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Abstract In this work, we made an extensive study about
the possible presence of anisotropies in strange stars. To
accomplish this task, we use three different configurations for
the strange matter: the unpaired matter, a two-flavor super-
conducting (2SC) strange matter, and a fully three-flavor
super-conducting strange matter (CFL). For each configu-
ration, we calculate the relevant quantities for the strange
stars, such as the mass-radius relation, the dimensionless tidal
parameter, the moment of inertia, and the surface curvature
for different degrees of anisotropies. Whenever possible, we
compare our results with constraints found in the literature,
especially focusing on the existence of very massive pulsars
(PSR J0952-0607), as well as very light compact objects
(HESS J1731-347).

1 Introduction

Strange stars are self-bounded compact objects composite
by deconfined quarks. The theory of strange stars is based on
the so-called Bodmer–Witten conjecture [1,2]. It assumes
that the ordinary matter we know, composed of protons and
neutrons, may only be meta-stable, while the true ground
state of strongly interacting matter would therefore consist
of the so-called strange matter (SM), which in turn is com-
posed of deconfined up, down and strange quarks. For the SM
hypothesis to be true, the energy per baryon of the deconfined
phase (for p = 0 and T = 0) is lower than the nonstrange
infinite baryonic matter, i.e., (Euds/A < 930 MeV), while at
the same time, the nonstrange matter still needs to have an
energy per baryon higher than the one of nonstrange infinite
baryonic matter (Eud/A > 930 MeV); otherwise, protons
and neutrons would decay into u and d quarks.
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In this work, we discuss strange stars within three different
possible scenarios. The normal, unpaired quark matter. Two
flavors paired color-superconducting quark matter (2SC) and
a full three flavors, color-conducting quark matter known
as Color-Flavor-Locked (CFL) phase. The quark matter is
expected to behave in a full CFL phase at very high densities.
However, at intermediate densities, the behavior of the quark
matter is still an open issue [3,4].

Furthermore, we study not only isotropic strange stars but
also investigate the effects of local anisotropy. The local
anisotropy can arise due to exotic phenomena, such as a
strong magnetic field, superfluity, phase transitions, etc. (see
Ref. [5] for an extensive discussion). Several models have
been proposed to explore the effects of pressure anisotropy
inside the star [6]. However, in this study, we use the so-
called Bower-Liang (BL) model [7]. In this simple model,
the anisotropy is gravitationally induced and non-linear in
pressure. Moreover, the BL model has the advantage that
the presence of local anisotropy does not break the spherical
symmetry of the star, as discussed in Ref. [8].

We have already discussed anisotropic stars in our pre-
vious work [9]. However, in that short study, we consid-
ered only one model for the quark matter, the unpaired one.
Moreover, that study also restricted our analysis to the mass-
radius diagram and the tidal deformability parameter. In the
present study, we extend our study in all aspects such as the
unpaired matter and two models of color-superconducting
phases. Moreover, altogether with the mass-radius relation
and the dimensionless tidal parameter, we also discuss the
effect of color-superconducting and anisotropy in the inertia
moment of strange stars and the surface curvature [10]. This
work is, therefore, complementary to other studies found in
the literature. For instance, the effect of anisotropy on radial
oscillation was studied in Ref. [11]. The anisotropic charge
in strange stars has been explored in the Tolman-Kuchowicz
space-time geometry in Ref. [12]. They got an interesting
result that the pressure anisotropy initially dominates the
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Coulomb repulsive forces, and the repulsive forces domi-
nate the anisotropic when the radius increases. On the other
hand, in Ref. [13], the authors have explored the effect of the
magnetic field on the anisotropic strange stars and observed
that the transverse component of the magnetic field increases
the mass and size of the anisotropic star and vice-versa for
the radial component of the field.

We also check which of our results fulfill some constraints,
mainly focusing on those that are harder to explain for a tra-
ditional neutron star. The first is the HESS J1731-347 object
[14] whose mass and radius are M = 0.77+0.20

−0.17 M� and

R = 10.4+0.86
−0.78 km respectively. The true nature of the HESS

object is one of the hot topics in nuclear astrophysics. In Ref.
[14], it was shown that some chiral theory can explain this
object as an ordinary hadronic neutron star. The hadronic
nature was also explored in Ref. [15]. On the other hand, the
HESS object as a strange star was studied in Refs. [9,16].
Finally, in Ref. [17] the authors show that the HESS object
can be a hadronic neutron star with a soft EOS, or a hybrid
star with an early deconfinement phase transition. The sec-
ond constraint is the very small upper limit of the radius
(R1.4 < 11.9 km) of the canonical star, given by Capano et
al. [18]. Here again, we cannot completely rule out hadronic
neutron stars, although such constraint is tight enough to rule
out mostly hadronic EoSs. Finally, an extreme constraint is
the speculative mass of the black widow pulsars PSR J0952-
0607, M = 2.35±0.17M� [19]. Therefore, in this study, we
provide an analysis of the anisotropic stars based on different
models that could be able to fulfill all three strong constraints
simultaneously.

Despite those extreme cases, we also investigate if our
models are able to describe some more traditional constraints.
For instance, the PSR J0740+6620 with a mass of 2.14 M�
was pointed in Ref. [20]. Neutron Star Interior Composi-
tion Explorer (NICER) results refined this data, and today
we have the PSR J0740+6620 with a mass of 2.08 ± 0.07
M� and a radius of 12.35 ± 0.35 km [21]. The canonical
star, M = 1.4M�, also received great attention in the last
years. Two NICER results point that the radius of the canon-
ical stars must be in the range 11.52 < R1.4 < 13.85 km
[22], and 11.96 < R1.4 < 14.26 km [23]. Nowadays, these
results were revised to 11.80 < R1.4 < 13.10 km [21]. We
also investigate if our results are able to explain the mass-gap
object in the GW190814 event [24], whose mass was esti-
mated to be 2.50 − 2.67 M�. Still, there are several debates
about its true nature; see Refs. [25,26].

In addition, we also take the constraints from the gravi-
tational wave observations by LIGO/VIRGO/KAGRA. The
GW170817 event [27] put the constraints on the dimension-
less tidal parameter of the canonical star �1.4 < 800 [27].
This result was then refined in Ref. [28], to 70 < �1.4. <

580. Moreover, assuming that the mass-gap object in the

GW190814 event was not a black hole implies that the dimen-
sionless tidal parameter for the canonical star must be in the
range of 458 < �1.4 < 889 [24].

Another important quantity is the moment of inertia (MOI)
of the compact stars. Till now, we don’t have any observa-
tional data for any NS. The authors of Ref. [29] have obtained
the MOI for several pulsars using the universal relations
between the mass and the tidal deformability. Here, we calcu-
late the MOI of the anisotropic SQS with different SQM mod-
els by varying the degrees of anisotropicity. One can constrain
the value of MOI from the future observational data for the
anisotropic compact star. There are other ways to constrain
the magnitude of the MOI for different systems, such as Mil-
lisecond Pulsars (MSP), Double NS (DNS), and Low Mass
X-ray Binary (LMXB), as done in Refs. [29,30]. The MOI of
these pulsars is expected to be measured soon; for example,
the PSR J0737-3039(A) is the only known DNS up to date.
Since the NS equation of state (EOS) is believed to be univer-
sal, the tidal deformability constraints from GW170817 have
implications for all NSs, including PSR J0737-3039(A), the
MOI has been obtained to be 1.15+0.38

−0.24 × 1045 g cm2 [29].
One can also estimate the MOI for other MSPs and LMXBs.

Finally, we discuss the surface curvature (SC) of the
strange stars. The SC is a quantity used to measure the mag-
nitude of the curvature made by a compact object due to
its huge mass, and it is also one of the major consequences
of Einstein’s general theory of relativity. The SC is one of
the observables that can be measured for different compact
objects. Recently, the direct detection of gravity-field curva-
ture has also been observed by using atom interferometers
[31]. In the future, we might have modern interferometers
like LISA that could be able to answer the SC for com-
pact objects such as neutron stars/white dwarfs. Since the
SC mainly depends on macroscopic properties such as mass
and radius, we can put constraints on the internal composi-
tion of the star. We explain the details of the methodology to
obtain the SC in the following sections.

2 Quark matter models

2.1 Unpaired quark matter: the vector MIT bag model

We begin our study with a normal, unpaired quark mat-
ter. This implies that all the flavors and colors are degen-
erated. Moreover, the particle distribution in the momentum
space forms a sphere, the Fermi sphere, whose radius is the
so-called Fermi momentum, k f . At T = 0K, all particles
are constrained inside the Fermi sphere. Consequently, the
Fermi-Dirac distribution becomes the Heaviside step func-
tion [32]. To model the unpaired quark matter, we use a
vector-enhanced MIT bag model [33].
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The vector MIT bag model is an extension of the original
MIT bag model [34] that incorporates some features of the
quantum hadrodynamics (QHD) [35]. In its original form,
the MIT bag model considers that each baryon is composed
of three non-interacting quarks inside a bag. The bag, in its
turn, corresponds to an infinity potential that confines the
quarks. As a consequence, the quarks are free inside the bag
and are forbidden to reach its exterior. All the information
about the strong force relies on the bag pressure value, which
mimics the vacuum pressure.

In the vector MIT bag model, the quarks are still confined
inside the bag, but now they interact with each other through
a vector meson exchange. This vector meson plays a role
analog to the ω meson of the QHD [35]. The Lagrangian
density reads [36,37]:

LvMIT =
{
ψ̄q

[
γ μ(i∂μ − gqV Vμ) − mq

]
ψq

− B + 1

2
m2

V V
μVμ

}
�(ψ̄qψq), (1)

where mq is the mass of the quark q of flavor u, d or s, ψq

is the Dirac quark field, B is the constant vacuum pressure,
and �(ψ̄qψq) is the Heaviside step function to assure that
the quarks exist only confined to the bag. Imposing mean-
field approximation (MFA) and applying Euler-Lagrange to
Eq. (1), we obtain the energy eigenvalue for the quark, as
well as the expected value for the vector field.

Eq = μq =
√
m2

q + k2 + gV V0, (2)

m2
V V0 =

∑
q

gV nq ,

where nq is the number density of the quark q and μq is its
chemical potential. Now, applying Fermi-Dirac statistics, the
energy density is analogous to the QHD plus the bag term:

ρ =
∑
q

γq

2π2

∫ k f

0
dk k2

√
k2 + m2

q + 1

2
m2

V V
2
0 + B (3)

γq = 6 (3 colors × 2 spins) is the degeneracy factor. Elec-
trons are also added as a free Fermi gas to ensure chemical
equilibrium. The pressure is then easily obtained by thermo-
dynamics relations: p = μn − ρ.

In this work we use mu = md = 4 MeV, ms = 95, and
define GV ≡ (gV /mV )2, as suggested in Refs. [36,37].
Although the bag constant B and the parameter GV are not
fully independent, they are weakly constrained to only satisfy
the stability window [38]. This implies that the maximum
mass of an isotropic strange star can vary from 1.61 M� for
GV = 0 [36], up to 2.81 M� for GV = 0.40 fm2 [25].

However, it is well accepted in the literature that color-
superconducting matter is stiffer than unpaired one [4,39–
42]. We then use this fact to constrain the values of GV and
B by assuming that this model produces a softer EoS than
the 2SC color-superconducting quark matter. Therefore, in
this work, we take GV = 0.15 fm2 and B1/4 = 150 MeV.

2.2 2SC color-superconducting quark matter

The 2SC color-superconducting is the simplest pairing that
evolves a BCS coupling, although it is also the least sym-
metrical one. In this model, the s−quark does not pair due to
its high mass value. The lightest quarks form a Cooper pair
if they present different colors and flavors (anti-symmetric
coupling). As a consequence, only two of the three colors
form Cooper pairs. Therefore, we have two of the three fla-
vors and two of the three colors paring. This means that of
the nine quarks, only four are paired [4,40]. The presence
of unpaired quarks gives rise to gap-less quasi-particles. The
density of states of such quasi-particles is proportional to μ2

and, therefore, is very large [43]. Therefore, the 2SC EOS is
not much stiffer than the unpaired one, as already suggested
in Ref. [40].

In the 2SC color-superconducting matter, as in the
unpaired one, a small quantity of electrons is needed to
keep the electric charge net equal to zero. In Ref. [44], the
2SC color-superconducting was explored within the NJL
model. Moreover, in Ref. [45], the authors show that the 2SC
phase can be accurately described by an analytical approxi-
mation called constant-sound-speed (CSS) parametrization.
The CSS model also seems to accurately reproduce the
Field Correlator Method (FCM) with and without a color-
superconducting phase [46,47].

In the CSS model, the pressure is a linear function of the
energy density. Due to its simplicity and accuracy (see, for
instance, Figs. 1 and 2 in Ref. [45]), the CSS model is widely
used in modern literature [45–52]. The CSS EoS and total
number density read

p = a(ρ − ρ∗),
n = n∗[(1 + a)p/(aρ∗)]1/(1+a). (4)

We have, therefore, three free parameters: the square of
the speed of sound (v2

s = a), the energy density at p = 0
(ρ∗), which plays a role similar to the bag in the MIT bag
models, and the number density at p = 0 (n∗), which in turn,
plays the role of the saturation density (n0) of the MIT based
models. In Ref. [45], the authors freely vary the value of a in
the range 0.2 < a < 0.8 and found that – depending on the
NJL parametrization - the 2SC phase is well described with
a < 0.33 while the CFL phase is described by a > 0.35.
Therefore, following that paper, we use a = 0.302, which
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was explicitly used in their Fig. 3 to describe the 2SC quark
matter.

We also use here ρ∗ = 205 MeV/fm3, and n∗ = 0.235
fm−3, which produce a energy per baryon E/A = 890 MeV,
therefore, satisfying the Bodmer–Witten conjecture [1,2].

2.3 CFL color-superconducting quark matter

If in the 2SC model, only four of the nine quarks are paired,
in the CFL, all of them are paired in a fully anti-symmetric
coupling in the space of colors and flavors [4]. Also, there
are no gap-less quark quasi-particles in the low-energy spec-
trum of the CFL phase due to the color Meissner effect [43].
Moreover, the Cooper pairing in the CFL phase helps to
enforce the equal number densities of all three quark flavors,
nu = nd = ns , implying that electrons are not present in
this phase. In general, the CFL phase is expected at densities
above four times the nuclear saturation density, n0, while
the 2SC phase is expected in the region 2 < n/n0 < 4
[45]. However, some studies indicate that the 2SC phase is
not favored at all due to the significant free energy cost of
the 2SC phase [3]. In this case, the unpaired quark matter
undergoes a phase transition to a full CFL phase, or even a
more exotic phase, as a non-BCS pattern. The gap parame-
ter (
) that determines the pairing strength of Cooper pairs
can be very high in the CFL phase, above 250 MeV [39]. In
this case, a very stiff EoS and consequently a very massive
strange star is produced.

As we did in the 2SC phase, we also use the CSS model
(Eq. 4) as an analytical approximation to the CFL phase.
Here, following the Ref. [45], we use a = 0.57, as it was
explicitly used in their Fig. 3 to the CFL phase. We also use
ρ∗ = 209 MeV/fm3, and n∗ = 0.235 fm−3, which produce a
energy per baryon E/A = 897 MeV, satisfying the Bodmer–
Witten conjecture.

3 Spherically symmetric anisotropic stars

3.1 Hydrostatic equilibrium

In this section, we briefly review the theory of static equilib-
rium distribution of matter, which is spherically symmetric
but whose stress tensor is, in general, locally anisotropic, as
originally introduced in Ref. [7]. In the isotropic case, the
stress-energy tensor reads: Tμν = diag(ρ,−p,−p,−p). We
now introduce anisotropies without breaking the spherical
symmetry by assuming the following stress-energy tensor:
Tμν = diag(ρ,−pr ,−pt ,−pt ). Spherical symmetry implies
that (in canonical coordinates) the stress-energy tensor Tμν

is diagonal, and moreover pφ = pθ = pt [8].

We now can redefine the anisotropic energy-momentum
tensor as done in Refs. [53–55]:

Tμν = (ρ + pt )uμuν + (pr − pt )kμkν + pt gμν, (5)

where ρ, pr , and pt are the energy density, radial pressure,
and tangential pressure, respectively. kμ is the unit radial
vector (kμkμ = 1) withuμkμ = 0. The Schwarzschild metric
for this type of star having the spherically symmetric and
static configuration is defined as

ds2 = eνdt2 − eλdr2 − r2dθ2 − r2 sin2 θdϕ2 , (6)

where r , θ , and φ are the Schwarzschild coordinates.
Applying Einstein’s field equations, we obtain:

λ′

r
eλ + 1

r2 (1 − eλ) = 8πρ, (7)

ν′

r
eλ − 1

r2 (1 − eλ) = 8πpr , (8)

and the contracted Bianchi identities give us:

dpr
dr

= −(ρ + pr )
ν′

2
+ 2

r
(pt − pr ). (9)

Finally, by isolating the ν′ in Eq. (8) and replacing it in
Eq. (9), we can write the equilibrium equations in the Tolman-
Oppenheimer-Volkoff form [53]:

dpr
dr

= − (ρ + pr )
(
m + 4πr3 pr

)
r (r − 2m)

+ 2σ

r
, (10)

dm

dr
= 4πr2ρ , (11)

where σ = pt − pr is the anisotropy parameter, ‘m’ is the
mass enclosed within the radius r . The radial pressure is then
obtained from a pre-determined EOS. On the other hand, for
the case of the transverse pressure, we use the BL model in
the following [7]:

pt = pr + λBL

3

(ρ + 3pr )(ρ + pr )r2

1 − 2m/r
, (12)

where the factor λBL measures the degree of anisotropy in
the fluid. There are some boundary conditions required to
solve the above Eqs. (10-12) as done in Refs. [6,56]. Also,
different fluid conditions must be satisfied for the anisotropic
stars such as (i) pr , pt , and ρ > 0, (ii) 0 < c2

s,t < 1, (iii)
pr = pt for r = 0, etc. Other conditions are mentioned in
Ref. [6]. We plot the mass-radius relation for different values
of λBL for unpaired, 2SC, and CFL strange stars in Fig. 1.

We begin our analysis by comparing the different models
of quark matter in the symmetric case. It is observed that the
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unpaired matter produces a maximum mass of 2.09 M�, the
2SC produces a maximum mass of 2.16 M�, and the CFL
produces an impressive maximum mass of 2.76 M�.

In the case of the three main constraints, we see that the
unpaired matter is not able to reproduce the radius of the
HESS object [14] in the absence of anisotropies, while the
2SC and CFL easily fulfill this task. In relation to the con-
straint related to the radius of the canonical star 10.4 <

R1.4 < 11.9 km, presented in Ref. [18], all quark models
are able to fulfill it in the isotropic case. Our last main con-
straint is the speculative mass of the black widow pulsars
PSR J0952-0607, M = 2.35 ± 0.17M� [19]. In this case,
only the CFL quark matter is able to reach such high mass,
although the 2SC is very close.

In relation to the other constraints, we see that no isotropic
model is able to fulfill the revised NICER results for the
canonical star, 11.80 < R1.4 < 13.10 km [21] (Notice that
the overlap between the results in Ref. [18] and those in Ref.
[21] is only 100 m), but the CFL still fulfill its original range
[22]. In relation to the PSR J0740+6620 [21], we see that all
quark models reach the mass range of 2.08 ± 0.07 M�, but
the unpaired matter produces too-low radii, in disagreement
with the range of 12.35 ± 0.35 km. Finally, the mass-gap
object in the GW190814 event, with M > 2.50 M� [24],
can be explained only by the CFL phase. Before we finish
the analysis of the isotropic case, it is worth pointing out that
most of the constraint can be fulfilled with unpaired matter
by simply increasing the value of GV [25]. However, in this
work, we impose that unpaired matter must be softer than the
super-conducting one.

We now analyze the effects of anisotropies. As expected, a
positive value of λBL increases the maximum mass, as well as
increases the radius of a star with fixed mass [7,9], while neg-
ative values do the opposite. For the extreme positive value
(λBL = +2.0), we see that the maximum mass increases by
around 23% in the MIT model, 25% in the 2SC, and 22% in
the CFL phase. In the extreme negative value (λBL = −2.0),
we see that the maximum mass decreases by around 16% in
all three quark models.

In relation to the radius of the canonical star, the extreme
positive value (λBL = +2.0) causes an increase by around
2.5% in the MIT model, 2.3% in the 2SC, and 1.0% in the
CFL phase. In the extreme negative value (λBL = −2.0), we
see a decrease of around 3.2% in the unpaired matter, 3.0%
in the 2SC, and 1.8% in the CFL phase.

We can conclude that the effect of the anisotropies affects
more the maximum mass than the radius of the canonical
star. At the same time, its effects in the maximum mass are
almost independent of the quark matter EOS, but the effects
on the canonical radius are strong for a softer EOS.

In relation to the constraints, we see that a positive value
of λBL will improve the results of the MIT. For instance, for
λBL > 0.5, the HESS object can be described even in the

unpaired quark matter. For λBL > 1.0, the radius range of
the PSR J0740+6620 [21] is satisfied, as well as the mass of
the black widow pulsars PSR J0952-0607. Additionally, for
λBL = 2.0, even the mass-gap object in the GW190814 event
can be explained as an unpaired quark matter. For the 2SC, we
see that λBL > 0.5 is enough to fulfill the mass range of the
black widow pulsars PSR J0952-0607, while for λBL = 1.5,
the mass of the secondary object in the GW190814 event is
reached. Finally, in the case of the CFL phase, we have a
different behavior. As the CFL matter presents a stiff EOS
even in the isotropic case, if we increase λBL up to values
of 1.5, their curves do not cross the radius range of the PSR
J0740+6620 pulsar [21]. On the other hand, most of the con-
straints are satisfied even for extremely negative values of
λBL.

3.2 Tidal deformation

The star shape is deformed due to its presence in the external
field of its companion star. The degree of deformation is
measured by the parameter λ, which is defined as the tidal
deformability of a star. The definition for the dimensionless
tidal deformability �, which is a quantity observed by the
LIGO/Virgo, and it has a unique relation with the tidal Love
number (k2), and the compactness (C) of the star is [57,58]:

� = 2

3
k2C

−5, (13)

We use the linear perturbation in the Throne and Campo-
lattaro metric to determine the value of k2, [59]. In the case of
anisotropic stars, we use the formalism originally introduced
in Ref. [56]:

H
′′ + H

′
[

2

r
+ eλ

(
2m(r)

r2 + 4πr(pr − ρ)

) ]

+ H

[
4πeλ

(
4ρ + 8pr + ρ + pr

dpt/dρ
(1 + c2

s )

)
− 6eλ

r2 − ν′2
]

= 0 .

(14)

The term dpt/dρ represents the change of pt with respect
to energy density for a fixed value of λBL. The internal and
external solutions to the perturbed variable H at the star’s
surface can be matched to get the tidal Love number [57,60].
The value of the tidal Love number can then be calculated
using the equation in the following [57,58,61,62].

k2 = 8

5
C5(1 − 2C)2[2(y2 − 1)C − y2 + 2

]

×
{

2C
[
4(y2 + 1)C4 + 2(3y2 − 2)C3 − 2(11y2 − 13)C2

+ 3(5y2 − 8)C − 3(y2 − 2)
] + 3(1 − 2C)2

× [
2(y2 − 1)C − y2 + 2

]
log(1 − 2C)

}−1
, (15)
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Fig. 1 Mass-radius relation for unpaired (top), 2SC (middle), and CFL
(bottom) strange stars for different values of anisotropies. The hatched
areas are bounds discussed in the text

where y2 depends on the surface value of H and its derivative

y2 = r H
′

H

∣∣∣
R

− 4πR3ρs

M
, (16)

where the ρs is the energy difference between the internal
and external regions. The results are presented in Fig. 2.

As in the last sub-section, we begin our analyses with the
isotropic case. In the case of unpaired matter, it provides the
softer EOS, which predicts the lower values of �. For the
canonical mass, we have �1.4 = 383. As we consider color-
superconducting, the EOS becomes stiffer, and the dimen-
sionless tidal parameter increases. The values of �1.4 = 622
and 787 for the 2SC and the CFL phases, respectively. In rela-
tion to the effects of the anisotropies on the dimensionless
tidal parameter, we see that the higher values of λBL predict
the higher value of �1.4 and vice-versa. For an extreme pos-
itive value, λBL = +2.0, we see an increase of the �1.4 by
around 26% in the MIT model, 24% in the 2SC, and 14% in
the CFL phase. For an extreme negative value, λBL = −2.0,
it is observed that the decrease of the �1.4 by around 22%
in the MIT model, 20% in the 2SC, and 11% in the CFL
phase. Therefore, as in the case of the radius of the canonical
mass, the effects of anisotropies in the dimensionless tidal
parameter are stronger in softer EOS.

We now discuss the results in the light of two constraints:
the GW170817 (70 < �1.4. < 580) [28] and the GW190814
event (458 < �1.4 < 889) [24], although it is worth to
emphasize that the nature of the mass-gap object in the
GW190814 is not know yet, therefore such constraint is
still speculative. We see that the MIT model fulfills the
GW170817 constraint for all values of λBL. Moreover, for
λBL = +2.0, the constraint of GW190814 is also satisfied.
For the 2SC, we see that the GW170817 is satisfied for val-
ues up to λBL = −1.0, and the GW190814 for all degrees
of anisotropies. Finally, the CFL model fails to fulfill the
GW170817 for all values of λBL, but it can describe the
GW190814 limit if λBL < +2.0.

3.3 Moment of inertia

For a slowly rotating NS, the equilibrium position can be
obtained by solving Einstein’s equation in the Hartle-Throne
metric, as given in Refs. [63–65]:

ds2 = − e2ν dt2 + e2λ dr + r2 (dθ2 + sin2 θdφ2)

− 2ω(r)r2 sin2 θ dt dφ (17)

For a slowly rotating anisotropic compact star, the MOI
can be calculated as in Ref. [66]:
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Fig. 2 Dimensionless tidal parameter (�) for unpaired (top), 2SC
(middle), and CFL (bottom) strange stars for different values of
anisotropies. The bounds related to the GW170817 and GW190814
events are also shown

I = 8π

3

∫ R

0

r5 J ω̃

r − 2M
(ρ + pr )

[
1 + σ

ρ + pr

]
dr, (18)

where,

σ = pt − pr = λBL

3

(ρ + 3pr )(ρ + pr )r2

1 − 2m/r
, (19)

and ω̃ = ω̄/�, where ω̄ is the frame dragging angular fre-
quency, ω̄ = � − ω(r). J is defined as e−ν(1 − 2m/r)1/2.
Hence Eq. (18), can be rewritten using Eq. (12) as

I = 8π

3

∫ R

0

r5 J ω̃

r − 2M
(ρ + pr )

⎡
⎣1 +

λBL
3

(ρ+3pr )(ρ+pr )r2

1−2m/r

ρ + pr

⎤
⎦ dr,

(20)

As already pointed out in Ref. [66], a measurement of NS
moment inertia is crucial because its inherent capability to
constrain quite restricts the EOS of NSs at high density are
insensitive to EOS, and it has a universal relation with com-
pactness and tidal deformability. The results are displayed in
Fig. 3.

At first approximation, the MOI is proportional to MR2.
Therefore, the larger and heavier strange stars will present a
significantly higher MOI than smaller and lighter ones. This
is reflected in Fig. 3. Considering the isotropic case, we see
that the MOI for the canonical star (I1.4 × 1045 g.cm−2)
are 1.47 for the unpaired matter, 1.66, 1.78 for the 2SC and
the CFL respectively. In relation to the maximally massive
strange stars, the MOI (Imax × 1045 g cm−2) are 2.36, 2.82,
and 4.92 for MIT, 2SC, and CFL, respectively. We can also
see that the MOI is strongly affected by anisotropies. For
positive values of λBL the increase of the I1.4 can reach 6.8%
in the MIT, 6.6% for the 2SC, and 3.4% for the CFL. For
negative values of λBL, we have a decrease of the I1.4 of
8.1% in the MIT, 7.8% in the 2SC, and 4.5% for the CFL.
These results are expected; as pointed out earlier, the effects
of the anisotropy in the canonical star are stronger in the
softer EoS. On the other hand, in relation to the maximum
mass of strange stars, we see for positive values of λBL, an
increase of 65 % in the MIT, 67% in the 2SC, and 62% in the
CFL. For negative values of λBL, we have a decrease of 29%
in the MIT, 33% in the 2SC, and 32% in the CFL. These large
variations reflect the dependence of the MOI with MR2.

In relation to the constraints, due to the high uncertainty
in the mass, most of the results satisfy the DNS, MPS, and
LMXB bounds discussed in Refs. [29,30]. However, for
higher values of λBL in the 2SC case, some curves do not
cross some of the DNS and MSP regions. In the CFL case,
even the isotropic case does not cross some curves of the MSP
bound. Nevertheless, we pay special attention to the con-
straint of the PSR J0737-3039(A). With a well-established
mass of 1.34 M�, in Ref. [29] was able to constraint its MOI

123



166 Page 8 of 12 Eur. Phys. J. C (2024) 84 :166

Fig. 3 Moment of Inertia (I ) for unpaired (top), 2SC (middle), and
CFL (bottom) strange stars for different values of anisotropies. The
bounds are discussed in the text and in Refs. [29,30]

to the range 1.15+0.38
−0.24 ×1045 g cm2. For the MIT, we see that

such constraint is satisfied by all values of λBL . For the 2SC
it is satisfied if λBL < +1.5, and for the CFL, it is satisfied
only if λBL < −0.5.

3.4 Surface curvature

In the general theory of relativity (GR), there are different
quantities to measure the curvature of space-time, mainly
the Ricci scalar, the Ricci tensor, the Weyl tensor, and the
Riemann tensor. However, except for the Riemann tensor, all
of the magnitude becomes zero outside the star. Therefore,
we adopt the curvature quantity from the Refs. [10,67], that
is known as the Kretschmann scalar (full contraction of the
Riemann tensor) and is defined as

K (r) ≡
√
RμνρσRμνρσ

=
[
(8π)2

{
3ρ2(r) + 3P2(r) + 2P(r)ρ(r)

}

− 128ρ(r)m(r)

r3 + 48m2(r)

r6

]1/2

, (21)

At the surface,m → M as r → R. Except for the last term,
all other terms vanish outside the star because they depend on
ρ(r) and P(r), which are zero outside the star. But, there is
a non-vanishing component of the Riemann tensor that does
not vanish; R1

010 = − 2 M
R3 = −ξ , even in the outside of the

star [10,68]. Therefore, the Riemann tensor is a more relevant
quantity to measure the curvature of the stars. Kretschmann
scalar is the square root of the full contraction of the Riemann
tensor. The vacuum value for K is

K = 4
√

3M

R3 , (22)

as one can easily see from Eq. (21). Therefore, one can take
K reasonable measures for the curvature within the star. The
SC is defined as the ratio of curvature at the surface of the NS
K (R) to the curvature of the Sun K�, SC = K (R)/K�.
At the surface of the Sun, the curvature is equal to K� = 3.0
× 10−17 km−2, which can be considered as a small quantity.
We show in Fig. 4 the quantity SC in units of ×1014.

We first notice that, despite the model utilized, the selected
model, or even the anisotropy degree, all values of the SC are
in the same order of magnitude: 1014 times the curvature of
the sun. In relation to the isotropic case, we see that the SC
for the canonical star is (×1014) 3.93 for the unpaired matter,
3.16 for the 2SC, and 2.94 for the CFL. When anisotropies
are taken into account, as a positive value of λBL increases
the radius of a fixed mass, we have a decrease of SC . For
λBL = +2.0, we have a decrease of around 8% for the MIT,
7% for the 2SC, and 4% for the CFL. On the other hand,
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Fig. 4 Surface curvature (SC) for unpaired (top), 2SC (middle), and
CFL (bottom) strange stars for different values of anisotropies

for λBL = −2.0, we have an increase of around 10% for the
MIT and for the 2SC and 5% for the CFL. For more massive
strange stars, we see that anisotropy has a stronger influence.

Although today, there is no data for the SC of neutron
stars, as pointed out in Ref. [10], this quantity can poten-
tially act as a strong constraint in the future. For instance, in
Ref. [67], it was shown that the presence of dark matter in
neutron star interiors can increase the curvature by one order
of magnitude. 0.91−1.53

The main results of this study, as well as some constraints
discussed, are summarized in Table 1. Before we finished,
we quickly analyzed some results presented in this table.
As pointed out before, our main goal is to fulfill three con-
straints that are not easily fulfilled simultaneously in ordi-
nary hadronic models: the small radius of the canonical star
(R1.4 < 11.9 km) presented in Ref. [18]; the existence of
very light compact objects, HESS J1731-347 [14]; and the
speculative mass of the black widow pulsar PSR J0952-0607
[19].

The models that satisfy simultaneously these three con-
straints are the MIT for λBL ≥ +1.0, 2SC for λBL ≥ +0.5,
and the CFL for all degrees of anisotropy. If altogether with
those three bounds, we impose that the model also needs to
fulfill the mass and radius range of the PSR J0740+6620 [21]
and the inertia moment of the J0737-3039(A) [29], there-
fore we must rule out the CFL for λBL ≥ −0.5, while
for the 2SC, only the values λBL = +0.5 and +1.0 are now
valid. On the other hand, if altogether with the three main
bounds, we impose that the model must satisfy the con-
straint related to the dimensionless tidal parameter in the
GW170817 event. Therefore, we must rule out all models
based on super-conducting quark matter. We finish by point-
ing out that unpaired quark matter with λBL = +2.0 virtu-
ally fulfills every constraint presented. The only exception
is the radius constraint for the canonical star. However, we
must emphasize that the window comprehending the NICER
(R1.4 > 11.8 km) [21] and the Capano (R1.4 < 11.9 km)
[18] is very narrow.

4 Conclusion

In this work, we study the effect of the anisotropy in strange
stars within three different quark models: unpaired quark
matter, 2SC, and CFL. For the unpaired quark model, we
use the vector MIT bag model as introduced in Ref. [36,37].
For both super-conducting quark matter (2SC and CFL) we
use the CSS model [45–52]. The parameters for the 2SC and
CFL are taken from Ref. [45], and as an additional constraint,
we impose that the unpaired quark matter must be softer than
the color super-conducting one, as indicated in the literature
[4,39]. The effects of the anisotropy are studied in the BL
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Table 1 Some strange star properties for unpaired (MIT), 2SC, and CFL quark matter and some constraints discussed in the text. The inertia
moment is given in units of × 1045 g.cm−2. The scalar surface, SC = K (R)/K�, is given in unit of 1014

Model λBL Mmax /M� R1.4 (km) �1.4 I1.4 Imax SC1.4 HESS Capano NICER1.4 J0740+6620 J0952-0607 GW170817 GW190814 (M/�) J0737-3039(A)

MIT −2.0 1.75 10.25 302 1.35 1.64 4.33 X X X X X � X/X �
MIT −1.5 1.83 10.35 319 1.38 1.77 4.22 X X X X X � X/X �
MIT −1.0 1.91 10.44 340 1.41 1.93 4.11 X � X X X � X/X �
MIT −0.5 2.00 10.52 361 1.44 2.14 4.02 X � X X X � X/X �
MIT 0.0 2.09 10.60 383 1.47 2.36 3.93 X � X X X � X/X �
MIT +0.5 2.19 10.67 406 1.49 2.64 3.85 � � X X X � X/X �
MIT +1.0 2.31 10.74 431 1.52 2.99 3.78 � � X � � � X/X �
MIT +1.5 2.44 10.81 456 1.55 3.39 3.71 � � X � � � X/X �
MIT +2.0 2.58 10.87 482 1.57 3.89 3.64 � � X � � � �/� �
2SC −2.0 1.80 11.05 495 1.53 1.88 3.47 � � X X X � X/� �
2SC −1.5 1.88 11.14 523 1.57 2.07 3.38 � � X X X � X/� �
2SC −1.0 1.97 11.23 555 1.60 2.28 3.30 � � X X X � X/� �
2SC −0.5 2.06 11.31 588 1.63 2.53 3.24 � � X � X X X/� �
2SC 0.0 2.16 11.39 622 1.66 2.82 3.16 � � X � X X X/� �
2SC +0.5 2.27 11.46 658 1.69 3.17 3.10 � � X � � X X/� �
2SC +1.0 2.40 11.53 696 1.72 3.57 3.05 � � X � � X X/� �
2SC +1.5 2.54 11.60 733 1.75 4.07 2.99 � � X � � X �/� X

2SC +2.0 2.70 11.66 775 1.77 4.71 2.94 � � X � � X �/� X

CFL −2.0 2.32 11.49 699 1.70 3.32 3.08 � � X � � X X/� �
CFL −1.5 2.42 11.54 718 1.72 3.64 3.04 � � X � � X X/� �
CFL −1.0 2.52 11.59 739 1.74 3.98 3.00 � � X � � X �/� �
CFL −0.5 2.63 11.63 762 1.76 4.41 2.97 � � X � � X �/� X

CFL 0.0 2.75 11.67 787 1.78 4.92 2.94 � � X � � X �/� X

CFL +0.5 2.89 11.71 812 1.79 5.48 2.91 � � X � � X �/� X

CFL +1.0 3.03 11.75 838 1.81 6.14 2.89 � � X � � X �/� X

CFL +1.5 3.19 11.78 856 1.83 6.95 2.86 � � X X � X �/� X

CFL +2.0 3.37 11.82 899 1.84 7.95 2.83 � � X X � X �/X X

model [7], which has the advantage of preserving the spher-
ical symmetry of the star [8].

We searched for models that are able to satisfy three strong
constraints simultaneously: the small radius of the canonical
star (R1.4 < 11.9 km) presented in Ref. [18]; the existence
of very light compact objects, HESS J1731-347 [14]; and
the speculative mass of the black widow pulsar PSR J0952-
0607 [19]. Additional constraints, as well as additional fea-
tures such as the dimensionless tidal parameter, �, the MOI,
and SC are also presented. The main results are summarized
below:

• In the mass-radius diagram, we observed that the pres-
ence of the anisotropy increases the maximum mass, as
well as the radius of a fixed mass star for positive values
of λBL, and vice-versa for negative ones.

• The effect of anisotropies in the maximum mass is similar
for all three quark matter models; however, the effect in
the canonical star is stronger in the softer models.

• The models that are able to fulfill the three main con-
straints simultaneously are the MIT for λBL ≥ +1.0,

2SC for λBL ≥ +0.5, and the CFL for all degrees of
anisotropy.

• The anisotropy increase the tidal dimensionless parame-
ter � for positive values of λBL and reduce it for negative
ones. Despite this, only unpaired quark matter can fulfill
the constraints related to the GW170817 event.

• The MIT presents the smaller values of MOI, and the
CFL model has the large MOI. The anisotropies change
the MOI of the canonical star by around 10%. However,
due to the proportionality of I with MR2, the anisotropy
strongly affects the maximum mass of strange stars. The
MOI increases more than 60% for positive λBL values
and decreases around 30% for negative values. Only for
the MIT the constraints related to the J0737-3039(A), are
satisfied for all values of λBL.

• The anisotropy has a weak influence of the SC in low-
mass strange stars and a moderate one in most massive
ones. For all values of mass and all degrees of anisotropy,
the SC is always in the same magnitude order (1014).
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• The unpaired matter with λBL = +2.0 virtually fulfill all
constraints presented, with the exception of the revised
NICER constraint.

• Therefore, it has been observed that pressure anisotropy
has significant effects on the various strange star proper-
ties. There are still unsolved issues based on the origin
of anisotropy and its effects on the various properties of
compact stars, which will be discussed in future work.
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