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Abstract In this paper, we introduce a fundamentally
different approach, based on a bottom-up methodology,
for expanding tree-level Yang–Mills (YM) amplitudes into
Yang–Mills-scalar (YMS) amplitudes and bi-adjoint-scalar
(BAS) amplitudes. Our method relies solely on the intrin-
sic soft behavior of external gluons, eliminating the need for
external aids such as Feynman rules or CHY rules. The recur-
sive procedure consistently preserves explicit gauge invari-
ance at every step, ultimately resulting in a manifest gauge-
invariant outcome when the initial expression is already
framed in a gauge-invariant manner. The resulting expansion
can be directly analogized to the expansions of gravitational
(GR) amplitudes using the double copy structure. When com-
bined with the expansions of Einstein–Yang–Mills ampli-
tudes obtained using the covariant color-kinematic duality
method from existing literature, the expansions presented
in this note yield gauge-invariant Bern–Carrasco–Johansson
(BCJ) numerators.

1 Introduction

In recent decades, significant progress has been made in
understanding scattering amplitudes, revealing hidden math-
ematical structures that go beyond traditional Feynman
rules. These advancements have uncovered interconnections
between amplitudes from various theories. For instance,
gravitational (GR) and Yang–Mills (YM) amplitudes at the
tree level are linked through the Kawai–Lewellen–Tye (KLT)
relation [1] and the Bern–Carrasco–Johansson (BCJ) color-
kinematic duality [2–5]. In the well-known CHY formalism
[6–10], tree amplitudes for the a large variety of theories
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can be generated from the tree GR amplitudes through the
compactification, squeezing and the generalized dimensional
reduction procedures [6–10]. Similar unifying relations have
emerged, allowing tree amplitudes from one theory to be
expressed in terms of those from others [11–20].

The expansions of tree-level gravitational (GR) ampli-
tudes into Yang–Mills (YM) amplitudes have garnered sig-
nificant attention due to their role in constructing BCJ numer-
ators [14,21]. These expansions involve recursive tech-
niques, breaking down GR amplitudes into linear combina-
tions of tree-level Einstein–Yang–Mills (EYM) amplitudes
where some gravitons become gluons. They also expand tree-
level EYM amplitudes into versions with fewer gravitons and
more gluons [14,15,18]. By iteratively applying these recur-
sions, one can derive the desired GR to YM expansions.

The coefficients or BCJ numerators obtained through
the aforementioned process are local, without any spuri-
ous poles in the expansions. However, establishing gauge
invariance is challenging. Recent developments in scatter-
ing amplitude research have shown that amplitudes manifest-
ing gauge invariance at the expense of locality often lead to
innovative insights and unexpected mathematical structures.
For instance, the Britto–Cachazo–Feng–Witten (BCFW) on-
shell recursion relations [22,23], inspiring novel amplitude
constructions like the Grassmannian representation and the
Amplituhedron [24–26]. Thus, exploring expansion tech-
niques that explicitly showcase gauge invariance is valuable.

To achieve these new expansions, a natural approach is to
modify existing recursive expansions. Fortunately, we have
alternative recursive expansions for tree Einstein–Yang–
Mills (EYM) amplitudes that explicitly exhibit gauge invari-
ance for each polarization carried by external particles.
These new expansions, discovered by Cheung and Mangan
using the covariant color-kinematic duality [27], can also be
derived using a technique based on soft theorems, similar to
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the one presented in this paper [28]. Another challenge is
to discover new expansions that manifest gauge invariance
while expanding tree GR amplitudes into EYM ones. This
can be achieved by altering the old GR expansions through
the addition of new terms that vanish due to the gauge invari-
ance of the expanded GR amplitudes, as outlined in subsec-
tion IV A. Ensuring that the original expansions describe
gauge-invariant amplitudes is essential, making it logical to
derive the old expansions from a gauge-invariant founda-
tional framework, such as the traditional Lagrangian or CHY
formalism. In other words, modifying the old expansions is
a top-down construction.

The central aim of the modern S-matrix program is to
construct amplitudes from a bottom-up approach, free from
reliance on Lagrangian techniques. One prominent exam-
ple involves bootstrapping three-point amplitudes within
the spinor-helicity formalism and subsequently generat-
ing higher-point amplitudes through the application of the
BCFW recursive method [22,23]. The primary objective of
this paper is to provide a concise bottom-up approach for con-
structing expansions of tree-level gravitational (GR) ampli-
tudes into tree-level Einstein-Yang-Mills (EYM) amplitudes.
This approach ensures the explicit manifestation of gauge
invariance for the polarization of each external particle.

The method presented in this paper is based on the sub-
leading soft behavior for external gluons. Initially, soft the-
orems at the tree level were derived using Feynman rules
for photons and gravitons [29,30]. In 2014, new soft theo-
rems were discovered for gravity (GR) and Yang–Mills (YM)
theory at the tree level by applying BCFW recursion rela-
tions [31,32]. In GR, the soft theorem was extended beyond
the leading order to sub-leading and sub-sub-leading levels,
while in YM theory, it was identified at the leading and sub-
leading orders. These new soft theorems were subsequently
generalized to arbitrary spacetime dimensions [33,34] using
CHY formulas [6–10]. These soft theorems have been instru-
mental in constructing tree amplitudes, such as through the
inverse soft theorem program, and by utilizing another type
of soft behavior known as the Adler zero to construct ampli-
tudes for various effective theories [35–41]. In this paper,
we build upon the idea of constructing tree amplitudes from
soft theorems, but our approach differs significantly from the
techniques found in existing literature.

Instead of expanding GR (gravity) amplitudes to EYM
(Einstein–Yang–Mills) ones, this paper focuses on the expan-
sions of color-ordered single-trace tree YM (Yang–Mills)
amplitudes [3,42] into tree Yang–Mills-scalar (YMS) ampli-
tudes, which describe gluons and bi-adjoint scalars (BAS).
This choice is motivated by several factors. Firstly, both
expansions share the same coefficients due to the double copy
structure [1–5,8]. Secondly, the pure BAS amplitudes only
contain propagators without numerators [8]. The approach
starts by bootstrapping the lowest three-point tree YM ampli-

tudes, while assuming that higher-point tree amplitudes are
uniquely determined by the soft behaviors of gluons. The
advantage lies in the sub-leading soft factor of gluons, which
inserts the soft external leg in a manifestly gauge-invariant
manner. Consequently, if the original three-point amplitude is
expressed in a manifestly gauge-invariant formula, this gauge
invariance is preserved throughout the process. As demon-
strated, relying on the assumption that soft behaviors fully
determine amplitudes, gauge invariance is established for the
old expansions without necessitating a top-down derivation.

The method presented in this paper represents a significant
advancement and improvement compared to the one used in
[43]. The new version constructs general expansions starting
from the lowest-point amplitudes, which can be determined
through bootstrapping. As pointed out in [43], the soft the-
orem for gluons can be uniquely fixed by assuming the uni-
versality of soft behaviors. More explicitly, one can find the
expansion of tree YMS amplitudes with one external gluon
by imposing the universality of the soft behaviors of BAS
scalars, and then derive the soft theorem for gluons from the
resulted expansion of such YMS amplitudes. On the other
hand, since the pure BAS amplitudes only contain propaga-
tors, the soft behaviors of BAS scalars are obvious. Thus, in
the whole story, the expansions of YM amplitudes to YMS
ones indeed arise from the assumptions of universality of soft
behaviors.

The remainder of this note is organized as follows. In
Sect. 2, we introduce necessary background including the
expansions of tree amplitudes to the Kleiss–Kuijf (KK) BAS
basis, the recursive expansions of tree YMS (EYM) ampli-
tudes, as well as the soft theorems for external BAS scalars
and gluons at tree level. In Sect. 3, we introduce our recursive
method, and construct the old expansions of tree YM ampli-
tudes to YMS ones, from the three-point amplitudes fixed
by bootstrapping. In Sect. 4, we derive the new expansions
which manifest the gauge invariance by applying both the
direct construction and the recursive technique. Finally, we
end with a brief summary in Sect. 5.

2 Background

For readers’ convenience, in this section we give a brief
review of necessary background. In Sect. 2.1, we introduce
the concept of tree level amplitudes of bi-adjoint scalar (BAS)
theory and Yang–Mills scalar (YMS) theory. Meanwhile,
we draw the conclusion that any theory consisting solely
of massless particles can be expanded onto the KK BAS
basis. In Sect. 2.2, we briefly list the previously established
soft theorems for scalars and gluons in various theories. In
Sect. 2.3, we provide a concise introduction on how to recur-
sively expand YMS tree-level amplitudes into the KK basis.
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2.1 Expanding tree level amplitudes to BAS basis

The double color-ordered tree amplitudes in BA) theory
exclusively feature propagators for massless scalars. Each
amplitude exhibits simultaneous planarity with respect to
two color orderings. We take the five-point amplitude
ABAS(1, 2, 3, 4, 5|1, 4, 2, 3, 5) as an example. In Fig. 1, both
(a1) and (a2) correspond to the same tree diagram. Specif-
ically, a1 is associated with color ordering (1, 2, 3, 4, 5),
while (a2) corresponds to color ordering (1, 4, 2, 3, 5). How-
ever, in Fig. 1, the tree diagram represented by figure b
can only conform to color ordering (1, 2, 3, 4, 5) and does
not satisfy color ordering (1, 4, 2, 3, 5). Similarly, one can
draw additional tree diagrams that satisfy color ordering
(1, 2, 3, 4, 5), but it will be observed that none of them con-
forms to color ordering (1, 4, 2, 3, 5). Then the tree BAS
amplitude ABAS(1, 2, 3, 4, 5|1, 4, 2, 3, 5) can be computed
as

ABAS(1, 2, 3, 4, 5|1, 4, 2, 3, 5) = (−1)nflip
1

s23

1

s51
. (1)

The Mandelstam variable si ··· j is defined as

si ··· j ≡ k2
i ··· j , ki ··· j ≡

j∑

a=i

ka, (2)

where ka is the momentum carried by the external leg a.
Each double color-ordered BAS amplitude carries an over-

all sign (−1)nflip , where nflip is determined by these two color
orderings. Readers should be aware that in this paper, when
these two color orderings are identical, nflip equals zero,
implying that the overall sign is +. The systematic method for
determining nflip and evaluating double color-ordered partial
amplitudes can be referenced in [8], and as it is not pertinent
to the current paper, it will not be further elaborated upon
here.1

The Yang–Mills-scalar (YMS) amplitudes pertain to
scalars that are coupled with gluons. In this context, we
are specifically concerned with a subset of YMS amplitudes
known as single-trace YMS amplitudes. The single-trace
YMS amplitude, denoted as AYMS(1, . . . , n; {p1, . . . , pm}
|σn+m), comprisesn external scalars represented by {1, . . . , n}
and m external gluons labeled as {p1, . . . , pm}. The ordering
σn+m on the right-hand side of | encompasses all external legs
within {1, . . . , n} ∪ {p1, . . . , pm}. On the left-hand side of |,

1 In fact, in reference A, the overall sign is defined as (−1)n−3+nflip ,
where n is the number or external legs. However, for the convenience
of our subsequent work in this paper, we adopt the notation (−1)nflip .
The advantage of the new convention stems from the fact that when we
remove a soft external scalar from an n-point amplitude, it changes the
number of external legs to n − 1. Therefore, we desire that this overall
sign contains information solely about the relative ordering between
the two color orderings of the origin n-point amplitude, excluding the
influence of changes in the number of external legs on this sign.

(1, . . . , n) signifies an alternative overall ordering of external
scalars, which is also the reason it is referred to as ’single-
trace’, while {p1, . . . , pm} constitutes an unordered set. In
simpler terms, the external scalars are BAS scalars, which
have a dual ordering, whereas the external gluons belong to
a single ordering, σn+m .

Tree level amplitudes for any theory, as long as they
contain only massless particles and cubic vertices, can be
expanded to double color-ordered BAS amplitudes, due to
the observation that each Feynman diagram for pure propa-
gators is included in at least one BAS amplitude. In addition,
tree diagrams involving higher point vertices can be decom-
posed into BAS amplitudes with solely cubic vertices by mul-
tiplying both the numerator and denominator by the propa-
gator D. An example is shown in Fig. 2. Since each Feyn-
man diagram contributes propagators that can be mapped to
BAS amplitudes, along with a numerator, we can conclude
that each tree-level amplitude can be expanded into double
color-ordered BAS amplitudes. These expanded amplitudes
have coefficients that are polynomials depending on Lorentz
invariants created by external kinematic variables.

In reality, not all BAS amplitudes are independent; there-
fore, such an expansion requires the selection of appropriate
basis. Such a basis can be determined by the well-known
Kleiss–Kuijf (KK) relation [44]

ABAS(1, �ααα, n, �βββ|σn) = (−)
�|βββ| ABAS(1, �ααα� �βββT

, n|σn), (3)

where �ααα and �βββ are two ordered subsets of external scalars,

and �βββT
stands for the ordered set generated from �βββ by revers-

ing the original ordering. The |�βββ| on overall sign represents
the number of elements in subset �βββ. The symbol � means
summing over all possible shuffles of two ordered sets �βββ1
and �βββ2, i.e., all permutations in the set �βββ1 ∪ �βββ2 while pre-
serving the orderings of �βββ1 and �βββ2. For instance, suppose
�βββ1 = {1, 2} and �βββ2 = {3, 4}; then

�βββ1 �
�βββ2 = (1, 2, 3, 4) + (1, 3, 2, 4) + (1, 3, 4, 2)

+(3, 1, 2, 4) + (3, 1, 4, 2) + (3, 4, 1, 2). (4)

One should note that the n-point BAS amplitude ABAS

(1, �ααα, n, �βββ|σn) at the l.h.s of (3) carries two color order-
ings. We can also have an analogous KK relation for
the second color ordering σn . Therefore, the KK relation
implies that the basis can be chosen as BAS amplitudes
ABAS(1, σ1, n|1, σ2, n), where 1 and n are fixed at two ends
in each ordering. Such a basis is called the KK BAS basis.
Based on the discussion above, any amplitude which includes
only massless particles can be expanded to this basis.2 In the

2 The well-known Bern–Carrasco–Johansson (BCJ) relation [2–5]
links BAS amplitudes in the KK basis together, and the independent
BAS amplitudes can be obtained by fixing three legs at three partic-
ular positions in the color orderings. However, in the BCJ relation,
coefficients of BAS amplitudes depend on Mandelstam variables; this
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Fig. 1 Two five-point
diagrams. Figures (a1) and (a2)
are the same tree diagram, while
(a1) represents the color
ordering 12345 and (a2)
represents the color ordering
14235

Fig. 2 Turn the four-point vertex to three-point ones. The bold line cor-
responds to the inserted propagator 1/s12. This manipulation turns the
original numerator N to s12N , and splits the original coupling constant
g into two

√
g for two cubic vertices

expansion, the KK basis supplies the propagators, while the
coefficients in the expansions provide the numerators.

In this paper, we will concentrate on the expansion of pure
YM amplitudes. The n-point YM amplitude AYM(σn) with
color ordering σn can be expanded to KK BAS basis as

AYM(σn) =
∑

αn−2

C(αn−2, εi , ki )ABAS(1, αn−2, n|σn), (5)

where αn−2 denotes color orderings among external legs of
{2, · · · , n−1}. The double copy structure [1–5] indicates that
the coefficient C(αn−2, εi , ki ) depends on polarization vec-
tors εi and momenta ki of external gluons, as well as the order-
ing αn−2, but remains independent of ordering σn .3 There-
fore, within this expansion, the investigation of the structure
of YM amplitudes is transformed into the study of the struc-
ture of the coefficients C(αn−2, εi , ki ). These coefficients are
known as BCJ numerators [14,21].

2.2 Soft theorems for external scalars and gluons

In this subsection, we provide a brief overview of the soft
scattering theorems for external scalars and gluons, which
are crucial for the discussions in the subsequent sections.

Footnote 2 continued
character leads to poles in coefficients when expanding to BCJ basis.
On the other hand, when expanding to the KK basis, one can find the
expanded formula in which the coefficients contain no poles. In this
paper, we opt for the KK basis, as we aim to ensure that all poles of tree
amplitudes are encompassed within the basis, with coefficients solely
serving as numerators.
3 Originally, the concept of the double copy implied that the general
relativity (GR) amplitude could be factorized as AG = AYM × S ×
AYM, where the kernel S is derived by inverting BAS amplitudes. Our
assumption that the coefficients depend on only one color ordering is
consistent with the original version, as discussed in [43].

For the double color-ordered BAS amplitude ABAS

(1, . . . , n|σn), we rescale ki as ki → τki , and expand the
amplitude with respect to τ ,

ABAS(1, . . . , n|σn) = A(0)i
BAS(1, . . . , n|σn)

+A(1)i
BAS(1, . . . , n|σn) + O(τ ). (6)

The leading-order contribution A(0)i
BAS(1, . . . , n|σn) arises

explicitly from the two-point channels 1/s1(i+1) and 1/s(i−1)i ,
which are at the 1/τ order. In other words,

A(0)i
BAS(1, . . . , n|σn) = 1

τ

(
δi(i+1)

si(i+1)

+ δ(i−1)i

s(i−1)i

)

ABAS(1, . . . , i − 1,�, i

+1, . . . , n|σn\i)
= S(0)i

s ABAS(1, . . . , i − 1,�, i

+1, . . . , n|σn \ i), (7)

where � stands for removing the leg i , σn\i means the color
ordering generated from σn by eliminating i . In Eq. (7), δab
is not the well-known Kronecker symbol. Its value is deter-
mined by the second color ordering σn . When a, b in σn are
not adjacent, δab takes the value of 0. When a, b in σn are
adjacent and maintain the same order as in the first color
ordering (1, . . . , n), δab takes the value of 1. When a, b in
σn are adjacent but have the reverse order compared to their
order in the first color ordering (1, . . . , n), it takes the value
of −1. The leading soft operator S(0)

s (i) for the scalar i is
observed as

S(0)i
s ≡ 1

τ

(
δi(i+1)

si(i+1)

+ δ(i−1)i

s(i−1)i

)
. (8)

For example, for four-point amplitudeABAS(1234|1234),
we rescale k4 as k4 → τk4; then by our notation, we have

A(0)
BAS(1234|1234) = 1

τ
(

1

s41
+ 1

s34
)

ABAS(123|123) = +1. (9)

According to our definition of δab, we know that δ34 = δ41 =
1 since 3, 4, 1 remains the same in both color orderings. So
we verified

A(0)4
BAS(1234|1234) = 1

τ

(
δ41

s41
+ δ34

s34

)
ABAS(123|123). (10)
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For four-point amplitude ABAS(1234|1243), we also rescale
k4 as k4 → τk4; then by our notation, we have

A(0)
BAS(1234|1243) = 1

τ

(
− 1

s34

)

ABAS(123|123) = +1. (11)

Because 3 and 4 have opposite orders in the two color order-
ings 1234 and 1243, we have δ34 = −1. And since 4 and 1
are not adjacent in the second color ordering 1243, we have
δ41 = 0. So we verified

A(0)4
BAS(1234|1243) = 1

τ

(
δ41

s41
+ δ34

s34

)
ABAS(123|123). (12)

In our previous work, we introduced an assumption that
the soft operator form should be universal across different
theories. For example, in the YMS theory, scalar particles,
and in the BAS theory, scalar particles, both share the same
form for their respective soft operators. Then the leading
contribution of YMS amplitude is

A(0)i
YMS(1, . . . , n; p1, . . . , pm |σn+m) = S(0)i

s

AYMS(1, . . . , i − 1, �, i + 1, . . . , n; p1, . . . , pm |σn+m\i).
(13)

Based on (8), it can be observed that this soft operator S(0)i
s

does not act on external gluons.
The soft theorems for external gluons at leading and sub-

leading orders can be obtained via various approaches [32–
34,43]. Such soft theorems are given as

A(0)pi
YMS(1, . . . , n; p1, . . . , pm |σn+m)

= S
(0)pi
g AYMS(1, . . . , n; p1, . . . , � pi , . . . ,

pm |σn+m\pi ), (14)

and

A(1)pi
YMS(1, . . . , n; p1, . . . , pm |σn+m) = S

(1)pi
g

AYMS(1, . . . , n; p1, . . . , � pi , . . . , pm |σn+m\pi ), (15)

where the external momentum kpi is rescaled as kpi → τkpi .
The soft factors at leading and sub-leading orders are given
by

S
(0)pi
g = 1

τ

∑

a∈σ

δapi (εpi · ka)
sapi

, (16)

and

S
(1)pi
g =

∑

a∈σ

δapi
(
εpi · Ja · kpi

)

sapi
, (17)

respectively [32,33]. Here, δab is solely determined by the
second color ordering σn+m . When a, b are adjacent in σn+m

(in a cyclically symmetric sense), δab takes the value of 1
if a precedes b, and −1 if a follows b. When a, b are not
adjacent in σn+m , δab takes the value of 0. Jμν

a is the angular

momentum operator. In (16) and (17), one should sum over
all external legs a, i.e., these soft operators for external gluon
act on both external scalars and gluons.

The sub-leading soft operator (17) for external gluons
plays a central role in the subsequent sections. Here, we
present some valuable results regarding the operation of this
operator. The angular momentum operator Jμν

a acts on the
Lorentz vector kρ

a with the orbital component of the gener-
ator and on ε

ρ
a with the spin component of the generator in

the vector representation

Jμν
a kρ

a = k[μ
a

∂kρ
a

∂ka,ν]
, Jμν

a ερ
a = (

ηνρ δμ
σ − ημρ δν

σ

)
εσ
a .

(18)

Then the action of S
(1)p
g can be re-expressed as

S
(1)p
g = −

∑

Va

δap

sap
Va · f p · ∂

∂Va
, (19)

due to the observation that the amplitude is linear in each
polarization vector. We observe that in (19), the summa-
tion over Va includes all Lorentz vectors, encompassing both
momenta and polarizations. The operator (19) is a differen-
tial operator that adheres to Leibniz’s rule. Employing (19),
we promptly obtain

(
S

(1)p
g ka

) · V = −δap

sap
(ka · f p · V ),

(
S

(1)p
g εa

) ·

V = −δap

sap
(εa · f p · V ), (20)

where V is an arbitrary Lorentz vector, and

V1 · (
S

(1)p
g fa

) · V2 = δap

sap
V1 · ( f p · fa − fa · f p) · V2,

(21)

for two arbitrary Lorentz vectors V1 and V2, where the anti-
symmetric tensor fi is defined as f μν

i ≡ kμ
i εν

i − ε
μ
i k

ν
i , as

introduced previously.

2.3 Recursive expansion of single-trace YMS amplitudes

The discussion for the expansion of tree level amplitudes in
the previous Sect. 2.1 indicates that the YMS amplitudes can
also be expanded to the KK BAS basis. This expansion can
be achieved by applying the following recursive expansion
iteratively:

AYMS(1, . . . , n; {p1, . . . , pm}|σn+m)

=
∑

�ααα

(
εp · F�ααα · Y�ααα

)AYMS(1, {2, . . . , n − 1}� {�ααα, p},

n; {p1, . . . , pm}\{p ∪ ααα}|σn+m), (22)

where p is the fiducial gluon which can be chosen as any ele-
ment in {p1, . . . , pm}, and ααα are subsets of {p1, . . . , pm}\p
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which is allowed to be empty. When ααα = {p1, . . . , pm}\p,
the YMS amplitudes in the second line of (22) are reduced to
BAS ones. The ordered set �ααα is generated from ααα by endow-
ing an order among elements in ααα. The tensor Fμν

�ααα is defined
as

Fμν

�ααα ≡ (
fαk · fαk−1 · · · fα2 · fα1

)μν
, (23)

for �ααα = {α1, . . . αk}. The combined momentum Y�ααα is the
summation of momenta carried by external gluons at the l.h.s
of α1 in the color ordering {2, . . . , n−1}��ααα. The summation
in (38) is over all nonequivalent ordered sets �ααα. The recursive
expansion (22) is found via various methods [32–34,43]. It
should be noted that this recurrence relation can be indepen-
dently derived through the recursive construction based on
soft behaviors. For detailed information, please refer to ref-
erence [43]. In the recursive expansion (22), the YMS ampli-
tude undergoes expansion, resulting in YMS amplitudes with
fewer gluons and more scalars. By iteratively applying this
expansion, it becomes possible to expand any YMS ampli-
tude into pure BAS amplitudes.

Furthermore, we can also observe that in the recursive
expansion (22), the gauge invariance for each gluon in
{P1, . . . , pm} \ p is manifest, since the tensor f μν vanishes
automatically under the replacement εi → ki , due to the def-
inition. However, the gauge invariance for the fiducial gluon
p has not been manifested. When applying (22) iteratively,
fiducial gluons will be chosen at every step. Consequently, in
the resulting expansion to pure BAS amplitudes, the gauge
invariance for each gluon will be compromised. To achieve
a manifestly gauge-invariant expansion, an alternative recur-
sive expansion should be employed:

AYMS(1, . . . , n; {p1, . . . , pm}|σn+m)

=
∑

�ααα

kr · F�ααα · Y�ααα
kr · kp1...pm

AYMS(1, {2, . . . , n − 1}� �ααα, n;

{p1, . . . , pm}\ααα|σn+m), (24)

where kr is a reference massless momentum. In this con-
text, the notations align with those in (22), and ααα represents
subsets of p1, . . . , pm . The formula (24) was originally dis-
covered by Clifford Cheung and James Mangan within the
framework of the covariant color-kinematic duality. It was
also independently derived by applying the recursive con-
struction based on soft theorems [43]. Notably, the expan-
sion of (24) does not necessitate the use of a fiducial gluon,
and it inherently exhibits gauge invariance for all polariza-
tions. Through iterative application of (22), one eventually
arrives at the manifestly gauge-invariant expansion of YMS
amplitudes into the KK BAS basis.

3 Expand YM amplitudes to YMS ones

In this section, we derive the color-ordered Yang–Mills (YM)
amplitudes as part of the formula for expanding YM ampli-
tudes into Yang–Mills-scalar (YMS) amplitudes. The tech-
nique employed in this section is based on the analysis of the
sub-leading-order soft behavior. It represents an improve-
ment over the method utilized in [43]. In comparison with
the previous method from [43], the new approach allows us
to construct the expanded formula recursively, starting from
the lowest three-point amplitudes that can be uniquely deter-
mined through bootstrapping. This is achieved without the
need to rely on other frameworks, such as Feynman rules
or CHY formalism. However, it should be noted that the
resulting expansion in this section does not exhibit gauge
invariance for all polarizations. The manifestation of gauge
invariance is the objective of the next section.

3.1 Three-point amplitudes

To ensure our construction is self-contained, without relying
on Feynman rules or the CHY formula, we fix the three-
point color-ordered Yang–Mills (YM) amplitudes using a
bootstrapping method. Our construction is primarily based
on the following ansatz:

1. The amplitude AYM(1, 2, 3) with the color ordering
(1, 2, 3)has a mass dimension of 1, and due to the absence
of factorization channels for the lowest-point amplitudes,
it does not contain any pole structures.

2. This amplitude is linearly dependent on polarization vec-
tors ε1, ε2 and ε3.

3. Due to cyclic symmetry, AYM(1, 2, 3) remains invariant
under permutation transformations (1 → 2, 2 → 3, 3 →
1).

In this manner, we establish the foundational elements for
our self-contained construction as

AYM(1, 2, 3) = (k1 · ε2) (ε3 · ε1) + (k2 · ε3) (ε1 · ε2)

+(k3 · ε1) (ε2 · ε3). (25)

It’s worth noting that replacing k1 · ε2, k2 · ε3, and k3 · ε1 with
k3 ·ε2, k1 ·ε3, and k2 ·ε1, respectively, results in an overall sign
change. This occurs due to both momentum conservation and
the on-shell condition ki · εi = 0.

We can expand AYM(1, 2, 3) onto YMS amplitudes and
BAS amplitudes in the manner of Eq. (22), by AYMS(1, 3; 2
|1, 2, 3) = (ε2 · k1)ABAS(1, 2, 3|1, 2, 3) and ABAS(1, 2, 3|
1, 2, 3) = 1, we have

AYM(1, 2, 3) = (
ε3 · ε1

)AYMS(1, 3; 2|1, 2, 3)

+(
ε3 · f2 · ε1

)ABAS(1, 2, 3|1, 2, 3). (26)
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Then the double copy structure indicates the expansion for
general three-point color ordered YM amplitude

AYM(σ3) = (
ε3 · ε1

)AYMS(1, 3; 2|σ3)

+(
ε3 · f2 · ε1

)ABAS(1, 2, 3|σ3), (27)

where σ3 is an arbitrary ordering among legs in {1, 2, 3}.
Equation (27) serves as the initial step for the recursive con-
struction in this section.

3.2 Recursive construction for four-point amplitudes

In this subsection, we derive the expansion of four-point
Yang–Mills (YM) amplitudes based on the previously
expanded formula for three-point amplitudes in Eq. (27). This
is accomplished by examining the sub-leading-order soft
behavior of the four-point amplitude. We label the external
legs of the four-point amplitudeAYM(σ4) as σ4 = {1, 2, 3, s}
and choose the KK basis such that legs 1 and 3 are fixed at two
ends in the left color ordering. We focus on the soft behavior
of the external particle s by rescaling ks as ks → τks and
expanding AYM(σ4) with respect to τ . This process of con-
structing four-point amplitudes from three-point amplitudes
provides valuable insights for addressing more general cases
in our subsequent discussions.

According to the soft theorem in (15) and (17), the sub-
leading contribution is given as

A(1)s
YM(σ4) = S(1)s

g AYM(σ4\s)
= S(1)s

g

[(
ε3 · ε1

)AYMS(1, 3; 2|σ4\s)
+(

ε3 · f2 · ε1
)ABAS(1, 2, 3|σ4\s)

]

= P1 + P2. (28)

The second line is derived by substituting the expansion (27)
into the first line. The sub-leading contribution is then split
into two parts, denoted as P1 and P2:

P1 = (ε3 · ε1)
[
S(1)s
g AYMS(1, 3; 2|σ4\s)

]

+ (ε3 · f2 · ε1)
[
S(1)s
g ABAS(1, 2, 3|σ4\s)

]
,

P2 =
[
S(1)s
g (ε3 · ε1)

]
AYMS(1, 3; 2|σ4\s)

+
[
S(1)s
g (ε3 · f2 · ε1)

]
ABAS(1, 2, 3|σ4\s). (29)

Here, P1 is obtained by applying the sub-leading soft oper-
ator S(1)s

g to YMS or BAS amplitudes, and P2 is obtained by

acting S(1)s
g on coefficients.

Our objective is to deduce the expanded formula of
AYM(σ4) from the soft behavior of A(1)s

YM (σ4). Hence, it

becomes imperative to construe A(1)s
YM (σ4) as a synthesis of

the soft behaviors inherent in the constituent components
of the expansion. Here, by “components,” we refer to the

individual constituents akin to A(1)s
YMS and A(0)s

BAS within the
expansion. For the P1 part, the soft theorem suggests

P1 = (
ε3 · ε1

)A(1)s
YMS(1, 3; s, 2|σ4)

+(
ε3 · f2 · ε1

)A(1)s
YMS(1, 2, 3; s|σ4). (30)

The second part P2 can be evaluated by applying relations
(20) and (21),

P2 = (
ε3 · fs · ε1

) (δ1s

s1s
+ δs3

ss3

)
AYMS(1, 3; 2|σ4\s)

+(
ε3 · f2 · fs · ε1

) (δ1s

s1s
+ δs2

ss2

)
ABAS(1, 2, 3|σ4\s)

+(
ε3 · fs · f2 · ε1

) (δ2s

s2s
+ δs3

ss3

)
ABAS(1, 2, 3|σ4\s).

(31)

Since the symbol δab will not appear in the expansion of
AYM(σ4), it should be absorbed into the soft behaviors of
YMS amplitudes. By applying the soft theorem (7) and (8)
for the BAS scalars, we can recognize that

( δ1s

s1s
+ δs2

ss2

)
ABAS(1, 2, 3|σ4\s) = τ A(0)s

BAS(1, s, 2, 3|σ4),

( δ2s

s2s
+ δs3

ss3

)
ABAS(1, 2, 3|σ4\s) = τ A(0)s

BAS(1, 2, s, 3|σ4).

(32)

This observation eliminates δab in second and third lines
in (31). Then we turn to the first line in (31). Expanding
AYMS(1, 3; 2|σ4 \ s) as in (22), we get
(δ1s

s1s
+ δs3

ss3

)
AYMS(1, 3; 2|σ4\s)

= (ε2 · k1)
(δ1s

s1s
+ δs3

ss3

)
ABAS(1, 2, 3|σ4\s)

= (ε2 · k1)
(δ1s

s1s
+ δs2

ss2
+ δ2s

s2s
+ δs3

ss3

)
ABAS(1, 2, 3|σ4\s)

= τ (ε2 · k1)A(0)s
BAS(1, 2� s, 3|σ4). (33)

The second equality relies on the property δab = −δba , while
the third equality is predicated on the soft theorem as given
in Eq. (7). Adding all of these terms together, we obtain

A(1)s
YM(σ4) = (

ε3 · ε1
)A(1)s

YMS(1, 3; s, 2|σ4)

+(
ε3 · f2 · ε1

)A(1)s
YMS(1, 2, 3; s|σ4)

+τ
[(

ε3 · fs · ε1
)(

ε2 · k1
)A(0)s

BAS(1, 2� s, 3|σ4)

+(
ε3 · f2 · fs · ε1

)A(0)s
BAS(1, s, 2, 3|σ4)

+(
ε3 · fs · f2 · ε1

)A(0)s
BAS(1, 2, s, 3|σ4)

]
. (34)

Some discussions are warranted regarding the expansion
in (37). This expansion is derived by examining the soft
behavior at the sub-leading order. The reason for selecting
the sub-leading order rather than the leading one is that the
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leading-order contributions from the third, fourth, and fifth
terms in (37) are of order τ 0, while A(0)s

YM(σ4) is of order τ−1.
Consequently, these terms cannot be detected through the
leading-order soft behavior of A(0)s

YM(σ4). This leads to a nat-
ural question: does the full expansion include a term whose
leading-order soft behavior is of order τ 1, making it unde-
tectable when examining A(1)s

YM(σ4)?. We can rule out this
possibility through the following argument. If such a term
were to exist, it must involve a coefficient that is bilinear in
ks , since the leading-order soft behavior of each YMS ampli-
tude is of order τ−1. Consequently, the symmetry between
legs s and 2 would imply the existence of another term fea-
turing a coefficient that is bilinear in k2. However, the new
term with a coefficient bilinear in k2 should be detectable
when examining A(1)s

YM(σ4) because mass dimension consid-
erations prohibit the coefficient from being bilinear in both k2

and ks . Intriguingly, the associated contribution is conspicu-
ously absent in (34). Consequently, we can confidently assert
that the hypothesized undetectable term with leading-order
behavior of τ 1 does not exist.

Next, we will go through each term step by step to demon-
strate how to reconstruct the original amplitude AYM(σ4)

from this soft behavior.

• (
ε3 · ε1

)A(1)s
YMS(1, 3; s, 2|σ4)

It is evident that this term arises from the expansion rep-
resented by

(
ε3 · ε1

)AYMS(1, 3; s, 2|σ4).

• (
ε3 · f2 · ε1

)A(1)s
YMS(1, 2, 3; s|σ4)

Due to the fact that ks does not contribute to the leading-
order terms, the coefficients resembling (ε3 · f ′

2 · ε1) are
all at leading order

(
ε3 · f2 · ε1

)
. Where

( f ′
2)

μν ≡ (kμ
2 + xkμ

s )εν
2 − ε

μ
2 (kν

2 + ykν
s ), (35)

where x , y can take arbitrary constant values. Therefore,
this term may originate from (ε3 · f ′

2 · ε1)AYMS(1, 2, 3;
s|σ4) in the expansion. On the other hand, besides

(
ε3 ·

f2 ·ε1
)A(1)s

YMS(1, 2, 3; s|σ4), the sub-leading order of (ε3 ·
f ′
2 · ε1)AYMS(1, 2, 3; s|σ4) after rescale ks → τks also

contains

τ (x(ε3 · ks)(ε2 · ε1) − y(ε3 · ε2)(ks · ε1))

A(0)s
YMS(1, 2, 3; s|σ4). (36)

Compared with (34), we observe that this kind of sub-
leading soft behavior has not been detected, i,e, x = y =
0. In summary, the second term arises from

(
ε3 · f2 ·

ε1
)AYMS(1, 2, 3; s|σ4).

• (
ε3 · fs · ε1

)(
ε2 · k1

)A(0)s
BAS(1, 2� s, 3|σ4)

The treatment of the third term, however, can be some-
what intricate. In addition, We anticipate that the expan-
sion of AYM(σ4) should remain invariant under the

interchange of 2 and s because both 2 and s represent
on-shell massless particles that have not been fixed at
any ends in the color orderings. Therefore, the appear-
ance of

(
ε3 · f2 · ε1

)AYMS(1, 2, 3; s|σ4) in the expan-
sion of AYM(σ4) inevitably leads to the appearance of(
ε3 · fs · ε1

)AYMS(1, s, 3; 2|σ4). On the other hand, we
can derived the following relationship:

A(0)s
YMS(1, s, 3; 2|σ4) = (ε2 · k1)A(0)s

BAS(1, 2� s, 3|σ4).

This equality can be confirmed by substituting the expan-
sion (22) and observing that ks does not contribute to Y2

at the leading order. This confirms that the third term in
Eq. (34) indeed arises from the sub-leading order soft
behavior of

(
ε3 · fs · ε1

)AYMS(1, s, 3; 2|σ4).

• (
ε3 · f2 · fs · ε1

)A(0)s
BAS(1, s, 2, 3|σ4) and

(
ε3 · fs · f2 ·

ε1
)A(0)s

BAS(1, 2, s, 3|σ4)

Naively, these two terms may come from
(
ε3 · f ′

2 · fs ·
ε1

)ABAS(1, s, 2, 3|σ4) and
(
ε3 · fs · f ′

2 ·ε1
)ABAS(1, 2, s,

3|σ4) respectively, with f ′
2 defined in (35). However,

from the discussion above, we realize that the coeffi-
cients in the expansion of AYM(σ4) do not involve terms
proportional to the square of ks or higher-order terms.
Therefore, these two terms exclusively originate from(
ε3 · f2 · fs · ε1

)ABAS(1, s, 2, 3|σ4) and
(
ε3 · fs · f2 ·

ε1
)ABAS(1, 2, s, 3|σ4).

Finally, we observe the desired expansion of four-point
amplitude:

AI
YM(σ4) = (

ε3 · ε1
)AYMS(1, 3; s, 2|σ4)

+(
ε3 · f2 · ε1

)AYMS(1, 2, 3; s|σ4)

+(
ε3 · fs · ε1

)AYMS(1, s, 3; 2|σ4)

+(
ε3 · f2 · fs · ε1

)ABAS(1, s, 2, 3|σ4)

+(
ε3 · fs · f2 · ε1

)ABAS(1, 2, s, 3|σ4). (37)

It can be seen that this expression (37) remains invariant
under the exchange of external legs 2 and s. To obtain the
full expression of the four-point Yang–Mills amplitude of tree
level, the YMS amplitude in the above equation is expanded
into the BAS amplitude, as detailed in Appendix 1.

3.3 General case

In this subsection, we construct the expansion of general
color ordered YM amplitudes AYM(σn), by applying the
recursive method in the previous Sect. 3.2 iteratively.

The main result of this subsection is the expansion

AI
YM(σn) =

∑

�ααα

(
εn · F�ααα · ε1

)AYMS(1, �ααα, n; {2, . . . , n − 1}

\ααα|σn), (38)
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where ααα denotes a subset of external legs in {2, . . . , n −
1} which is allowed to be empty, and the ordered set �ααα is
generated from ααα by endowing an order among elements in
ααα. The tensor Fμν

�ααα is defined as

Fμν

�ααα ≡ (
fαk · fαk−1 · · · fα2 · fα1

)μν
, (39)

for �ααα = {α1, . . . αk}. The summation in (38) is among all
nonequivalent ordered sets �ααα. In other words, one should sum
over all subsets ααα of {2, . . . , n − 1}, as well as all un-cyclic
permutations of elements inααα. Evidently, the general formula
(38) is satisfied by the expansions of three-point and four-
point amplitudes, as shown in (27) and (37). In the remainder
of this subsection, we will illustrate that if the formula (38)
holds form-point amplitudes, it also extends to (m+1)-point
ones. Consequently, we can iteratively ensure the validity of
the general expansion (38). This process shares many simi-
larities with the one described in the previous Sect. 3.2, and
as such, we will skip various details. An explicit five-point
example is provided in Appendix 1.

We can denote the external legs of the (m+1)-point ampli-
tude as s ∪ 1, · · · ,m and investigate the soft behavior asso-
ciated with the external leg s. The sub-leading order soft
behavior of the (m + 1)-point amplitude is expressed as fol-
lows:

A(1)s
YM(σm+1) = S(1)s

g AI
YM(σm+1\s)

= S(1)s
g

[∑

�ααα

(
εn · F�ααα · ε1

)

AYMS(1, �ααα,m; {2, . . . ,m − 1}\ααα|σm+1\s)
]

= P1 + P2, (40)

where P1 and P2 are given as

P1 =
∑

�ααα

(
εn · F�ααα · ε1

) [
S(1)s
g

AYMS(1, �ααα,m; {2, . . . ,m − 1}\ααα|σm+1\s)
]
, (41)

and

P2 =
∑

�ααα

[
S(1)s
g

(
εn · F�ααα · ε1

)]

AYMS(1, �ααα,m; {2, . . . ,m − 1}\ααα|σm+1\s). (42)

The soft theorem (15) leads to

P1 =
∑

�ααα

(
εn · F�ααα · ε1

)

A(1)s
YMS(1, �ααα,m; s ∪ {2, . . . ,m − 1}\ααα|σm+1). (43)

The block P2 can be calculated as

P2 =
∑

�ααα

(
εn · F�ααα�s · ε1

) (δsl s

ssl s
+ δssr

ssr

)

AYMS(1, �ααα,m; {2, · · · ,m − 1}\ααα|σm+1\s), (44)

by using relations in (20) and (21). The notation sl denotes
the adjacent leg of s which is at the l.h.s of s in �ααα� s, while
sr denotes the r.h.s one. Using the argument the same as that
from previous subsection, we arrive at

P2 =
∑

�ααα

(
εn · F�ααα�s · ε1

)

A(0)s
YMS(1, �ααα� s,m; {2, . . . ,m − 1}\ααα|σm+1). (45)

Combining (43) and (45) together leads to

A(1)s
YM(σm+1) =

∑

�ααα

(
εn · F�ααα · ε1

)(0)s

A(1)s
YMS(1, �ααα,m; s ∪ {2, · · · ,m − 1}\ααα|σm+1)

+
∑

�ααα

(
εn · F�ααα�s · ε1

)(0)s

A(0)s
YMS(1, �ααα� s,m; {2, . . . ,m − 1}\ααα|σm+1),

(46)

which indicates the expansion

AYM(σm+1) =
∑

�ααα

(
εn · F�ααα · ε1

)

AYMS(1, �ααα,m; s ∪ {2, . . . ,m − 1}\ααα|σm+1)

+
∑

�ααα

(
εn · F�ααα�s · ε1

)

AYMS(1, �ααα� s,m; {2, . . . ,m − 1}\ααα|σm+1)

=
∑

�ααα′′

(
εn · F�ααα′′ · ε1

)

AYMS(1, �ααα′′,m; s ∪ {2, . . . ,m − 1}\ααα′′|σm+1).

(47)

The final line in (47) corresponds to the expanded formula
(38) applicable to the (m + 1)-point case. It’s worth noting
that each set ααα in (47) represents a subset of {2, . . . ,m − 1}
excluding the leg s, while each ααα′′ denotes a subset of s ∪
{2, . . . ,m − 1}.

Hence, the general expansion formula (38) is proven to be
valid for (m + 1)-point amplitudes when it has been estab-
lished for m-point amplitudes and demonstrated for three-
point and four-point amplitudes. This conclusion is derived
through a mathematical induction argument.

4 Manifests the gauge invariance

The expansion presented in (38) does not inherently exhibit
gauge invariance for all polarizations, including ε1 and εn . In
this section, we establish an expansion that explicitly main-
tains gauge invariance through two distinct approaches. The
first approach, detailed in Sect. 4.1, involves a direct modifi-
cation of (38), incorporating the gauge invariance condition.
While this approach requires the imposition of gauge invari-
ance rather than its proof, it serves as a valuable starting
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point. To address the logical concern associated with the first
construction, we introduce the second approach in Sect. 4.2.
In this approach, we utilize the recursive technique estab-
lished in the previous Sect. 3. The key difference lies in the
modification of the starting point of the recursion,i.e, the
three-point amplitude, ensuring that the expression at this ini-
tial stage exhibits explicit gauge invariance. Subsequently, at
each step of the recursion, we insert soft particles while main-
taining this manifest gauge invariance. Ultimately, this pro-
cess allows us to construct an expansion that ensures gauge
invariance without the need for explicit requirements.

4.1 Direct construction

In the expansion (38), gauge invariance is manifest for polar-
izations εi with i ∈ {2, . . . , n − 1} because the tensor f μν

i
automatically vanishes under the replacement εi → ki . How-
ever, ensuring gauge invariance for polarizations ε1 and εn is
not as straightforward. To obtain an expansion formula that
also explicitly demonstrates gauge invariance for ε1 and εn ,
one can impose the following gauge invariance conditions:

An =
∑

�ααα

(
εn · F�ααα · k1

)

AYMS(1, �ααα, n; {2, . . . , n − 1}\ααα|σn) = 0,

Bn =
∑

�ααα

(
kn · F�ααα · ε1

)

AYMS(1, �ααα, n; {2, . . . , n − 1} \ ααα|σn) = 0,

Cn =
∑

�ααα

(
kn · F�ααα · k1

)

AYMS(1, �ααα, n; {2, . . . , n − 1} \ ααα|σn) = 0, (48)

which are obtained from (38) by replacing ε1 or εn with k1 or
kn , respectively. These conditions lead to the following new
formula,

AII
YM(σn) = −

∑

�ααα

tr
(
fn · F�ααα · f1

)

kn · k1

AYMS(1, �ααα, n; {2, . . . , n − 1}\ααα|σn), (49)

since

AII
YM(σn) = AI

YM(σn) − kn · ε1

kn · k1
An − εn · k1

kn · k1
Bn + εn · ε1

kn · k1
Cn,

(50)

whereAI
YM(σn) is the expanded formula in (38). The explicit

four-point and five-point examples for the expansion (49) are
given in Appendix A.

In the above construction, we required the gauge invari-
ance for polarizations ε1 and εn , namely, An = Bn = Cn =
0. However, it is quite non-trivial to prove this property for
general n. To ensure this gauge invariance condition, one
must derive the expansion (38) from a manifestly gauge

invariant framework, such as Lagrangian or CHY formalism.
Thus, if we insist the spirit of constructing YM amplitudes
recursively from lowest-point ones, without respecting other
frameworks, the above construction is not so satisfactory.

4.2 Recursive derivation

For the expansion of the simplest three-point amplitudes in
(27), the gauge invariance for polarization ε1 or ε3 is easy to
be observed. For example, replacing ε3 by k3 in (38) yields

AI
YM(σ3)

∣∣∣
ε3→k3

= (
k3 · ε1

)AYMS(1, 3; 2|σ3)

−(
k3 · ε2

) (
k2 · ε1

)ABAS(1, 2, 3|σ3),

(51)

where we have used k3 · k2 = 0 due to momentum conser-
vation and on-shell condition. By utilizing (22) to expand
AYMS(1, 3; 2|σ3) into the BAS amplitude ABAS(1, 2, 3|σ3),

we can readily verify that AI
YM(σ3)

∣∣∣ε3 → k3 = 0. This cor-

responds to the gauge invariance condition stated in the sec-
ond line of (48) for the case of three-point amplitudes. Similar
verifications apply to the other two conditions in (48). Con-
sequently, we can transform the expansion (27) into a new
formulation denoted as AII

YM(σ3), which is expressed as:

AII
YM(σ3) = − tr

(
f3 · f1

)

k3 · k1
AYMS(1, 3; 2|σ3)

− tr
(
f3 · f2 · f1

)

k3 · k1
ABAS(1, 2, 3|σ3). (52)

Next, we will start from expression (52) and repeat the
procedure outlined in Sect. (3.3) to iteratively construct an
alternative expansion form of AII

YM(σn) using lower-point
amplitudes. Simultaneously, we will recursively observe that
An = Bn = Cn = 0 in (48) holds for any n, which estab-
lishes the gauge invariance for polarizations ε1 and εn in the
expansion (38).

First, let’s make the following inductive assumption: (A)
The expansion (49) that maintains manifestness of all polar-
ization vectors is valid for all n ≤ m. (B) The gauge invari-
ance condition (48) An = Bn = Cn = 0 holds for all n ≤ m.
As shown above, these two conditions hold when n = 3.
Therefore, we have obtained the starting point for the induc-
tive proof. We need to prove that these two conditions hold
for n = m + 1 as well. The sub-leading soft behavior of
AII

YM(σm+1) can be expressed as

A(1)s
YM(σm+1) = S(1)s

g AII
YM(σm+1\s)

= S(1)s
g

[
−

∑

�ααα

tr
(
fm · F�ααα · f1

)

km · k1

AYMS(1, �ααα,m; {2, . . . ,m − 1}\ααα|σm+1\s)
]

= P1 + P2, (53)
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where

P1 = −
∑

�ααα

tr
(
fm · F�ααα · f1

)

km · k1

A(1)s
YMS(1, �ααα,m; s ∪ {2, . . . ,m − 1}\ααα|σm+1) (54)

is obtained by acting the operator S(1)s
g on YMS amplitudes,

while P2 is obtained by acting S(1)s
g on coefficients. The block

P2 can be evaluated as

P2 = −
∑

�ααα

tr
(
fm · F�ααα�s · f1

)

km · k1

(δsl s

ssl s
+ δssr

sssr

)

AYMS(1, �ααα,m; {2, . . . ,m − 1}\ααα|σm+1\s)
−

∑

�ααα

tr
(
fm · F�ααα · f1 · fs

)

km · k1

(δms

sms
+ δs1

ss1

)

AYMS(1, �ααα,m; {2, . . . ,m − 1}\ααα|σm+1\s)
+km · fs · k1

km · k1

(δ1s

s1s
+ δsm

ssm

) [ ∑

�ααα

tr
(
fm · F�ααα · f1

)

km · k1

AYMS(1, �ααα,m; {2, . . . ,m − 1}\ααα|σm+1\s)
]
, (55)

notice that the last line arises from acting the soft operator
on the denominator kn · k1 in (53). The first line in (55) can
be recognized as

P21 = −
∑

�ααα

tr
(
fm · F�ααα�s · f1

)

km · k1

A(0)s
YMS(1, �ααα� s,m; {2, . . . ,m − 1}\ααα|σm+1), (56)

via the technique from (44) to (45). Then we combine the
second and third lines in (55) and regroup them as

P22 = C1

[∑

�ααα

(
εm · F�ααα · ε1

)

AYMS(1, �ααα,m; {2, . . . ,m − 1} \ ααα|σm+1\s)
]

+C2

[ ∑

�ααα

(
εm · F�ααα · k1

)

AYMS(1, �ααα,m; {2, . . . ,m − 1} \ ααα|σm+1\s)
]

+C3

[ ∑

�ααα

(
km · F�ααα · ε1

)

AYMS(1, �ααα,m; {2, . . . ,m − 1}\ααα|σm+1\s)
]

+C4

[∑

�ααα

(
km · F�ααα · k1

)

AYMS(1, �ααα,m; {2, . . . ,m − 1}\ααα|σm+1\s)
]
, (57)

where coefficients Ci with i ∈ {1, · · · , 4} are independent of
ordered sets �ααα. Using δab = δba and km · fs ·k1 = −k1 · fs ·km ,
we find C1 = 0. Then remaining three lines in (57) vanish
automatically, due to the gauge invariance conditions in (48)

for m-point amplitudes by the condition (A) of the induction
hypothesis. Thus we obtain

A(1)s
YM(σm+1) = P1 + P21

= −
∑

�ααα

tr
(
fm · F�ααα · f1

)

km · k1

A(1)s
YMS(1, �ααα,m; s ∪ {2, . . . ,m − 1} \ ααα|σm+1)

−
∑

�ααα

tr
(
fm · F�ααα�s · f1

)

km · k1

A(0)s
YMS(1, �ααα� s,m; {2, . . . ,m − 1}\ααα|σm+1),

(58)

which indicates

AII
YM(σm+1) = −

∑

�ααα

tr
(
fm · F�ααα · f1

)

km · k1

AYMS(1, �ααα,m; s ∪ {2, · · · ,m − 1} \ ααα|σm+1)

−
∑

�ααα

tr
(
fm · F�ααα�s · f1

)

km · k1

AYMS(1, �ααα� s,m; {2, · · · ,m − 1} \ ααα|σm+1)

= −
∑

�ααα′

tr
(
fm · F�ααα′ · f1

)

km · k1

AYMS(1, �ααα′,m; s ∪ {2, . . . ,m − 1} \ ααα′|σm+1).

(59)

In the formula (59), ααα denotes subsets of {2, · · · ,m − 1}
that do not include the leg s, while ααα′ represents subsets of
s ∪ {2, · · · ,m − 1}. The expansion (59) is essentially the
expanded formula AII

YM(σn) as seen in (49), applied to the
(m + 1)-point case. It is important to recall that AII

YM(σm+1)

and AI
YM(σm+1) are two distinct forms of expansion derived

using the same method. As a result, we arrive at the conclu-
sion that AII

YM(σm+1) = AI
YM(σm+1), leading to

− km · ε1

km · k1
Am+1 − εm · k1

km · k1
Bm+1 + εm · ε1

km · k1
Cm+1 = 0,

(60)

where Am+1, Bm+1, and Cm+1 are defined in (48) with (m+
1) replacing n. Consequently, we conclude that the gauge
invariance conditions Am+1 = Bm+1 = Cm+1 = 0 hold for
the (m + 1)-point amplitudes, as each coefficient associated
with the independent variables km · ε1, εm · k1, and εm · ε1

must vanish individually.
In summary, if the expansion (49) and the gauge invari-

ance conditions (48) hold for m-point amplitudes, they auto-
matically hold for (m + 1)-point amplitudes. Given that the
three-point amplitudes AYM(σ3) satisfy both the expansion
(49) and the gauge invariance conditions (48), we can apply
this result iteratively to conclude that (49) and (48) are valid
for any YM amplitudeAYM(σn). In other words, we have pre-
sented an alternative expression (49) that explicitly maintains
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gauge invariance for all polarization vectors constructed from
lower-point amplitudes. Additionally, we’ve verified that the
expansions derived in the previous section, as outlined in
(3.3), also preserve gauge invariance for both ε1 and εn .

5 Summary

In this paper, we have enhanced the recursive method based
on the sub-leading soft theorem for external gluons, as pre-
viously employed in [43]. With our new approach, we have
developed two types of expansions from YM amplitudes
to YMS amplitudes. The first type does not exhibit mani-
fest gauge invariance for each polarization, while the sec-
ond type does. As detailed in Sects. 1 and 2, the sub-leading
soft theorem for gluons effectively “grows” a soft gluon in
a manifestly gauge-invariant manner. Consequently, as long
as our recursive starting point is manifestly gauge-invariant,
any intermediate result obtained during the recursion process
remains explicitly gauge-invariant.

According to the methodology presented in this paper, we
can also make the following two extensions:

• Based on the double copy structure, one can replace YM
(YMS) by GR (EYM) in (38) and (49) to obtain the
expansion of GR amplitudes to EYM ones as follows,

AI
GR(n) =

∑

�ααα

(
εn · F�ααα · ε1

)

AEYM(1, �ααα, n; {2, . . . , n − 1} \ ααα), (61)

AII
GR(n) = −

∑

�ααα

tr
(
fn · F�ααα · f1

)

kn · k1

AEYM(1, �ααα, n; {2, . . . , n − 1} \ ααα). (62)

Then, we perform a similar replacement for (24),

AEYM(1, · · · , n; {p1, · · · , pm})
=

∑

�ααα

kr · F�ααα · Y�ααα
kr · kp1···pm

AEYM(1, {2, · · · , n − 1}� �ααα, n; {p1, . . . , pm} \ ααα).

(63)

Starting from (62), iteratively using (63), one arrives at
the expansions of pure GR amplitudes to pure YM ampli-
tudes, whose coefficients manifest the gauge invariance
for each polarization. Thus the manifestly gauge invariant
BCJ numerators are found.

• The gauge invariant expansion can be extended to the
1-loop level straightforwardly. One can first use (38) to

expand the (n + 2)-point tree YM amplitude as

AYM(+, σn,−) =
∑

�ααα
(ε− · F�aaa · ε+)

AYMS(+, �ααα,−; {1, . . . , n} \ ααα|+, σn,−), (64)

where two fixed legs are encoded as +, −, and ααα denotes
subsets of {1, · · · , n}. The 1-loop amplitude can be gen-
erated by taking the forward limit of (65) for legs + and
−, namely, setting k+ = −k− = �, then gluing two legs
+ and − together by identifying ε+, ε−, and summing
over all possible states [45–49]. This manipulation leads
to the expansion at amplitude level,

A1−loop
YM (σn) =

∑

�ααα

(
Tr F�aaa

)

×A1−loop
sYMS (�ααα; {1, · · · , n} \ ααα|σn), (65)

which manifests the gauge invariance. Here the subscript
s in A1−loop

sYMS denotes the special type of 1-loop YMS
amplitudes those the virtual particle propagating in the
loop is a scalar. At the integrand level, one can employ
(24) to expand sYMS integrands iteratively, end with
pure BAS integrands. Since Y�ααα should include the loop
momentum � when applying (24) to the 1-loop level, the
obtained gauge invariant expansion to pure BAS ones
does not hold at the amplitude level.

Moreover, in Sect. 1, we also pointed out that the explicit
formulas of soft factors can be regarded as the consequence of
the universality of soft behaviors, without respecting any top
down derivation. When referring to universality, we mean the
soft factor for BAS scalars observed from pure BAS ampli-
tudes holds for BAS scalars in general YMS amplitudes, and
the soft factors for gluons derived from YMS amplitudes with
only one external gluon also hold for general YMS ampli-
tudes. From the traditional perspective, such universality is
the consequence of the symmetries. For example, the univer-
sal soft behavior of gravitons are ensured by the asymptotic
Bondi–Metzner–Sachs (BMS) symmetries of flat space time
at null infinity [50–56]. From the bottom up perspective, uni-
versality of soft behaviors can be taken as the basic princi-
ple, and the associated symmetries are hard to be observed.
Thus, a natural question is, can we reproduce the correspond-
ing underlying symmetries from the bottom up perspective?
This is an interesting future direction.
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Appendix A: Examples of expansions

In this section, we give some explicit examples of expansion.

A.1 Explicit expression of four-point Yang–Mills (YM)
amplitude

Consider the four-point YM amplitude AYM(σ4) with the
ordering σ4 among external lines. Substituting expansions in
(22) into the expansion of YM amplitude in (38), we get the
following full expansion to the BAS KK basis,

AYM(σ4) =
[
(ε4 · ε1) (ε2 · k1) (ε3 · k12) + (ε4 · f2 · ε1) (ε3 · k12)

+(ε4 · f3 · ε1) (ε2 · k1)

+ε4 · f3 · f2 · ε1

]
ABAS(1, 2, 3, 4|σ4)

+
[
(ε4 · ε1) (ε2 · k1) (ε3 · k1)

+(ε4 · ε1) (ε2 · f3 · k1) + (ε4 · f2 · ε1) (ε3 · k1)

+(ε4 · f3 · ε1) (ε2 · k12)

+ε4 · f2 · f3 · ε1

]
ABAS(1, 3, 2, 4|σ4). (66)

This expansion manifests the locality while breaking the
explicit gauge invariance and the symmetry among legs 2
and 3.

One can also use the expansion in (49) to expandAYM(σ4)

to single-trace YMS amplitudes

AYM(σ4) = − tr( f4 · f1)

k4 · k1
AYMS(1, 4; {2, 3}|σ4)

− tr( f4 · f2 · f1)

k4 · k1
AYMS(1, 2, 4; 3|σ4)

− tr( f4 · f3 · f1)

k4 · k1
AYMS(1, 3, 4; 2|σ4)

− tr( f4 · f3 · f2 · f1)

k4 · k1
ABAS(1, 2, 3, 4|σ4)

− tr( f4 · f2 · f3 · f1)

k4 · k1
ABAS(1, 3, 2, 4|σ4).

(67)

Substituting (24), we get

AYM(σ4) = −
[ tr( f4 · f1)

k4 · k1

kq · f2 · k1

kq · k23

kq · f3 · k12

kq · k3

+ tr( f4 · f1)

k4 · k1

kq · f3 · k1

kq · k23

kq · f2 · k1

kq · k3

+ tr( f4 · f1)

k4 · k1

kq · f3 · f2 · k1

kq · k23

+ tr( f4 · f2 · f1)

k4 · k1

kq · f3 · k12

kq · k3

+ tr( f4 · f3 · f1)

k4 · k1

kq · f2 · k1

kq · k2

+ tr( f4 · f3 · f2 · f1)

k4 · k1

]
ABAS(1, 2, 3, 4|σ4)

+2 ↔ 3, (68)

where kq is an arbitrary reference massless momentum. The
symbol 2 ↔ 3 in the last line means exchange 2 and 3 in
coefficients and the first order (1, 2, 3, 4), without altering
σ4. This formula manifests the gauge invariance among legs
2 and 3. If we fix σ4 = (1, 2, 3, 4), the BAS amplitudes can
be evaluated as

ABAS(1, 2, 3, 4|1, 2, 3, 4) = 1

s12
+ 1

s14
,

ABAS(1, 3, 2, 4|1, 2, 3, 4) = − 1

s14
. (69)

Then we get

AYM(σ4) = −
[ tr( f4 · f1)

k4 · k1

kq · f2 · k1

kq · k23

kq · f3 · k12

kq · k3

+ tr( f4 · f1)

k4 · k1

kq · f3 · k1

kq · k23

kq · f2 · k1

kq · k3

+ tr( f4 · f1)

k4 · k1

kq · f3 · f2 · k1

kq · k23

+ tr( f4 · f2 · f1)

k4 · k1

kq · f3 · k12

kq · k3

+ tr( f4 · f3 · f1)

k4 · k1

kq · f2 · k1

kq · k2

+ tr( f4 · f3 · f2 · f1)

k4 · k1

] (
1

s12
+ 1

s14

)

−
[ tr( f4 · f1)

k4 · k1

kq · f3 · k1

kq · k23

kq · f2 · k13

kq · k2

+ tr( f4 · f1)

k4 · k1

kq · f2 · k1

kq · k23

kq · f3 · k1

kq · k2

+ tr( f4 · f1)

k4 · k1

kq · f2 · f3 · k1

kq · k23
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+ tr( f4 · f3 · f1)

k4 · k1

kq · f2 · k13

kq · k2

+ tr( f4 · f2 · f1)

k4 · k1

kq · f3 · k1

kq · k3

+ tr( f4 · f2 · f3 · f1)

k4 · k1

] (
− 1

s14

)
. (70)

The manifest locality is broken by spurious poles such as
(k1 · k4)

2, kq · ki .

A.2 Expansion of five-point amplitude to YMS ones

Using the expansion in (38), we can expand the YM ampli-
tude AYM(σ5) to YMS ones:

AYM(σ5) = (ε5 · ε1)AYMS(1, 5; {2, 3, 4}|σ5)

+(ε5 · f2 · ε1)AYMS(1, 2, 5; {3, 4}|σ5)

+2 ↔ 3 + 2 ↔ 4

+(ε5 · f3 · f2 · ε1)AYMS(1, 2, 3, 5; 4|σ5)

+2 ↔ 3

+(ε5 · f4 · f2 · ε1)AYMS(1, 2, 4, 5; 3|σ5)

+2 ↔ 4

+(ε5 · f4 · f3 · ε1)AYMS(1, 3, 4, 5; 2|σ5)

+3 ↔ 4

+(ε5 · f4 · f3 · f2 · ε1)ABAS(1, 2, 3, 4, 5|σ5)

+S3(2, 3, 4), (71)

where S3(2, 3, 4) denotes permutations among legs 2, 3 and
4. Again, any i ↔ j in the above representation does not alter
σ5. This expansion manifests the locality while breaking the
explicit gauge invariance for ε1 and ε5.

One can also use the expansion in (38) to expand the YM
amplitude AYM(σ5) to YMS ones as

AYM(σ5) = tr( f5 · f1)

k5 · k1
AYMS(1, 5; {2, 3, 4}|σ5)

+ tr( f5 · f2 · f1)

k5 · k1
AYMS(1, 2, 5; {3, 4}|σ5)

+2 ↔ 3 + 2 ↔ 4

+ tr( f5 · f3 · f2 · f1)

k5 · k1
AYMS(1, 2, 3, 5; 4|σ5)

+2 ↔ 3

+ tr( f5 · f4 · f2 · f1)

k5 · k1
AYMS(1, 2, 4, 5; 3|σ5)

+2 ↔ 4

+ tr( f5 · f4 · f3 · f1)

k5 · k1
AYMS(1, 3, 4, 5; 2|σ5)

+3 ↔ 4

+ tr( f5 · f4 · f3 · f2 · f1)

k5 · k1
ABAS(1, 2, 3, 4, 5|σ5)

+S3(2, 3, 4). (72)

This expansion manifests the gauge invariance for ε1 and
ε5, and breaks the explicit locality by introducing an extra
1/k5 · k1. In a similar manner, we can substitute the expres-
sion for YMS, as expanded into BAS from Eq. (24), into the
calculation. Then, by following the method detailed in Sect.
2.1 of Sect. 2, we can determine the corresponding BAS
amplitude. This process ultimately yields the final specific
expression. Due to space constraints, we will not provide a
detailed expansion here.
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