
Eur. Phys. J. C (2024) 84:191
https://doi.org/10.1140/epjc/s10052-024-12518-x

Regular Article - Theoretical Physics

Pion and kaon electromagnetic and gravitational form factors

Y.-Z. Xu1,2 , M. Ding3,a , K. Raya1 , C. D. Roberts4,5,b , J. Rodríguez-Quintero1,c , S. M. Schmidt3,6

1 Dpto. Ciencias Integradas, Centro de Estudios Avanzados en Fis., Mat. y Comp., Fac. Ciencias Experimentales, Universidad de Huelva,
21071 Huelva, Spain

2 Dpto. Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
3 Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
4 School of Physics, Nanjing University, Nanjing 210093, Jiangsu, China
5 Institute for Nonperturbative Physics, Nanjing University, Nanjing 210093, Jiangsu, China
6 III. Physikalisches Institut B, RWTH Aachen University, 52074 Aachen, Germany

Received: 6 December 2023 / Accepted: 3 February 2024 / Published online: 26 February 2024
© The Author(s) 2024

Abstract A unified set of predictions for pion and kaon
elastic electromagnetic and gravitational form factors is
obtained using a symmetry-preserving truncation of each
relevant quantum field equation. A key part of the study
is a description of salient aspects of the dressed graviton
+ quark vertices. The calculations reveal that each meson’s
mass radius is smaller than its charge radius, matching avail-
able empirical inferences; and meson core pressures are com-
mensurate with those in neutron stars. The analysis described
herein paves the way for a direct calculation of nucleon grav-
itational form factors.

1 Introduction

A new era is heralded by construction and planning of high-
luminosity, high-energy facilities [1–10]. Following a one-
hundred year focus on the proton, such facilities will enable
exploration of the structure of many other states produced by
the strong interaction Hamiltonian. Principal amongst them
are pions (π ) and kaons (K ), viz. Nature’s most fundamen-
tal (would-be) Nambu–Goldstone bosons. These states are
special because, absent Higgs boson (HB) couplings into
quantum chromodynamics (QCD), they are all massless and
identical. The Higgs inserts quark current-masses into the
QCD Hamiltonian; yet at realistic current-mass values, π -
and K mesons remain unnaturally light, with masses that
seemingly belie their categorisation as hadrons, e.g., the π
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mass is similar to that of the μ-lepton, despite pions being
strong-interaction bound-states.

Contemporary theory argues that the natural mass scale
for strong interactions, i.e., the proton mass, mp ≈ 1 GeV,
emerges dynamically from QCD [11–18]. In this context of
emergent hadron mass (EHM), the Nambu–Goldstone boson
character of the π and K means that their properties are
particularly sensitive to constructive interference between
Nature’s two known sources of mass, as revealed by a con-
sideration of their mass budgets – see, e.g., Ref. [17, Fig. 1].
This makes them important “targets” at foreseeable facilities
[2–7].

Today, published data exist on π , K elastic electromag-
netic form factors, Fπ,K , covering a spacelike domain that
extends to Q2 ≈ 2.5 GeV2, where Q2 is the squared momen-
tum transfer in the process, and data being analysed reach
Q2 ≈ 8.5 GeV2 (π ) and Q2 ≈ 5.5 GeV2 (K ) [12, Table 9.4].
Anticipated experiments should shift these upper bounds
beyond Q2 = 30 GeV2 [2–5]. Moreover, whilst data relating
to π and (especially) K parton distribution functions (DFs)
are now scarce, that should change during the next ten years
or so [1–8]. Consequently, in the coming decade(s), one can
expect to see real tests of modern predictions for these and
related quantities [19–35].

Measurements relating to π and K generalised parton dis-
tributions (GPDs) are also likely [3–5,7,10]. Such data would
be significant because GPDs provide access to hadron grav-
itational form factors [36]; so, could open doors to compar-
isons between the electromagnetic and gravitational struc-
ture of π - and K -mesons. This would enable insights to be
drawn into the impacts of Nature’s two known mass gen-
erating mechanisms on the structure of Nambu–Goldstone
bosons. It is thus imperative for theory to deliver sound, uni-
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fying predictions for π and K electromagnetic and gravita-
tional form factors.

Steps toward a unified set of Poincaré invariant statements
about the distributions of charge, mass, and pressure inside
pions and kaons are described in Refs. [25,26]. Those anal-
yses exploit the GPD overlap representation, with light-front
wave functions constrained by π and K valence-quark DFs.
Profiting from such studies, Ref. [37] delivered a data driven
prediction for the pion mass distribution, showing that the
pion’s mass radius is ≈ 20% smaller than its charge radius.

Herein, we adopt a less phenomenological approach.
Namely, using continuum Schwinger function methods
(CSMs) [38,39], we solve the probe+meson scattering prob-
lem at leading-order of the truncation scheme introduced in
Refs. [40,41]. Therewith, we also unify π and K electromag-
netic and gravitational distributions with predictions for an
array of hadron structural properties that range over systems
with up-to three heavy quarks, e.g., Refs. [42–46].

The presentation is arranged as follows. Section 2 intro-
duces an approximation to the probe+meson scattering
problem. It is followed, in Sect. 3, by a discussion of
dressed probe+quark vertices and their properties. Section 4
details the quark+antiquark scattering kernel which under-
lies all concrete calculations herein. Numerical results for the
dressed probe+quark vertices are described in Sect. 5. This is
followed by an explanation of algebraic Ansätze for all ele-
ments of the calculation, which are subsequently exploited
to provide ultraviolet completions of the results. Predictions
for pion and kaon elastic electromagnetic and gravitational
form factors are discussed in Sect. 7. The gravitational form
factors are used to calculate the pressure and shear force
profiles drawn in Sect. 8. Section 9 provides a summary and
perspective.

2 Form factors

Consider a charged pion, π+, built from a u valence quark
and a d̄ valence antiquark and suppose that isospin symme-
try is exact, so the only difference between these degrees-
of-freedom is their electric charge. Then, in rainbow-ladder
(RL) truncation [40,41], the five-point Schwinger function
that defines the π+(p) → π+(p′) elastic electromagnetic
form factor takes the form drawn in the top diagram of Fig. 1.
This image translates into

�γπ
ν (P, Q) = 2NctrD

∫
d4l

(2π)4 �γ
ν (l+p′, l+p)L(l, P, Q) ,

(1a)

L(l, P, Q) = S(l + p)�π(l + p/2; p)S(l)

× �̄π (l + p′/2;−p′)S(l + p′) , (1b)

Fig. 1 Probe+pion interaction in RL truncation. Both panels. Solid
lines – dressed quarks, S; orange shaded circles – pion Bethe–Salpeter
amplitude, �π ; and blue shaded circles – dressed probe+quark vertex,
�P . Lower panel. Shaded C region – gluon-binding contribution to
the probe+pion interaction, which vanishes for Fπ but cancels a Q-
longitudinal contribution from the top diagram when computing the
graviton+pion coupling, thereby ensuring c̄π ≡ 0 in Eq. (3). Analogous
diagrams define the kaon form factors

where 2P = p′+ p, Q = p′− p, p′ · p′ = −m2
π = p· p, with

mπ being the pion mass, P · Q = 0. Further, S(k) = 1/[iγ ·
k A(k2)+ B(k2)] is the dressed-quark propagator, calculated
in rainbow truncation; �π is the RL-truncation pion Bethe–
Salpeter amplitude; and �

γ
ν is the RL dressed photon+quark

vertex. (For an overview, see, e.g., Refs. [38,39].) Since the
gluons that bind the π do not carry electric charge, then,
in RL truncation, insofar as �

γπ
ν is concerned, the bottom

diagram in Fig. 1 is zero.
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Regarding Eq. (1), electromagnetic current conservation is
guaranteed in RL truncation [47]. Thus, Qν�

γπ
ν (P, Q) ≡ 0;

so,

�γπ
ν (P, Q) = 2PνFπ (Q2) , (2)

and Fπ (Q2) can be extracted from the projection Pν�
γπ
ν

(P, Q).
The expectation value of the energy–momentum tensor in

the pion, viz. the π gravitational current, takes the following
form:

�g
μν(P, Q) = 2PμPνθ

π
2 (Q2) + 1

2 [Q2δμν − QμQν]θπ
1 (Q2)

+ 2m2
πδμν c̄

π (Q2) , (3)

where θπ
2,1 are, respectively, the in-pion mass and pressure

distribution form factors, which are also accessible via the
pion GPD [36,48]. The following relations follow from sym-
metries:

θπ
2 (0) = 1 , θπ

1 (0)
m2

π=0= 1 , c̄π (Q2) ≡ 0 . (4)

The first identity is a statement of mass normalisation, like
Fπ (Q2 = 0) = 1 for the electromagnetic form factor;
the second is a corollary of EHM, expressed in a soft-
pion theorem [49,50]; and the third is a basic consequence
of energy–momentum conservation, viz. Qμ�

g
μν(P, Q) ≡

0 ≡ Qν�
g
μν(P, Q).

In RL truncation, both diagrams in Fig. 1 contribute to the
pion gravitational current. The bottom diagram plays a role
analogous to Ref. [51, Fig. 3B′], which restores momentum
conservation in calculations of pion DFs. Notwithstanding
that, it is not necessary herein to develop an explicit expres-
sion for this term because it only affects c̄π (Q2): θ2,1(Q2)

decouple from the longitudinal projections Qμ�
g
μν(P, Q),

Qν�
g
μν(P, Q). Hence, regarding θ2,1(Q2), it is sufficient

to consider only the upper diagram. This translates into an
expression like Eq. (1), with the only change being that the
photon + quark vertex is replaced by the graviton + quark
analogue: �

γ
ν (l+ p′, l+ p) → �

g
μν(l+ p′, l+ p). The grav-

itational form factors may then be extracted via contractions
of the upper/triangle-diagram component of �

g
μν(P, Q) with

the following projectors (Lμν(P) = PμPν/P2):

Pθ2
μν = 1

4P2 [3Lμν(P) + Lμν(Q) − δμν] , (5a)

Pθ1
μν = 1

Q2 [−Lμν(P) − 3Lμν(Q) + δμν] . (5b)

When considering K form factors, the only difference
from the pion is that one must distinguish quark flavours
when expressing the currents illustrated by Fig. 1 – see, e.g.,
Refs. [19,52] for comparative studies of π and K electro-
magnetic form factors. In the isospin symmetry limit, for

any given form factor, FK : FK = F s̄
K +F u

K . (For electro-
magnetic form factors, one must include multiplicative quark
electric charge factors.)

We work at the hadron scale, whereat quasiparticle degrees
of freedom carry all properties of a given hadron. Evolu-
tion to higher scales [53–56], which exposes QCD parton
contributions in species-decompositions of hadron structural
properties [26,29], is discussed elsewhere [27,57,58]. Apart
from ensuring the correct anomalous dimensions [42,59],
such evolution has no effect on the overall meson form fac-
tors, which are our focus.

3 Symmetry-preserving vertices

A key factor in calculations of probe+meson form factors
is the dressed probe+quark vertex. Following thirty years of
study [47,60–62], the photon+quark vertex is well under-
stood. It satisfies a Ward-Green-Takahashi (WGT) identity
(l(′)+ = l + p(′)):

i Qν�
γ
ν (l ′+, l+) = S−1(l ′+) − S−1(l+) . (6)

Thus, four terms in �
γ
ν are fixed by the dressed-quark prop-

agator [63–65], that associated with σμνl
(′)
+μl+ν being zero.

This is called the Ball–Chiu (BC) part of the vertex. Eight
independent nonzero terms remain. They can be obtained by
solving the inhomogeneous vector-channel Bethe–Salpeter
equation using the same RL formulation as employed for S,
�π in Eq. (1).

Combining this information, one can decompose the ver-
tex as follows:

�γ
ν (l ′+, l+) = �BC

ν (l ′+, l+) + Tνα(Q)[�γ
α (l ′+, l+)

− �BC
α (l ′+, l+)] . (7)

Here, Tνα(Q) = δνα − Lνα(Q) and, writing k = (l ′+ +
l+)/2, k± = k ± Q/2 for notational convenience in Ref.
[47, Eq. (26)]:

i�BC
ν (k+, k−) = iγν�A± + 2ikνγ · k �A± + 2kν�B± , (8)

where �A± = [A(k2+) + A(k2−)]/2, �F± = [F(k2+) −
F(k2−)]/[k2+−k2−], F = A, B. �BC

ν is a matrix-valued regular
function (free of kinematic singularities for real arguments)
and the second term in Eq. (7) exhibits, inter alia, timelike-
Q2 poles, one at the mass-squared of each neutral vector
meson supported by the interaction. The lightest such state
is the ρ0-meson.

Equation (7) is neither an approximation nor simplifica-
tion. Instead, it merely introduces a physical understanding
into the calculation of �

γ
ν .
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The new element herein is the dressed graviton + quark
vertex, �g

μν , which has not hitherto been studied using a real-
istic gluon + quark interaction. It is first worth recalling that
�
g
μν satisfies its own WGT identity, viz. a straightforward

generalisation of that for scalar fields in Ref. [66]:

Qμi�
g
μν(k, Q) = S−1(k+)k−ν − S−1(k−)k+ν . (9)

Next, recall that �
g
μν is an isoscalar (I = 0) J PC =

2++ vertex. Hence, by analogy with �
γ
ν , �

g
μν must exhibit

timelike-Q2 poles (or resonance-like structures) at the mass-
squared positions of each I = 0 meson for which a 2++
tensor coupling can be constructed. Naturally, this includes
the tower of isoscalar tensor mesons, but that does not exhaust
the range of possibilities. Poles associated with isoscalar-
scalar mesons also emerge – see, e.g., Refs. [67–69]. The
lowest-mass singularity in �

g
μν(k, Q) occurs in this channel.

It is associated with the tensor structure Q2Tμν(Q) [67] and
therefore – see Eq. (3) – contributes significantly to θπ

1 (Q2)

without much affecting θπ
2 (Q2).

The trajectory of I = 0 axialvector mesons can also con-
tribute to �

g
μν(k, Q). In this case, the available tensor struc-

tures are more complex; e.g., the following form is admissi-
ble: εμναβ�5α(k; Q)Qβ , where �5α(k; Q) is the inhomo-
geneous axialvector vertex. However, given that θπ

1,2 are
associated with {μν}-symmetric tensors in the graviton +
meson vertex and this term is antisymmetric, then axialvec-
tor mesons are not relevant in the present analysis.

Capitalising on these observations, the following minimal
Ansatz is evidently admissible as a resolution of Eq. (9):

i�gM
μν (k, Q) = i�BC

μ (k, Q)kν − 1
2δμν[S−1(k+) + S−1(k−)]

+ iTμα(Q)Tνβ(Q)4�̂2
αβ(k+, k−) , (10)

where �2
αβ(k; Q) is the tensor + quark vertex generated by

the inhomogeneity

�2
0μν(k; Q) = Tμα(Q)Tνβ(Q) 1

2

(
γαkβ + γβkα

)
, (11)

with �̂(k, Q) = �(k, Q)−�(k, 0) so as to ensure the absence
of kinematic singularities. Notwithstanding this, dynamical
singularities do appear in �2

μν ; namely, one at the pole posi-

tion of each I = 0 tensor meson. Given the structure of Pθ2
μν

in Eq. (5a), one should expect the lowest-mass singularity
in this vertex to affect θπ

2 . The next pole lies far deeper in
the timelike region, so must play a much lesser role. Since
�2

μν possesses eight independent Dirac matrix valued tensor
structures, then this Ansatz involves fourteen such nonzero
terms.

Of course, Eq. (10) is not complete. Considering the avail-
able four-vectors and tensor structures, and recognising that
fermion on-shell conditions cannot be used, �g

μν may contain

a large number of additional independent terms. Neverthe-
less, in general, one may write

�g
μν(k, Q) = �gM

μν (k, Q) + �gT
μν (k, Q) , (12)

where �
gT
μν (k, Q), satisfying Qμ�

gT
μν (k, Q) = 0, repre-

sents all possible transverse structures not already included.
Plainly, like �2

0μν , �
gT
μν does not contribute to resolving

Eq. (9). It may be determined by solving the appropriate
Bethe–Salpeter equation. In doing so, one sees the emergence
of isoscalar scalar mesons in the graviton+quark vertex.

Again, Eq. (12) is not an approximation: it just introduces
a physical understanding into the calculation of �

g
μν .

4 Interaction kernel

The leading-order CSM approximations to the pion electro-
magnetic and gravitational currents are discussed in Sect. 2.
They are defined by the rainbow-ladder (RL) truncation,
which is completely specified by the form of the Bethe–
Salpeter kernel. We use that introduced in Refs. [70,71]:

K
ρ′

2ρ2

ρ1ρ
′
1

(�) = G̃(s = �2) 4
3 [iγμ]ρ1ρ

′
1
[iγν]ρ′

2ρ2
Tμν(�) , (13a)

G̃(s) = 8π2

ω4 De−s/ω2 + 8π2γmF(s)

ln
[
τ + (1 + s/�2

QCD)2
] ,

(13b)

where γm = 12/25, �QCD = 0.234 GeV, τ = e2 − 1,
and F(s) = {1 − exp(−s/�2

I )}/s, �I = 1 GeV. The ori-
gin of Eqs. (13) and their links to QCD are explained else-
where [70,71]. In solving all integral equations relevant
herein, we use a mass-independent (chiral-limit) momentum-
subtraction renormalisation scheme [72], with renormalisa-
tion scale ζ = 19 GeV=: ζ19.

Numerous applications have shown [17] that interactions
in the class containing Eqs. (13) can serve to unify the prop-
erties of many systems. Contemporary studies use ω =
0.8 GeV [73]. Then, with ωD = (0.94 GeV)3 and renor-
malisation point invariant current quark masses (in GeV)

m̂u = m̂d = 0.0055 , m̂s = 0.14 , (14)

corresponding to m̂s/m̂u = 25.5, one obtains (in GeV):

mπ = 0.135 , fπ = 0.095 , mK = 0.495 , fK = 0.116 ,

(15)

i.e., values in line with experiment [74]. (Here, minor dif-
ferences in comparisons with Ref. [73] owe to omission of
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the [1/ ln]-tail therein.) Typically, if the product ωD is kept
fixed, physical observables remain practically unchanged
under ω → (1 ± 0.2)ω [39]. Note that, evolved using
the one-loop formula, the current masses in Eq. (14) corre-
spond to ζ = 2 GeV =: ζ2 masses of mζ2

u = 3.8 MeV and
mζ2

s = 97 MeV, respectively.

5 Dressed vertices

Having specified the Bethe–Salpeter kernel, every element
in Eq. (1) and its analogue for the graviton+meson current,
Eq. (3), can be computed. For instance, the photon+quark
vertex is the solution of an inhomogeneous Bethe–Salpeter
equation:

[�γ
ν ]ρ1ρ2(k+, k−) = Z2[γν]ρ1ρ2

+ Z2
2

∫ �

dl
K

ρ′
2ρ2

ρ1ρ
′
1

(k − l)[S(l+)�γ
ν (l+, l−)S(l−)]ρ′

1ρ
′
2
,

(16)

where
∫ �

dl represents a symmetry-preserving regularisation
of the four-dimensional integral, with � being the reg-
ularisation scale; S is the propagator of the interacting
quark, obtained from the analogous rainbow gap equation;
and Z2(ζ,�) is the quark wave function renormalisation
constant, determined as part of solving that gap equation.
(Z2(ζ,�) ≈ 1 for �/ζ � 1.) The solution for �

γ
ν has

eleven independent Dirac matrix valued terms and can read-
ily be projected into the form of Eq. (7). Good numerical
methods for solving sets of coupled gap and Bethe–Salpeter
equations are described, e.g., in Refs. [75,76].

The remaining element in Eq. (3) is the bound-state ampli-
tude of the meson being probed, which can be obtained from
an analogous homogeneous Bethe–Salpeter equation [75].

Consider now the graviton+quark vertex, the RL result for
which may be obtained by solving

i�g
μν(k+, k−) = Z2[iγμkν − δμν(iγ · k + Z0

mm
ζ )]

+ Z2
2

∫ �

dl
K (k − l)[S(l+)i�g

μν(l+, l−)S(l−)] ,

(17)

where Z0
m is the chiral-limit mass renormalisation constant

and the WGT identity, Eq. (9), ensures that it is Z2 which
appears here.

As already noted, in general, �
g
μν possesses a large num-

ber of independent terms. On the other hand, we have also
emphasised that, physically, one may expect just a few con-
tributions to be important, viz. those parts which saturate the
WGT identity, and pieces associated with an f2 tensor meson
pole and an analogous scalar meson resonance. We therefore

continue with a truncated form of �
g
μν . Specifically, the ver-

tex given by Eq. (12), with �2
μν obtained by solving the tensor

analogue of Eq. (16) defined via the Eq. (11) inhomogeneity,
and

�gT
μν (k, Q) = Tμν(Q)�I(k; Q) , (18)

where �I(k; Q), which has four independent Dirac matrix
valued structures, D j=1,4

I
∝ {1, γ · k, γ · Q, σαβkαQβ} –

see, e.g., Ref. [77, Appendix A], is obtained by solving

trDP j
μν(k, Q)�gT

μν (k+k−)

= trDP j
μν(k, Q)Z2

2

∫ �

dl
K (k − l)S(l+)

× {�gM
μν (l+, l−) + Tμν(Q)�I(l+; l−)}S(l−) . (19)

Here,

trP j
μν(k, Q)�gT

μν (k, Q) = D j
I
, (20a)

trP j
μν(k, Q)�gM

μν (k, Q) ≡ 0 . (20b)

Equation (19) is an inhomogeneous Bethe–Salpeter equa-
tion. Its solution exhibits a pole at the mass of each scalar
meson generated by the interaction in Eq. (13). In practice
and analogous to the tensor vertex, the lightest scalar domi-
nates in the calculation of spacelike gravitational form factors
because the first excitation lies roughly 1 GeV higher in mass
[73], i.e., well into the timelike region.

Solving Eq. (17) and the tensor analogue of Eq. (16), then
the lowest mass isoscalar-scalar and -tensor mesons are
expressed in �

g
μν as pole terms of the form:

− fS�S(k; Q)

1 + m2
S
/Q2

∣∣∣∣∣
Q2+m2

S
�0

,
− fT�T

μν(k; Q)

1 + m2
T
/Q2

∣∣∣∣∣
Q2+m2

T
�0

,

(21)

where �S,T are their associated canonically normalised
bound-state amplitudes [75,78]. The calculated masses and
residue coefficients are (in GeV):

mS fS mT fT
u = d 0.55 0.026 1.11 0.060

s 1.07 0.042 1.65 0.067
. (22)

Here we have listed results for the probe+light-quark and
probe+s-quark vertices. The latter are required in the calcu-
lation of kaon form factors.

The photon+quark vertices, obtained from Eq. (16), dis-
play analogous features with, e.g., pole contributions from
neutral vector mesons at timelike momenta [60–62].
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All elements required for calculation of π and K electro-
magnetic and gravitational form factors are now available:
dressed quark propagators (2 one-variable scalar functions
for each quark), meson Bethe–Salpeter amplitudes (4 two-
variable functions for each meson), and probe+quark vertices
(2 one-variable and 8 two-variable functions for the electro-
magnetic interaction of each quark and 2 one-variable and
12 two-variable functions for the graviton+quark interaction
of each quark). The scalar functions are stored as arrays of
numbers, wherewith the integrand in Eq. (1) – and its ana-
logues for other systems and probes – can be formed and the
associated integral evaluated using standard quadrature and
interpolation schemes.

6 Algebraic Ansätze

We choose to complement our fully numerical work with cal-
culations that employ minimal effective algebraic inputs for
each of the functions. Such representations of quark propa-
gators and meson Bethe–Salpeter amplitudes were used in
Refs. [25,26] to deliver results for π and K GPDs and,
therefrom, electromagnetic and gravitational form factors for
these mesons. Therein,

Sq=u,s(l) = (−iγ · l + Mq)/(l
2 + M2

q ) , (23a)

�P=π,K (l; p) = iγ5

∫ 1

−1
dz ρP (z) �̂(l2ω,�2

P ) , (23b)

where �̂(s, u) = u/[s + u], lz = l + zp/2, p2 = −m2
P ,

nPρP (z) = 1 + zvP
2aPbP0

×
[

sech2

(
z − zP0

2bP0

)
+ sech2

(
z + zP0

2bP0

)]
.

(24)

Our variant of the model defining parameters is listed in
Table 1: the dressed-quark masses are somewhat larger than
those in Refs. [26, Table I] and �K is smaller. The other val-
ues are unchanged. (nP=π,K are computed normalisation
constants, which ensure FP (0) = 1 = θP2 (0).)

Using Eq. (23b), then Eq. (8) simplifies to �BC
ν = γν ;

hence, we use �
γ
ν = γν as the algebraic representation.

Somewhat more care must be taken with the graviton +
quark vertex owing to the importance of scalar- and tensor-
meson poles. Considering Eqs. (10)–(12), (18), (21), we are
led to the following Ansätze

�gq
μν(k; Q) = iδμν[iγ · k + Mq ]

+ γμkν + Tμα(Q)γαkν4PT

q (Q2)

Table 1 Used in Eqs. (23b)–(24), one reproduces the quark propagators
and meson Bethe–Salpeter amplitudes employed in Refs. [25,26] to
computed pion and kaon GPDs. (Ms = 1.35Mu . Mass dimensioned
quantities in GeV)

P mP Mu Mh̄ ≡ �P bP0 zP0 vP

πh=d 0.135 0.38 Mu Mu 0.316 1.23 0

Kh=s 0.495 0.38 Ms Ms 0.1 0.625 0.41

+ Tμν(Q)1PS

q (Q2) , (25)

where, on Q2 ∈ [0, 5] GeV2,

PT

q (t) = −t

t + m2
Tq

m2
Tq

(1 − κq)
2

t + κ2
qm

2
Tq

, (26a)

PS

q (t) = −trSq
t + m2

Sq

. (26b)

Extension to Q2 � 5 GeV2 is discussed in Sect. 8. Fixing
the masses in Eq. (26) to be those computed in RL truncation,
listed in Eq. (22), then each graviton+quark vertexAnsatz has
two parameters: κq , rSq .

Regarding κq , we desire to implement a mass scale,
κqmTq , in the form factor that is associated with the ten-
sor channel. Having already used the ground state mass for
the leading pole term, we chose κu = κs =: κ = the ratio
of masses of the first radial excitation and ground state in
the light-quark channel. Using the listings in Ref. [74, RPP],
one finds a value of 1.13 for this ratio; so, we proceed with
κ = 1.13, a fixed value, viz. it is not subsequently varied.
Using this approach, one finds that the residues of the tensor
poles in PT

u,s are (in GeV): fTu = 0.046, fTs = 0.059. Given
the simplicity of the Ansätze, these values are a fair match
with the results in Eq. (22).

Having fixed κ , the sole variable parameter in each alge-
braic graviton+quark vertex Ansatz is rSq . As noted above,

scalar meson poles contribute significantly to θP1 without
materially affecting θP2 . Further, any deviation from the
chiral-limit result, viz. θP1 (0) = 1, see Eq. (4), derives
from quark current-mass corrections [50,69,79]. In fact, one
can use chiral effective field theory to estimate θπ

1 (0) =
0.97(1) [79]. Using our algebraic Ansätze, this central value
is obtained with rSu = 0.089 GeV, which translates into
fSu = 0.012 GeV.

The value of rSs can be fixed once θK
1 (0) is known.

Owing to the character of interference between EHM and
HB-generated current masses, then, in stepping away from
the chiral limit, SU(3) flavour symmetry breaking is normally
expressed in observables by an amount of the order fπ/ fK
or f 2

π / f 2
K [12,24–26]. So, one may anticipate θK

1 (0) ≈
0.77(10). Harmonising with this, chiral effective field theory
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yields θK
1 (0) ≈ 0.77(15) [79]. The central value, θK

1 (0) =
0.77, is obtained with rSs ≈ 0.32 GeV, which corresponds to
fSs = 0.039 GeV.

Again, given the simplicity of theAnsätze, the fSu,s values
compare tolerably with the RL results in Eq. (22).

A common way to estimate uncertainties in RL predic-
tions is to reevaluate all results with ±5% variations of ω

in Eq. (13). Given the correlation between ω and derived
mass scales, we translate this approach into an estimation
of uncertainties via simultaneous ±5% variations of each
mass scale in the algebraic Ansätze, viz. Mq , mSq , mTq . The
resulting change in a given value is the uncertainty listed in
each instance below.

7 Electromagnetic and gravitational form factors

Using the RL results, described in Sects. 4 and 5, for all ele-
ments in the photon+meson current, Eq. (1), and its analogue
for the graviton+meson current, one can directly proceed
to deliver a unified set of predictions for π and K electro-
magnetic and gravitational form factors. The first studies of
Fπ,K (Q2) were completed in Ref. [52]. Using brute-force
numerical techniques, as therein, then in the calculation of
each form factor one encounters moving singularities in the
complex-l2 domain sampled by the bound-state equations
[75] such that there is a maximum value of Q2 beyond which
the evaluation of integrals like that in Eqs. (1) is no longer
possible with conventional algorithms.

More advanced methods have been developed [19,42,59],
exploiting the perturbation theory integral representation
(PTIR) [80]. However, constructing accurate PTIRs is time
consuming. This is especially true in our case because one
would need to build PTIRs for each quark propagator, Bethe–
Salpeter amplitude, photon+quark and graviton+quark ver-
tex considered herein, i.e., roughly 200 scalar functions. We
therefore continue with a straightforward RL approach, com-
puting all form factors on the directly accessible domain and
then using the algebraic Ansätze, detailed in Sect. 6, to assist
in defining their ultraviolet completions.

Our CSM (RL truncation) predictions for pion elastic
electromagnetic and gravitational form factors are drawn in
Fig. 2A. In a direct calculation, such as ours, which avoids the
GPD route to gravitational form factors, there is no D-term
ambiguity in the analysis of θ1(t) [82]. It is notable, therefore,
that the value θ1(t = 0) = 0.97 – see Table 2, matches the
estimate obtained using chiral effective field theory [79]. The
predictions for the θπ

2 and Fπ radii are consistent with recent
extractions [37,81], confirming thereby that the distribution
of mass within the pion is more compact than the distribution
of charge: r θ2

π /r Fπ = 0.74. Moreover, the pressure distribu-
tion radius is greater than both the electromagnetic and mass
radii: r θ1

π > r Fπ > r θ2
π , with r Fπ /r θ1

π ≈ 0.79. Our predic-

Fig. 2 A Pion electromagnetic (Fπ – blue) and gravitational form fac-
tors (θ1 – green, θ2 – red). Legend. CSM predictions, Sects. 4 and 5
– solid curves; algebraic Ansätze, Sect. 6 – dashed curves; pion GPD
Ansätze [26] – dotted curves. B Kaon electromagnetic form factors.
Legend. As in A, with K total – purple; s̄ in K – red; and u in K – blue.
Fπ comparison curves – green

Table 2 CSM (RL truncation – Sects. 4 and 5) predictions for vari-
ous pseudoscalar meson static properties and comparisons with other
selected calculations (AA – Sect. 6; GPD Ansätze [26]). As usual,
the radius associated with a given form factor, F (t), F (0) 
= 0, is
obtained via r2 = − 6(d/dt) lnF (t)|t=0. Recent analyses of data yield
r θ2
π = 0.51(2) [37], r Fπ = 0.64(2) [81] and r θ2

π /r Fπ = 0.79(3) [37],
r FK ≈ 0.53 [81]. (All radii, rP , listed in fm.)

θP
1 (0) r θ1

P r FP r θ2
P

πCSM 0.97 0.81 0.64 0.47

πAA 0.97 0.80(4) 0.64(3) 0.49(3)

πGPD 0.81 0.69 0.56

KCSM 0.77 0.63 0.58 0.40

KAA 0.77 0.68(4) 0.51(3) 0.41(3)

K s̄
CSM 0.43 0.39 0.44 0.37

K s̄
AA 0.43 0.42(3) 0.43(3) 0.36(3)

Ku
CSM 0.34 0.85 0.64 0.45

Ku
AA 0.34 0.91(5) 0.55(4) 0.48(3)

tions for these gravitational radii are in accord with values
inferred from measurements of γ ∗γ → π0π0 [83]. Notably,
too, our prediction for the ratio r θ2

π /r θ1
π = 0.61(4) is consis-
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tent with that obtained in a recent lattice-QCD computation,
viz. r θ2

π /r θ1
π = 0.67(6) [84].

As evident in Fig. 2A, using simple algorithms, the π RL
calculation fails on Q2 � 2 GeV2. Thereupon, the algebraic
Ansätze, Sect. 6, become valuable. On Q2 � 2 GeV2, they
deliver results in agreement with the RL truncation. This
justifies their use in developing ultraviolet completions of
the RL predictions.

The results in Ref. [26] were obtained using algebraic
Ansätze for pion and kaon generalised parton distributions
(GPDs), constrained entirely by hadron-scale π and K
valence-parton DFs. Owing to the D-term ambiguity [82]
encountered, e.g., in connecting GPDs with gravitational
form factors, reliable results for θP1 (0) could not be obtained
in Ref. [26]. Herein, there is no D-term ambiguity: as already
seen for the pion, the RL truncation supplies a definite pre-
diction for θP1 (t).

The CSM predictions for kaon elastic electromagnetic and
gravitational form factors are drawn in Figs. 2B and 3. These
figures show that, for the K , the RL calculation fails on Q2 �
1.7 GeV2. The algebraic Ansätze, Sect. 6, are valuable on
this domain: since they deliver results in agreement with RL
truncation on Q2 � 1.7 GeV2, they can be used to assist in
defining ultraviolet completions of the RL predictions.

Figure 2B shows that the u quark in K elastic electric
form factor is almost indistinguishable from the u quark in
π form factor, Fπ . This weak environmental sensitivity is
typical of RL results for light pseudoscalar meson elastic
electromagnetic form factors [52]. On the other hand, as seen
elsewhere [19], there is a marked difference between the s̄
in K and u in K electromagnetic form factors: Fs̄

K (Q2),
Fu
K (Q2), respectively. A similar distinction is expressed in

the ratio of s̄ in K and u in K valence parton DFs [24,85,86].
Table 2 reveals that RL truncation yields θK

1 (0) = 0.77, a
value which matches the estimate discussed in closing Sect. 6,
thereby confirming the character of EHM + HB interfer-
ence in elastic form factors. In addition, θ

Ku
1 (0)/θ

Ks̄
1 (0) =

0.79, which may be compared with our calculated value of
fπ/ fK = 0.82, Eq. (15), and the empirical result fπ/ fK =
0.84 [74].

On the other hand, regarding Fig. 3A, RL truncation is seen
to predict θ

Ku
2 (0) = 0.39, θ

Ks
2 (0) = 0.61. These values are

consistent with gravitational current conservation, Eq. (4);
however, they overestimate the effects of flavour splitting.

Indeed, one should have θ
Kq
2 (0) = 〈x〉qKζH , i.e., the light-front

momentum fraction carried by the q valence quark in the
kaon at the hadron scale, ζH; and modern analyses of kaon
DFs yield [24]: 〈x〉uKζH = 0.47(1), 〈x〉s̄KζH = 0.53(1). These
are the results of CSM calculations that incorporate effects
beyond RL truncation. Working with information available in
Ref. [87] and exploiting connections elucidated in Ref. [12,

Fig. 3 Kaon gravitational form factors. A Mass, θK
2 . B Pressure, θK

1 .
CSM predictions – solid curves; and results from algebraic Ansätze –
dashed curves. Kaon total – purple; s̄ quark in K – red; and u quark in
K – blue. Pion comparison curves – green

Sec. 3A], analogous RL predictions are 〈x〉uKζH = 0.42(1),

〈x〉s̄KζH = 0.58(1).
These comparisons confirm the character of the results

for θ
Ku,s̄
2 (0) in Fig. 3A; namely, the accentuated magnitude

of flavour splitting is an artefact of RL truncation. The issue
can be traced to the fact that an efficacious RL truncation
must express all effects of EHM in the form of G̃(s) –
see Eq. (13), achieving a description of hadron phenomena
by overmagnifying the gauge-sector interaction strength on
s � �2

I [71]. Moving beyond RL truncation, EHM is also
manifested in corrections to the gluon+quark vertex [88],
thereby enabling an explanation of observables with a far less
infrared enhanced form of G̃ ; hence, more realistic expres-
sions of EHM+HB interference.

Further regarding the gravitational form factors, the order-
ing of kaon radii is the same as that found for the pion:
r θ1
K > r FK > r θ2

K – see Table 2. Moreover, in each case,
the net kaon radius is smaller than the kindred pion radius.
In fact, averaging over all form factors: rK /rπ = 0.85(6).
Here, matching the electromagnetic form factor pattern, the
θ

1,2
K u quark in K radii are very like the analogous u in π

radii: r θ1
Ku

≈ 1.09r θ1
π ; r θ2

π ≈ 1.03r θ2
Ku

.
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8 Pressure profiles

Working with the Poincaré-invariant elastic form factors
described above, one may compute Breit frame charge, mass,
pressure, and shear force distributions via appropriate three-
dimensional Fourier transforms [79]. Questions concerning
the interpretation of such distributions have been widely can-
vassed, with recent discussions available in Refs. [89–93].
Notably, other transforms are possible [93]. However, since
the input function in any case is always the same, then no
projective mapping (such as the construction of a density in
two or three spacelike dimensions) can deliver any objective
information that is not already contained in the Poincaré-
invariant subject function. Consequently, whatever type of
transform is chosen, it is simply a mathematical operation
on the same input object; hence, judiciously interpreted, all
outputs are qualitatively equivalent.

One such interpretation of the π and K Breit frame den-
sities follows. Namely, pointwise, they may be interpreted
as the unique and unambiguous analytic continuations of
the Breit frame densities on the trajectory of heavy+light
mesons. Above a certain quark current-mass, all densities
on this trajectory have a quantum mechanics interpretation.
Viewed from this perspective, the π and K Breit frame den-
sities are mathematical expressions of characteristics of the
pseudoscalar meson density trajectory.

Calculation of a Fourier transform requires knowledge of
the subject form factor on Q2 ∈ [0,∞). However, our direct
CSM predictions do not extend beyond Q2 = 2 GeV2. The
algebraic Ansätze discussed in Sect. 6 can be used to assist
in developing their ultraviolet completions. Those results are
readily obtained on Q2 ∈ [0, 5] GeV2; but in order to arrive
at realistic pictures, they must be augmented by inclusion of
additional ln Q2 suppression at ultraviolet momenta. This is
necessary to express the fact that, in four spacetime dimen-
sions, a quantum field theory treatment of hadron form factors
introduces such scaling violations. Neglecting the extra sup-
pression, the transforms yield spurious short-distance diver-
gences – see, e.g., Ref. [94, Fig. 4].

The required completions can be achieved by fitting the
form factor results obtained using the algebraic Ansätze with
the following function:

F (y = Q2/�2
I )=F0

1+b1y

1+b2y+b3y2

1 + a0y

1 + a0y ln (1 + a0y)
.

(27)

where F0 := F (y = 0). The coefficients are listed in
Table 3.

Charge and mass distribution Breit frame density pro-
files, calculated from F = FP , θP2 , respectively, are fairly
straightforward. In all cases, r2ρF (r) vanishes at r = 0;
and with increasing r , grows to a maximum value (at r ∼

Table 3 Inserted into Eq. (27), these parameters define realistic ultra-
violet completions of the π , K electromagnetic and gravitational form
factors

F0 b1 b2 b3 a0

Fπ 1 0.055 1.886 0.259 0.046

Fu
K 1 0.066 1.492 0.394 0.121

Fs̄
K 1 0.162 0.991 0.253 0.050

θπ
2 1 0.316 1.376 0.434 0.035

θ
Ku
2 0.387 0.318 1.479 0.558 0.155

θ
Ks̄
2 0.613 1.293 1.990 1.114 0.131

θπ
1 0.969 19.10 22.35 55.20 0.184

θ
Ku
1 0.331 15.04 18.68 57.54 0.137

θ
Ks̄
1 0.436 1.536 2.318 1.719 0.118

0.2–0.4), whose location is closer to r = 0 and magnitude is
greater for form factors with smaller radii; then approaches
zero from above at a rate that increases as the form factor
radius becomes smaller. Naturally, consistent with the results
in Table 2, the density profile of a meson’s heavier valence
quark is more compact than that of the lighter valence quark.

Pseudoscalar meson pressure and shear force distributions
may be defined as follows [79]:

pqP (r) = 1

6π2r

∫ ∞

0
d�

�

2E(�)
sin(�r)[�2θ

Pq
1 (�2)] ,

(28a)

sqP (r) = 3

8π2

∫ ∞

0
d�

�2

2E(�)
j2(�r) [�2θ

Pq
1 (�2)] ,

(28b)

where isospin symmetry is assumed, q = u, s, � = √
Q2,

E(�)2 = m2
P + �2/4 and j2(z) is a spherical Bessel func-

tion, For bound states,
∫ ∞

0 dr r2 pqP (r) ≡ 0. As revealed
by Fig. 4, these densities possess more interesting structure
than the charge and mass profiles. Semiquantitatively, our
ultraviolet completed RL predictions yield the same pictures
obtained using the GPD models detailed in Refs. [25,26].

Consider first the pressure profiles, drawn in Fig. 4A.
Compared with the GPD model results [25,26], these pro-

files are more compact because the RL predictions for θ
Pq
1

fall faster with increasing �. The qualitative features of the
profiles in Fig. 4A suggest a physical interpretation. Namely,
the meson pressures are positive and large on the neighbour-
hood r � 0, whereupon the meson’s dressed-valence con-
stituents are pushing away from each other. With increasing
separation, the pressure switches sign, indicating a transition
to the domain wherewithin confinement forces exert their
influence on the pair. The zeros occur at the following loca-
tions (in fm): rπ

c = 0.39(1), r Kc = 0.26(1), r Ku
c = 0.30(1),

r Ks̄
c = 0.25(1).
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Fig. 4 Pressure (A) and shear (B) distributions obtained using Eq. (28)
as explained in Sect. 8. π – solid green curves; K – solid purple curves;
s̄ in K – dashed red curves; and u in K – dashed blue curves

As noted elsewhere [25,26,94], profiles like those in
Fig. 4A can be drawn for neutron stars. They indicate r � 0
pressures therein of roughly 0.1 GeV/fm [95]. Plainly, the
form factors computed herein yield core pressures in Nambu–
Goldstone bosons that are similar in magnitude to that of a
neutron star.

The K profile is more compact, so the associated peak core
pressure is higher than in the π : the ratio is ≈ 1.5. Further,
the s̄-quark contributes more of the total K pressure than its
partner u-quark and its peak/trough intensities are greater.

The shear pressures, drawn in Fig. 4B, are an indicator of
the strength of deformation forces within the meson. Evi-
dently, these forces are maximal in the neighbourhood upon
which the pressure changes sign. Within these neighbour-
hoods, the forces driving the quark and antiquark apart are
overwhelmed by attractive confinement pressure. It is inter-
esting to compare the total π and K shear forces:

∫ ∞

0
dr r2sK (r) = 0.77

∫ ∞

0
dr r2sπ (r) . (29)

The π result is greater owing to the long tail of sπ (r): on
r ∈ [0, 0.9], the integrated strengths are equal. The ordering
in Eq. (29) is opposite to that found using the GPD models in
Refs. [25,26]. This difference owes largely to (a) the failure

of those models to express the suppression of θK
1 (0) – see

Table 2; and (b) a low value for r θ1
Ku

.

9 Summary and perspective

Using continuum Schwinger function methods, we delivered
predictions for π and K elastic electromagnetic, Fπ,K , and
gravitational, θπ,K

1,2 , form factors, thereby unifying them with
numerous additional properties of these Nambu–Goldstone
bosons and other hadrons. The calculations were completed
using a symmetry-preserving formulation of each quantum
field equation relevant to the calculation of the bound-state
wave functions and interaction currents. In particular, we
described and calculated the structure of dressed graviton +
quark vertices (Secs. 3, 5). The analysis highlights that, just as
the low momentum transfer behaviour of hadron electromag-
netic form factors is sensitive to the properties of the lightest
neutral vector meson in a given quark+antiquark channel, so
their mass and pressure form factors are sensitive, respec-
tively, to the analogous tensor and scalar mesons.

For both π and K , the pressure distribution, θ1, is softer
than F , which is softer than the mass distribution, θ2; and
each K form factor is harder than its kindred π form factor
[Sect. 7]. Examining form factor flavour separations, the sizes
of the effects are typical of those found when considering
interference between Nature’s two known sources of mass,
i.e., emergent hadron mass and Higgs-boson couplings into
QCD.

Regarding density and pressure profiles – Sect. 8, defined
as form factor Fourier transforms, each follows the expected
pattern, e.g., K profiles are more compact than those of the
π , and the K core pressure is higher. Our direct calculations,
which do not suffer from the D-term ambiguity encountered
in GPD-based analyses, confirm that the pressure at the core
of a Nambu–Goldstone boson is of the same magnitude as
that in the heart of a neutron star. Considering the pressure
profiles, one might define a confinement radius as the location
at which these functions cross zero. We find this radius to
be ≈ 0.39 fm for the pion. The kaon value is roughly 33%
smaller, with the s̄ in K radius being ≈ 15% smaller than that
of the partner u quark. Contrary to earlier phenomenological
results, the total shear pressure in the π exceeds that in the
K .

The analysis described herein should enable a direct cal-
culation of nucleon gravitational form factors using either a
quark+diquark picture [96] or a three-body approach [44,97].
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32. D. Kekez, D. Klabučar, Pion observables calculated in Minkowski
and Euclidean spaces with Ansätze for quark propagators. Phys.
Rev. D 107(9), 094025 (2023)

33. H.Y. Xing, M. Ding, Z.F. Cui, A.V. Pimikov, C.D. Roberts, S.M.
Schmidt, Constraining the pion distribution amplitude using Drell-
Yan reactions on a proton. Phys. Lett. B 849, 138462 (2024)

34. H.Y. Xing, Z.Q. Yao, B.L. Li, D. Binosi, Z.F. Cui, C.D. Roberts,
Developing predictions for pion fragmentation functions. Eur.
Phys. J. C 84(1), 82 (2024)

35. Y. Lu, Y.-Z. Xu, K. Raya, C.D. Roberts, J. Rodríguez-Quintero,
Pion distribution functions from low-order Mellin moments. Phys.
Lett. B (2024) (In press). arXiv:2311.08565 [hep-ph]

36. C. Mezrag, Generalised parton distributions in continuum
schwinger methods: progresses. Oppor. Chall. Part. 6(1), 262–296
(2023)

37. Y.-Z. Xu, K. Raya, Z.-F. Cui, C.D. Roberts, J. Rodríguez-Quintero,
Empirical determination of the pion mass distribution. Chin. Phys.
Lett. Express 40(4), 041201 (2023)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1808.00848
http://arxiv.org/abs/2306.09360
http://arxiv.org/abs/2212.14028
http://arxiv.org/abs/2311.08565


191 Page 12 of 13 Eur. Phys. J. C (2024) 84 :191

38. G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S.
Fischer, Baryons as relativistic three-quark bound states. Prog. Part.
Nucl. Phys. 91, 1–100 (2016)

39. S.-X. Qin, C.D. Roberts, Impressions of the continuum bound state
problem in QCD. Chin. Phys. Lett. 37(12), 121201 (2020)

40. H.J. Munczek, Dynamical chiral symmetry breaking, Goldstone’s
theorem and the consistency of the Schwinger–Dyson and Bethe–
Salpeter equations. Phys. Rev. D 52, 4736–4740 (1995)

41. A. Bender, C.D. Roberts, L. von Smekal, Goldstone theorem
and diquark confinement beyond Rainbow–Ladder approximation.
Phys. Lett. B 380, 7–12 (1996)

42. M. Ding, K. Raya, A. Bashir, D. Binosi, L. Chang, M. Chen, C.D.
Roberts, γ ∗γ → η, η′ transition form factors. Phys. Rev. D 99,
014014 (2019)

43. D. Binosi, L. Chang, M. Ding, F. Gao, J. Papavassiliou, C.D.
Roberts, Distribution amplitudes of heavy-light mesons. Phys. Lett.
B 790, 257–262 (2019)

44. Q.-W. Wang, S.-X. Qin, C.D. Roberts, S.M. Schmidt, Proton tensor
charges from a Poincaré-covariant Faddeev equation. Phys. Rev. D
98, 054019 (2018)

45. S.-X. Qin, C.D. Roberts, S.M. Schmidt, Spectrum of light- and
heavy-baryons. Few Body Syst. 60, 26 (2019)

46. Z.-Q. Yao, D. Binosi, Z.-F. Cui, C.D. Roberts, Semileptonic tran-
sitions: B(s) → π(K ); Ds → K ; D → π, K ; and K → π . Phys.
Lett. B 824, 136793 (2022)

47. C.D. Roberts, Electromagnetic pion form-factor and neutral pion
decay width. Nucl. Phys. A 605, 475–495 (1996)

48. C. Mezrag, An introductory lecture on generalised parton distribu-
tions. Few Body Syst. 63(3), 62 (2022)

49. M.V. Polyakov, C. Weiss, Skewed and double distributions in pion
and nucleon. Phys. Rev. D 60, 114017 (1999)

50. C. Mezrag, L. Chang, H. Moutarde, C.D. Roberts, J. Rodríguez-
Quintero, F. Sabatié, S.M. Schmidt, Sketching the pion’s valence-
quark generalised parton distribution. Phys. Lett. B 741, 190–196
(2015)

51. M. Ding, K. Raya, D. Binosi, L. Chang, C.D. Roberts, S.M.
Schmidt, Symmetry, symmetry breaking, and pion parton distri-
butions. Phys. Rev. D 101(5), 054014 (2020)

52. P. Maris, P.C. Tandy, The π , K+, and K 0 electromagnetic form
factors. Phys. Rev. C 62, 055204 (2000)

53. Y.L. Dokshitzer, Calculation of the structure functions for deep
inelastic scattering and e+ e− annihilation by perturbation theory
in quantum chromodynamics (In Russian). Sov. Phys. JETP 46,
641–653 (1977)

54. V.N. Gribov, L.N. Lipatov, Deep inelastic electron scattering in
perturbation theory. Phys. Lett. B 37, 78–80 (1971)

55. L.N. Lipatov, The parton model and perturbation theory. Sov. J.
Nucl. Phys. 20, 94–102 (1975)

56. G. Altarelli, G. Parisi, Asymptotic freedom in parton language.
Nucl. Phys. B 126, 298–318 (1977)

57. Z.F. Cui, M. Ding, J.M. Morgado, K. Raya, D. Binosi, L. Chang,
F. De Soto, C.D. Roberts, J. Rodríguez-Quintero, S.M. Schmidt,
Emergence of pion parton distributions. Phys. Rev. D 105(9),
L091502 (2022)

58. P.-L. Yin, Y.-Z. Xu, Z.-F. Cui, C.D. Roberts, J. Rodríguez-Quintero,
All-orders evolution of parton distributions: principle, practice, and
predictions. Chin. Phys. Lett. Express 40(9), 091201 (2023)

59. K. Raya, L. Chang, A. Bashir, J.J. Cobos-Martinez, L.X. Gutiérrez-
Guerrero, C.D. Roberts, P.C. Tandy, Structure of the neutral pion
and its electromagnetic transition form factor. Phys. Rev. D 93,
074017 (2016)

60. P. Maris, P.C. Tandy, The quark photon vertex and the pion charge
radius. Phys. Rev. C 61, 045202 (2000)

61. C.D. Roberts, S.M. Schmidt, Dyson–Schwinger equations: density,
temperature and continuum strong QCD. Prog. Part. Nucl. Phys.
45, S1–S103 (2000)

62. Y.-Z. Xu, S. Chen, Z.-Q. Yao, D. Binosi, Z.-F. Cui, C.D. Roberts,
Vector-meson production and vector meson dominance. Eur. Phys.
J. C 81, 895 (2021)

63. J.S. Ball, T.-W. Chiu, Analytic Properties of the vertex function in
gauge theories, 1. Phys. Rev. D 22, 2542–2549 (1980)

64. D.C. Curtis, M.R. Pennington, Truncating the Schwinger–Dyson
equations: how multiplicative renormalizability and the Ward iden-
tity restrict the three point vertex in QED. Phys. Rev. D 42, 4165–
4169 (1990)

65. S.-X. Qin, L. Chang, Y.-X. Liu, C.D. Roberts, S.M. Schmidt, Prac-
tical corollaries of transverse Ward–Green–Takahashi identities.
Phys. Lett. B 722, 384–388 (2013)

66. R. Brout, F. Englert, Gravitational Ward identity and the principle
of equivalence. Phys. Rev. 141(4), 1231–1232 (1966)

67. K. Raman, Gravitational form-factors of pseudoscalar mesons,
stress-tensor-current commutation relations, and deviations from
tensor- and scalar-meson dominance. Phys. Rev. D 4, 476–488
(1971)

68. L. Theussl, S. Noguera, V. Vento, Generalized parton distributions
of the pion in a Bethe–Salpeter approach. Eur. Phys. J. A 20, 483–
498 (2004)

69. Z. Xing, M. Ding, L. Chang, Glimpse into the pion gravitational
form factor. Phys. Rev. D 107(3), L031502 (2023)

70. S.-X. Qin, L. Chang, Y.-X. Liu, C.D. Roberts, D.J. Wilson, Inter-
action model for the gap equation. Phys. Rev. C 84, 042202(R)
(2011)

71. D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, Bridging a
gap between continuum-QCD and ab initio predictions of hadron
observables. Phys. Lett. B 742, 183–188 (2015)

72. L. Chang, Y.-X. Liu, C.D. Roberts, Y.-M. Shi, W.-M. Sun, H.-S.
Zong, Chiral susceptibility and the scalar Ward identity. Phys. Rev.
C 79, 035209 (2009)

73. Z.-N. Xu, Z.-Q. Yao, S.-X. Qin, Z.-F. Cui, C.D. Roberts, Bethe–
Salpeter kernel and properties of strange-quark mesons. Eur. Phys.
J. A 59(3), 39 (2023)

74. R.L. Workman, et al., Review of particle physics. PTEP 2022.
083C01 (2022)

75. P. Maris, C.D. Roberts, π and K meson Bethe–Salpeter amplitudes.
Phys. Rev. C 56, 3369–3383 (1997)

76. A. Krassnigg, Excited mesons in a Bethe–Salpeter approach. PoS
CONFINEMENT 8, 075 (2008)

77. A. Krassnigg, Survey of J=0,1 mesons in a Bethe–Salpeter
approach. Phys. Rev. D 80, 114010 (2009)

78. C.H. Llewellyn-Smith, A relativistic formulation for the quark
model for mesons. Ann. Phys. 53, 521–558 (1969)

79. M.V. Polyakov, P. Schweitzer, Forces inside hadrons: pressure, sur-
face tension, mechanical radius, and all that. Int. J. Mod. Phys. A
33(26), 1830025 (2018)

80. N. Nakanishi, A general survey of the theory of the Bethe–Salpeter
equation. Prog. Theor. Phys. Suppl. 43, 1–81 (1969)

81. Z.-F. Cui, D. Binosi, C.D. Roberts, S.M. Schmidt, Pion charge
radius from pion+electron elastic scattering data. Phys. Lett. B
822, 136631 (2021)

82. N. Chouika, C. Mezrag, H. Moutarde, J. Rodríguez-Quintero, A
Nakanishi-based model illustrating the covariant extension of the
pion GPD overlap representation and its ambiguities. Phys. Lett. B
780, 287–293 (2018)

83. S. Kumano, Q.-T. Song, O.V. Teryaev, Hadron tomography by gen-
eralized distribution amplitudes in pion-pair production process
γ ∗γ → π0π0 and gravitational form factors for pion. Phys. Rev.
D 97, 014020 (2018)

84. D.C. Hackett, P.R. Oare, D.A. Pefkou, P.E. Shanahan, Gravitational
form factors of the pion from lattice QCD. Phys. Rev. D 108(11),
114504 (2023)

85. J. Badier et al., Measurement of the K−/π− structure function
ratio using the Drell–Yan process. Phys. Lett. B 93, 354 (1980)

123



Eur. Phys. J. C (2024) 84 :191 Page 13 of 13 191

86. H.-W. Lin, J.-W. Chen, Z. Fan, J.-H. Zhang, R. Zhang, Valence-
quark distribution of the Kaon and Pion from Lattice QCD. Phys.
Rev. D 103(1), 014516 (2021)

87. C. Shi, L. Chang, C.D. Roberts, S.M. Schmidt, P.C. Tandy, H.-S.
Zong, Flavour symmetry breaking in the kaon parton distribution
amplitude. Phys. Lett. B 738, 512–518 (2014)

88. D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, C.D. Roberts,
Natural constraints on the gluon-quark vertex. Phys. Rev. D 95,
031501(R) (2017)

89. R.L. Jaffe, Ambiguities in the definition of local spatial densities
in light hadrons. Phys. Rev. D 103(1), 016017 (2021)

90. A. Freese, G.A. Miller, Forces within hadrons on the light front.
Phys. Rev. D 103, 094023 (2021)

91. A. Freese, G.A. Miller, Unified formalism for electromagnetic and
gravitational probes: densities. Phys. Rev. D 105(1), 014003 (2022)

92. E. Epelbaum, J. Gegelia, N. Lange, U.G. Meißner, M.V. Polyakov,
Definition of local spatial densities in hadrons. Phys. Rev. Lett.
129(1), 012001 (2022)

93. A. Freese, G.A. Miller, Convolution formalism for defining densi-
ties of hadrons. Phys. Rev. D 108(3), 034008 (2023)

94. J.-L. Zhang, Z.-F. Cui, J. Ping, C.D. Roberts, Contact interaction
analysis of pion GTMDs. Eur. Phys. J. C 81(1), 6 (2021)

95. F. Özel, P. Freire, Masses, radii, and the equation of state of neutron
stars. Ann. Rev. Astron. Astrophys. 54, 401–440 (2016)

96. M.Y. Barabanov et al., Diquark correlations in hadron physics:
origin, impact and evidence. Prog. Part. Nucl. Phys. 116, 103835
(2021)

97. G. Eichmann, Nucleon electromagnetic form factors from the
covariant Faddeev equation. Phys. Rev. D 84, 014014 (2011)

123


	Pion and kaon electromagnetic and gravitational form factors
	Abstract 
	1 Introduction
	2 Form factors
	3 Symmetry-preserving vertices
	4 Interaction kernel
	5 Dressed vertices
	6 Algebraic Ansätze
	7 Electromagnetic and gravitational form factors
	8 Pressure profiles
	9 Summary and perspective
	Acknowledgements
	References




