomena are affected by non-minimal couplings
and broken symmetries.

In this Einstein–Maxwell–Axion–Horndeski model, we
adopt the entanglement entropy prescription of Dong [64]
due to the presence of modification, i.e., the Horndeski cou-
pling. This prescription accounts for the effects of the Horn-
deski coupling and simplifies the entanglement calculations
by involving only ordinary second-order equations of motion.
Moreover, we extend the prescription to the EWCS by adjust-
ing the definition of the minimum cross-section based on the
modified entanglement entropy prescription. This allows us
to explore the entanglement properties in the context of the
Horndeski model with axions.

In the subsequent sections, we present the Einstein–
Maxwell–Axion–Horndeski model and introduce holographic
information-related quantities, along with the calculation of
the equation of motion and holographic thermodynamic con-
ductivities (Sect. 2). We study HEE and EWCS and discuss
their relation to transport properties (Sects. 3.1, 3.2 and 3.3).
Finally, we conclude with a summary in Sect. 4.

2 Einstein–Maxwell–Axion–Horndeski model and
holographic quantum information

In this section, we start by introducing Horndeski gravity
theories with axions and explaining their theoretical frame-
work. Then, we delve into the concepts of HEE and EWCS,
emphasizing their significance in quantum information the-
ory. Finally, we discuss the computation of these Holographic
Information-related Quantities, including the methods and
techniques used to calculate them in gravity theories.

2.1 Einstein–Maxwell–Axion–Horndeski gravity model

The four-dimensional Einstein–Maxwell–Horndeski gravity
model with two free axions φi can be described by the fol-
lowing Lagrangian density [78],
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L = √
g

[
κ

(
R − 2� − 1

4
F2

)
− 1

2

(
ζgμν − γGμν

)

×∂μχ∂νχ − 1

2

2∑
i=1

(∂φi )
2

]
, (1)

where κ is a constant that we set to 1 for concreteness, and
� is the cosmological constant, which acts as a variable in
this model. In addition to the usual gravitational terms, this
model includes a scalar field χ , with the derivative of the
scalar field χ coupled to the Einstein tensor Gab. ζ is the
constant representing the kinematic energy of the scalar field,
and γ , is the Horndeski coupling. The scalar fields φ1 and
φ2 are two axions, which break the translation invariance of
the system, resulting momentum dissipation and finite DC
conductivities [79–82].

The charged Horndeski planar black hole solution in
asymptotic AdS spacetime is given by [78],

ds2 = −h(r)dt2 + dr2

f (r)
+ r2

2∑
i=1

dxidxi ,

A = a(r)dt, χ = χ(r), φ1,2 = kx1,2, (2)

where

h = g2r2 − 2κk2

βγ + 4κ
− m0

r
+ κ
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3g2q2(βγ + 4κ) − κk4

)
3g2r2(βγ + 4κ)2

− κ2q4

60g2r6(βγ + 4κ)2 − κ2k2q2

9g2r4(βγ + 4κ)2 ,

f = 36g4r8(βγ + 4κ)2

(
6g2r4(βγ + 4κ) − κ

(
q2 + 2k2r2

))2 h,

χ ′ =
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6βγ g2r4 − κ
(
q2 + 2k2r2

)
6γ g2r4

1

f
,

a = a0 − q

r
+ qκk2

9g2r3(βγ + 4κ)
+ κq3

30g2r5(βγ + 4κ)
, (3)

where g = 1
l is the inverse of the AdS radius. In these expres-

sions, β is a constant related to the scalar field χ , q is charge
of the black hole and a0 is the chemical potential of the dual
system. k is the factor of axion fields φi . The solution is at
the critical point for cosmological constant � and constants
ζ and γ [78,82]. The critical condition reads,

� = −3g2(βγ + 2κ)

2κ
, ζ = 3g2γ. (4)

It seems that in the limit ζ and γ to 0, the coupling between
the scalar field and the gravity vanishes, and the action returns
to that of AdS-RN-Axion theory. However, even in this limit,
the coupling term does not vanish. As γ approaches zero, the
leading term in the expression of χ ′ in (3) is given by

χ ′ = c0γ
− 1

2 + O(γ
1
2 ), (5)

where c0 represents the factor of this leading order. As a
result, the Horndeski coupling term in (1) reads,

γGμν∂μχ∂νχ = d0 + O(γ ). (6)

where d0 represents the finite term of the Horndeski cou-
pling term in the limit of γ → 0. This is a characteristic
of this Horndeski model. The Horndeski coupling γ is part
of the vacuumn construction and cannot be set to zero as a
perturbative parameter in this solution [78]. The Hawking
temperature are determined by,

T = 6g2r4
h (βγ + 4κ) − κq2 − 2r2

hκk
2

8πr3
h (βγ + 4κ)

. (7)

Here, rh is the radius of the horizon of black hole. To ensure
the regularity of the Maxwell field, we impose a(rh) =
0. 1 In this article, we examine the adjustable parameters
(ζ, γ, β, q, T, k) and group them into three categories:

1. Action parameters: These are the parameters ζ , γ , and
β, which determine the action or theory of the system.

2. Observable parameters: These include the parameters T
and q, which are related to observable quantities, the tem-
perature and the charge of the dual system.

3. Axion factor: The parameter k, representing the axion
factor, plays a crucial role in the transport properties.

To study the holographic dual of a strongly coupled field
theory in Minkowski spacetime, it is necessary to redefine
the coordinates as (t → 1

g2 t, x → 1
g x, y → 1

g y) to ensure
that the new metric of the asymptotic AdS spacetime takes
the standard form at the boundary: ds2 = −r2dt2 + dr2

r2 +
r2dx2 + r2dy2. Additionally, to simplify the calculations
of the EWCS, a change of variable from r to z (r → rh

z )
is performed. In this new coordinate system, the black hole
horizon is located at z = 1, while the asymptotic boundary
of the spacetime is at z = 0.

The thermodynamics of AdS black holes in Horndeski the-
ory has been extensively studied in previous works [74,76].
These studies used the Wald formula (16) to analyze the ther-
modynamic properties of black holes [83]. The Wald entropy
formula (16) is commonly used to analyze the thermody-
namic properties of black holes [83]. In this Horndeski the-

1 Black brane solutions are characterized by the parameters
(ζ, γ, β, q, T, k, rh, T, a0). However, the need for regularity and the
expression for the Hawking temperature reduce the number of inde-
pendent parameters by two. Additionally, the metric ansatz (2) exhibits
a rescaling invariance, which could potentially be used to eliminate
another degree of freedom through scaling dimension normalization.
Consequently, q and T are not entirely independent. Nevertheless, this
study focuses on the influence of charge and temperature on transport
phenomena and entanglement. Therefore, we will maintain the scaling
dimension of the quantities throughout the paper.
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ory, the entropy density s is given by:

s = 16πrh(βγ + 4κ)

3g2 T . (8)

In addition to thermodynamics, various transport coeffi-
cients, known as conductivities, play an important role in
understanding the response of a system to external elec-
tric and thermal perturbation. The direct current (DC) ther-
moelectric conductivities are commonly investigated, which
involve constructing a radially conserved current linking the
physical properties at the boundary to information present
on the black hole horizon [78,84–88]. This can be achieved
through perturbating the system, allowing the derivation of
radially conserved electric and heat currents on the horizon
[45,78]. Based on these calculations, the DC conductivity
matrix reads,

(
σDC αDC

ᾱDC κ̄DC

)
=

⎛
⎜⎝κ

(
1 + q2

r2
h k

2

)
4π2q(βγ+4κ)

3g2rhk2 T

4π2q(βγ+4κ)

3g2rhk2 T 16π4(βγ+4κ)2

9κg4k2 T 3

⎞
⎟⎠ , (9)

where σDC and κ̄DC are the DC electric and thermal conduc-
tivities, respectively, while αDC and ᾱDC are the DC thermo-
electric conductivities. With these analytical expressions for
the DC thermoelectric conductivities, we can easily deter-
mine how these quantities depend on the action parameters
(ζ , γ , β), observable parameters (q, T ), and axion factor k.
The relationships between the DC conductivities and param-
eters are summarized in the first three rows of TABLE 1.

Remind that, according to [87], in the AdS-RN-Axion
model, where the modification terms vanishes, the DC con-
ductivities are given by,

(
σDC αDC

ᾱDC κ̄DC

)
=

⎛
⎝

q2

k2r2
h

+ 1 4πq
k2

4πq
k2

16π2

k2 r2
h T

⎞
⎠ , (10)

Therefore, it is deduced that, the relationship between the
DC conductivities and parameters are similar to the case of
the current model.

In light of the preceding overview of the EMAH model,
we will now proceed to introduce the holographic quantum
information measures.

2.2 Holographic entanglement entropy and entanglement
wedge minimum cross-section

The von Neumann entropy is a fundamental concept in quan-
tum mechanics that quantifies the entanglement between a
subsystem, denoted as A, and its complement in a pure state
|ψ〉 [89]. It serves as the quantum counterpart of classi-
cal information entropy and is commonly referred to as the
entanglement entropy (EE). The EE of subsystem A can be

computed using the following formula,

SA(|ψ〉) = − TrA
[
ρA log ρA

]
, (11)

where ρA represents the reduced density matrix of subsystem
A, obtained by tracing out subsystem B from the total density
matrix ρA = TrB(|ψ〉〈ψ |).

The holographic dual of entanglement entropy, known as
holographic entanglement entropy (HEE), was initially pro-
posed by Ryu and Takayanagi in 2006 based on the holo-
graphic principle, marking a significant breakthrough in the
field of quantum information [7]. In holography, the entan-
glement entropy is related to the geometry of a certain region
in the gravitational theory. Specifically, the entanglement
entropy SA of a certain subregion A in the quantum system
is proportional to the area of a minimal surface that spans the
boundary of region A in the gravitational theory,

SA = Area(γA)

4GN
(12)

where γA is the minimal surface and GN is the Newton’s
gravitational constant.

The EE measures the amount of entanglement between
two subsystems in a pure state. It quantifies the degree to
which the state cannot be factored into separate states for
each subsystem. For a pure state, the entanglement entropy
is non-zero, while for a fully factorizable state (no entan-
glement), the entropy is zero. However, when dealing with
mixed states, which are ensembles of different pure states, the
entanglement entropy is not a good diagnostic since it can be
non-zero even in the absence of entanglement. To overcome
this limitation, one can use the mutual information (MI). The
MI quantifies the amount of shared information between two
subsystems, regardless of whether it arises from entangle-
ment or from classical correlations. It is defined as the dif-
ference between the entanglement entropies of the combined
region A ∪ B and the individual regions A and B:

I (A; B) = SA + SB − SA∪B (13)

The MI provides a more complete picture of the correlations
in a quantum system, as it captures both classical and quan-
tum correlations. In the case of a pure state, the MI is equal
to the entanglement entropy, but for mixed states, it can also
capture classical correlations that do not involve entangle-
ment. Hence, MI is not a perfect measure of entanglement
in mixed states, as it can be dominated by the entanglement
entropy.

An alternative technique is the entanglement of purifica-
tion (EoP), which involves a double minimization procedure
to purify the extra degrees of freedom of mixed states [25].
The holographic EoP has been proposed as proportional to
the area of the minimal cross-section of the entanglement
wedge (EWCS, see Fig. 1) [33]. Later, the EWCS, has been
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Fig. 1 Visualization of the minimal cross-section (green surface on the left plot and red string on the right plot) that cuts through the entanglement
wedge

proposed to be dual to other mixed state entanglement mea-
sures such as logarithmic negativity [31,32,35].

Building upon the earlier discussion on holographic quan-
tum information measures, we will now delve into their
computational methods in the Einstein–Maxwell–Axion–
Horndeski model. In this scenario, the entanglement entropy
prescription undergoes substantial modifications, resulting in
a more intricate calculation procedure.

2.3 Computation of the holographic information-related
quantities

Now, we will discuss the computation methods for holo-
graphic information-related quantities. Our discussion will
start by explaining how to obtain the minimum surfaces for
HEE and EWCS. Once we have established this foundation,
we will then elaborate on the methods for determining the
minimal cross-section within the entanglement wedge.

The entanglement entropy of Horndeski can be evaluated
by substituting the Lagrangian density (1) into the entangle-
ment entropy prescription proposed by Dong in [64],

S = κ

4

∫
dd y

√
h

{
− ∂L

∂Rμνρσ

εμρενσ

+
∑
ζ

(
∂2L

∂Rμ1ρ1ν1σ1∂Rμ2ρ2ν2σ2

)
ζ

2Kk1ρ1σ1Kk2ρ2σ2

qζ + 1

×
[(
nμ1μ2nν1ν2 − εμ1μ2εν1ν2

)
nk1k2

+ (
nμ1μ2εν1ν2 + εμ1μ2nν1ν2

)
εk1k2

] }
. (14)

The Greek letters are indices of tensors in the d-dimensional
spacetime. Several key terms are defined as

nμν = n(a)
μ n(b)

ν Gab,

εμν = n(a)
μ n(b)

ν εab,

Kλμν = n(a)
λ m(i)

μ m( j)
ν Kai j . (15)

Here, n(a)
μ and m(i)

μ are unit vectors perpendicular and
transversal to the surface, respectively. The Latin letters
(a), (b) and (i), ( j) represent the internal indices in the
tangent space. The induced metric on the tangent space is
denoted by Gab, while εab and Kai j represent the Levi-Civita
tensor and the extrinsic curvature, respectively. The coeffi-
cient qζ corresponds to an anomaly coefficient associated
with each term in the expansion [64].

However, it is important to note that in the case of
Horndeski Lagrangian density (1), only a first-order term
of the Riemann tensor is present. Calculations using this
Lagrangian density will yield results that are equivalent to
the Wald entropy formula, which is given by,

S = κ

4

∫
dd y

√
h

(
− ∂L

∂Rμρνσ

εμρενσ

)
. (16)

By extracting each curvature-related term from the Lagrangian
density, one obtains the following expression for the entan-
glement entropy [90],

S = κ

4

∫
dd y

√
h

[
1 − γ

4κ
hi jχ

,iχ, j
]
. (17)

The hi j represents the induced metric on the surface. We can
treat (17) as an action and obtain the equation of the minimum
surface through the variational principle2 [90],
(

1 − γG

4
hi jχ,iχ, j

)
Ka

+γG

2
Ki j
a χ,iχ, j + γG

2
χ,ah

i j Di D jχ = 0. (18)

However, the explicit expression of equation of motion of
(18) is quite complicated.

To simplify our computations, we follow the computa-
tional methods in [30] and consider an infinite strip along the
y axis as the subregion (see Fig. 2). By parameterizing the

2 For the definition of the indices in this context, please refer to [90].
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Fig. 2 A visualization of the minimal surface (yellow) corresponding
to an infinite strip (red) along the y axis

surface with θ as θ = arctan(z/x), we can derive the equa-
tions of motion more easily. To obtain the minimum surface,
we need to solve the equations of z(θ) and x(θ) within the
range of θ ∈ [0, π ]. However, since there is a mirror symme-
try about θ = π/2, it suffices to work within θ ∈ [0, π/2].
We treat the integrand in Eq. (17) as a Lagrangian density
of the minimum surface. Resultantly, the minimum surface
can be obtained by solving the equations of motion from this
Lagrangian density,

LHEE =
√
gxx (z)x ′2 + gzz(z)z′2

√
gyy(z)

×
(

1 − γ z′2χ ′(z)2

4
(
gxx (z)x ′2 + gzz(z)z′2

)
gyy(z)

)
. (19)

Here, z′ and x ′ are derivatives with respect to θ . By taking
the variational derivative of (19) with respect to z(θ) and
x(θ) directly, we can derive the equations of motion for z
and x . Since these equations are highly non-linear ordinary
differential equations, solving them can be challenging. One
approach is to use the Chebyshev collocation and Newton
iteration algorithm. This iterative method is commonly used
to solve boundary value problems and involves approximat-
ing the solution by a polynomial that satisfies the differential
equations at a set of collocation points. The algorithm then
updates the polynomial coefficients using Newton’s method
until a satisfactory solution is obtained. Although this method
can be computationally intensive, it has proven to be effective
in solving similar types of problems.

After obtaining the minimum surface, the HEE can be cal-
culated through numerical integration using the Lagrangian
density (19) of the minimum surface. However, the HEE
diverges at the AdS boundary (z = 0), so we need to identify
and subtract the diverging term to obtain a finite value. The
diverging term is given by,

div =
rh

√
r2
h x

′(0)2 + z′(0)2

gz(0)2 , (20)

which needs to be subtracted so as to render a finite value of
HEE.

Next, we elaborate on how to compute EWCS. To deter-
mine the EWCS, we first identify the minimum cross section
within the entanglement wedge. This involves finding two
minimum surfaces and then locating the minimum cross-
section that connects them. In order to parametrize the mini-
mum cross-section, we use the variable z, which has been
verified as a good parametrization in our numerics. The
Lagrangian density (19) under this parametrization is given
by,

LEWCS =
√
gxx (z)x ′(z)2 + gzz(z)

×
(

1 − γχ ′(z)2

4
(
gxx (z)x ′(z)2 + gzz(z)

)
)

. (21)

The equation of motion for x(z) is obtained by variating (21)
with respect to x(z). In our previous work [48], we proposed
an algorithm to identify the minimal cross-section based on
the geometric fact that the minimal cross-section must be per-
pendicular to the minimum surfaces. This observation signif-
icantly speeds up the computation process. However, when
considering the modified Lagrangian where the scalar field
also takes part in the dual information-related quantities, we
need to examine whether the perpendicular condition still
holds. Essentially, the perpendicular condition comes from
the term

√
gxx (z)x ′(z)2 + gzz(z) and is valid for any form of

Lagrangian once this term appears as a factor. Therefore, the
algorithm in [48] still applies to the current situation. Finally,
we can work out the area of this minimum cross-section by
integrating (21) over z.

Besides the computational methods discussed earlier, a
primary focus of this paper is on exploring the thermo-
dynamic and transport properties of the Horndeski grav-
ity model with axions and their connections to holo-
graphic information-related quantities. In the subsequent sec-
tion, we provide detailed explanations of these holographic
information-related quantities and thermodynamic and trans-
port properties.

3 The entanglement-related quantities and transport
properties

3.1 Holographic entanglement entropy

In this section, we will examine the influence of action param-
eters (ζ , γ , β), observable parameters (q, T ), and axion fac-
tor k on holographic entanglement entropy (HEE). Since the
divergence of the HEE (20) is influenced by the parameter
g, we fix g = 3 when computing the HEE to enable a valid
comparison between different parameters. As a result, (4)
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Fig. 3 The influence of action parameters ζ and β on holographic entanglement entropy (HEE). Left: Variation of HEE with different values of
ζ . Right: Variation of HEE with different values of β

Fig. 4 The influence of observable parameters q and T on HEE. Left: Variation of HEE with different values of q. Right: Variation of HEE with
different values of T

means that the HEE will exhibit the same behavior with γ

and with ζ . Therefore, for HEE we will only show HEE vs
ζ and β.

First, let us consider the influence of action parameter. We
find that, HEE increases with ζ and β, as shown in Fig. 3. In
the action, ζ governs the magnitude of the kinetic energy of
the scalar field χ , while β is involved in the definition of the
scalar field χ itself. The parameter γ quantifies the strength
of gravity coupling with the scalar field. The observation that
the HEE increases with both ζ and β suggests that enhanc-
ing either the magnitude of the kinetic energy or the scalar
field itself leads to a greater entanglement of the holographic
degrees of freedom.

Second, when considering the observable parameters,
black hole charge q and the Hawking temperature T , it has
been observed that the HEE monotonically increases with
both of these parameters. This observation is depicted in
Fig. 4. This behavior can be understood from both the grav-
ity side and the dual CFT side. From the gravity side, the
increase in HEE with black hole charge and temperature can

be attributed to the growth of the black hole horizon. As
the charge q increases, the horizon area expands, leading to
an increase in the Bekenstein–Hawking entropy. The HEE,
which is proportional to the area of the minimal surface in
the bulk theory holographically dual to the boundary CFT,
follows a similar trend and thus increases with the charge.
Similarly, an increase in temperature leads to a larger black
hole horizon and subsequent increase in the HEE. This result
is consistent with our expectation that larger black holes have
more entanglement entropy. From the dual CFT side, the
monotonically increasing HEE with both charge and temper-
ature can be understood by considering the behavior of the
dual conformal field theory. The HEE measures the quan-
tum entanglement between degrees of freedom in the CFT.
As the charge and temperature increase, the system becomes
more excited, leading to an enhanced entanglement between
its constituents. This increased entanglement is reflected in
the larger value of the HEE.

The HEE versus the axion factor k is depicted in Fig. 5.
As observed, HEE exhibits a monotonically increasing trend
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Fig. 5 The influence of axion factor k on holographic entanglement
entropy (HEE)

with increasing k. In the context of holographic duality, k
is commonly associated with the transport properties of the
system. By breaking the translational symmetry, k allows
for the emergence of finite DC conductivities. This implies
that as k is increased, the system experiences a smaller DC
resistivity, accompanied by an increase in HEE. From the
perspective of gravity, it can be argued that the increase in
HEE with k is due to the modification in the gravitational
background caused by the axion field. Similar results have
been observed in [48] and the mechanisms for this monotonic
behavior can be attributed to the relationship between the
horizon radius and the parameter k. On the dual field theory
side, the enhanced EE can be attributed to increased disorder,
like results observed in [91].

Generally, we would expect HEE to exhibit the same pat-
tern as the thermodynamics entropy (8) when the width of the
subregion is large. All these behaviors have been summarized
in Table 1.

3.2 Entanglement wedge cross-section

We will now investigate how varying different parameters
affects the EWCS, while keeping the configuration (a, b, c)
fixed. It is important to note that the results we obtained are
independent of the specific choices of (a, b, c). Therefore,
we will only present a few characteristic plots. In the case
of EWCS, g is a free parameter, allowing us to consider γ

and ζ as two independent variables. Next, we examine the
behavior of the EWCS in relation to the action parameters
ζ, γ, β, as well as the observable parameter q, T , and axion
factor k.

Let us start with ζ , which is related to the magnitude of
the kinetic energy of the scalar field. We observe that as ζ

increase, the EWCS decreases (see the left plot of Fig. 6).
From the perspective of gravity, this can be understood as
a consequence of the scalar field possessing more kinetic
energy. With a larger ζ , the gravitational effects induced by
the scalar field become stronger. This increased gravitational
impact leads to modifications in the spacetime geometry,
resulting in a decrease of the EWCS and reducing the entan-
glement across the entanglement wedge.

Moving on to γ , which represents the strength of the
coupling between gravity and the scalar field, we find that
the EWCS increases as γ increases (see the middle plot of
Fig. 6). From the gravity side, this can be understood as a con-
sequence of stronger gravitational effects due to the scalar
field. As γ increases, the coupling between the scalar field
and gravity becomes stronger, resulting in enhanced entan-
glement across the entanglement wedge. Consequently, the
EWCS exhibits an increase.

Lastly, we consider the effect of β, which is embedded
within the definition of the scalar field χ . As β increases,
we observe a decrease in the EWCS (see the right plot of
Fig. 6). Remind that, HEE exhibits a monotonically increas-

Table 1 The dependence of conductivities, EWCS, HEE, and thermodynamic entropy on variations of different parameters. An upward arrow
indicates an increase with the parameter, while a downward arrow indicates a decrease with the parameter
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Fig. 6 The influence of action parameters ζ, γ and β on the EWCS. Left: Variation of EWCS with different values of ζ . Right: Variation of EWCS
with different values of γ . Right: Variation of EWCS with different values of β

Fig. 7 The influence of observable parameters q and T on the EWCS. Left: Variation of EWCS with different values of q. Right: Variation of
EWCS with different values of T

ing behavior. This suggests that HEE exhibit a opposite
behavior with β when compared with EWCS. This means
that, EWCS as a mixed state entanglement measure, captures
distinct features of the entanglement from the EE.

Now, we study how the observable parameters T and q
affects the EWCS. The EWCS is found to decrease with
increasing temperature T and charge q, as depicted in Fig. 7.
This phenomenon is in contrast to the behavior of HEE which
typically increases with temperature and charge.

From a gravitational viewpoint, we can gain an intuitive
understanding of the EWCS based on the reasoning behind
why HEE increases with q and T . As temperature and charge
increase, the black hole horizon expands, causing HEE to
resemble thermal entropy more closely. In thermal systems,
different subregions should be disentangled, as the total den-
sity matrix can be approximately represented by the direct
product of each subregion’s density matrix. This concept
is easily understood from a gravity perspective: when both
minimum surfaces approach the horizon, the cross-section
becomes smaller due to the narrowing entanglement wedge.

On the dual CFT side, a possible understanding for the
decreasing EWCS with increasing temperature and charge
can be derived from the behavior of entanglement in strongly

coupled systems. At higher temperatures, the thermal fluctu-
ations in the system become more significant. These fluctua-
tions can disrupt or break the entanglement between particles,
leading to a decrease in overall entanglement. Increased tem-
peratures generally introduce more randomness and decoher-
ence into the system, which can result in the loss of entangle-
ment. Additionally, the presence of a higher charge may lead
to stronger interactions between particles. These interactions
can also contribute to decoherence and disrupt the entangle-
ment present in the system. The increased charge density may
cause stronger interaction between charged degrees of free-
dom, which can break or reduce the entanglement between
particles. One example where charge density and interac-
tions can affect entanglement is in the context of the Hub-
bard model [92,93], which describes interacting particles on
a lattice. In this model, increasing charge density can lead
to stronger on-site interactions between particles, which can
influence the entanglement properties of the system.

The EWCS versus the axion factor k also depicts a simi-
lar trend as the HEE. It exhibits a monotonically increasing
behavior with increasing k, as can be seen in Fig. 8. This
observation suggests that mixed state entanglement mea-
sures, such as the EWCS, also show an enhanced entangle-
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Fig. 8 The influence of axion factor k on EWCS

ment when the system possesses a larger axion factor k. From
the gravity side, the increase in EWCS can be understood as
a consequence of the modification in the gravitational back-
ground caused by the axion field. The interplay between the
axion field and the gravitational dynamics affects the entan-
glement characteristics of the system, leading to a higher
value of EWCS as k increases. This phenomenon has been
studied in [48], where a similar monotonic behavior of the
entanglement measures with k was observed. The specific
mechanisms underlying this relationship between the axion
factor and the entanglement measures may be attributed to
the interplay between the horizon radius and the parameter k,
as well as other relevant properties of the gravitational back-
ground. On the dual field theory side, the enhanced mixed
state entanglement can be attributed to the effects of confine-
ment resulting from the breaking of translational symmetry
by the axion field. The breaking of translational symmetry
induces a more confined behavior for charged degree of free-
dom of the quantum states, which can resulte in an increased
mixed state entanglement.

In the study of modified gravity models, it has been
observed that the Horndeski model with axion and the
AdS-RN-Axion model (without modification) exhibit similar
behaviors in terms of their DC conductivities. This means that
the inclusion of the modification term does not significantly
alter the DC conductivities in these models. Furthermore, it
has also been found that the HEE and EWCS are quantita-
tively the same for both models.3 These findings suggest that
when axions are minimally coupled to gravity, the modifica-
tion term does not have a significant impact on the quantum
information, such as the DC conductivities and HEE/EWCS,
and their relationships.

3 For the HEE and EWCS study on the pure axion model, see [94].

3.3 The relationship between the transport properties and
the entanglement-related quantities

The relationship between transport properties and entangle-
ment related quantities is a topic of great interest in the study
of condensed matter physics. Transport properties, such as
DC electrical conductivities, play a crucial role in charac-
terizing the behavior of materials, distinguishing between
metals and insulators, and probing phase transitions.

Recent research has revealed intriguing connections
between transport properties and entanglement properties,
particularly in the context of condensed matter systems and
holographic frameworks. In certain scenarios, the entangle-
ment properties exhibit extremal behaviors across phase tran-
sitions and in strongly correlated systems. These findings
suggest that there may be underlying connections between
the transport properties and entanglement properties.

In the current Horndeski model with axion, we also sys-
tematically analyze the relationship between transport prop-
erties and entanglement in this model. To illustrate this more
clearly, we present all the results in Table 1. In Table 1, the
rows and columns represent physical quantities and the free
parameters of the system, respectively. In the columns, for
better comparison, we highlight the action parameter part in
blue, observable parameters in orange, and the axion fac-
tor in green. In the rows, the first three rows represent the
transport coefficients of the system, while the last three rows
represent the quantities related to entanglement and the ther-
modynamic entropy density.

Let us now examine the observable parameters, namely
q and T . Increasing the value of q leads to an increase in
charge-related conductivities (σDC and αDC), while the ther-
mal conductivities decrease. In such systems, an increase in
charge density does not enhance thermal conductivity. In fact,
high charge densities can even decrease thermal conductivity
by increasing electron–electron scattering, which hinders the
flow of heat. Additionally, increasing q is always associated
with higher EE. This is because higher charge densities result
in more charged degrees of freedom, leading to increased
entanglement as well as the thermal entropy, as explained
in previous sections. However, the mixed state entangle-
ment EWCS, decreases with increasing q, which can result
from the restricted induced by strong correlation between
electrons. Meanwhile, the thermal conductivities exhibit the
opposite trend. This is understandable since enhanced heat
transfer tends to disrupt entanglement.

For the temperature T , the heat-related DC conductivi-
ties (κ̄DC and αDC) increase with increasing T , while σDC

decreases. This behavior can be explained by the fact that
higher temperatures facilitate more efficient heat transfer,
resulting in larger values of κ̄DC and αDC. The decreasing
behavior of σDC indicates that the system is in a typical metal-
lic phase. Turning our attention to the entanglement-related
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quantities, we find that increasing the temperature leads to
an increase in the entanglement entropy (HEE) due to the
contribution of thermal entropy, while the EWCS decreases
due to the disruption of thermal effects.

Based on the above observations, it appears that the HEE
is aligned with the thermo-electric conductivity αDC. Which
means that HEE detects both the heat and charged degrees
of freedom. Meanwhile, EWCS is negatively related to the
charged degrees of freedom in the sense that, on the q direc-
tion, σDC and αDC both increases with increasing charge den-
sity, while EWCS decreases due to the strong correlation of
the charged degrees of freedom. Also, EWCS is aligned with
σDC on the temperature direction, but the mechanisms for
the behavior of EWCS and σDC are different at that, σDC

decreases as a metallic charge transport behavior, but the
thermal effects tends to disrupt the mixed state entanglement,
i.e., EWCS.

Next, let us focus on the axion factor k. All three DC con-
ductivities decrease as the value of k increases. This decrease
is largely attributed to the process of momentum relaxation,
which not only affect momentum but also impacts the flow
of charge and energy. Keep in mind that this pattern has been
observed in several other models, thereby suggesting that
it might be a common occurrence within such axion struc-
tures, particularly within those that are minimally coupled.
Conversely, as k increases, the entanglement-related quanti-
ties such as the HEE, and the EWCS all increase. This seems
counterintuitive, as a reduction in the flow of charge - espe-
cially when charged degrees of freedom are predominant
- tends to significantly decrease entanglement. We present
this as evidence that in this model, despite decreasing charge
mobility and associated momentum and energy, the charged
degrees of freedom do not dominate the system’s entangle-
ments. It suggests that the augmentation of other degrees of
freedom, such as phonon, takes place, resulting in higher
entanglement.

4 Discussion

This work presents a comprehensive study of holographic
entanglement entropy (HEE) and entanglement wedge cross-
section (EWCS) in the Horndeski gravity model with axions.
Leveraging holographic duality, we investigate the interplay
between these measures of quantum entanglement and the
transport properties described by DC thermoelectric conduc-
tivities. Our analysis reveals several key insights:

• The HEE increases with the action parameters ζ , β,
black hole charge q, and temperature T . This aligns with
expectations from black hole thermodynamics, where
entropy increases with charge and temperature. The

EWCS exhibits the opposite trend, decreasing with q and
T .

• The contrasting behavior of HEE and EWCS suggests
that they capture different types of entanglement. HEE
appears more closely related to the degrees of freedom
associated with charge and thermal excitations. In con-
trast, EWCS seems more influenced by disruptive effects
like thermal fluctuations that can destroy quantum corre-
lations.

• All DC conductivities decrease with the axion factor
k, indicating momentum relaxation effects that hinder
charge and energy transport. However, both HEE and
EWCS increase with k, highlighting the complex rela-
tionship between transport and entanglement.

• The overall trends indicate that EWCS shows a nega-
tive relation with the charge-related conductivity σDC

and αDC, while HEE parallels the thermoelectric conduc-
tivity αDC. This implicates EWCS is negatively related
to charged degrees of freedom, while HEE reflects both
charge and thermal excitations.

These findings elucidate the essential properties of the
Horndeski holographic model and demonstrate the value of
entanglement measures in decoding transport phenomena.
The contrasting behavior of HEE and EWCS with respect to
various parameters emphasizes the need for multiple diag-
nostic tools to fully characterize quantum information. More-
over, our findings reveal that the dependence of these quanti-
ties on the system parameters remains unchanged when com-
paring scenarios with and without modification terms. This
suggests that the observed behavior is a general characteristic
of axions minimally coupled to gravity.

Transport and entanglement properties are of interest in
various systems, including electron spin systems, thermody-
namical nonequilibrium systems, and quantum entanglement
engines [95–97]. In these systems, transport-related quanti-
ties are closely linked to information-related quantities. How-
ever, the relationship between transport and entanglement
properties can vary depending on the specific parameters and
system. For instance, in [95], a positive relationship between
electron correlator and entanglement is observed, suggesting
that correlators can be used to detect entanglement in real
condensed matter systems. However, in the thermodynami-
cal nonequilibrium system discussed in [96], the relationship
between heat current and mixed-state entanglement concur-
rence can be positive, negative, or non-monotonic depend-
ing on variations in mean temperature and Hamiltonian fac-
tors. Our work provides a new perspective on the relation-
ship between transport and entanglement properties through
holography, and we hope that it will inspire further research
in this area.
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While this work focuses on a specific model, the method-
ology of correlating entanglement and transport properties
can offer broader physical insights. Extending the analy-
sis to other holographic models could reveal universal pat-
terns tied to phenomena like momentum relaxation, metal-
insulator transitions, and electron correlations. An interesting
extension will be to the modification that the axions are not
minimally coupled to the Horndeski gravity [98]. We expect
that this non-minimal coupling can significantly impact the
relationship between the entanglement and transport proper-
ties. Moreover, modifications like higher derivative terms are
also an important topic to further study. However, this could
bring in intricate numerical challenges such as the calcul-
tion of fourth-order differential equations. We are working
on these directions and will report our findings in future pub-
lications.
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